EP2015012A2 - Process for the cryogenic separation of air - Google Patents

Process for the cryogenic separation of air Download PDF

Info

Publication number
EP2015012A2
EP2015012A2 EP08012052A EP08012052A EP2015012A2 EP 2015012 A2 EP2015012 A2 EP 2015012A2 EP 08012052 A EP08012052 A EP 08012052A EP 08012052 A EP08012052 A EP 08012052A EP 2015012 A2 EP2015012 A2 EP 2015012A2
Authority
EP
European Patent Office
Prior art keywords
pressure
compressor
column
air
feed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08012052A
Other languages
German (de)
French (fr)
Other versions
EP2015012A3 (en
Inventor
Dietrich Rottmann
Florian Schliebitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2015012A2 publication Critical patent/EP2015012A2/en
Publication of EP2015012A3 publication Critical patent/EP2015012A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2

Definitions

  • the invention relates to a method by cryogenic separation of air, in particular for the production of gaseous pressure oxygen.
  • the distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system), or as a three-column or multi-column system.
  • other devices may be provided to recover other air components, particularly noble gases, such as argon or krypton-xenon recovery.
  • the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated.
  • Such internal compression methods are known, for example DE 830805 .
  • EP 1139046 A1 EP 1146301 A1 .
  • EP 1150082 A1 EP 1213552 A1 .
  • EP 1357342 A1 or DE 10238282 A1
  • the invention has for its object to make such a method and a corresponding device economically particularly favorable.
  • the drive of the cold compressor through the first expansion machine is particularly energetically particularly favorable.
  • the feed air has a pressure potential which would create more refrigeration in the expansion machine (s) than can be used in the process.
  • the excess energy is used in the invention for driving the cold compressor, which brings the second partial flow of the feed air to a particularly high pressure.
  • the method has a second expansion machine, in which a third partial flow of the feed air is expanded to perform work.
  • the outlet pressure of the second expansion machine is, for example, approximately at the level of the low-pressure column or the high-pressure column. Depending on the relaxed air is introduced into the low pressure column or in the high pressure column.
  • atmospheric air is compressed in a main air compressor to a first pressure of for example 5 to 7.5 bar, preferably 5.5 to 6 bar and then cleaned in a cleaning device (not shown).
  • the purified feed air 1 is divided at about the first pressure on four partial streams 2, 3, 4, 5.
  • the first partial stream 2 is supplied to the warm end of a main heat exchanger 6, cooled there to a first intermediate temperature, removed again via line 7 and working in a first expansion machine 8 to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 relaxed to 1.6 bar.
  • the work-performing relaxed first partial stream is introduced via lines 9 and 10 in the low-pressure column 12 of a distillation column system, which also has a high-pressure column 11 and a main capacitor 13.
  • the second partial stream 3 of the feed air is recompressed in a first secondary compressor 14 to a second pressure of for example 29 to 60 bar, preferably 35 to 50 bar and flows after cooling in an aftercooler 15 via line 16 also to the warm end of the main heat exchanger 6.
  • a second intermediate temperature the second partial flow is withdrawn via line 17 and fed to a second after-compressor 18, which is designed as a cold compressor and is mechanically coupled to the first expansion machine 8.
  • the outlet pressure of the cold compressor 18 (“third pressure") is for example 40 to 85 bar, preferably 45 to 70 bar.
  • Via line 19 the high-pressure air at a third intermediate temperature, which is higher than the first intermediate temperature, introduced into the main heat exchanger 6 and flows through this to the cold end.
  • the third substream 19 under the third pressure is cooled in the main heat exchanger and condensed or pseudo-condensed (at supercritical pressure).
  • the cold high-pressure air 20 is expanded in a throttle valve 21 to approximately the operating pressure of the high-pressure column 11, which is for example 5 to 7.5 bar, preferably 5.5 to 6 bar, and introduced into the high-pressure column. At least a portion of the introduced liquid air is removed again via line 22, cooled in a subcooling countercurrent 23 and fed via line 24 and throttle valve 25 in the low pressure column 12.
  • the third partial flow 4 of the feed air is recompressed in a third after-compressor 26 with aftercooler 27 to a fourth pressure of for example 7.5 to 11 bar, preferably 8 to 9 bar and fed via line 28 to the main heat exchanger 6.
  • a fourth intermediate temperature of the cooled third partial stream 29 is fed to a second expansion machine 30 and there labor to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 to 1.6 bar relaxed.
  • the working expanded third partial stream 31 is fed together with the first partial flow 9 via line 10 of the low-pressure column 12.
  • the second expansion machine 30 is mechanically coupled to the third post-compressor 26 and drives it. Both expansion machines are preferably designed as a turboexpander and relax to about the pressure of the low-pressure column (injection turbines).
  • the fourth partial stream 5 of the feed air flows through the main heat exchanger 6 at approximately the first pressure and is fed in gaseous form to the sump of the high-pressure column 11 via line 32.
  • Liquid raw oxygen 33 is cooled in the subcooling countercurrent 23 and fed via line 34 and throttle valve 35 into the low pressure column 12.
  • a portion of the top gas of the high pressure column 11 is withdrawn via line 36, heated in the main heat exchanger 6 to about ambient temperature and finally withdrawn at 37 as gaseous medium pressure nitrogen product.
  • the rest of the overhead gas is condensed in the main condenser 13.
  • the liquid nitrogen 38 thus obtained is fed to a first part 39 via the subcooling countercurrent 23, a line 40 and a throttle valve 41 as reflux to the top of the low pressure column 12.
  • a second part serves as reflux in the high pressure column 11.
  • a third part 42 is brought in a nitrogen pump 43 in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 10 to 15 bar, passed via line 44 to the main heat exchanger 6 and there vaporized or pseudo-evaporated under this increased pressure by indirect heat exchange with feed air and warmed to about ambient temperature. He leaves the plant via line 45 as gaseous pressure nitrogen product.
  • liquid oxygen 46 is withdrawn, brought in an oxygen pump 47 in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 12 to 40 bar, passed via line 48 to the main heat exchanger 6 and there under this increased pressure indirect heat exchange with feed air evaporated or pseudo-evaporated and warmed to about ambient temperature. He leaves the plant via line 49 as gaseous pressure oxygen product.
  • gaseous nitrogen 50 is withdrawn and warmed in the supercooling countercurrent 23 and in the main heat exchanger 6.
  • the warm pressureless nitrogen 51 can be used as a product, discarded and / or used in the system as a regeneration gas in the cleaning device, not shown, and / or as a dry gas in an evaporative cooler for cooling of cooling water.
  • FIG. 2 is different from this FIG. 1 in that the discharge pressure of the second expansion machine 130 is higher, namely at the level of the operating pressure of the high-pressure column 11. Consequently, the work-performing relaxed third partial stream 131 is here combined with the cold fourth partial stream and fed via line 132 of the high-pressure column 11.
  • liquid products are obtained by withdrawing a portion 136 of the liquid oxygen from the bottom of the low-pressure column 12 as liquid oxygen product (LOX) and a portion of the liquid nitrogen 142a, 142b produced in the main condenser 13 as liquid nitrogen product (LIN).
  • LOX liquid oxygen product
  • LIN liquid nitrogen product
  • Return liquid 139-140-141 for the low-pressure column 12 is taken from the high-pressure column 11 here at an intermediate point.
  • the procedure of FIG. 3 differs from FIG. 1 in that the first, the second and the third partial flow are first jointly recompressed (203) in a fourth after-compressor 214 with aftercooler 215 to an intermediate pressure.
  • the boosters 214 and 14 can be formed by different stages of the same machine.
  • second pressure first expansion machine 8
  • intermediate pressure intermediate pressure
  • the liquid product removal takes place analogously to FIG. 2 from the bottom of the low-pressure column 12 (LOX with a purity of 99.5% via lines 146a, 146b and / or LIN via lines 142a, 142b).
  • Return liquid 139-140 -141 for the low-pressure column 12 is taken from the high-pressure column 11 here at an intermediate point.
  • the inner-to-be-compressed liquid oxygen 46 is withdrawn at a lower purity of about 95% from an intermediate point of the low-pressure column 12.
  • a second, purer oxygen product 346, 348, 349 can be recovered by internal compression (second oxygen pump 347). Because of the pure oxygen production, the air pressure must be slightly higher than in the above-described embodiments. It is for example 6 to 7.5 bar, preferably 6 to 7 bar.
  • FIG. 4 combines the airflow of the FIG. 2 with the product removal of the FIG. 3 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The method involves feeding air into a high-pressure column (11), taking a liquid product flow from a distillation column system, raising its pressure, evaporating it and extracting as a gaseous product flow, compressing and cleaning the input air. A second partial flow of the input air is compressed in second and third boosters. It involves using at least some of the mechanical energy that is created by the expansion (8) of the first partial flow (7) to drive the second booster (18).

