EP2361297A1 - Reducing high-aqueous content sludge in diesel engines - Google Patents
Reducing high-aqueous content sludge in diesel enginesInfo
- Publication number
- EP2361297A1 EP2361297A1 EP09740819A EP09740819A EP2361297A1 EP 2361297 A1 EP2361297 A1 EP 2361297A1 EP 09740819 A EP09740819 A EP 09740819A EP 09740819 A EP09740819 A EP 09740819A EP 2361297 A1 EP2361297 A1 EP 2361297A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitrogen
- dispersants
- percent
- dispersant
- aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 32
- 239000002270 dispersing agent Substances 0.000 claims abstract description 123
- 239000000203 mixture Substances 0.000 claims abstract description 81
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000000314 lubricant Substances 0.000 claims abstract description 54
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 28
- 238000009472 formulation Methods 0.000 claims abstract description 22
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims abstract description 22
- 239000010687 lubricating oil Substances 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 73
- 125000003118 aryl group Chemical group 0.000 claims description 52
- 239000003921 oil Substances 0.000 claims description 51
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 41
- -1 polytetramethylene Polymers 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000003599 detergent Substances 0.000 claims description 25
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 239000003963 antioxidant agent Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 230000001050 lubricating effect Effects 0.000 claims description 13
- 238000009825 accumulation Methods 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 230000003078 antioxidant effect Effects 0.000 claims description 9
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 4
- 229920001451 polypropylene glycol Polymers 0.000 claims description 4
- 229960002317 succinimide Drugs 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000002518 antifoaming agent Substances 0.000 claims description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 239000008186 active pharmaceutical agent Substances 0.000 claims 2
- 150000002009 diols Chemical class 0.000 claims 1
- 150000003017 phosphorus Chemical class 0.000 claims 1
- 235000019198 oils Nutrition 0.000 description 46
- 125000001183 hydrocarbyl group Chemical group 0.000 description 26
- 229960005419 nitrogen Drugs 0.000 description 20
- 150000001412 amines Chemical class 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 125000000217 alkyl group Chemical group 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 15
- 150000004982 aromatic amines Chemical class 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002199 base oil Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- CNXZLZNEIYFZGU-UHFFFAOYSA-N n-(4-amino-2,5-diethoxyphenyl)benzamide Chemical compound C1=C(N)C(OCC)=CC(NC(=O)C=2C=CC=CC=2)=C1OCC CNXZLZNEIYFZGU-UHFFFAOYSA-N 0.000 description 6
- DDRCIGNRLHTTIW-UHFFFAOYSA-N n-(4-amino-2,5-dimethoxyphenyl)benzamide Chemical compound C1=C(N)C(OC)=CC(NC(=O)C=2C=CC=CC=2)=C1OC DDRCIGNRLHTTIW-UHFFFAOYSA-N 0.000 description 6
- VENDXQNWODZJGB-UHFFFAOYSA-N n-(4-amino-5-methoxy-2-methylphenyl)benzamide Chemical compound C1=C(N)C(OC)=CC(NC(=O)C=2C=CC=CC=2)=C1C VENDXQNWODZJGB-UHFFFAOYSA-N 0.000 description 6
- 239000002736 nonionic surfactant Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229920001515 polyalkylene glycol Polymers 0.000 description 5
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- UNBOSJFEZZJZLR-UHFFFAOYSA-N 4-(4-nitrophenylazo)aniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=C([N+]([O-])=O)C=C1 UNBOSJFEZZJZLR-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 235000015165 citric acid Nutrition 0.000 description 4
- 150000003949 imides Chemical group 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000010705 motor oil Substances 0.000 description 4
- 229920000768 polyamine Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000010689 synthetic lubricating oil Substances 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000005078 molybdenum compound Substances 0.000 description 3
- 150000002752 molybdenum compounds Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 229920013639 polyalphaolefin Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 229920000909 polytetrahydrofuran Polymers 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- JWYUFVNJZUSCSM-UHFFFAOYSA-N 2-aminobenzimidazole Chemical compound C1=CC=C2NC(N)=NC2=C1 JWYUFVNJZUSCSM-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- HJXIRCMNJLIHQR-UHFFFAOYSA-N 2-n,2-n-dimethylbenzene-1,2-diamine Chemical compound CN(C)C1=CC=CC=C1N HJXIRCMNJLIHQR-UHFFFAOYSA-N 0.000 description 2
- XJCVRTZCHMZPBD-UHFFFAOYSA-N 3-nitroaniline Chemical compound NC1=CC=CC([N+]([O-])=O)=C1 XJCVRTZCHMZPBD-UHFFFAOYSA-N 0.000 description 2
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- AFBPFSWMIHJQDM-UHFFFAOYSA-N N-methylaniline Chemical compound CNC1=CC=CC=C1 AFBPFSWMIHJQDM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 2
- HWXBTNAVRSUOJR-UHFFFAOYSA-N alpha-hydroxyglutaric acid Natural products OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000012612 commercial material Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical compound C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 2
- GTTFJYUWPUKXJH-UHFFFAOYSA-N n-(4-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1NC(=O)C1=CC=CC=C1 GTTFJYUWPUKXJH-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- ATGUVEKSASEFFO-UHFFFAOYSA-N p-aminodiphenylamine Chemical compound C1=CC(N)=CC=C1NC1=CC=CC=C1 ATGUVEKSASEFFO-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 2
- 229960001860 salicylate Drugs 0.000 description 2
- 150000003870 salicylic acids Chemical class 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 238000011925 1,2-addition Methods 0.000 description 1
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- XUKJDTCEYYOATE-UHFFFAOYSA-N 10h-phenothiazin-1-amine Chemical class S1C2=CC=CC=C2NC2=C1C=CC=C2N XUKJDTCEYYOATE-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- IHWDSEPNZDYMNF-UHFFFAOYSA-N 1H-indol-2-amine Chemical class C1=CC=C2NC(N)=CC2=C1 IHWDSEPNZDYMNF-UHFFFAOYSA-N 0.000 description 1
- QLSWIGRIBOSFMV-UHFFFAOYSA-N 1h-pyrrol-2-amine Chemical class NC1=CC=CN1 QLSWIGRIBOSFMV-UHFFFAOYSA-N 0.000 description 1
- LLCOQBODWBFTDD-UHFFFAOYSA-N 1h-triazol-1-ium-4-thiolate Chemical class SC1=CNN=N1 LLCOQBODWBFTDD-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- QVXGKJYMVLJYCL-UHFFFAOYSA-N 2,3-di(nonyl)-N-phenylaniline Chemical compound C(CCCCCCCC)C=1C(=C(C=CC1)NC1=CC=CC=C1)CCCCCCCCC QVXGKJYMVLJYCL-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- SVNCRRZKBNSMIV-UHFFFAOYSA-N 3-Aminoquinoline Chemical compound C1=CC=CC2=CC(N)=CN=C21 SVNCRRZKBNSMIV-UHFFFAOYSA-N 0.000 description 1
- CPTMARLQJDFLLX-UHFFFAOYSA-N 3-amino-n-(4-anilinophenyl)butanamide Chemical compound C1=CC(NC(=O)CC(N)C)=CC=C1NC1=CC=CC=C1 CPTMARLQJDFLLX-UHFFFAOYSA-N 0.000 description 1
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- KLPPPIIIEMUEGP-UHFFFAOYSA-N 4-dodecylaniline Chemical compound CCCCCCCCCCCCC1=CC=C(N)C=C1 KLPPPIIIEMUEGP-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- RHPVVNRNAHRJOQ-UHFFFAOYSA-N 4-methyl-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1NC1=CC=C(C)C=C1 RHPVVNRNAHRJOQ-UHFFFAOYSA-N 0.000 description 1
- WOYZXEVUWXQVNV-UHFFFAOYSA-N 4-phenoxyaniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC=C1 WOYZXEVUWXQVNV-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical group COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- WREVVZMUNPAPOV-UHFFFAOYSA-N 8-aminoquinoline Chemical compound C1=CN=C2C(N)=CC=CC2=C1 WREVVZMUNPAPOV-UHFFFAOYSA-N 0.000 description 1
- YJKJAYFKPIUBAW-UHFFFAOYSA-N 9h-carbazol-1-amine Chemical class N1C2=CC=CC=C2C2=C1C(N)=CC=C2 YJKJAYFKPIUBAW-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical group CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- GLXXCUDRWSCEBQ-UHFFFAOYSA-N OC1=CC(N)=CC=C1C(=O)OC1=CC=CC=C1.OC(=O)C1=CC=CC=C1ONC1=CC=CC=C1 Chemical compound OC1=CC(N)=CC=C1C(=O)OC1=CC=CC=C1.OC(=O)C1=CC=CC=C1ONC1=CC=CC=C1 GLXXCUDRWSCEBQ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003927 aminopyridines Chemical class 0.000 description 1
- 150000005005 aminopyrimidines Chemical class 0.000 description 1
- 229960000510 ammonia Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 150000003819 basic metal compounds Chemical class 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 239000002272 engine oil additive Substances 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- RJUVPCYAOBNZAX-VOTSOKGWSA-N ethyl (e)-3-(dimethylamino)-2-methylprop-2-enoate Chemical compound CCOC(=O)C(\C)=C\N(C)C RJUVPCYAOBNZAX-VOTSOKGWSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 235000013531 gin Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011034 membrane dialysis Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- KYCGURZGBKFEQB-UHFFFAOYSA-N n',n'-dibutylpropane-1,3-diamine Chemical compound CCCCN(CCCC)CCCN KYCGURZGBKFEQB-UHFFFAOYSA-N 0.000 description 1
- UDGSVBYJWHOHNN-UHFFFAOYSA-N n',n'-diethylethane-1,2-diamine Chemical compound CCN(CC)CCN UDGSVBYJWHOHNN-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 1
- IBOBFGGLRNWLIL-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)[O-] IBOBFGGLRNWLIL-UHFFFAOYSA-N 0.000 description 1
- UTTVXKGNTWZECK-UHFFFAOYSA-N n,n-dimethyloctadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)[O-] UTTVXKGNTWZECK-UHFFFAOYSA-N 0.000 description 1
- CHMBIJAOCISYEW-UHFFFAOYSA-N n-(4-aminophenyl)acetamide Chemical compound CC(=O)NC1=CC=C(N)C=C1 CHMBIJAOCISYEW-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- RWIVICVCHVMHMU-UHFFFAOYSA-N n-aminoethylmorpholine Chemical compound NCCN1CCOCC1 RWIVICVCHVMHMU-UHFFFAOYSA-N 0.000 description 1
- VSHTWPWTCXQLQN-UHFFFAOYSA-N n-butylaniline Chemical compound CCCCNC1=CC=CC=C1 VSHTWPWTCXQLQN-UHFFFAOYSA-N 0.000 description 1
- LVZUNTGFCXNQAF-UHFFFAOYSA-N n-nonyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCCC)C1=CC=CC=C1 LVZUNTGFCXNQAF-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- XFTQRUTUGRCSGO-UHFFFAOYSA-N pyrazin-2-amine Chemical class NC1=CN=CC=N1 XFTQRUTUGRCSGO-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- XMIAFAKRAAMSGX-UHFFFAOYSA-N quinolin-5-amine Chemical compound C1=CC=C2C(N)=CC=CC2=N1 XMIAFAKRAAMSGX-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- ITTJVBYLJKMXTC-UHFFFAOYSA-N s-(thiadiazol-4-yl)thiohydroxylamine Chemical class NSC1=CSN=N1 ITTJVBYLJKMXTC-UHFFFAOYSA-N 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 229960002135 sulfadimidine Drugs 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N sulfamethazine Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- CUWHXIJMTMMRTI-UHFFFAOYSA-N thiadiazol-4-amine Chemical class NC1=CSN=N1 CUWHXIJMTMMRTI-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M157/00—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
- C10M157/04—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential at least one of them being a nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/048—Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution, non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/101—Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/106—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbasedsulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/26—Waterproofing or water resistance
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/66—Hydrolytic stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
Definitions
- the disclosed technology relates to lubricant formulations and methods for reducing or eliminating accumulation of high-aqueous content sludge, or reducing its formation or viscosity, in internal combustion engines.
