EP1847501B1 - Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier - Google Patents

Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier Download PDF

Info

Publication number
EP1847501B1
EP1847501B1 EP07106053.7A EP07106053A EP1847501B1 EP 1847501 B1 EP1847501 B1 EP 1847501B1 EP 07106053 A EP07106053 A EP 07106053A EP 1847501 B1 EP1847501 B1 EP 1847501B1
Authority
EP
European Patent Office
Prior art keywords
support means
monitoring device
value
max
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07106053.7A
Other languages
German (de)
French (fr)
Other versions
EP1847501A3 (en
EP1847501A2 (en
Inventor
Eric Rossignol
Sven Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP07106053.7A priority Critical patent/EP1847501B1/en
Publication of EP1847501A2 publication Critical patent/EP1847501A2/en
Publication of EP1847501A3 publication Critical patent/EP1847501A3/en
Application granted granted Critical
Publication of EP1847501B1 publication Critical patent/EP1847501B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • B66B7/062Belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/12Checking, lubricating, or cleaning means for ropes, cables or guides
    • B66B7/1207Checking means
    • B66B7/1215Checking means specially adapted for ropes or cables

Definitions

  • the invention relates to an elevator installation with a support means monitoring device for monitoring the condition of a suspension element and method for testing the suspension element according to the preamble of the independent patent claims.
  • the elevator system is installed in a substantially vertical shaft. It consists essentially of a cabin and a counterweight which are arranged in the shaft against guideways movable equal. The cabin and the counterweight are connected and supported by a suspension means. By means of a suspension control unit, a state of the suspension element is monitored.
  • US 2005/0063449 A1 discloses a method for suspension element monitoring in elevator installations, wherein a heating of tension members, which are used as electrical resistances, is determined.
  • EP 1186565 A2 discloses a magnetic inductive device for detecting bark on steel cables in an elevator installation.
  • a suspension cable monitoring unit for determining the state of a supporting cable of an elevator installation which is arranged in the machine room in the vicinity of a drive machine or also on a guide rail in the vicinity of the drive machine of this elevator installation.
  • a holder in this case allows attachment of the supporting rope monitoring unit to a drive machine foundation or a guide rail.
  • the bracket relieves an operator of holding the support rope monitoring unit.
  • the arrangement in the vicinity of the prime mover has the obvious advantage that - when traveling over a height of the shaft - main loaded sections of the suspension element are detected.
  • the suspension cable monitoring unit can be connected to an evaluation unit.
  • a disadvantage of this arrangement is that, on the one hand, the carrying cables which are moved along the carrying cable monitoring unit can damage or scratch scanning surfaces of the carrying cable monitoring unit or that edges of the carrying cable monitoring unit damage a carrying cable.
  • today's lifts are increasingly, instead of carrying ropes, provided with belt-like suspension means.
  • the support cable is no longer recognizable as a single support cable, but it is located in a, several ropes enclosing coat.
  • Such belt-like support means are particularly sensitive, since the enclosing jacket is made of rubber or plastic.
  • the invention is based on the object to carry out a support means monitoring unit such that damage to the suspension element but also the suspension means monitoring unit is prevented.
  • a method for the rational implementation of the support means test will be shown.
  • a suspension monitoring device is used to monitor the condition of the suspension element.
  • the support means monitoring device is attached by means of a support on the guideway.
  • the suspension element monitoring device comprises a guide device, preferably a guide roller, which guides the suspension element along a scanning surface of the suspension element monitoring device.
  • the support means here is a belt-like support means.
  • the sensing surface along which the belt-like support means is guided is provided with an exchangeable protective layer which protects the sensing surface from damage.
  • an exchangeable protective layer which protects the sensing surface from damage.
  • An elevator installation 1 serves for the substantially vertical transportation of persons or goods.
  • the elevator system 1 is as in Fig. 1 represented by an elevator car 4 and a counterweight 5, which are connected in the illustrated example via support rollers 6 to a support means 11 and with each other and which in a shaft 2 along guideways 9 are moved gegen Sammlung same.
  • a drive device 8 generally drives the suspension element 11 by means of a traction sheave 7 with frictional engagement.
  • the drive device 8 is often arranged in the shaft head 3, that is to say in the space above the elevator car 4 and counterweight 5, either in a separate engine room or inside the shaft space.
  • the drive device 8 can also be arranged in lateral spaces or laterally of the car 4 or below the car 4 and counterweight 5.
  • the support means 11 is subject to wear and aging. Wear and aging caused by friction between the traction sheave 7 and support means 11 or by repeated bending of the support means 11 during deflection over pulleys, support rollers 6 and traction sheave 7 and, for example, by corrosion processes. This wear or aging leads to a steady reduction of the sustainable load capacity of the suspension element 11. Therefore, the support means 11 must be checked during operation continuously or at periodic intervals. Such checks are often carried out by means of electromagnetic measuring means. In this case, due to disturbances of a magnetic field because of different steel concentrations in the suspension element cross-section wear or breaks detected.