Description

Die Erfindung betrifft ein Verfahren durch Tieftemperaturzerlegung von Luft, insbesondere zur Erzeugung von gasförmigem Drucksauerstoff.The invention relates to a method by cryogenic separation of air, in particular for the production of gaseous pressure oxygen.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destilliersäulen-System der Erfindung kann als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem ausgebildet sein. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung können weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen vorgesehen sein, beispielsweise eine Argon- oder eine Krypton-Xenon-Gewinnung.The distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system), or as a three-column or multi-column system. In addition to the nitrogen-oxygen separation columns, other devices may be provided to recover other air components, particularly noble gases, such as argon or krypton-xenon recovery.

Die Erfindung betrifft insbesondere ein Verfahren, in dem mindestens ein gasförmiges Druckprodukt gewonnen wird, indem ein flüssiger Produktstrom aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht und unter diesem erhöhten Druck durch indirektem Wärmeaustausch verdampft oder (bei überkritischem Druck) pseudo-verdampft wird. Derartige Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 2535132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 .More particularly, the invention relates to a process in which at least one gaseous pressure product is recovered by withdrawing a liquid product stream from the nitrogen-oxygen separation distillation column system, raising it to an elevated pressure in the liquid state, and evaporating it under this increased pressure by indirect heat exchange or (at supercritical pressure) is pseudo-evaporated. Such internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 2535132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 ,

Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung wirtschaftlich besonders günstig zu gestalten.The invention has for its object to make such a method and a corresponding device economically particularly favorable.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of claim 1.