- Modern engine oil formulations, in particular for diesel (compression ignited) engines contain a variety of additives to impart desired lubricating performance.
- an unusual form of sludge has been observed accumulating in cooler portions of the engine, such as on a rocker cover. This sludge may also be observed on other parts of the engine.
- this material is a sludge-like material that appears to be a combination of lubricant oil with relatively high amounts of water, e.g., up to 70-80 weight percent water. It is speculated that this sludge may arise due the accumulation of water from combustion in the lubricant oil, particularly when combustion products are not efficiently purged from the crankcase due to restricted ventilation. The accumulation of this sludge can lead to restrictive flow of lubricant and corrosion of metal surfaces. It is therefore desirable to reduce or eliminate the formation or accumulation of this sludge. [0003] A variety of lubricants have been used for lubricating internal combustion engines. For instance, U.S.
- Patent 6,642,189 Kurihara et al., November 4, 2003, discloses engine oil compositions that may be used in motorcycle engines, automobile engines, diesel engines for land use, and marine diesel engines.
- the lubricant contains a lubricating base oil and a polymethacrylate- based viscosity index improver. It may also contain a molybdenum dithiocar- bamate as well as one or more other engine oil additives.
- detergents, dispersants, oxidation inhibitors, friction modifiers, corrosion inhibitors, demulsifying agents such as polyalkylene glycol-based non-ionic surfactants, metal deactivators, and antifoamers [0004] U.S.
- Patent 5,198,135, Galic et al., March 30, 1993 discloses a crankcase lubricating oil composition containing as an antiemulsion agent an effective amount of a butylene oxide containing polymer.
- Other components that may be present include a hydrocarbon-soluble ashless dispersant, an alkali or alkaline earth metal detergent, a zinc dialkyldithiophosphate, an antioxidant, a viscosity modifier, a rust inhibitor, and a pour point depressant.
- U.S. Patent 3,509,052, Murphy, April 28, 1970 discloses improved lubricating composition which contain a demulsifier. The compositions reduce or eliminate the formation of sludge on the internal metal surfaces of internal combustion engines. Polyoxyalkylene polyols are preferred demulsifiers. The sludges have been found in the rocker arm covers and oil-fill caps of, particularly, smaller car engines.
- the disclosed technology provides, in one embodiment, a method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least 0.07 or at least 0.08 weight percent nitrogen derived from one or more nitrogen- containing ashless dispersants, said method comprising: including in said lubricant at least 0.05 percent by weight of a polyalkylene oxide.
- the technology provides a method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least one nitrogen-containing dispersant and optioanlly at least one dispersant viscosity modifier or polymeric material, wherein ⁇ the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen- containing dispersant viscosity modifiers ⁇ plus ⁇ 0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers ⁇ is at least 0.07 (or alternatively at least 0.08), said method comprising: including in said lubricant at least about 0.05 percent by weight of a polyalkylene oxide.
- the disclosed technology also provides a lubricant composition suitable for reducing accumulation of high-aqueous content sludge in a sump- lubricated diesel engine, comprising: an oil of lubricating viscosity; one or more nitrogen-containing ashless dispersants in an amount to provide at least 0.07 or 0.08 weight percent nitrogen to the lubricant composition; and at least 0.05 percent by weight of a polyalkylene oxide.
- the formulation contains one or more nitro- gen-containing ashless dispersants or dispersant viscosity modifiers such that the formulation contains at least one nitrogen-containing dispersant and optionally at least one dispersant viscosity modifier or polymeric material, wherein ⁇ the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen-containing dispersant viscosity modifiers ⁇ plus ⁇ 0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers ⁇ is at least 0.07.
- a rocker cover for example, may have an ambient operating temperature of only about 25 0 C under certain conditions, and thus this is a location where collection of this sludge may be a problem.
- One component of the sludge is the lubricating oil or at least a por- tion or components or elements of the overall lubricating oil composition.
- Lubricants for internal combustion engines typically include a number of components that have been selected to perform various important functions.
- One such component, and normally the majority component is an oil of lubricating viscosity.
- the base oil used in the inventive lubricating oil composition may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- the five base oil groups are as follows: Base Oil Category Sulfur (%) Saturates(%) Vise. Index
- Group I >0.03 and/or ⁇ 90 80 to 120
- Group IV All polyalphaolefins (PAOs) Group V All others not included in Groups I, II, III or IV Groups I, II and III are mineral oil base stocks. "Gas-to-liquid" base stocks are also generally considered Group III.
- the oil of lubricating viscosity can include natural or synthetic lubricating oils and mixtures thereof. Mixture of mineral oil and synthetic oils, particularly polyalphaolefin oils and polyester oils, are often used in lubricants.
- Natural oils include animal oils and vegetable oils (e.g.
- mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types.
- Hy- drotreated or hydrocracked oils are included within the scope of useful oils of lubricating viscosity.
- Oils of lubricating viscosity derived from coal or shale are also useful.
- Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins and mixtures thereof, alkylbenzenes, polyphenyl, (e.g., biphenyls, terphenyls, and alkylated polyphenyls), alkylated diphenyl ethers and alkylated diphenyl sulfides and their derivatives, analogs and homologues thereof.
- hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins and mixtures thereof, alkylbenzenes, polyphenyl, (e.g., biphenyls, terphenyls, and alkylated polyphenyls), alkylated diphenyl ethers and alkylated diphenyl
- Another suitable class of synthetic lubricating oils that can be used comprises the esters of dicarboxylic acids and those made from C5 to C 12 monocarboxylic acids and polyols or polyol ethers.
- Other synthetic lubricating oils include liquid esters of phosphorus- containing acids, polymeric tetrahydrofurans, silicon-based oils such as the poly- alkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils, and silicate oils.
- Hydrotreated naphthenic oils are also known and can be used. Synthetic oils may be used, such as those produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes.
- oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
- Unrefined, refined and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed herein- above can used in the compositions of the present invention.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purifi- cation treatment.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
- the amount of the oil will typically be greater than 50 percent by weight of the lubricant composition when the composition is a fully formulated lubricant. It may be equal to the balance of the total lubricant after the dispers- ant, polyalkylene oxide, and any other components are accounted for. Thus, it may be, in certain embodiments 70 to 96 percent or 80 to 95 percent or 85 to 90 percent .
- the lubricant composition may be in the form of a concentrate, suitable for subsequent dilution with additional oil and optionally addition of further components to prepare the fully formulated lubricant. In such cases the amount of the oil will be proportionally less, e.g., 20 to 80 percent.
- Such dispersants are typically referred to as "ashless” even if they have been post-treated with various agents, such as a borating agent to provide a borated dispersant.
- Such dispersants are ashless in the sense that they do not contain metal or contribute metal content to a lubricant, even though the presence of boron may make a small contribution to sulfated ash as measured by ASTM D 874.
- Such materials would typically be encompassed within the ashless dispersants of the present technology.
- Ashless dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain. Typical ashless dispers- ants include N-substituted long chain alkenyl succinimides (succinimide dis- persants), h ically
- one of the X groups can be hydrogen.
- Saligenin detergents are disclosed in greater detail in U.S. Patent 6,310,009, with special reference to their methods of synthesis (Column 8 and Example 1) and amounts of the various species of X and Y (Column 6).
- R 3 is hydrogen or a hydrocarbyl group
- R 2 is hydroxyl or a hydrocarbyl group and j is 0, 1, or 2
- R 6 is hydrogen, a hydrocarbyl group, or a hetero-substituted hydrocarbyl group
- R 4 is hydroxyl and R 5 and R 7 are independently either hydrogen, a hydrocarbyl group, or hetero-substituted hydrocarbyl group, or else R 5 and R 7 are both hydroxyl and R 4 is hydrogen, a hydrocarbyl group, or a hetero-substituted hydrocarbyl group.
- the overbased detergent can also be an overbased salicylate, that is, a salt of an alkylsalicylic acid.
- the salicylic acids may be hydrocarbyl- substituted salicylic acids wherein each substituent contains an average of at least 8 carbon atoms per substituent and 1 to 3 substituents per molecule.
- Over- based salicylate detergents and their methods of preparation are disclosed in U.S. Patents 4,719,023 and 3,372,116.
- the resulting acid may be reacted with a basic metal compound to form the salt.
- the metal M having a valence n, generally is aluminum, lead, tin, manganese, cobalt, nickel, zinc, or copper, and in many cases, zinc, to form zinc dialkyldithiophosphates.
- the lubricant may also contain a viscosity modifier, in addition to the dispersant viscosity modifier that has been discussed above.