  • Fig.2 shows a performance of a suspension means test according to the known prior art.
  • a support means monitoring device 217 is held or fixed in the vicinity of the drive device 208 and the support means 211 are slowly moved by means of the drive device 208 along the suspension element monitoring device 217.
  • Fig. 3 and Fig. 6 show an inventive arrangement of the support means monitoring device 17.
  • the drive device is arranged in the shaft head 3 of the shaft 2, preferably in the areas above a counterweight roadway.
  • the elevator car 4 is guided by means of guide track 9 and the support means 11 are arranged in the vicinity of the guide track 9.
  • the support means 11 are in this case performed by the drive means 8 to the cabin side arranged support rollers 6.
  • the support means monitoring device 17 is, as in the Fig. 6 and Fig. 7 is fastened by means of a support 13 to a guide track 9.
  • a distance (L) to the drive device 8 can be chosen such that any electromagnetic fields - such as those generated by an electrically driven motor - do not affect the suspension means 17, positioning very accurately - because guideways 9 are made accurately and are aligned - can take place, and the place of attachment from the roof of the car 4 is easily accessible.
  • This type of arrangement is particularly advantageous if at least two suspension elements 11 are used and the suspension elements 11 are arranged on the left and right of a guide plane (ZZ ') formed by guideways 9 of the car 4, preferably symmetrically to this guide plane (ZZ') this in Fig. 3a is exemplified. But there are also arrangements of support means 11 only on one side of the guideway 9 possible.
  • An attachment in the vicinity of the drive device 8 has the advantage that most heavily loaded points of the support means 11 (blowing zone, heating) are inevitably detected.
  • a distance (L) of 0. 4 m to about 1.6 m from the support means monitoring device 17 to the drive device 8 has been found to be optimal, with a distance (L) of about 0.7m can be described as ideal.
  • An influence of interference fields of the drive device 8 is thereby negligible and at the same time a large length range of the support means 11 can be detected in a measurement or test drive.
  • a test ride usually extends, as in the 4 and 5 represented by a topmost maintenance position (OW), Fig. 4 , up to a lowest maintenance position (UW), Fig. 5 ,
  • the top one Maintenance position (OW) is the position that can be approached by the elevator car 4 in the upward direction for the purpose of maintenance. If required, this top maintenance position (OW) can be moved downwards if the mounting of the suspension device monitoring device makes this necessary.
  • the lowest maintenance position (UW) is the position that can be approached by the elevator car 4 in the down direction for the purpose of maintenance. Of course, other test routes are possible, but then the testable area is restricted accordingly.
  • the support means monitoring device 17 is usually temporary, that is installed only for the purpose of testing in the elevator system 1.
  • a support means monitoring device 17 can be used for monitoring several or many elevator installations 1.
  • the guide device 18 is advantageously arranged at the two ends, or at the inlet end and / or outlet region, of the suspension element monitoring device 17.
  • the guide means 18 may include sliders, but preferably guide rollers 19 are used which guide the support means 11 along a scanning surface 21 of the suspension means 17.
  • the sensing surface 21 is designed according to the test method used. It contains activation elements such as electromagnets or ultrasonic elements as well as measuring sensors which record the resulting measuring fields or measuring signals.
  • a scanning surface 21 may comprise the support means 11 in whole or in part.
  • the guide device 18 is advantageously directly on the support means monitoring device 17th arranged, but it can also be arranged on the support 13. The chosen embodiment is based on space and cost requirements.
  • the sensing surface 21 of the support means monitoring device 17 is provided with an exchangeable protective layer 22, which protects the sensing surface 21 from damage, this protective layer 22 may be a plastic protective film or a plastic cover. As a result, both the sensing surface 21 itself, but also the support means 11 are protected from damage and the protective layer 22 can be easily renewed in case of contamination or damage.
  • the guideway 9 is a guide rail 10, which preferably has a T-shaped form, as in Fig. 7 can be seen and the support 13 which is used to attach the support means monitoring device 17 on the guide rail 10, has a first support member 14 on which by means of a quick connection 16, for example a clamp connection, is connected to the guide rail 10 and it has a second support member 15, which to the first support member 14 is slidably and / or adjustably arranged and the support means monitoring device 17 is attached to this second support member 15.
  • Fig. 8 is a support 13 in the non-installed state, but shown with pre-mounted support means monitoring device 17.
  • the second support part 15 is fastened with a quick release 20 to the first support part 14.
  • the second support part 15 is designed such that without displacement of the first support member 14, a change of the support means monitoring device 17 from a left-side support means 11I to the right-side support means 11r is possible.
  • a further quick connection 23 is provided which allows a quick release and secure the support means monitoring unit 17 on the second support member 15 allows.
  • the displaceability is thus designed so that the expected variety of suspension arrangements of a particular type of elevator can be adjusted.
  • the displaceability is designed such that the support means monitoring device 17 can be pushed from a first to the last support means 11.