Der Antrieb des Kaltverdichters durch die erste Entspannungsmaschine ist insbesondere energetisch besonders günstig. Bei vielen Innenverdichtungsverfahren, die mit relativ hohem Luftdruck gefahren werden, weist die Einsatzluft ein Druckpotential auf, das in der beziehungsweise den Entspannungsmaschinen mehr Kälte erzeugen würde, als in dem Prozess verwendet werden kann. Die überschüssige Energie wird bei der Erfindung zum Antrieb des Kaltverdichters genutzt, der den zweiten Teilstrom der Einsatzluft auf einen besonders hohen Druck bringt.The drive of the cold compressor through the first expansion machine is particularly energetically particularly favorable. In many internal compression processes run at relatively high air pressure, the feed air has a pressure potential which would create more refrigeration in the expansion machine (s) than can be used in the process. The excess energy is used in the invention for driving the cold compressor, which brings the second partial flow of the feed air to a particularly high pressure.

Vorzugsweise weist das Verfahren eine zweite Entspannungsmaschine auf, in der ein dritter Teilstrom der Einsatzluft arbeitsleistend entspannt wird. Der Austrittsdruck der zweiten Entspannungsmaschine liegt beispielsweise etwa auf dem Niveau der Niederdrucksäule oder der Hochdrucksäule. Je nachdem wird die entspannte Luft in die Niederdrucksäule oder in die Hochdrucksäule eingeleitet.Preferably, the method has a second expansion machine, in which a third partial flow of the feed air is expanded to perform work. The outlet pressure of the second expansion machine is, for example, approximately at the level of the low-pressure column or the high-pressure column. Depending on the relaxed air is introduced into the low pressure column or in the high pressure column.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
eine erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens mit zwei Einblaseturbinen,
Figur 2
ein zweites Ausführungsbeispiel, bei dem eine Turbine in die Hochdrucksäule entspannt,
Figur 3
ein weiteres Ausführungsbeispiel mit zwei Einblaseturbinen und
Figur 4
ein viertes Ausführungsbeispiel, das Aspekte der Figuren 2 und 3 kombiniert.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments illustrated in the drawings. Hereby show:
FIG. 1
A first embodiment of the method according to the invention with two injection turbines,
FIG. 2
A second embodiment in which a turbine relaxes in the high-pressure column,
FIG. 3
a further embodiment with two injection turbines and
FIG. 4
a fourth embodiment, the aspects of Figures 2 and 3 combined.

In Figur 1 wird atmosphärische Luft in einem Hauptluftverdichter auf einen ersten Druck von beispielsweise 5 bis 7,5 bar, vorzugsweise 5,5 bis 6 bar verdichtet und anschließend in einer Reinigungsvorrichtung gereinigt (nicht dargestellt). Die gereinigte Einsatzluft 1 wird unter etwa dem ersten Druck auf vier Teilströme 2, 3, 4, 5 aufgeteilt.In FIG. 1 atmospheric air is compressed in a main air compressor to a first pressure of for example 5 to 7.5 bar, preferably 5.5 to 6 bar and then cleaned in a cleaning device (not shown). The purified feed air 1 is divided at about the first pressure on four partial streams 2, 3, 4, 5.

Der erste Teilstrom 2 wird dem warmen Ende eines Hauptwärmetauschers 6 zugeführt, dort auf eine erste Zwischentemperatur abgekühlt, über Leitung 7 wieder entnommen und in einer ersten Entspannungsmaschine 8 arbeitsleistend auf einen Druck von beispielsweise 1,3 bis 1,8 bar, vorzugsweise 1,3 bis 1,6 bar entspannt. Der arbeitsleistend entspannte erste Teilstrom wird über die Leitungen 9 und 10 in die Niederdrucksäule 12 eines Destilliersäulen-Systems eingeleitet, das außerdem eine Hochdrucksäule 11 und einen Hauptkondensator 13 aufweist.The first partial stream 2 is supplied to the warm end of a main heat exchanger 6, cooled there to a first intermediate temperature, removed again via line 7 and working in a first expansion machine 8 to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 relaxed to 1.6 bar. The work-performing relaxed first partial stream is introduced via lines 9 and 10 in the low-pressure column 12 of a distillation column system, which also has a high-pressure column 11 and a main capacitor 13.