- Viscosity modifiers also known as viscosity index improvers, generally are polymeric materials characterized as being hydrocarbon-based polymers generally having number average molecular weights between 25,000 and 500,000, e.g., between 50,000 and 200,000.
- 4,285,822 discloses lubricating oil compositions containing a molybdenum and sulfur containing composition prepared by (1) combining a polar solvent, an acidic molybdenum compound and an oil-soluble basic nitrogen compound to form a molybdenum-containing complex and (2) contacting the complex with carbon disulfide to form the molybdenum and sulfur containing composition.
- Typical amounts of antioxidants will, of course, depend on the specific antioxidant and its individual effectiveness, but illustrative total amounts can be 0.01 to 5 percent by weight or 0.15 to 4.5 or 0.2 to 4 percent.
- Yet other components may be present, including, corrosion inhibitors, extreme pressure and anti-wear agents. These materials include chlorinated aliphatic hydrocarbons; boron-containing compounds including borate esters; and molybdenum compounds.
- hydroxycarboxylic acids which may variously impart as one or more of friction modification, anti-wear, anti-corrosion, demulsif ⁇ cation, and antioxidant activity.
- suitable hydroxycarboxylic acids from which a derivative may be prepared include citric acid, tartaric acid, malic acid (or hydroxy- succinic acid), mandelic acid, lactic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, and mixtures thereof.
- the deriva- tive may be prepared from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof.
- the derivative includes a compound derived more particularly from tartaric acid.
- the derivative of hydroxycarboxylic acid may be an imide, di-ester, di-amide, or ester-amide derivative of tartaric acid, citric acid, or mixtures thereof.
- the derivative of hydroxycarboxylic acid may be an imide, di-ester, di-amide, or ester-amide derivative of tartaric acid.
- the derivatives may also be ester-imides or imide- amides (appli- cable for tri-acids and higher, such as citric acid) or di-imides (applicable for tetra-acids and higher).
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
- hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), ali- cyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non- hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this
- Heteroatoms include sulfur, oxygen, and nitrogen.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- the reduction of accumulation of high-aqueous content sludge is modeled by the reduction of its viscosity, water content, and problems derived therefrom. This may be accomplished by a bench test which involves combin- ing 40 g deionized water and 1O g test lubricant oil in a 400 mL beaker. The water is added to the oil, which is stirred with a magnetic stir bar (setting at 3.5 units out of 10), over the course of about 4 minutes using a peristaltic pump. After the addition is complete, stirring is discontinued, the blend is allowed to sit for 10 minutes, and the blend is then poured into a 110 mL (4 oz) glass jar.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Formation of high-aqueous content sludge may be reduced in a sump lubricated diesel engine lubricated with a lubricating oil formulation that contains at least 0.07 or 0.08 weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants, by including in the lubricant a polyalkylene oxide.
Description
TITLE
Reducing High-Aqueous Content Sludge in Diesel Engines
BACKGROUND OF THE INVENTION [0001] The disclosed technology relates to lubricant formulations and methods for reducing or eliminating accumulation of high-aqueous content sludge, or reducing its formation or viscosity, in internal combustion engines. [0002] Modern engine oil formulations, in particular for diesel (compression ignited) engines contain a variety of additives to impart desired lubricating performance. Recently, there has been increasing emphasis on providing lubricants with high content of nitrogen-containing dispersant. This development has not been without problems, however. In certain engines, especially those with restricted crankcase ventilation, an unusual form of sludge has been observed accumulating in cooler portions of the engine, such as on a rocker cover. This sludge may also be observed on other parts of the engine. We characterize this material as high-aqueous content sludge, as it is a sludge-like material that appears to be a combination of lubricant oil with relatively high amounts of water, e.g., up to 70-80 weight percent water. It is speculated that this sludge may arise due the accumulation of water from combustion in the lubricant oil, particularly when combustion products are not efficiently purged from the crankcase due to restricted ventilation. The accumulation of this sludge can lead to restrictive flow of lubricant and corrosion of metal surfaces. It is therefore desirable to reduce or eliminate the formation or accumulation of this sludge. [0003] A variety of lubricants have been used for lubricating internal combustion engines. For instance, U.S. Patent 6,642,189, Kurihara et al., November 4, 2003, discloses engine oil compositions that may be used in motorcycle engines, automobile engines, diesel engines for land use, and marine diesel engines. The lubricant contains a lubricating base oil and a polymethacrylate- based viscosity index improver. It may also contain a molybdenum dithiocar- bamate as well as one or more other engine oil additives. Among these are detergents, dispersants, oxidation inhibitors, friction modifiers, corrosion inhibitors, demulsifying agents such as polyalkylene glycol-based non-ionic surfactants, metal deactivators, and antifoamers. [0004] U.S. Patent 5,198,135, Galic et al., March 30, 1993, discloses a crankcase lubricating oil composition containing as an antiemulsion agent an effective amount of a butylene oxide containing polymer. Other components
that may be present include a hydrocarbon-soluble ashless dispersant, an alkali or alkaline earth metal detergent, a zinc dialkyldithiophosphate, an antioxidant, a viscosity modifier, a rust inhibitor, and a pour point depressant. [0005] U.S. Patent 3,509,052, Murphy, April 28, 1970, discloses improved lubricating composition which contain a demulsifier. The compositions reduce or eliminate the formation of sludge on the internal metal surfaces of internal combustion engines. Polyoxyalkylene polyols are preferred demulsifiers. The sludges have been found in the rocker arm covers and oil-fill caps of, particularly, smaller car engines. SUMMARY OF THE INVENTION
[0006] The disclosed technology provides, in one embodiment, a method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least 0.07 or at least 0.08 weight percent nitrogen derived from one or more nitrogen- containing ashless dispersants, said method comprising: including in said lubricant at least 0.05 percent by weight of a polyalkylene oxide. [0007] In another embodiment, the technology provides a method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least one nitrogen-containing dispersant and optioanlly at least one dispersant viscosity modifier or polymeric material, wherein {the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen- containing dispersant viscosity modifiers} plus {0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers} is at least 0.07 (or alternatively at least 0.08), said method comprising: including in said lubricant at least about 0.05 percent by weight of a polyalkylene oxide. [0008] The disclosed technology also provides a lubricant composition suitable for reducing accumulation of high-aqueous content sludge in a sump- lubricated diesel engine, comprising: an oil of lubricating viscosity; one or more nitrogen-containing ashless dispersants in an amount to provide at least 0.07 or 0.08 weight percent nitrogen to the lubricant composition; and at least 0.05 percent by weight of a polyalkylene oxide. [0009] In another embodiment the formulation contains one or more nitro- gen-containing ashless dispersants or dispersant viscosity modifiers such that the formulation contains at least one nitrogen-containing dispersant and optionally at least one dispersant viscosity modifier or polymeric material, wherein
{the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen-containing dispersant viscosity modifiers} plus {0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers} is at least 0.07.
DETAILED DESCRIPTION OF THE INVENTION
[0010] Various preferred features and embodiments will be described below by way of non-limiting illustration. [0011] The technology described herein is suitable for use in a sump- lubricated diesel engine, that is, a compression ignited engine. Diesel engines are commonly used in passenger cars, trucks, off-road vehicles, and marine vessels. The technology is particularly useful in those engines that are susceptible to contamination with high aqueous content sludge, as described above. While such sludge accumulation has been observed in a variety of diesel en- gines, it is believed to be particularly significant in engines having restricted crankcase ventilation, sometimes referred to as "closed crankcase" or "pseudo- closed crankcase" systems. In such systems, products of combustion such as water vapor may accumulate and, by combination with the lubricant or portions of the lubricant, by mechanisms that are not fully understood, may lead to formation of high water-based sludge in relatively cooler portions of the engine. A rocker cover, for example, may have an ambient operating temperature of only about 25 0C under certain conditions, and thus this is a location where collection of this sludge may be a problem. [0012] One component of the sludge is the lubricating oil or at least a por- tion or components or elements of the overall lubricating oil composition.
Lubricants for internal combustion engines typically include a number of components that have been selected to perform various important functions. One such component, and normally the majority component (by which is meant a component that is present in a major amount, that is, greater than 50 percent by weight), is an oil of lubricating viscosity.
[0013] The base oil used in the inventive lubricating oil composition may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. The five base oil groups are as follows: Base Oil Category Sulfur (%) Saturates(%) Vise. Index
Group I >0.03 and/or <90 80 to 120
Group II <0.03 and >90 80 to 120
Group III <0.03 and >90 >120
Group IV All polyalphaolefins (PAOs) Group V All others not included in Groups I, II, III or IV Groups I, II and III are mineral oil base stocks. "Gas-to-liquid" base stocks are also generally considered Group III. The oil of lubricating viscosity, then, can include natural or synthetic lubricating oils and mixtures thereof. Mixture of mineral oil and synthetic oils, particularly polyalphaolefin oils and polyester oils, are often used in lubricants. However, the problem of high aqueous sludge formation is sometimes more severe in some of the more highly refined base oils, in particularly, Group II or Group III or Group IV oils or mixtures thereof, or mixtures of oils that contain a significant amount of Group II or Group III or Group IV content (e.g., 50 percent by weight or more, or 80 or 90 percent or more, of the total amount of base oil). In another embodiment the oils may be Group II or Group III oils or such mixtures thereof. [0014] Natural oils include animal oils and vegetable oils (e.g. castor oil, lard oil and other vegetable acid esters) as well as mineral lubricating oils such as liquid petroleum oils and solvent-treated or acid treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Hy- drotreated or hydrocracked oils are included within the scope of useful oils of lubricating viscosity.