  • the support 13 may be designed so that it remains stationary or installed in the system. In this embodiment, it is mounted so that it does not interfere with normal operation of the elevator system. In a required test, the support means monitoring unit 17 can be mounted quickly and without further straightening work. This is particularly efficient, but requires a greater cost of materials, since the support 13 must be provided for each elevator installation. Of course, combinations of this design are possible. For example, only the first support member 14 may be installed stationary and the second support member 15 is mounted by means of the quick release 20 in the test case.
  • the support means 11 is for example a belt-like support means 12 and load-bearing parts of the support means are metallic, preferably designed stranded.
  • the support means monitoring device 17 preferably contains magneto-inductive measuring devices.
  • ultrasound devices or optical measuring devices are also possible.
  • the support means monitoring device 17 is connected to an evaluation unit 24.
  • an evaluation unit 24 is shown in the mounted state.
  • the support means monitoring device 17 in this case generates a signal (SA) which corresponds to changes in the structure of the load-bearing cross-section of the load-bearing part of the suspension element 11 and the evaluation unit 24 evaluates this signal during the execution of the test.
  • SA signal
  • FD max the error value
  • FW max the Verschleisswerts
  • FWR max resulting Verschleisswerts
  • MT Total state of the Suspension
  • the evaluation unit determines the error value (FD) by searching for local absolute values of the signal (SA).
  • Fig. 10 represents an example of such an evaluation.
  • the signal (SA) measured by the support means monitoring device 17 is plotted as a function of a measuring time (t).
  • An error threshold (SD) is defined from which all signals (SA) which are greater than the error threshold value (SD) are added up to an error value (FD). The summation takes place until the signal (SA) falls below the error threshold (SD) again.
  • This "integral formation” then multiplies a global scaling factor and a velocity compensation factor (KF).
  • KF velocity compensation factor
  • Fig. 10 an exemplary course of the error value (FD) stored in the error value memory (FDS) with respect to the signal (SA) is shown. Of the measurements, only the amount is used. Thus, the direction of travel / polarity plays no role in the analysis.
  • a wear value (FW) can also be determined.
  • An example of such an evaluation in graphical form is in Figure 11 shown. The representation is analogous to the error value evaluation explained above.
  • the evaluation unit determines the wear value (FW) by summing the absolute value of the signal (SA), beginning at a time at which the absolute value of the signal (SA) exceeds a wear threshold (SW), to the wear value (FW) until the absolute value of the signal (SA) falls below the wear threshold (SW) and multiplies this wear value (FW) by a wear correction factor (KW) and stores it in a wear value memory (FWS).
  • SA absolute value of the signal
  • SW wear threshold
  • KW wear correction factor
  • the evaluation unit sums, at a possibly further point in time at which the absolute value of the signal (SA) again exceeds the wear threshold (SW), the absolute value of the signal (SA), to a further wear value (FW ') up to the absolute value of the signal (SA) again falls below the wear threshold (SW).
  • This further wear value (FW ') is multiplied by the wear correction factor (KW) and deposited in the wear value memory (FWS) if the thus determined wear value (FW') is greater than the previous wear value (FW) stored in the wear value memory (FWS).
  • the wear and / or the error correction factor (KF / KW) is scaled such that a limit of less than 1000 is given as acceptable and a limit of 1000 and more as insufficient.
  • the wear and / or the error correction factor (KF / KW) takes into account a test speed and a general scaling value. This limit is in the 10 and 11 referred to as the error limit or permissible error value (FDG) or the wear limit value or permissible wear value (FWG).
  • a resulting wear value is determined.
  • the largest excess wear value (FWR) determined over the observation period (TW) is stored in a resulting wear value memory (FWSR) and used to judge the condition of the suspension element.
  • a correction with a correction factor (KW) is carried out as already shown in the example of the wear value (FW).
  • the observation period (TW) is detected in a realized example by means of a timer and an input of the test driving speed. Alternatively, it is detected by means of a timer and a speed or Wegmessmess issued 25. This speed or Wegmessmess responded 25 may for example be integrated in the guide device 18.
  • the measurement results of the evaluation unit 24 in case of need also be printed, stored or transmitted to a remote diagnostic station.
  • a statement can be made as to the location of the most significant wear or failure.
  • the best combination of visual and device-assisted control achieves best safety by detecting both exceptional damage, such as overheating of a structural jacket or external injuries, as well as internal damage due to, for example, corrosion or fatigue become.
  • exceptional damage such as overheating of a structural jacket or external injuries, as well as internal damage due to, for example, corrosion or fatigue become.
  • the check may be performed by a service person 27 alone. This is especially efficient.
  • the elevator expert can arbitrarily change the set shapes and arrangements.
  • the illustrated period of observation (TW) can be changed as needed, or the illustrated support means monitoring unit 17 can also be used at other attachment points, such as on the car 4.
  • TW period of observation
  • the illustrated support means monitoring unit 17 can also be used at other attachment points, such as on the car 4.
  • a use for 1: 1 suspended elevator systems or for multi-suspended elevator systems is also possible.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Description