Der zweite Teilstrom 3 der Einsatzluft wird in einem ersten Nachverdichter 14 auf einen zweiten Druck von beispielsweise 29 bis 60 bar, vorzugsweise 35 bis 50 bar nachverdichtet und strömt nach Abkühlung in einem Nachkühler 15 über Leitung 16 ebenfalls dem warmen Ende des Hauptwärmetauschers 6 zu. Bei einer zweiten Zwischentemperatur wird der zweite Teilstrom über Leitung 17 entnommen und einem zweiten Nachverdichter 18 zugeführt, der als Kaltverdichter ausgebildet und mechanisch mit der ersten Entspannungsmaschine 8 gekoppelt ist. Der Austrittsdruck des Kaltverdichters 18 ("dritter Druck") beträgt beispielsweise 40 bis 85 bar, vorzugsweise 45 bis 70 bar. Über Leitung 19 wird die Hochdruckluft bei einer dritten Zwischentemperatur, die höher als die erste Zwischentemperatur ist, in den Hauptwärmetauscher 6 eingeführt und durchströmt diesen bis zum kalten Ende. Der dritte Teilstrom 19 unter dem dritten Druck wird in dem Hauptwärmetauscher abgekühlt und kondensiert oder (bei überkritischem Druck) pseudo-kondensiert. Die kalte Hochdruckluft 20 wird in einem Drosselventil 21 auf etwa den Betriebsdruck der Hochdrucksäule 11 entspannt, der beispielsweise 5 bis 7,5 bar, vorzugsweise 5,5 bis 6 bar beträgt, und in die Hochdrucksäule eingeleitet. Mindestens ein Teil der eingeleiteten Flüssigluft wird über Leitung 22 wieder entnommen, in einem Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 24 und Drosselventil 25 in die Niederdrucksäule 12 eingespeist.The second partial stream 3 of the feed air is recompressed in a first secondary compressor 14 to a second pressure of for example 29 to 60 bar, preferably 35 to 50 bar and flows after cooling in an aftercooler 15 via line 16 also to the warm end of the main heat exchanger 6. At a second intermediate temperature, the second partial flow is withdrawn via line 17 and fed to a second after-compressor 18, which is designed as a cold compressor and is mechanically coupled to the first expansion machine 8. The outlet pressure of the cold compressor 18 ("third pressure") is for example 40 to 85 bar, preferably 45 to 70 bar. Via line 19, the high-pressure air at a third intermediate temperature, which is higher than the first intermediate temperature, introduced into the main heat exchanger 6 and flows through this to the cold end. The third substream 19 under the third pressure is cooled in the main heat exchanger and condensed or pseudo-condensed (at supercritical pressure). The cold high-pressure air 20 is expanded in a throttle valve 21 to approximately the operating pressure of the high-pressure column 11, which is for example 5 to 7.5 bar, preferably 5.5 to 6 bar, and introduced into the high-pressure column. At least a portion of the introduced liquid air is removed again via line 22, cooled in a subcooling countercurrent 23 and fed via line 24 and throttle valve 25 in the low pressure column 12.

Der dritte Teilstrom 4 der Einsatzluft wird in einem dritten Nachverdichter 26 mit Nachkühler 27 auf einen vierten Druck von beispielsweise 7,5 bis 11 bar, vorzugsweise 8 bis 9 bar nachverdichtet und über Leitung 28 zum Hauptwärmetauscher 6 geführt. Bei einer vierten Zwischentemperatur wird der abgekühlte dritte Teilstrom 29 einer zweiten Entspannungsmaschine 30 zugeleitet und dort arbeitsleistend auf einen Druck von beispielsweise 1,3 bis 1,8 bar, vorzugsweise 1,3 bis 1,6 bar entspannt. Der arbeitsleistend entspannte dritte Teilstrom 31 wird gemeinsam mit dem ersten Teilstrom 9 über Leitung 10 der Niederdrucksäule 12 zugeleitet. Die zweite Entspannungsmaschine 30 ist mechanisch mit dem dritten Nachverdichter 26 gekoppelt und treibt diesen an. Beide Entspannungsmaschinen sind vorzugsweise als Turboexpander ausgebildet und entspannen auf etwa den Druck der Niederdrucksäule (Einblaseturbinen).The third partial flow 4 of the feed air is recompressed in a third after-compressor 26 with aftercooler 27 to a fourth pressure of for example 7.5 to 11 bar, preferably 8 to 9 bar and fed via line 28 to the main heat exchanger 6. At a fourth intermediate temperature of the cooled third partial stream 29 is fed to a second expansion machine 30 and there labor to a pressure of, for example, 1.3 to 1.8 bar, preferably 1.3 to 1.6 bar relaxed. The working expanded third partial stream 31 is fed together with the first partial flow 9 via line 10 of the low-pressure column 12. The second expansion machine 30 is mechanically coupled to the third post-compressor 26 and drives it. Both expansion machines are preferably designed as a turboexpander and relax to about the pressure of the low-pressure column (injection turbines).

Der vierte Teilstrom 5 der Einsatzluft durchströmt unter etwa dem ersten Druck den Hauptwärmetauscher 6 und wird über Leitung 32 gasförmig dem Sumpf der Hochdrucksäule 11 zugeleitet.The fourth partial stream 5 of the feed air flows through the main heat exchanger 6 at approximately the first pressure and is fed in gaseous form to the sump of the high-pressure column 11 via line 32.

Flüssiger Rohsauerstoff 33 wird in dem Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 34 und Drosselventil 35 in die Niederdrucksäule 12 eingespeist. Ein Teil des Kopfgases der Hochdrucksäule 11 wird über Leitung 36 abgezogen, im Hauptwärmetauscher 6 auf etwa Umgebungstemperatur angewärmt und schließlich bei 37 als gasförmiges Mitteldruckstickstoffprodukt abgezogen. Der Rest des Kopfgases wird im Hauptkondensator 13 kondensiert. Der dabei gewonnene Flüssigstickstoff 38 wird zu einem ersten Teil 39 über den Unterkühlungs-Gegenströmer 23, eine Leitung 40 und ein Drosselventil 41 als Rücklauf auf den Kopf der Niederdrucksäule 12 aufgegeben. Ein zweiter Teil dient als Rücklauf in der Hochdrucksäule 11. Ein dritter Teil 42 wird in einer Stickstoffpumpe 43 in flüssigem Zustand auf einen erhöhten Druck von beispielsweise 10 bis 50 bar, vorzugsweise 10 bis 15 bar gebracht, über Leitung 44 zum Hauptwärmetauscher 6 geführt und dort unter diesem erhöhten Druck durch indirekten Wärmeaustausch mit Einsatzluft verdampft oder pseudo-verdampft und auf etwa Umgebungstemperatur angewärmt. Er verlässt die Anlage über Leitung 45 als gasförmiges Druckstickstoffprodukt.Liquid raw oxygen 33 is cooled in the subcooling countercurrent 23 and fed via line 34 and throttle valve 35 into the low pressure column 12. A portion of the top gas of the high pressure column 11 is withdrawn via line 36, heated in the main heat exchanger 6 to about ambient temperature and finally withdrawn at 37 as gaseous medium pressure nitrogen product. The rest of the overhead gas is condensed in the main condenser 13. The liquid nitrogen 38 thus obtained is fed to a first part 39 via the subcooling countercurrent 23, a line 40 and a throttle valve 41 as reflux to the top of the low pressure column 12. A second part serves as reflux in the high pressure column 11. A third part 42 is brought in a nitrogen pump 43 in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 10 to 15 bar, passed via line 44 to the main heat exchanger 6 and there vaporized or pseudo-evaporated under this increased pressure by indirect heat exchange with feed air and warmed to about ambient temperature. He leaves the plant via line 45 as gaseous pressure nitrogen product.