[0015] Oils of lubricating viscosity derived from coal or shale are also useful. Synthetic lubricating oils include hydrocarbon oils and halosubstituted hydrocarbon oils such as polymerized and interpolymerized olefins and mixtures thereof, alkylbenzenes, polyphenyl, (e.g., biphenyls, terphenyls, and alkylated polyphenyls), alkylated diphenyl ethers and alkylated diphenyl sulfides and their derivatives, analogs and homologues thereof. Another suitable class of synthetic lubricating oils that can be used comprises the esters of dicarboxylic acids and those made from C5 to C 12 monocarboxylic acids and polyols or polyol ethers. [0016] Other synthetic lubricating oils include liquid esters of phosphorus- containing acids, polymeric tetrahydrofurans, silicon-based oils such as the poly- alkyl-, polyaryl-, polyalkoxy-, or polyaryloxy-siloxane oils, and silicate oils. [0017] Hydrotreated naphthenic oils are also known and can be used. Synthetic oils may be used, such as those produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
[0018] Unrefined, refined and rerefined oils, either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed herein- above can used in the compositions of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purifi- cation treatment. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
[0019] The amount of the oil will typically be greater than 50 percent by weight of the lubricant composition when the composition is a fully formulated lubricant. It may be equal to the balance of the total lubricant after the dispers- ant, polyalkylene oxide, and any other components are accounted for. Thus, it may be, in certain embodiments 70 to 96 percent or 80 to 95 percent or 85 to 90 percent . In certain embodiments, the lubricant composition may be in the form of a concentrate, suitable for subsequent dilution with additional oil and optionally addition of further components to prepare the fully formulated lubricant. In such cases the amount of the oil will be proportionally less, e.g., 20 to 80 percent. [0020] The lubricants will also contain a dispersant, in particular, a nitrogen- containing dispersant. Dispersants are almost universally used in lubricants for diesel engines, and the problem of formation of high aqueous sludge is particularly prominent in lubricants containing a relatively large amount of nitrogen- containing dispersant. [0021] Dispersants are well known in the field of lubricants and include primarily what is known as ashless dispersants and polymeric dispersants. Ashless dispersants are so-called because, as supplied, they do not contain metal and thus do not normally contribute to sulfated ash when added to a lubricant. However they may, of course, interact with ambient metals once they are added to a lubricant which includes metal-containing species. Such dispersants are typically referred to as "ashless" even if they have been post-treated with various agents, such as a borating agent to provide a borated dispersant. Such dispersants are ashless in the sense that they do not contain metal or contribute metal content to a lubricant, even though the presence of boron may make a small contribution to sulfated ash as measured by ASTM D 874. Such materials would typically be encompassed within the ashless dispersants of the present technology. Ashless dispersants are characterized by a polar group attached to
a relatively high molecular weight hydrocarbon chain. Typical ashless dispers- ants include N-substituted long chain alkenyl succinimides (succinimide dis- persants), h ically
where each R1 is independently an alkyl group, frequently a polyisobutylene group with a molecular weight (Mn) of 500-5000 based on the polyisobutylene precursor, and R2 are alkylene groups, commonly ethylene (C2H4) groups, and x is 0 to 6 or above, or 1 to 5. Such molecules are commonly derived from reaction of an alkenyl acylating agent with a polyamine such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylpentamine, and pentaethyl- hexamine. Also useful are mixtures of amines, both linear and branched in various manners, which are known commercially as amine bottoms or ethylene amine still bottoms. They may contain mixtures of N4, N5, N6, and N7 amines. [0022] A wide variety of linkages between the acid and amine moieties is possible beside the simple imide structure shown above, including a variety of amides and ammonium salts. Also, a variety of modes of linkage of the R1 groups onto the imide structure are possible, including various cyclic linkages. The ratio of the carbonyl groups of the acylating agent to the nitrogen atoms of the amine may be 1 :0.5 to 1 :3, and in other instances 1 : 1 to 1 :2.75 or 1 : 1.5 to 1 :2.5. Succinimide dispersants are more fully described in U.S. Patents 4,234,435 and 3,172,892 and in EP 0355895.
[0023] In certain embodiments the dispersant may also contain ester functionality, such materials having been prepared by reacting a hydrocarbyl acylating agent and a polyhydric aliphatic alcohol such as glycerol, pentaerythritol, or sorbitol, in addition to an amine. Such materials are described in more detail in U.S. Patent 3,381 ,022.
[0024] Another class of nitrogen-containing ashless dispersant is Mannich bases. These are materials which are formed by the condensation of a higher molecular weight, alkyl substituted phenol, an alkylene polyamine, and an aldehyde such as formaldehyde. Such materials may have the general structure
(including a variety of isomers and the like) where R1, R2, and x may be as described above. These are described in more detail in U.S. Patent 3,634,515. Dispersants of the various types described herein can also be post-treated by reaction with any of a variety of agents. Among these are urea, thiourea, dimer- captothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, nitriles, epoxides, boron compounds, and phosphorus compounds. References detailing such treatment are listed in U.S. Patent 4,654,403. [0025] In certain embodiments of the present technology, Mannich dispersants may be present in relatively low amounts or may be absent altogether. If Mannich dispersants are the lubricating composition is substantially free from Mannich dispersants. This means that, for such embodiments, any Mannich dispersants may be present as less than 10% or less than 5% or less than 1% by weight of the total dispersant component, e.g., 0 or 0.001 to 5% or 0.01 to 3% or 0.1 to 1% of the total dispersant component. Low-Mannich formulations may be specified for any of a variety of reasons. In one aspect, Mannich dispersants may not be particularly desirable because they may not serve to effectively aid in soot formation, which other dispersants may do. In another aspect, Mannich dispers- ants would contribute both nitrogen and aromatic carbons to the overall dispersant component. It may therefore be desirable, in this instance, to avoid "double counting" any Mannich dispersant, to count the nitrogen that it contributes while not counting the aromatic carbon that it contributes, when calculating the minimum amount of N + aromatic C as set forth elsewhere in this Specification. [0026] Other dispersants include polymeric dispersant additives, which are generally hydrocarbon-based polymers which contain polar functionality to impart dispersancy characteristics to the polymer. The dispersant viscosity index modifiers, also referred to as dispersant viscosity modifiers or DVMs, can be functionalized versions of polymers which are generally used as viscosity index modifiers (as described below). Among the common classes of such polymers are olefin copolymers and acrylate or methacrylate copolymers. For example,
when a small amount of a nitrogen-containing monomer is copolymerized with alkyl methacrylates, dispersancy properties may be incorporated into the product. Thus, such a product may have the multiple function of viscosity modification (as described below), pour point depressancy and dispersancy. Such products have been referred to in the art as dispersant-type viscosity modifiers or simply dispersant-viscosity modifiers. Vinyl pyridine, N-vinyl pyrrolidone and N,N'-dimethylaminoethyl methacrylate are examples of nitrogen-containing monomers. Polyacrylates obtained from the polymerization or copolymerization of one or more alkyl acrylates also are useful as viscosity modifiers. Derivatives of polyacrylate esters are well-known as dispersant viscosity index modifier additives. Dispersant acrylate or polymethacrylate viscosity modifiers such as Acryloid™ 985 or Viscoplex™ 6-054, from RohMax, are particularly useful. [0027] Functionalized olefin copolymers can also be, for instance, inter- polymers of ethylene and propylene which are grafted with an active monomer such as maleic anhydride and then derivatized with an alcohol or an amine, as described in U.S. Patent 4,089,794. Other such copolymers are copolymers of ethylene and propylene which are reacted or grafted with nitrogen compounds, as described in U.S. Patent 4,068,056.
[0028] The amines useful in preparing either dispersants (generally) or dispersant viscosity modifiers may, in certain embodiments, be aromatic amines containing at least one, and preferably exactly one, N-H group capable of condensing with a carboxylic acid functionality, to form nitrogen-containing carboxylic derivatives. Aromatic amines include those which can be represented by the general structure NHR-Ar, where R is hydrogen or a hydrocarbyl group and Ar is an aromatic group, including nitrogen-containing aromatic groups and Ar groups including any of the following structures
as well as multiple non-condensed aromatic rings. In these and related structures, R4, R5, and R6 can be independently, among other groups disclosed herein, -H, -C1-18 alkyl groups, , -NR-Ar, -NH-Ar, -N=N-Ar, -NH-CO-Ar, -OOC-Ar, -OOC-C1.18 alkyl, -COO-Ci_i8 alkyl, -OH, -0-(CH2CH2-O)nCi-I8 alkyl groups, -NO2, and -0-(CH2CH2O)nAr (where n is 0 to 10).
[0029] Examples of aromatic amines include aniline, N-alkylanilines such as N-methyl aniline, and N-butylaniline, di-(para-methylphenyl)amine, naphthyl- amine, 4-aminodiphenylamine, N,N-dimethylphenylenediamine, 4-(4-nitro- phenylazo)aniline (disperse orange 3), sulfamethazine, 4-phenoxyaniline, 3- nitroaniline, 4-aminoacetanilide 4-amino-2-hydroxy-benzoic acid phenyl ester (phenyl amino salicylate), N-(4-amino-5-methoxy-2-methyl-phenyl)-benzamide (fast violet B), N-(4-amino-2,5-dimethoxy-phenyl)-benzamide (fast blue RR), N-(4-amino-2,5-diethoxy-phenyl)-benzamide (fast blue BB), N-(4-amino- phenyl)-benzamide and 4-phenylazoaniline. Other examples include para- ethoxyaniline, para-dodecylaniline, cyclohexyl-substituted naphthylamine, and thienyl-substituted aniline. Examples of other suitable aromatic amines include amino-substituted aromatic compounds and amines in which the amine nitrogen is a part of an aromatic ring, such as 3-aminoquinoline, 5-aminoquinoline, and 8-aminoquinoline. Also included are aromatic amines such as 2-aminobenz- imidazole, which contains one secondary amino group attached directly to the aromatic ring and a primary amino group attached to the imidazole ring. Other amines include N-(4-anilinophenyl)-3-aminobutanamide (i.e., φ-NH-φ-NH- COCH2CH(CHS)NH2). Additional aromatic amines and related compounds are disclosed in U.S. Patents 4,863,623, 6,107,257, and 6,107,258; some of these include aminocarbazoles, aminoindoles, aminopyrroles, amino-indazolinones, mercaptotriazoles, aminophenothiazines, aminopyri dines, aminopyrazines, aminopyrimidines, aminothiadiazoles, aminothiothiadiazoles, and aminoben- zotriaozles. Other suitable amines include 3-amino-N-(4-anilinophenyl)-N- isopropyl butanamide, and N-(4-anilinophenyl)-3-{(3-aminopropyl)- (cocoalkyl)amino} butanamide. Other aromatic amines which can be used include various aromatic amine dye intermediates containing multiple aromatic rings linked by, for example, amide structures. Examples include materials of the general structure
and isomeric variations thereof, where R1 and R2 are independently hydrogen, alkyl groups, or alkoxy groups such as methyl, methoxy, or ethoxy. In one
instance, R1 and R2 are both -OCH3 and the material is known as Fast Blue RR [CAS# 6268-05-9]. In another instance, R1 is -OCH3 and R2 is -CH3, and the material is known as Fast Violet B [99-21-8]. When both R1 and R2 are ethoxy, the material is Fast Blue BB [120-00-3]. U.S. Patent 5,744,429 discloses other aromatic amine compounds, particularly aminoalkylphenothiazines. N-aromatic substituted acid amide compounds, such as those disclosed in U.S. Patent application 2003/0030033 Al , may also be used for the purposes of this invention. Aromatic amines include those in which the amine nitrogen is a substituent on an aromatic carboxylic compound, that is, the nitrogen is not sp2 hybridized within an aromatic ring.