Beschreibungdescription

Die Erfindung betrifft eine Aufzugsanlage mit einer Tragmittelüberwachungseinrichtung zur Überwachung des Zustandes eines Tragmittels und Verfahren zur Prüfung des Tragmittels gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to an elevator installation with a support means monitoring device for monitoring the condition of a suspension element and method for testing the suspension element according to the preamble of the independent patent claims.

Die Aufzugsanlage ist in einem im Wesentlichen vertikalen Schacht eingebaut. Sie besteht im Wesentlichen aus einer Kabine und einem Gegengewicht welche im Schacht entlang von Führungsbahnen gegengleich bewegbar angeordnet sind. Die Kabine und das Gegengewicht sind mittels eines Tragmittels miteinander verbunden und getragen. Mittels einer Tragmittelüberwachungseinheit wird ein Zustand des Tragmittels überwacht.The elevator system is installed in a substantially vertical shaft. It consists essentially of a cabin and a counterweight which are arranged in the shaft against guideways movable equal. The cabin and the counterweight are connected and supported by a suspension means. By means of a suspension control unit, a state of the suspension element is monitored.

US 2005/0063449 A1 offenbart ein Verfahren zur Tragmittelüberwachung in Aufzuganlagen, wobei eine Erwärmung von Zugträgern, welche als elektrische widerstände verwendet werden, bestimmt wird. US 2005/0063449 A1 discloses a method for suspension element monitoring in elevator installations, wherein a heating of tension members, which are used as electrical resistances, is determined.

EP 1186565 A2 offenbart eine magnetisch-induktive Vorrichtung zur Erkennung von Schichen an Stahlseilen in einer Aufzugsanlage. EP 1186565 A2 discloses a magnetic inductive device for detecting bark on steel cables in an elevator installation.

Aus JP2004149317 ist eine Tragseilüberwachungseinheit zur Ermittlung des Zustandes eines Tragseils einer Aufzugsanlage bekannt, welche im Maschinenraum in der Nähe einer Antriebsmaschine oder auch an einer Führungsschiene in der Nähe der Antriebsmaschine dieser Aufzugsanlage angeordnet ist. Eine Halterung ermöglicht hierbei eine Befestigung der Tragseilüberwachungseinheit an einem Antriebsmaschinenfundament oder einer Führungsschiene. Die Halterung entlastet eine Bedienperson vom Halten der Tragseilüberwachungseinheit. Die Anordnung in der Nähe der Antriebsmaschine hat den offensichtlichen Vorteil, dass - während einer Fahrt über eine Höhe des Schachtes - hauptbelastete Abschnitte des Tragmittels erfasst werden. Die Tragseilüberwachungseinheit ist mit einer Auswerteeinheit verbindbar.Out JP2004149317 a suspension cable monitoring unit for determining the state of a supporting cable of an elevator installation is known, which is arranged in the machine room in the vicinity of a drive machine or also on a guide rail in the vicinity of the drive machine of this elevator installation. A holder in this case allows attachment of the supporting rope monitoring unit to a drive machine foundation or a guide rail. The bracket relieves an operator of holding the support rope monitoring unit. The arrangement in the vicinity of the prime mover has the obvious advantage that - when traveling over a height of the shaft - main loaded sections of the suspension element are detected. The suspension cable monitoring unit can be connected to an evaluation unit.