Vom Sumpf der Niederdrucksäule 12 wird flüssiger Sauerstoff 46 abgezogen, in einer Sauerstoffpumpe 47 in flüssigem Zustand auf einen erhöhten Druck von beispielsweise 10 bis 50 bar, vorzugsweise 12 bis 40 bar gebracht, über Leitung 48 zum Hauptwärmetauscher 6 geführt und dort unter diesem erhöhten Druck durch indirekten Wärmeaustausch mit Einsatzluft verdampft oder pseudo-verdampft und auf etwa Umgebungstemperatur angewärmt. Er verlässt die Anlage über Leitung 49 als gasförmiges Drucksauerstoffprodukt.From the bottom of the low pressure column 12 liquid oxygen 46 is withdrawn, brought in an oxygen pump 47 in the liquid state to an elevated pressure of for example 10 to 50 bar, preferably 12 to 40 bar, passed via line 48 to the main heat exchanger 6 and there under this increased pressure indirect heat exchange with feed air evaporated or pseudo-evaporated and warmed to about ambient temperature. He leaves the plant via line 49 as gaseous pressure oxygen product.

Vom Kopf der Niederdrucksäule 12 wird gasförmiger Stickstoff 50 abgezogen und im Unterkühlungs-Gegenströmer 23 und im Hauptwärmetauscher 6 angewärmt. Der warme drucklose Stickstoff 51 kann als Produkt genutzt, verworfen und/oder in der Anlage als Regeneriergas in der nicht dargestellten Reinigungsvorrichtung und/oder als trockenes Gas in einem Verdunstungskühler zur Abkühlung von Kühlwasser verwendet werden.From the top of the low-pressure column 12 gaseous nitrogen 50 is withdrawn and warmed in the supercooling countercurrent 23 and in the main heat exchanger 6. The warm pressureless nitrogen 51 can be used as a product, discarded and / or used in the system as a regeneration gas in the cleaning device, not shown, and / or as a dry gas in an evaporative cooler for cooling of cooling water.

Figur 2 unterscheidet sich dadurch von Figur 1, dass der Austrittsdruck der zweiten Entspannungsmaschine 130 höher ist, nämlich auf dem Niveau des Betriebsdrucks der Hochdrucksäule 11 liegt. Folglich wird der arbeitsleistend entspannte dritte Teilstrom 131 hier mit dem kalten vierten Teilstrom vereinigt und über Leitung 132 der Hochdrucksäule 11 zugeführt. FIG. 2 is different from this FIG. 1 in that the discharge pressure of the second expansion machine 130 is higher, namely at the level of the operating pressure of the high-pressure column 11. Consequently, the work-performing relaxed third partial stream 131 is here combined with the cold fourth partial stream and fed via line 132 of the high-pressure column 11.

Bei dem Verfahren von Figur 2 werden außerdem Flüssigprodukte gewonnen, indem ein Teil 136 des flüssigen Sauerstoffs aus dem Sumpf der Niederdrucksäule 12 als Flüssigsauerstoffprodukt (LOX) und ein Teil des im Hauptkondensator 13 erzeugten flüssigen Stickstoffs 142a, 142b als Flüssigstickstoffprodukt (LIN) abgezogen wird.In the process of FIG. 2 In addition, liquid products are obtained by withdrawing a portion 136 of the liquid oxygen from the bottom of the low-pressure column 12 as liquid oxygen product (LOX) and a portion of the liquid nitrogen 142a, 142b produced in the main condenser 13 as liquid nitrogen product (LIN).

Rücklaufflüssigkeit 139 - 140 - 141 für die Niederdrucksäule 12 wird der Hochdrucksäule 11 hier an einer Zwischenstelle entnommen.Return liquid 139-140-141 for the low-pressure column 12 is taken from the high-pressure column 11 here at an intermediate point.