[0030] Certain aromatic amines are commonly used as antioxidants. Of particular importance in that regard are alkylated diphenylamines such as nonyldiphenylamine and dinonyldiphenylamine. To the extent that these materials will condense with the carboxylic functionality of the polymer chain, they are also suitable for use within the present invention. Among such aromatic amines are 4-phenylazoaniline, 4-aminodiphenylamine, 2-aminobenzimidazole, 3-nitroaniline, 4-(4-nitrophenylazo)aniline (disperse orange 3), N-(4-amino-5- methoxy-2-methyl-phenyl)-benzamide (fast violet B), N-(4-amino-2,5- dimethoxy-phenyl)-benzamide (fast blue RR), N-(4-amino-2,5-diethoxy- phenyl)-benzamide (fast blue BB), N-(4-amino-phenyl)-benzamide, and N ,N- dimethy lpheny lenediamine .
[0031] The above-described aromatic amines can be used alone or in combination with each other. They can also be used in combination with additional, aromatic or non-aromatic, e.g., aliphatic, amines, which, in one embodiment, comprise 1 to 8 carbon atoms. Aliphatic monoamines include methylamine, ethylamine, propylamine and various higher amines. Diamines or polyamines can be used to functionalize a polymeric dispersant viscosity modifier, provided that, in certain embodiments, they have only a single reactive amino group, that is, a primary or secondary group. Suitable examples of such diamines include dimethylaminopropylamine, diethylaminopropylamine, dibutylaminopro- pylamine, dimethylaminoethylamine, diethylaminoethylamine, dibutylamino- ethylamine, l-(2-aminoethyl)piperidine, l-(2-aminoethyl)pyrrolidone, amino- ethylmorpholine, and aminopropylmorpholine. [0032] The amount of dispersant present in the lubricant is that amount desirable to serve as its normal function of dispersing contaminants and maintaining cleanliness of the engine. The problem of formation of high aqueous content sludge tends to be more apparent however, at relatively higher dispers-
ant levels, and it is at such levels that the benefits of the present invention are most evident. Thus, the present technology is typically associated with lubricating oil formulations that, in one embodiment, contain at least 0.07 or 0.08 weight percent of nitrogen derived from one or more nitrogen-containing ashless dispersants. In other embodiments, the amount of such nitrogen is at least 0.1% or at least 0.3%, and up to 0.5 or to 0.3 percent by weight. The amount of actual dispersant required to supply such amounts of nitrogen will, of course, vary with the nitrogen content of the dispersant. Certain common succinimide dispersants may contain 1.5 to 5 percent nitrogen (oil-free basis) or 2.5 to 4.5 percent or 3 to 4 percent. The total amount of dispersant may thus be, in certain circumstances, at least 2.5 or 3.0 or 3.5 weight percent of the lubricant, or at least 4.4 percent and up to 8 percent or to 7 percent or to 6 percent by weight (oil-free). The amount in a concentrate will be correspondingly greater, e.g., 7 to 30 percent. These amounts may be provided by one or more dispersants of similar or different types.
[0033] The problem may also be present in the presence of lubricants that contribute a large amount of aromatic content associated with polymeric additives or certain dispersants. Thus, certain polymers including those comprising vinyl aromatic monomer units such as styrene are sometimes included in lubri- cants to aid in soot dispersion, and such materials may also contribute to the tendency to form high aqueous content sludge. Examples include vinyl aro- matic/olefin copolymers, vinyl aromatic/diene copolymers, vinyl aromatic/ maleic ester copolymers, and vinyl aromatic/methacrylate ester copolymers. Such materials may be block or random copolymer, and they may be (hydrogen- ated or non-hydrogenated. Such polymers are typically distinguished from dispersant viscosity modifiers. They may be viscosity modifiers, but they are not dispersant viscosity modifiers because they do not contain the polar functionality (of greater polarity than that provided by an alkyl ester group) as provided by an amide or imide group with a polyamine or with an aromatic amine with further polar functionality. To take into account the presence of these aromatic-containing polymers, the total amount of nitrogen may be adjusted, as described below, if such materials are present.
[0034] Thus, in one embodiment the lubricating oil formulation contains at least 0.07 weight percent of the total of {weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen-containing dispersant viscosity modifiers} plus {0.1 times the weight percent aromatic carbon provided by the following aromatic containing materials: polymeric
materials, dispersants, and dispersant viscosity modifiers}, Other values for this total include at least 0.1% or at least 0.3%, and optionally up to 2.0 or 1.0 or 0.5 or to 0.3 percent by weight.
[0035] In another embodiment, the aromatic containing materials upon which the percent aromatic carbon is calculated are polymeric materials, dispersant viscosity modifiers, and dispersants other than Mannich dispersants. In yet another embodiment, the aromatic containing materials upon which the percent aromatic carbon is calculated are dispersants and all dispersant viscosity modifiers. In yet another embodiment, the aromatic containing materials upon which the percent aromatic carbon is calculated are dispersant viscosity modifiers and dispersants other than Mannich dispersants.
[0036] In any of the foregoing calculations, the amount of nitrogen derived from one or more nitrogen-containing ashless dispersants (which may include dispersant viscosity modifiers) plus 0.1 times the percent aromatic carbon provided by the aromatic materials as recited in any of the embodiments above may also be at least 0.08 weight percent or at least 0.1% or at least 0.3%, and optionally up to 2.0 or 1.0 or 0.5 or to 0.3 percent by weight. [0037] The amount of nitrogen and aromatic carbon may be calculated by methods known to those skilled in the art. For example, a finished lubricant may be analyzed by first treating it with a separation process such as membrane dialysis, to separate relatively high molecular weight components such as dispersants, dispersant viscosity modifiers, and polymers. The amount of nitrogen in the separated component may be analyzed by conventional techniques. The amount of aromatic carbon in the separated component may be determined by conventional techniques such as 13C NMR, and if desired the amount of aromatic carbon in any Mannich dispersants that may be present may be distinguished by determining the amount of aromatic carbons bonded to an -OH group and multiplying by six. [0038] The problem of formation of high-aqueous content sludge in such engines and such lubricants may be solved or ameliorated by including within the lubricant one or more polyalkylene oxides. Polyalkylene oxides are known chemicals, sometimes referred to as a type of nonionic surfactant, having a general structure which may be represented, in its repeating unit, by — (RO)n — where R is an alkylene unit. When the material is terminated by OH groups it may be referred to as a polyalkylene glycol, OH-(RO)nH. Polyalkylene glycols may be prepared by alkali-catalyzed oligomerization of alkylene oxides.
[0039] Other terminating groups are possible, in which one (or optionally both) of the terminal OH groups are replaced by another functional group. For example, the reaction of monoalkyl ethers of alkylene glycol with alkylene oxide may provide the monoalkyl ether of the alkylene glycol, e.g., the mono- methyl ether or the monoether of an alkyl group of up to 30 carbon atoms.
Other such materials that may be useful include polyoxyalkylenated alkylphe- nol, polyoxyalkylenated straight-chain alcohols derived from such materials as coconut oil, tallow, or synthetic materials, polyoxyalkylenated silicones, and polyoxyalkylenated mercaptans. The polyoxyalkylene groups may be as de- scribed below.
[0040] The polyalkylene oxides (or, alternatively the polyoxyalkylene groups) useful in the present technology include those having a ratio of carbon to oxygen atoms of 2: 1 or 2.25 : 1 or to 2.8: 1, up to 6: 1 or to 4: 1 or to 3.5: 1. Those would include polyethylene oxide, polypropylene oxide, and various polybutylene oxides and mixtures thereof, that is, copolymers of different alkylene oxides such as mixed poly (ethylene-propylene) oxides. A material having a C:O ratio of 2.25 : 1 could be prepared, for example, from a mixture of ethylene oxide and propylene oxide. In one embodiment, polybutylene oxide may be designated as polytetramethylene oxide or polytetrahydrofuran, which may be seen as the product of polymerization in a 1 ,4 manner, that is, poly(l ,4- butanediol). Polypropylene oxide normally refers to the 1 ,2 addition product, although polytrimethylene oxide would be another possible material. Thus, suitable R units include CH2CH2, CH2CH2CH2, CH(CH3)CH2, CH2CH(CH3), CH2CH2CH2CH2, CH(CH3)CH2CH2, CH2CH2CH(CH3), and mixtures and isomers thereof. If the polyalkylene oxide is prepared so as to have an alkoxy group at one terminus (rather than a hydroxy group), the C:O ratios for the molecule as a whole will differ somewhat from the C:O ratio for the molecule absent the alkoxy terminal group. The above-identified numerical ratios may be those for the molecule as a whole, containing any terminal alkoxy group, or they may be those for the polyalkylene oxide portion of the molecule, absent any terminal alkoxy group. These various values may be determined by appropriate NMR spectroscopy.
[0041] The polyalkylene oxides of the present technology may have a number average molecular weight of 500 to 10,000 or to even 50,000, or 800 to 5000, or 1000 to 4000, or 1500 to 4000, or 2000 to 3000. In certain embodiments, these materials may be of a similar molecular weight (and correspondingly similar viscosity) as similar materials that may be used as synthetic base
oils. Their viscosity may encompass, for instance, ranges of 15-3500 or 50- 2000 or 100-1500 or 150-1000 mm2/s (cSt) at 25 0C; or 10-2000 or 20-1000 or 50-500 mm2/s at 40 0C; or 2-400 or 2-150 mm2/s at 100 0C. [0042] Polyalkylene oxides are commercially available under the trade names PPG4000™, PPG2000™, PPG 1000™, Tolad 7™, Terathane 2000™, and Terathane 1000™.