Ein Nachteil dieser Anordnung ist, dass einerseits die Tragseile, welche der Tragseilüberwachungseinheit entlang bewegt werden, Abtastflächen der Tragseilüberwachungseinheit beschädigen oder zerkratzen können oder dass Kanten der Tragseilüberwachungseinheit ein Tragseil beschädigen. Im Weiteren sind heutige Aufzüge vermehrt, anstatt mit Tragseilen, mit riemenartigen Tragmitteln versehen. Hierbei ist das Tragseil nicht mehr als einzelnes Tragseil erkennbar, sondern es befindet sich in einem, mehrere Seile umschliessendem Mantel. Solche riemenartige Tragmittel sind im Besonderen empfindlich, da der umschliessende Mantel aus Gummi oder Kunststoff besteht.A disadvantage of this arrangement is that, on the one hand, the carrying cables which are moved along the carrying cable monitoring unit can damage or scratch scanning surfaces of the carrying cable monitoring unit or that edges of the carrying cable monitoring unit damage a carrying cable. Furthermore, today's lifts are increasingly, instead of carrying ropes, provided with belt-like suspension means. Here, the support cable is no longer recognizable as a single support cable, but it is located in a, several ropes enclosing coat. Such belt-like support means are particularly sensitive, since the enclosing jacket is made of rubber or plastic.

Der Erfindung liegt nun die Aufgabe zugrunde, eine Tragmittelüberwachungseinheit derart auszuführen dass Beschädigungen des Tragmittels aber auch der Tragmittelüberwachungseinheit vorgebeugt wird. Im Weiteren soll eine Methode zur rationellen Durchführung der Tragmittelprüfung aufgezeigt werden.The invention is based on the object to carry out a support means monitoring unit such that damage to the suspension element but also the suspension means monitoring unit is prevented. In addition, a method for the rational implementation of the support means test will be shown.

Die in den unabhängigen Patentansprüchen definierte Erfindung löst diese Aufgabe.The invention defined in the independent claims solves this problem.

Hierbei wird in einer Aufzugsanlage mit einer Aufzugskabine und einem Gegengewicht, welche mit einem Tragmittel miteinander verbunden sind und welche in einem vertikalen Schacht entlang von Führungsbahnen gegengleich bewegbar sind, eine Tragmittelüberwachungseinrichtung zur Überwachung des Zustandes des Tragmittels verwendet. Die Tragmittelüberwachungseinrichtung ist mittels eines Supports an der Führungsbahn befestigt. Erfindungsgemäss enthält die Tragmittelüberwachungseinrichtung eine Führungseinrichtung, vorzugsweise eine Führungsrolle, welche das Tragmittel einer Abtastfläche der Tragmittelüberwachungseinrichtung entlang führt. Das Tragmittel ist hierbei ein riemenartiges Tragmittel. Der Vorteil der Erfindung ergibt sich dadurch, dass das Tragmittel exakt und sanft in die Tragmittelüberwachungseinrichtung eingeführt werden kann und dass allfällige Schrägzüge oder Verdrehungen im Tragmittel zu keiner übermässigen Beanspruchung des Tragmittels aber auch zu keiner übermässigen Beanspruchung der Abtastfläche führen. Einer Beschädigung von Tragmittel und Abtastfläche wird dadurch vorgebeugt.Here, in a lift installation with an elevator cage and a counterweight, which are connected to one another by means of suspension and which are movable in opposite directions in a vertical shaft along guideways, a suspension monitoring device is used to monitor the condition of the suspension element. The support means monitoring device is attached by means of a support on the guideway. According to the invention, the suspension element monitoring device comprises a guide device, preferably a guide roller, which guides the suspension element along a scanning surface of the suspension element monitoring device. The support means here is a belt-like support means. The advantage of the invention results from the fact that the support means can be accurately and smoothly introduced into the support means monitoring device and that any skewed or twisted in the support means to excessive stress on the suspension means but also to no excessive stress on the scanning lead. Damage to suspension and scanning is thereby prevented.