Das Verfahren der Figur 3 unterscheidet sich von Figur 1 dadurch, dass der erste, der zweite und der dritte Teilstrom zunächst gemeinsam (203) in einem vierten Nachverdichter 214 mit Nachkühler 215 auf einen Zwischendruck nachverdichtet werden. (Die Nachverdichter 214 und 14 können dabei von verschiedenen Stufen derselben Maschine gebildet werden.) Erst anschließend wird der Strom unter dem Zwischendruck auf den ersten Teilstrom 2, den zweiten Teilstrom 3 und den vierten Teilstrom 4 aufgeteilt. Dadurch ergeben sich höhere Eintrittsdrücke an den beiden Turbinen 8, 30, nämlich beispielsweise 12 bis 16 bar, vorzugsweise 12 bis 14 bar an der ersten Entspannungsmaschine 8 ("zweiter Druck") und beispielsweise 12 bis 16 bar, vorzugsweise 12 bis 14 bar an der zweiten Entspannungsmaschine 30 ("Zwischendruck"). Hierdurch lässt sich ein relativ großer Anteil der Produkte in flüssiger Form gewinnen. Die Flüssigproduktentnahme erfolgt analog zu Figur 2 aus dem Sumpf der Niederdrucksäule 12 (LOX mit einer Reinheit von 99,5 % über Leitungen 146a, 146b und/oder LIN über Leitungen 142a, 142b). Rücklaufflüssigkeit 139 - 140 -141 für die Niederdrucksäule 12 wird der Hochdrucksäule 11 hier an einer Zwischenstelle entnommen.The procedure of FIG. 3 differs from FIG. 1 in that the first, the second and the third partial flow are first jointly recompressed (203) in a fourth after-compressor 214 with aftercooler 215 to an intermediate pressure. (The boosters 214 and 14 can be formed by different stages of the same machine.) Only then is the current under the intermediate pressure on the first partial stream 2, the second partial stream 3 and the fourth Partial stream 4 divided. This results in higher inlet pressures at the two turbines 8, 30, namely for example 12 to 16 bar, preferably 12 to 14 bar at the first expansion machine 8 ("second pressure") and for example 12 to 16 bar, preferably 12 to 14 bar at the second expansion machine 30 ("intermediate pressure"). As a result, a relatively large proportion of the products can be obtained in liquid form. The liquid product removal takes place analogously to FIG. 2 from the bottom of the low-pressure column 12 (LOX with a purity of 99.5% via lines 146a, 146b and / or LIN via lines 142a, 142b). Return liquid 139-140 -141 for the low-pressure column 12 is taken from the high-pressure column 11 here at an intermediate point.

Der innenzuverdichtende flüssige Sauerstoff 46 wird mit einer niedrigeren Reinheit von etwa 95 % von einer Zwischenstelle der Niederdrucksäule 12 abgezogen. Zusätzlich kann ein zweites, reineres Sauerstoffprodukt 346, 348, 349 durch Innenverdichtung (zweite Sauerstoffpumpe 347) gewonnen werden. Wegen der Reinsauerstoffgewinnung muss der Luftdruck etwas höher als in den vorbeschriebenen Ausführungsbeispielen sein. Er liegt bei beispielsweise 6 bis 7,5 bar, vorzugsweise 6 bis 7 bar.The inner-to-be-compressed liquid oxygen 46 is withdrawn at a lower purity of about 95% from an intermediate point of the low-pressure column 12. In addition, a second, purer oxygen product 346, 348, 349 can be recovered by internal compression (second oxygen pump 347). Because of the pure oxygen production, the air pressure must be slightly higher than in the above-described embodiments. It is for example 6 to 7.5 bar, preferably 6 to 7 bar.

Figur 4 kombiniert die Luftführung der Figur 2 mit der Produktentnahme der Figur 3. FIG. 4 combines the airflow of the FIG. 2 with the product removal of the FIG. 3 ,

Claims (6)