[0043] The amount of the polyalkylene oxide in the lubricant formulation may typically be as low as 0.05 percent by weight in certain embodiments, or alternatively at least .08 or 0.1 percent by weight, for instance, 0.3 to 3 percent or 0.5 or 0.7 or 0.8 to 2 or to 1.5 percent by weight. The minimum amount will, of course, depend on the effectiveness of the particular polyalkylene oxide. For example, certain polyalkylene glycols with uncapped -OH end groups may be useful in amount of 0.05 percent and above. For polyalkylene glycols terminated with other functional groups, including all or any one of those classes of materials enumerated above, in certain embodiments the minimum amounts may also be 0.05 or 0.1 or 0.3 or 0.5 or 0.8 percent by weight. The amounts in a concentrate will be correspondingly greater, e.g., 0.3 to 15 percent or 0.5 or 1.0 to 10 percent. [0044] While in some embodiments the polyalkylene oxide may be categorized as a nonionic surfactant, other surfactants may also be present. Surfactants in general may be classified as anionic, cationic, zwitterionic, or non-ionic.
Anionic surfactants include substances containing a long lipophilic tail bonded to a water-soluble (hydrophilic) group at the other end, wherein the hydrophilic group contains an anionic moiety such as a carboxylic acid, sulfonic acid, or phenolic group, neutralized by a cation such as an alkali metal or ammonium. The lipophilic tail is preferably an alkyl group, typically having 8 to 21 carbon atoms.
[0045] Cationic surfactants are similar to anionic surfactants except that the surface-active portion of the molecule has a positive charge. Examples of cationic surfactants include long-chain amines and their salts, such as primary amines derived from animal and vegetable fatty acids and tall oil and synthetic C 12-Cl 8 primary, secondary, or tertiary amines; diamines and their salts, quaternary ammonium salts including tetraalkylammonium salts and imidazolin- ium salts derived from e.g. tallow or hydrogenated tallow, or N-Benzyl-N- alkyldimethylammonium halides; polyoxyethylenated long-chain amines; quaternized polyoxyethylenated long-chain amines; and amine oxides such as N-alkyldimethylamine oxides (which are actually zwitterionic) such as cetyl dimethylamine oxide or stearyl dimethylamine oxide.
[0046] Zwitterionic surfactants include amino acids such as N- alkylaminopropionic acids, N-alkyliminodipropionic acids, imidazoline car- boxylates, N-alkylbetaines, sulfobetaines, and sultaines.
[0047] Nonionic surfactants, other than those described above as a required component of the present technology, include materials in which the polar functionality is not provided by an anionic or cation group, but by a neutral polar group such as typically an alcohol, amine, ether, ester, ketone, or amide function. Nonionic surfactants include long-chain carboxylic acid esters, alkanolamine condensates with fatty acids, and N-alkylpyrrolidones. Many of these and other ionic and non-ionic surfactants are discussed in Rosen, "Surfactants and Interfacial Phenomena," John Wiley & Sons, pp. 7-31, 1989. [0048] Other additives may be present, as in conventional in engine lubricants. Such additives may include metal-containing detergents. Metal- containing detergents are typically overbased materials, or overbased detergents. Overbased materials, otherwise referred to as overbased or superbased salts, are generally homogeneous Newtonian systems characterized by a metal content in excess of that which would be present for neutralization according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal. The overbased materials are prepared by reacting an acidic material (typically an inorganic acid or lower carboxylic acid, such as carbon dioxide) with a mixture comprising an acidic organic compound, a reaction medium comprising at least one inert, organic solvent (e.g., mineral oil, naphtha, toluene, xylene) for said acidic organic material, a stoichiometric excess of a metal base, and a promoter such as a phenol or alcohol and optionally ammo- nia. The acidic organic material will normally have a sufficient number of carbon atoms, for instance, as a hydrocarbyl substituent, to provide a reasonable degree of solubility in oil. The amount of excess metal is commonly expressed in terms of metal ratio. The term "metal ratio" is the ratio of the total equivalents of the metal to the equivalents of the acidic organic compound. A neutral metal salt has a metal ratio of one. A salt having 4.5 times as much metal as present in a normal salt will have metal excess of 3.5 equivalents, or a ratio of 4.5. [0049] Overbased detergents are often characterized by Total Base Number (TBN). TBN is the amount of strong acid needed to neutralize all of the over- based material's basicity, expressed as potassium hydroxide equivalents (mg KOH per gram of sample). Detergents which are useful in the present invention may have a TBN (oil-free basis) of 100 to 800, and in one embodiment 150 to 750, and in another, 400 to 700.
[0050] The metal compounds useful in making the basic metal salts are generally any Group 1 or Group 2 metal compounds (CAS version of the Periodic Table of the Elements). The Group 1 metals of the metal compound include Group Ia alkali metals such as sodium, potassium, and lithium, as well as Group Ib metals such as copper. The Group 2 metals of the metal base include the Group 2a alkaline earth metals such as magnesium, calcium, and barium, as well as the Group 2b metals such as zinc or cadmium. [0051] Overbased materials are well known to those skilled in the art. Patents describing techniques for making basic salts of sulfonic acids, carbox- ylic acids, (hydrocarbyl-substituted) phenols, phosphonic acids, and mixtures of any two or more of these include U.S. Patents 2,501,731; 2,616,905; 2,616,911; 2,616,925; 2,777,874; 3,256,186; 3,384,585; 3,365,396; 3,320,162; 3,318,809; 3,488,284; and 3,629,109.
[0052] In one embodiment the lubricants of the present invention can contain an overbased sulfonate detergent. Another overbased material which can be present is an overbased phenate detergent. In yet another embodiment, the overbased material is an overbased saligenin detergent. Saligenin detergents are commonly overbased magnesium salts which are based on saligenin derivatives. A general example of such a saligenin derivative can be represented by the formula
wherein X comprises -CHO or -CH2OH, Y comprises -CH2- or -CH2OCH2-; M is hydrogen, ammonium, or a valence of a metal ion such as Mg (that is to say generally, in the case of a multivalent metal ion, one of the valences is satisfied by the illustrated structure and other valences are satisfied by other species such as anions, or by another instance of the same structure), R1 is a hydrocarbyl group containing 1 to 60 carbon atoms, m is 0 to typically 10, and each p is independently 0, 1, 2, or 3, provided that at least one aromatic ring contains an R1 substituent and that the total number of carbon atoms in all R1 groups is at least 7. When m is 1 or greater, one of the X groups can be hydrogen. Saligenin detergents are disclosed in greater detail in U.S. Patent 6,310,009, with special
reference to their methods of synthesis (Column 8 and Example 1) and amounts of the various species of X and Y (Column 6).
[0053] Salixarate detergents are overbased materials that can be represented by a substantially linear compound comprising at least one unit of formula (I) or formula (II):
each end of the compound having a terminal gro (IV):
(III) (IV) such groups being linked by divalent bridging groups A, which may be the same or different for each linkage; wherein in formulas (I)-(IV) R3 is hydrogen or a hydrocarbyl group; R2 is hydroxyl or a hydrocarbyl group and j is 0, 1, or 2; R6 is hydrogen, a hydrocarbyl group, or a hetero-substituted hydrocarbyl group; either R4 is hydroxyl and R5 and R7 are independently either hydrogen, a hydrocarbyl group, or hetero-substituted hydrocarbyl group, or else R5 and R7 are both hydroxyl and R4 is hydrogen, a hydrocarbyl group, or a hetero-substituted hydrocarbyl group. At least one of R4, R5, R6 and R7 is hydrocarbyl containing at least 8 carbon atoms. The molecules on average contain at least one of unit (I) or (III) and at least one of unit (II) or (IV) and the ratio of the total number of units (I) and (III) to the total number of units of (II) and (IV) in the composition is 0.1 : 1 to 2: 1. The divalent bridging group "A," which may be the same or different in each occurrence, includes -CH2- and -CH2OCH2-. Salixarate derivatives and methods of their preparation are described in greater detail in
U.S. patent 6,200,936 and PCT Publication WO 01/56968. It is believed that the salixarate derivatives have a predominantly linear, rather than macrocyclic, structure, although both structures are intended to be encompassed by the term "salixarate."
[0054] Glyoxylate detergents are similar overbased materials which are based on an anionic group which, in one embodiment, may have the structure
wherein each R is independently an alkyl group containing at least 4 or 8 carbon atoms; the total number of carbon atoms in all such R groups is at least 12 or 16 or 24. Overbased glyoxylic detergents and their methods of preparation are disclosed in greater detail in U.S. Patent 6,310,01 1.
[0055] The overbased detergent can also be an overbased salicylate, that is, a salt of an alkylsalicylic acid. The salicylic acids may be hydrocarbyl- substituted salicylic acids wherein each substituent contains an average of at least 8 carbon atoms per substituent and 1 to 3 substituents per molecule. Over- based salicylate detergents and their methods of preparation are disclosed in U.S. Patents 4,719,023 and 3,372,116.
[0056] Other overbased detergents can include overbased detergents having a Mannich base structure, as disclosed in U.S. Patent 6,569,818. [0057] The amount of the overbased detergent, in the formulations of the present invention, is typically at least 0.6 weight percent on an oil-free basis. In other embodiments, it can be present in amounts of 0.7 to 5 weight percent or 1 to 3 weight percent. Either a single detergent or multiple detergents can be present. [0058] The lubricant may also contain a metal salt of a phosphorus acid. Metal salts of the formula
[(R8O)(R9O)P(=S)-S]n-M where R8 and R9 are independently hydrocarbyl groups containing 3 to 30 carbon atoms, are readily obtainable by heating phosphorus pentasulfide (P2S5) and an alcohol or phenol to form an 0,0-dihydrocarbyl phosphorodithioic acid. The alcohol which reacts to provide the R8 and R9 groups may be a mixture of alcohols, for instance, a mixture of isopropanol and 4-methyl-2-pentanol, and in
some embodiments a mixture of a secondary alcohol and a primary alcohol, such as isopropanol and 2-ethylhexanol. The resulting acid may be reacted with a basic metal compound to form the salt. The metal M, having a valence n, generally is aluminum, lead, tin, manganese, cobalt, nickel, zinc, or copper, and in many cases, zinc, to form zinc dialkyldithiophosphates. Such materials are well known and readily available to those skilled in the art of lubricant formulation. [0059] The lubricant may also contain a viscosity modifier, in addition to the dispersant viscosity modifier that has been discussed above. Viscosity modifiers, also known as viscosity index improvers, generally are polymeric materials characterized as being hydrocarbon-based polymers generally having number average molecular weights between 25,000 and 500,000, e.g., between 50,000 and 200,000.