Die Abtastfläche, an welcher das riemenartige Tragmittel entlang geführt ist, ist mit einer austauschbaren Schutzschicht versehen ist, welche die Abtastfläche vor Beschädigung schützt. Dies ist vorteilhaft, da die Schutzschicht einerseits die Tragmittelüberwachungseinheit selbst und andererseits auch das Tragmittel vor Beschädigung schützt und diese Schutzschicht aufgrund ihrer Austauschbarkeit einfach und schnell erneuert werden kann. Im Weiteren kann dadurch die Tragmittelüberwachungseinheit hervorragend für Riemen verwendet werden, welche durch die Schutzschicht zusätzlich vor Verletzung geschützt sind.The sensing surface along which the belt-like support means is guided is provided with an exchangeable protective layer which protects the sensing surface from damage. This is advantageous because the protective layer on the one hand protects the suspension element monitoring unit itself and on the other hand, the suspension element from damage and this protective layer can be renewed easily and quickly due to their interchangeability. Furthermore, the suspension-control unit can thereby be used excellently for belts which are additionally protected against injury by the protective layer.

Weitere vorteilhafte Ausführungen sind in den abhängigen Ansprüchen beschrieben.Further advantageous embodiments are described in the dependent claims.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit den Figuren näher erläutert. Teile gleicher Funktion sind in allen Figuren mit gleichen Bezugsnummern versehen.In the following, the invention will be explained in more detail using an exemplary embodiment in conjunction with the figures. Parts of the same function are provided in all figures with the same reference numbers.

Es zeigen:

Fig. 1
eine schematische Ansicht einer Aufzugsanlage
Fig. 2
eine prinzipielle Ansicht der Anordnung einer Tragmittelüberwachungseinheit entsprechend dem Stand der Technik
Fig. 3
eine schematische Ansicht einer Aufzugsanlage mit erfindungsgemäss angeordneter Tragmittelüberwachungseinheit
Fig. 3a
einen Querschnitt durch eine beispielhafte Aufzugsanlage
Fig. 4
Startpunkt einer Prüffahrt in einer Aufzugsanlage
Fig. 5
Endpunkt einer Prüffahrt in einer Aufzugsanlage
Fig. 6
eine Ansicht einer angebauten Tragmittelüberwachungseinheit.
Fig. 7
eine Detailansicht einer angebauten Tragmittelüberwachungseinheit mit angebauter Auswerteeinheit.
Fig. 8
eine Detailansicht eines Supports, nicht eingebaut und ohne Auswerteeinheit.
Fig. 9
eine vereinfachte schematische Funktionsdarstellung der Auswerteeinheit
Fig. 10
eine Beispielhafte Darstellung eines Mess- /Auswertverlaufes einer Fehlerbeurteilung
Fig. 11
eine Beispielhafte Darstellung eines Mess- /Auswertverlaufes einer Verschleissbeurteilung
Show it:
Fig. 1
a schematic view of an elevator system
Fig. 2
a basic view of the arrangement of a suspension means monitoring unit according to the prior art
Fig. 3
a schematic view of an elevator system according to the invention arranged suspension monitoring unit
Fig. 3a
a cross section through an exemplary elevator installation
Fig. 4
Starting point of a test drive in an elevator installation
Fig. 5
End point of a test drive in an elevator installation
Fig. 6
a view of a mounted suspension control unit.
Fig. 7
a detailed view of a mounted suspension control unit with attached evaluation.
Fig. 8
a detailed view of a support, not installed and without evaluation unit.
Fig. 9
a simplified schematic functional representation of the evaluation
Fig. 10
an exemplary representation of a measurement / evaluation process of an error assessment
Fig. 11
an exemplary representation of a measurement / Auswertverlaufes a wear assessment