Verfahren zur Tieftemperaturzerlegung von Luft in einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (11) und eine Niederdrucksäule (12) aufweist, bei dem - Einsatzluft (20, 32, 132) in die Hochdrucksäule (11) eingeleitet wird, - ein flüssiger Produktstrom (42; 46; 346) aus dem Destilliersäulen-System entnommen, in flüssigem Zustand auf einen erhöhten Druck gebracht (43; 47; 347) und unter diesem erhöhten Druck durch indirekten Wärmeaustausch (6) verdampft oder pseudo-verdampft und schließlich als gasförmiger Produktstrom (45; 49; 349) abgezogen wird, - die gesamte Einsatzluft (1) in einem Hauptluftverdichter auf einen ersten Druck verdichtet wird, der mindestens gleich dem Betriebsdruck der Hochdrucksäule (11) ist, - und anschließend in einer Reinigungsvorrichtung gereinigt wird, - ein erster Teilstrom (2, 7) der Einsatzluft unter etwa dem ersten Druck einer ersten Entspannungsmaschine (8) zugeführt, dort arbeitsleistend auf etwa den Betriebsdruck der Niederdrucksäule (12) entspannt und anschließend in die Niederdrucksäule (12) eingeführt (10) wird, - ein zweiter Teilstrom (3) der Einsatzluft in einem ersten Nachverdichter (14) auf einen zweiten Druck verdichtet wird, der höher als der erste Druck ist, und - mindestens ein Teil (17) des zweiten Teilstroms (16) stromabwärts der Verdichtung in einem zweiten Nachverdichter (18) auf einen dritten Druck nachverdichtet wird, der höher als der zweite Druck ist, dem indirekten Wärmeaustausch (6) zur Verdampfung beziehungsweise Pseudo-Verdampfung des flüssigen Produktstroms zugeführt und anschließend in das Destilliersäulen-System eingeleitet (20) wird, wobei der zweite Nachverdichter (18) als Kaltverdichter ausgebildet ist,
dadurch gekennzeichnet, dass - mindestens ein Teil der mechanischen Energie, die bei der arbeitsleistenden Entspannung (8) des ersten Teilstroms (7) erzeugt wird, zum Antrieb des zweiten Nachverdichters (18) verwendet wird.
A process for the cryogenic separation of air in a distillation column system comprising at least one high pressure column (11) and one low pressure column (12), in which - feed air (20, 32, 132) is introduced into the high-pressure column (11), a liquid product stream (42; 46; 346) is removed from the distillation column system, brought to an elevated pressure in the liquid state (43; 47; 347) and vaporized or pseudo-vaporized under this increased pressure by indirect heat exchange (6) finally withdrawn as a gaseous product stream (45; 49; 349), - The total feed air (1) is compressed in a main air compressor to a first pressure which is at least equal to the operating pressure of the high-pressure column (11), - And then cleaned in a cleaning device, - A first partial stream (2, 7) of the feed air at about the first pressure of a first expansion machine (8) supplied there, performing work to approximately the operating pressure of the low pressure column (12) and then introduced into the low pressure column (12) (10), - A second partial stream (3) of the feed air is compressed in a first booster (14) to a second pressure which is higher than the first pressure, and - At least a portion (17) of the second partial flow (16) downstream of the compression in a second booster (18) is recompressed to a third pressure which is higher than the second pressure, the indirect heat exchange (6) for evaporation or pseudo-evaporation fed to the liquid product stream and then introduced into the distillation column system (20), wherein the second after-compressor (18) is designed as a cold compressor,
characterized in that - At least a portion of the mechanical energy generated in the work-performing expansion (8) of the first partial flow (7) is used to drive the second post-compressor (18).
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein dritter Teilstrom (4) der Einsatzluft in einer zweiten Entspannungsmaschine (30, 130) arbeitsleistend entspannt wird.A method according to claim 1, characterized in that a third partial flow (4) of the feed air in a second expansion machine (30, 130) is expanded to perform work. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der arbeitsleistend entspannte dritte Teilstrom (31) in die Niederdrucksäule (12) eingeleitet (10) wird.A method according to claim 2, characterized in that the work-performing relaxed third partial flow (31) in the low-pressure column (12) introduced (10). Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der arbeitsleistend entspannte dritte Teilstrom (131) in die Hochdrucksäule (11) eingeleitet (132) wird.A method according to claim 2, characterized in that the work-performing expanded third partial flow (131) in the high-pressure column (11) introduced (132). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die gesamte Einsatzluft (1) in dem Hauptluftverdichter auf einen ersten Druck verdichtet wird, der mehr als 1 bar, insbesondere mehr als 3 bar über dem Betriebsdruck der Hochdrucksäule (11) liegt.Method according to one of claims 1 to 4, characterized in that the total feed air (1) is compressed in the main air compressor to a first pressure which is more than 1 bar, in particular more than 3 bar above the operating pressure of the high-pressure column (11). Vorrichtung zur Tieftemperaturzerlegung von Luft - mit einem Destilliersäulen-System, das mindestens eine Hochdrucksäule (11) und eine Niederdrucksäule (12) aufweist, - mit Mitteln zum Einleiten von Einsatzluft (20, 32, 132) in die Hochdrucksäule (11), - mit Mitteln zum Entnehmen eines flüssigen Produktstroms (42; 46; 346) aus dem Destilliersäulen-System, die Mittel zur Druckerhöhung im flüssigen Zustand (43; 47; 347) aufweisen und durch Mittel zum Verdampfen oder Pseudo-Verdampfen durch indirekten Wärmeaustausch (6) und verdampft oder pseudo-verdampft zu Mitteln zur Entnahme als gasförmiger Produktstrom (45; 49; 349) führen, - mit einem Hauptluftverdichter zum Verdichten der gesamten Einsatzluft (1) auf einen ersten Druck verdichtet wird, der mindestens gleich dem Betriebsdruck der Hochdrucksäule (11) ist, - mit einer Reinigungsvorrichtung zur Reinigung der verdichteten Einsatzluft, - mit Mitteln zum Zuführen eines ersten Teilstroms (2, 7) der Einsatzluft unter etwa dem ersten Druck zu einer ersten Entspannungsmaschine (8), und mit Mitteln zum Einführen der in der ersten Entspannungsmaschine (8) arbeitsleistend entspannten Luft in die Niederdrucksäule (12), - mit einem ersten Nachverdichter (14) zum Verdichten eines zweiten Teilstroms (3) der Einsatzluft auf einen zweiten Druck verdichtet wird, der höher als der erste Druck ist, und - einem zweiten Nachverdichter (18) zum Verdichten mindestens eines Teils (17) des zweiten Teilstroms (16) stromabwärts des ersten Nachverdichters auf einen dritten Druck, der höher als der zweite Druck ist, und - mit Mitteln zum Zuführen des zweiten Teilstroms stromabwärts des zweiten Nachverdichters zu dem indirekten Wärmeaustausch (6) zur Verdampfung beziehungsweise Pseudo-Verdampfung des flüssigen Produktstroms und zum Zuführen des zweiten Teilstroms stromabwärts des indirekten Wärmeaustauschs (6) in das Destilliersäulen-System eingeleitet (20) wird, - wobei der zweite Nachverdichter (18) als Kaltverdichter ausgebildet ist, gekennzeichnet durch - Mittel zur Übertragung mindestens eines Teils der mechanischen Energie, die in der ersten Entspannungsmaschine (8) gewonnen wird auf den Antrieb des zweiten Nachverdichters (18). Apparatus for the cryogenic separation of air with a distillation column system having at least one high-pressure column (11) and one low-pressure column (12), with means for introducing feed air (20, 32, 132) into the high-pressure column (11), - means for withdrawing a liquid product stream (42; 46; 346) from the distillation column system having means for increasing the pressure in the liquid state (43; 47; 347) and by means for evaporation or pseudo-evaporation by indirect heat exchange (6 ) and vaporized or pseudo-vaporized to removal means as a gaseous product stream (45; 49; 349), - is compressed with a main air compressor for compressing the total feed air (1) to a first pressure which is at least equal to the operating pressure of the high-pressure column (11), with a cleaning device for cleaning the compressed feed air, - With means for supplying a first partial flow (2, 7) of the feed air at about the first pressure to a first expansion machine (8), and with means for introducing the work in the first expansion machine (8) relaxed air in the low pressure column (12) . - Compressing with a first booster (14) for compressing a second partial stream (3) of the feed air to a second pressure which is higher than the first pressure, and a second post-compressor (18) for compressing at least a portion (17) of the second partial flow (16) downstream of the first post-compressor to a third pressure higher than the second pressure, and - having means for supplying the second substream downstream of the second post-compressor to the indirect heat exchange (6) for vaporizing the liquid product stream and supplying the second substream downstream of the indirect heat exchange (6) to the distillation column system (20) becomes, - wherein the second after-compressor (18) is designed as a cold compressor, marked by - means for transferring at least a part of the mechanical energy obtained in the first expansion machine (8) to the drive of the second after-compressor (18).
EP08012052A 2007-07-07 2008-07-03 Process for the cryogenic separation of air Withdrawn EP2015012A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007031765A DE102007031765A1 (en) 2007-07-07 2007-07-07 Process for the cryogenic separation of air