[0060] Hydrocarbon polymers can be used as viscosity index improvers. Examples include homopolymers and copolymers of two or more monomers of C2 to C30, e.g., C2 to C8 olefins, including both alphaolefins and internal olefins, which may be straight or branched, aliphatic, aromatic, alkyl-aromatic, or cycloaliphatic. Examples include ethylene-propylene copolymers, generally referred to as OCP's, prepared by copolymerizing ethylene and propylene by known processes. [0061] Hydrogenated styrene-conjugated diene copolymers are another class of viscosity modifiers. These polymers include polymers which are hy- dogenated or partially hydrogenated homopolymers, and also include random, tapered, star, and block interpolymers. The term "styrene" includes various substituted styrenes. The conjugated diene may contain four to six carbon atoms and may include, e.g., piperylene, 2, 3 -dimethyl- 1 ,3 -butadiene, chloroprene, isoprene, and 1,3 -butadiene. Mixtures of such conjugated dienes are useful. The styrene content of these copolymers may be 20% to 70% by weight or 40% to 60%, and the aliphatic conjugated diene content may be 30% to 80% or 40% to 60%. These copolymers can be prepared by methods well known in the art and are typically hydrogenated to remove a substantial portion of their olefmic double bonds.
[0062] Esters obtained by copolymerizing styrene and maleic anhydride in the presence of a free radical initiator and thereafter esterifying the copolymer with a mixture of C4-18 alcohols also are useful as viscosity modifying addi- tives in motor oils. Likewise, polymethacrylates (PMA) are used as viscosity modifiers. These materials are typically prepared from mixtures of methacrylate
monomers having different alkyl groups, which may be either straight chain or branched chain groups containing 1 to 18 carbon atoms.
[0063] The lubricant formulation may also contain an antioxidant, that is, an ashless or metal-free antioxidant, in contrast to the above-described zinc dial- kyldithiophosphate, which also has antioxidant properties. Antioxidants encompass phenolic antioxidants, which may be of the general formulas
including the first, more general formula wherein R4 is an alkyl group containing 1 to 24, or 4 to 18, carbon atoms and a is an integer of 1 to 5 or 1 to 3, or 2. Also included are the more specific formulas in which the phenol may be a butyl substituted phenol containing 2 or 3 t-butyl groups. The para position of the aromatic group may also be occupied by a hydrocarbyl group or a group bridging two aromatic rings. In certain embodiments the para position is occupied by an ester-containing group, such as, for example, an antioxidant of the formula
t-alkyl wherein R is a hydrocarbyl group such as an alkyl group containing, e.g., 1 to 18 or 2 to 12 or 2 to 8 or 2 to 6 carbon atoms; and t-alkyl can be t-butyl. Such antioxidants are described in greater detail in U.S. Patent 6,559,105. [0064] Antioxidants also include aromatic amines based on an aromatic ring with an HNR5 substituent, wherein R5 can itself be an aromatic group such as a phenyl group, a naphthyl group, or a substituted phenyl group. Each of the aromatic groups may have one or more substituents which may independently be a hydrocarbyl or alkyl group containing 1 to 24 or 4 to 20 or 6 to 12 carbon atoms. In one embodiment, an aromatic amine antioxidant can comprise an alkylated diphenylamine such as nonylated diphenylamine of the formula
or a mixture of di-nonylated mono-nonylated diphenylamine. [0065] Antioxidants also include sulfurized olefins such as mono- or disulfides or mixtures thereof. These materials generally have sulfide linkages having 1 to 10 sulfur atoms, for instance, 1 to 4, or 1 or 2. Materials which can be sulfurized to form the sulfurized organic compositions of the present invention include oils, fatty acids and esters, olefins and polyolefins made thereof, ter- penes, or Diels-Alder adducts. Details of methods of preparing some such sulfurized materials can be found in U.S. Pat. Nos. 3,471,404 and 4,191 ,659. [0066] Molybdenum compounds can also serve as antioxidants, and these materials can also serve in various other functions, such as antiwear agents. The use of molybdenum and sulfur containing compositions such as molybdenum dithiocarbamates in lubricating oil compositions as antiwear agents and antioxidants is known. U.S. Pat. No. 4,285,822, for instance, discloses lubricating oil compositions containing a molybdenum and sulfur containing composition prepared by (1) combining a polar solvent, an acidic molybdenum compound and an oil-soluble basic nitrogen compound to form a molybdenum-containing complex and (2) contacting the complex with carbon disulfide to form the molybdenum and sulfur containing composition. [0067] Typical amounts of antioxidants will, of course, depend on the specific antioxidant and its individual effectiveness, but illustrative total amounts can be 0.01 to 5 percent by weight or 0.15 to 4.5 or 0.2 to 4 percent. [0068] Yet other components may be present, including, corrosion inhibitors, extreme pressure and anti-wear agents. These materials include chlorinated aliphatic hydrocarbons; boron-containing compounds including borate esters; and molybdenum compounds.
[0069] Among the components that may also be present are various derivatives of hydroxycarboxylic acids, which may variously impart as one or more of friction modification, anti-wear, anti-corrosion, demulsifϊcation, and antioxidant activity. Examples suitable hydroxycarboxylic acids from which a derivative may be prepared include citric acid, tartaric acid, malic acid (or hydroxy- succinic acid), mandelic acid, lactic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, and mixtures thereof. In another embodiment the deriva-
tive may be prepared from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof. In one embodiment the derivative includes a compound derived more particularly from tartaric acid. [0070] In certain embodiments the derivative of hydroxycarboxylic acid may be an imide, di-ester, di-amide, or ester-amide derivative of tartaric acid, citric acid, or mixtures thereof. In one embodiment the derivative of hydroxycarboxylic acid may be an imide, di-ester, di-amide, or ester-amide derivative of tartaric acid. The derivatives may also be ester-imides or imide- amides (appli- cable for tri-acids and higher, such as citric acid) or di-imides (applicable for tetra-acids and higher).
[0071] Particular examples of such materials include tartrate diester of a C6 to C15 alcohol, butyl citrate, and isotridecyloxy-propyl tartrimides. These and other such materials and their methods of preparation are more fully disclosed in PCT Publication WO 2006/044411 and in United States provisional application serial number 61/037837, filed March 19, 2008.
[0072] Others compounds that may be present in the present formulations include pour point depressants, as described in page 8 of "Lubricant Additives" by C. V. Smalheer and R. Kennedy Smith (Lesius-Hiles Company Publishers, Cleveland, Ohio, 1967); also anti-foam agents such as silicones or organic polymers, described in "Foam Control Agents", by Henry T. Kerner (Noyes Data Corporation, 1976), pages 125-162. Some of the additives described herein are also described in greater detail in U.S. Patent 4,582,618 (column 14, line 52 through column 17, line 16, inclusive). [0073] As used herein, the term "hydrocarbyl substituent" or "hydrocarbyl group" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character. Examples of hydrocarbyl groups include: hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), ali- cyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring); substituted hydrocarbon substituents, that is, substituents containing non- hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially
chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy); hetero substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms and encompass substituents as pyridyl, furyl, thienyl and imidazolyl. Heteroatoms include sulfur, oxygen, and nitrogen. In general, no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
[0074] It is known that some of the materials described above may interact in the final formulation, so that the components of the final formulation may be different from those that are initially added. For instance, metal ions (of, e.g., a detergent) can migrate to other acidic or anionic sites of other molecules. The products formed thereby, including the products formed upon employing the composition of the present invention in its intended use, may not be susceptible of easy description. Nevertheless, all such modifications and reaction products are included within the scope of the present invention; the present invention encompasses the composition prepared by admixing the components described above.
EXAMPLES
[0075] The reduction of accumulation of high-aqueous content sludge is modeled by the reduction of its viscosity, water content, and problems derived therefrom. This may be accomplished by a bench test which involves combin- ing 40 g deionized water and 1O g test lubricant oil in a 400 mL beaker. The water is added to the oil, which is stirred with a magnetic stir bar (setting at 3.5 units out of 10), over the course of about 4 minutes using a peristaltic pump. After the addition is complete, stirring is discontinued, the blend is allowed to sit for 10 minutes, and the blend is then poured into a 110 mL (4 oz) glass jar. When a high-aqueous content sludge forms, it is detected by observing a layer of such material in the jar, above a water layer, with sometimes a separate oil layer on the top. A sample of the high-aqueous sludge is removed and its viscosity at 25 0C is measured as well as its water content. Reduced water content and reduced viscosity appear to be roughly correlated, indicating that in desirable situations (a) little or less water is entrapped within the oil and (b) any sludge which may be formed, being less viscous, more readily drains from surfaces back into the oil sump or to hotter surfaces where it is dissipated or degraded.
[0076] The lubricant formulation to be tested as the baseline is described in the table below:
The baseline lubricant has a TBN (calculated) of 35 and sulfated ash (ASTM D 874) of 0.98.
[0077] The above base fluid, alone and with the additives identified in the following table, is tested using the above described methodology. Results are shown in the table below.
* comparative a: average of 3 measurements: 78, 71, 69
For comparison, two commercial demulsifiers of unknown composition, Tolad 370™ and Tolad 9330™, are generally less effective at 1% nominal concentration, providing water content of 62% and 72%, respectively, and viscosity of 1155 and 1857 mPa-s, respectively. For reference, two other commercial materials, believed to contain ethoxylated alkyl phenol at very low concentrations (perhaps 5-10%), provide only slight benefit at 1% nominal concentration: water content 57 and 60 percent, respectively and viscosity 2210 and 1941 mPa-s, respectively.