Eine Aufzugsanlage 1 dient dem im Wesentlichen vertikalen Transportieren von Personen oder Waren. Die Aufzugsanlage 1 besteht wie in Fig. 1 dargestellt aus einer Aufzugskabine 4 und einem Gegengewicht 5, welche in dem dargestellten Beispiel über Tragrollen 6 zu einem Tragmittel 11 und miteinander verbunden sind und welche in einem Schacht 2 entlang von Führungsbahnen 9 gegengleich bewegbar sind. Eine Antriebseinrichtung 8 treibt in der Regel das Tragmittel 11 mittels einer Treibscheibe 7 mit Reibschluss an. Die Antriebseinrichtung 8 ist vielfach im Schachtkopf 3, das heisst im Raum oberhalb von Aufzugskabine 4 und Gegengewicht 5 angeordnet, entweder in einem separaten Maschinenraum oder innerhalb des Schachtraumes.
Die Antriebseinrichtung 8 kann auch in seitlichen Räumen oder seitlich der Kabine 4 oder unterhalb von Kabine 4 und Gegengewicht 5 angeordnet sein. In diesen Fällen befinden sich im Raum oberhalb von Kabine 4 und Gegengewicht 5 oftmals Umlenkrollen, welche das Tragmittel 11 entsprechend von gewählten Seilführungen umlenken.
Das Tragmittel 11 ist Verschleiss und Alterung unterworfen. Verschleiss und Alterung entsteht durch Reibung zwischen Treibscheibe 7 und Tragmittel 11 oder durch wiederholtes Biegen der Tragmittel 11 beim Umlenken über Umlenkrollen, Tragrollen 6 und Treibscheibe 7 sowie beispielsweise durch Korrosionsvorgänge. Dieser Verschleiss bzw. Alterung führt zu einer stetigen Reduktion der ertragbaren Tragkraft des Tragmittels 11. Deswegen muss das Tragmittel 11 im Betrieb dauernd oder in periodischen Zeitabständen überprüft werden.
Derartige Überprüfungen werden des öfteren mittels elektromagnetischen Messmitteln durchgeführt. Hierbei wird aufgrund von Störungen eines magnetischen Feldes wegen unterschiedlichen Stahlkonzentrationen im Tragmittelquerschnitt Verschleiss oder Brüche erkannt. Fig.2 zeigt eine Durchführung einer Tragmittelprüfung gemäss dem bekannten Stand der Technik. Eine Tragmittelüberwachungseinrichtung 217 wird in der Nähe der Antriebseinrichtung 208 gehalten oder fixiert und die Tragmittel 211 werden mittels der Antriebseinrichtung 208 langsam entlang der Tragmittelüberwachungseinrichtung 217 bewegt.
An elevator installation 1 serves for the substantially vertical transportation of persons or goods. The elevator system 1 is as in Fig. 1 represented by an elevator car 4 and a counterweight 5, which are connected in the illustrated example via support rollers 6 to a support means 11 and with each other and which in a shaft 2 along guideways 9 are moved gegengleich same. A drive device 8 generally drives the suspension element 11 by means of a traction sheave 7 with frictional engagement. The drive device 8 is often arranged in the shaft head 3, that is to say in the space above the elevator car 4 and counterweight 5, either in a separate engine room or inside the shaft space.
The drive device 8 can also be arranged in lateral spaces or laterally of the car 4 or below the car 4 and counterweight 5. In these cases, in the space above the car 4 and counterweight 5 are often pulleys, which deflect the support means 11 according to selected cable guides.
The support means 11 is subject to wear and aging. Wear and aging caused by friction between the traction sheave 7 and support means 11 or by repeated bending of the support means 11 during deflection over pulleys, support rollers 6 and traction sheave 7 and, for example, by corrosion processes. This wear or aging leads to a steady reduction of the sustainable load capacity of the suspension element 11. Therefore, the support means 11 must be checked during operation continuously or at periodic intervals.
Such checks are often carried out by means of electromagnetic measuring means. In this case, due to disturbances of a magnetic field because of different steel concentrations in the suspension element cross-section wear or breaks detected. Fig.2 shows a performance of a suspension means test according to the known prior art. A support means monitoring device 217 is held or fixed in the vicinity of the drive device 208 and the support means 211 are slowly moved by means of the drive device 208 along the suspension element monitoring device 217.