Publications (2)

Publication Number Publication Date
EP2015012A2 true EP2015012A2 (en) 2009-01-14
EP2015012A3 EP2015012A3 (en) 2012-08-22

Family

ID=39828943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08012052A Withdrawn EP2015012A3 (en) 2007-07-07 2008-07-03 Process for the cryogenic separation of air

Country Status (3)

Country Link
US (1) US20090064714A1 (en)
EP (1) EP2015012A3 (en)
DE (1) DE102007031765A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
FR3010778A1 (en) * 2013-09-17 2015-03-20 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
FR2943408A1 (en) * 2009-03-17 2010-09-24 Air Liquide Air separation process for air separation installation, involves extracting argon enriched gas from low pressure column, and delivering gas to argon splitter i.e. argon column, to produce uniform argon enriched flow in liquid form
US20150114037A1 (en) * 2013-10-25 2015-04-30 Neil M. Prosser Air separation method and apparatus
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
CN110553465B (en) * 2019-09-29 2024-04-12 杭州中泰深冷技术股份有限公司 Device and process for co-producing hydrogen for fuel cell vehicle by PDH separation system

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2718836B1 (en) * 1994-04-15 1996-05-24 Maurice Grenier Improved heat exchanger with brazed plates.
GB9410696D0 (en) * 1994-05-27 1994-07-13 Boc Group Plc Air separation
GB9414938D0 (en) * 1994-07-25 1994-09-14 Boc Group Plc Air separation
JP3737611B2 (en) * 1997-08-08 2006-01-18 大陽日酸株式会社 Method and apparatus for producing low purity oxygen
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
GB9903908D0 (en) * 1999-02-19 1999-04-14 Boc Group Plc Air separation
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Patent Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132A1 (en) 1975-08-06 1977-02-10 Linde Ag PROCESS AND DEVICE FOR PRODUCING OXYGEN BY TWO-STAGE LOW TEMPERATURE RECTIFICATION OF AIR
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
EP0505812B1 (en) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Low temperature air separation process
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN/LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2466236A1 (en) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
FR3010778A1 (en) * 2013-09-17 2015-03-20 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
WO2015040306A3 (en) * 2013-09-17 2015-06-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen by cryogenic distillation of air
US9976803B2 (en) 2013-09-17 2018-05-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitattion Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen by cryogenic distillation of air
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
WO2016005031A1 (en) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption

Also Published As

Publication number Publication date
DE102007031765A1 (en) 2009-01-08
EP2015012A3 (en) 2012-08-22
US20090064714A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
EP2015012A2 (en) Process for the cryogenic separation of air
EP1139046B1 (en) Process and device for producing high pressure oxygen product by cryogenic air separation
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP2015013A2 (en) Process and device for producing a gaseous pressurised product by cryogenic separation of air
DE102007014643A1 (en) Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP2236964B1 (en) Method and device for low-temperature air separation
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP1031804B1 (en) Air separation process with nitrogen recycling
EP2466236A1 (en) Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102009048456A1 (en) Method and apparatus for the cryogenic separation of air
DE10217091A1 (en) Three-column system for low-temperature air separation with argon extraction
EP2313724A2 (en) Process and device for cryogenic air fractionation
EP3290843A2 (en) Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
WO2021204424A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE19933558C5 (en) Three-column process and apparatus for the cryogenic separation of air
WO2017108187A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
EP1199532B1 (en) Three-column system for the cryogenic separation of air
EP2369281A1 (en) Method and device for cryogenic decomposition of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20120718BHEP

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20130502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130223