[0078] Each of the documents referred to above is incorporated herein by reference. The mention of any document is not an admission that such document qualifies as prior art or constitutes the general knowledge of the skilled person in any jurisdiction. Except in the Examples, or where otherwise explicitly indicated, all numerical quantities in this description specifying amounts of materials, reaction conditions, molecular weights, number of carbon atoms, and the like, are to be understood as modified by the word "about." Unless otherwise indicated, each chemical or composition referred to herein should be interpreted as being a commercial grade material which may contain the iso- mers, by-products, derivatives, and other such materials which are normally understood to be present in the commercial grade. However, the amount of each chemical component is presented exclusive of any solvent or diluent oil, which may be customarily present in the commercial material, unless otherwise indicated. It is to be understood that the upper and lower amount, range, and ratio limits set forth herein may be independently combined. Similarly, the ranges
and amounts for each element of the invention can be used together with ranges or amounts for any of the other elements. As used herein, the expression "consisting essentially of permits the inclusion of substances that do not materially affect the basic and novel characteristics of the composition under consideration.
Claims
1. A method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least one nitrogen-containing dispersant and optionally at least one dispersant viscosity modifier or polymeric material, wherein {the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen-containing dispersant viscosity modifiers} plus {0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers} is at least 0.07, said method comprising: including in said lubricant at least about 0.05 percent by weight of a polyalkylene oxide.
2. The method of claim 1 wherein the aromatic containing materials upon which the percent aromatic carbon is calculated are polymeric materials, dispersant viscosity modifiers, and dispersants other than Mannich dispersants.
3. The method of claim 1 wherein the aromatic containing materials upon which the percent aromatic carbon is calculated are dispersants and dispersant viscosity modifiers.
4. The method of claim 1 wherein the aromatic containing materials upon which the percent aromatic carbon is calculated are dispersant viscosity modifiers and dispersants other than Mannich dispersants.
5. The method of any of claims 1 through 4 wherein the total of {weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants} plus {0.1 times the weight percent aromatic carbon provided by the recited aromatic materials} is at least 0.08 weight percent.
6. The method of any of claims 1 through 5 wherein the lubricating oil formulation is substantially free from Mannich dispersants.
7. The method of any of claims 1 through 6 wherein the nitrogen derived from one or more nitrogen-containing ashless dispersants is at least 0.07 weight percent.
8. The method of any of claims 1 through 7 wherein the amount of the nitrogen derived from one or more nitrogen-containing ashless dispersants is at least 0.08 weight percent
9. The method of any of claims 1 through 8 wherein the diesel engine has restricted crankcase ventilation.
10. The method of any of claims 1 through 9 wherein the engine contains a rocker cover which is susceptible to formation of high-aqueous content sludge thereon.
11. The method of any of claims 1 through 10 wherein the lubricating oil formulation contains at least about 3.0 percent by weight of one or more nitrogen-containing ashless dispersants.
12. The method of any of claims 1 through 1 1 wherein the nitrogen- containing ashless dispersant comprises a succinimide dispersant.
13. The method of any of claims 1 through 12 wherein the lubricant formulation comprises a dispersant viscosity modifier.
14. The method of any of claims 1 through 13 wherein the amount of the polyalkylene oxide is about 0.1 to about 3 percent by weight.
15. The method of any of claims 1 through 14 wherein the polyalkylene oxide has a ratio of carbon to oxygen atoms of 2: 1 to about 6: 1.
16. The method of any of claims 1 through 15 wherein the polyalkylene oxide is a polyethylene oxide, a polypropylene oxide, a polytetramethylene oxide, or a mixed poly(ethylene-propylene) oxide, having a number average molecular weight of about 500 to about 10,000.
17. The method of any of claims 1 through 16 wherein the polyalkylene oxide is a diol.
18. The method of any of claims 1 through 17 wherein the lubricant comprises an oil of lubricating viscosity and further comprises at least one additional component selected from the group consisting of an overbased metal detergent, a zinc dialkyldithiophosphate, and an antioxidant.
19. The method of any of claims 1 through 18 wherein lubricant comprises an API Group II or Group III or Group IV oil or a mixture thereof.
20. A lubricant composition suitable for reducing accumulation of high- aqueous content sludge in a sump-lubricated diesel engine, comprising: an oil of lubricating viscosity; one or more nitrogen-containing ashless dispersants or dispersant viscosity modifiers such that the formulation contains at least one nitrogen-containing dispersant and optionally at least one dispersant viscosity modifier or polymeric material, wherein {the weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants and nitrogen-containing dispersant viscosity modifiers} plus {0.1 times the weight percent of any aromatic carbon provided by the following aromatic containing materials: polymeric materials, dispersants, and dispersant viscosity modifiers} is at least 0.07; and at least about 0.05 percent by weight of a polyalkylene oxide.
21. The lubricant composition of claim 20 wherein the nitrogen derived from one or more nitrogen-containing ashless dispersants is at least 0.07 weight percent.
22. The lubricant composition of claim 20 or claim 21, further comprising at least one additional additive selected from the group consisting of detergents, metal salts of phosphorus acids, viscosity modifiers, antioxidants, corrosion inhibitors, antiwear agents, pour point depressants, and anti-foam agents.
23. The lubricant composition of any of claims 208 through 22, wherein the nitrogen-containing ashless dispersant comprises a dispersant viscosity modifier.
24. The lubricant composition of any of claims 20 through 23 wherein the oil of lubricating viscosity comprises an API Group II or Group III or Group IV oil or a mixture thereof.
25. A method for reducing accumulation of high-aqueous content sludge in a sump-lubricated diesel engine lubricated with a lubricating oil formulation that contains at least 0.08 weight percent nitrogen derived from one or more nitrogen-containing ashless dispersants, said method comprising: including in said lubricant at least about 0.05 percent by weight of a polyalkylene oxide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10747508P | 2008-10-22 | 2008-10-22 | |
PCT/US2009/061261 WO2010048137A1 (en) | 2008-10-22 | 2009-10-20 | Reducing high-aqueous content sludge in diesel engines |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2361297A1 true EP2361297A1 (en) | 2011-08-31 |
Family
ID=41538318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09740819A Withdrawn EP2361297A1 (en) | 2008-10-22 | 2009-10-20 | Reducing high-aqueous content sludge in diesel engines |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110224115A1 (en) |
EP (1) | EP2361297A1 (en) |
BR (1) | BRPI0919676A2 (en) |
CA (1) | CA2741261A1 (en) |
WO (1) | WO2010048137A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9399747B2 (en) * | 2010-05-20 | 2016-07-26 | The Lubrizol Corporation | Low ash lubricants with improved seal and corrosion performance |
BR112013017784A2 (en) | 2011-01-12 | 2019-09-24 | Lubrizol Corp | motor lubricants containing a polyether |
US8927471B1 (en) * | 2013-07-18 | 2015-01-06 | Afton Chemical Corporation | Friction modifiers for engine oils |
US9879198B2 (en) * | 2015-11-25 | 2018-01-30 | Santolubes Llc | Low shear strength lubricating fluids |
CA3049665A1 (en) * | 2017-01-17 | 2018-07-26 | The Lubrizol Corporation | Engine lubricant containing polyether compounds |
CN113831945B (en) * | 2020-06-24 | 2022-11-22 | 中国石油化工股份有限公司 | Diesel engine oil for improving coking problem of turbocharger and preparation process thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2441631A (en) * | 2006-09-07 | 2008-03-12 | Afton Chemical Corp | Lubricating oil compositions for inhibiting coolant-induced oil filter plugging |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1794133B2 (en) * | 1968-09-13 | 1975-09-25 | The Lubrizol Corp., Cleveland, Ohio (V.St.A.). | Lubricating oils |
US5198135A (en) * | 1990-09-21 | 1993-03-30 | The Lubrizol Corporation | Antiemulsion/antifoam agent for use in oils |
US6209917B1 (en) * | 1998-09-08 | 2001-04-03 | Stephen R. Welch | Unibody binder and the process of making the binder |
US6642189B2 (en) * | 1999-12-22 | 2003-11-04 | Nippon Mitsubishi Oil Corporation | Engine oil compositions |
US6779516B1 (en) * | 2003-05-30 | 2004-08-24 | Detroit Diesel Corporation | Closed crankcase ventilation system with flow meter for monitoring engine operation |
CA2549517C (en) * | 2005-06-01 | 2014-01-21 | Infineum International Limited | Lubricating oil composition comprising non-hydrogenated polymer |
-
2009
- 2009-10-20 BR BRPI0919676A patent/BRPI0919676A2/en not_active Application Discontinuation
- 2009-10-20 US US13/124,717 patent/US20110224115A1/en not_active Abandoned
- 2009-10-20 WO PCT/US2009/061261 patent/WO2010048137A1/en active Application Filing
- 2009-10-20 CA CA2741261A patent/CA2741261A1/en not_active Abandoned
- 2009-10-20 EP EP09740819A patent/EP2361297A1/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2441631A (en) * | 2006-09-07 | 2008-03-12 | Afton Chemical Corp | Lubricating oil compositions for inhibiting coolant-induced oil filter plugging |
Also Published As
Publication number | Publication date |
---|---|
US20110224115A1 (en) | 2011-09-15 |
CA2741261A1 (en) | 2010-04-29 |
BRPI0919676A2 (en) | 2018-05-29 |
WO2010048137A1 (en) | 2010-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2723837B1 (en) | Lubricating compositions containing salts of hydrocarbyl substituted acylating agents | |
EP2291498B1 (en) | Method to minimize turbo sludge with a polyether | |
KR101360555B1 (en) | Engine lubricant for improved fuel economy | |
EP2294165B1 (en) | Method to minimize turbo sludge with alkali metal salts | |
US20110224115A1 (en) | Reducing High-Aqueous Content Sludge in Diesel Engines | |
US20170275556A1 (en) | Dispersant viscosity modifiers with amine functionality | |
AU2017375612A1 (en) | Multi-functional olefin copolymers and lubricating compositions containing same | |
US8476209B2 (en) | Aminic antioxidants to minimize turbo sludge | |
CA2946865C (en) | Multigrade lubricating compositions | |
WO2009053413A1 (en) | Use of a lubricating composition comprising a poly(hydroxycarboxylic) acid | |
WO2005061682A2 (en) | Lubricating composition containing metal salixarate as detergent | |
EP2571966A1 (en) | Low ash lubricants with improved seal and corrosion performance | |
US9909082B2 (en) | Lubricant additive booster system | |
WO2012112658A1 (en) | Lubricants with good tbn retention | |
CN114829558B (en) | Lubricant composition containing detergent derived from cashew nutshell liquid | |
JP2024056646A (en) | Functionalized c4 to c5 olefin polymers and lubricant compositions comprising the same | |
CN116635508A (en) | Alkaline ashless additive and lubricating composition containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110519 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170327 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200302 |