Fig. 3 und Fig. 6 zeigen eine erfindungsgemässe Anordnung der Tragmittelüberwachungseinrichtung 17. Im dargestellten Beispiel handelt es sich um eine maschinenraumlose Aufzugsanlage 1, wobei die Antriebseinrichtung im Schachtkopf 3 des Schachtes 2, vorzugsweise im Bereiche oberhalb einer Gegengewichtsfahrbahn angeordnet ist. Die Aufzugskabine 4 ist mittels Führungsbahn 9 geführt und die Tragmittel 11 sind in der Nähe der Führungsbahn 9 angeordnet. Die Tragmittel 11 werden hierbei von der Antriebseinrichtung 8 zu kabinenseitig angeordneten Tragrollen 6 geführt.
Die Tragmittelüberwachungseinrichtung 17 ist, wie in den Fig. 6 und Fig. 7 dargestellt mittels eines Supports 13 an einer Führungsbahn 9 befestigt ist. Dies ist vorteilhaft, da eine Distanz (L) zur Antriebseinrichtung 8 derart gewählt werden kann, dass allfällige elektromagnetische Felder -wie sie von einem elektrisch betriebenen Motor erzeugt werden- die Tragmittelüberwachungseinrichtung 17 nicht beeinflussen, eine Positionierung sehr genau - da Führungsbahnen 9 genau hergestellt und ausgerichtet sind - erfolgen kann, sowie der Ort der Anbringung vom Dach der Kabine 4 aus einfach erreichbar ist.
Besonders vorteilhaft ist diese Art der Anordnung, wenn mindestens zwei Tragmittel 11 verwendet sind und die Tragmittel 11 links und rechts einer durch Führungsbahnen 9 der Kabine 4 gebildeten Führungsebene (ZZ'), vorzugsweise symmetrisch zu dieser Führungsebene (ZZ'), angeordnet sind, wie dies in Fig. 3a beispielhaft ersichtlich ist. Es sind aber auch Anordnungen von Tragmitteln 11 nur auf einer Seite der Führungsbahn 9 möglich.
Vorteilhafterweise ist das Tragmittel 11, wie in Fig. 3 dargestellt zugleich als Treibmittel verwendet, welches von der Antriebseinrichtung 8 getrieben ist und die Tragmittelüberwachungseinrichtung 17 ist nahe dieser Antriebseinrichtung 8 angebracht. Eine Anbringung in der Nähe der Antriebseinrichtung 8 hat den Vorteil, dass meistbelastete Stellen des Tragmittels 11 (Treibzone, Erwärmung) zwangsläufig erfasst werden. Hierbei hat sich eine Distanz (L) von 0. 4m bis etwa 1.6m von der Tragmittelüberwachungseinrichtung 17 zur Antriebseinrichtung 8 als optimal erwiesen, wobei eine Distanz (L) von etwa 0.7m als ideal bezeichnet werden kann. Ein Einfluss von Störfeldern der Antriebseinrichtung 8 ist dadurch vernachlässigbar und zugleich kann ein grosser Längenbereich des Tragmittels 11 in einer Mess- oder Prüffahrt erfasst werden. Eine Prüffahrt erstreckt sich in der Regel, wie in den Fig. 4 und 5 dargestellt von einer obersten Wartungsposition (OW), Fig. 4, bis zu einer untersten Wartungsposition (UW), Fig. 5. Die oberste Wartungsposition (OW) ist diejenige Position die von der Aufzugskabine 4 in Aufwärtsrichtung zum Zwecke von Wartung angefahren werden kann. Diese oberste Wartungsposition (OW) kann im Bedarfsfalle nach unten verschoben werden wenn der Anbau der Tragmittelüberwachungseinrichtung dies erforderlich macht. Die unterste Wartungsposition (UW) ist diejenige Position die von der Aufzugskabine 4 in Abwärtsrichtung zum Zwecke von Wartung angefahren werden kann. Selbstverständlich sind andere Prüf-Fahrstrecken möglich, jedoch wird dann der prüfbare Bereich entsprechend eingeschränkt.
Die Tragmittelüberwachungseinrichtung 17 ist in der Regel temporär, das heisst lediglich zum Zwecke der Prüfung in der Aufzugsanlage 1 eingebaut. Dies ist vorteilhaft, da deshalb eine Tragmittelüberwachungseinrichtung 17 zur Überwachung mehrerer oder vieler Aufzugsanlagen 1 verwendet werden kann. Erfindungsgemäss ist die Tragmittelüberwachungseinrichtung 17, wie in Fig. 7 dargestellt, mit Führungseinrichtungen 18 ausgestattet, welche eine genaue Einführung und eine genaue Positionierung oder Führung des Tragmittels 11 in Bezug auf die Tragmittelüberwachungseinrichtung 17 gewährleisten. Die Führungseinrichtung 18 ist vorteilhafterweise an den beiden Enden, bzw. beim Einlaufenden und / oder Auslaufenden Bereich, der Tragmittelüberwachungseinrichtung 17 angeordnet. Damit ist das Tragmittel 11 in der richtigen Lage in die Tragmittelüberwachungseinrichtung 17 eingeführt und es wird dadurch über die gesamte Länge der Tragmittelüberwachungseinrichtung 17 in idealer Messposition geführt. Dadurch ist eine exakte Messung ermöglicht und einen Beschädigung des Tragmittels 11 durch schräg einlaufen desselben wird vorgebeugt. Ein Schrägeinlauf kann sich ergeben wenn das Tragmittel 11 verdreht ist, oder wenn zwischen benachbarten Umlenkrollen eine Lageabweichung besteht.
Die Führungseinrichtung 18 kann Gleitstücke beinhalten, vorzugsweise werden jedoch Führungsrollen 19 verwendet, welche das Tragmittel 11 einer Abtastfläche 21 der Tragmittelüberwachungseinrichtung 17 entlang führen. Die Abtastfläche 21 ist je nach verwendetem Prüfverfahren ausgeführt. Sie enthält Aktivierungselement wie Elektromagneten oder Ultraschallelemente und auch Messsensoren welche resultierende Messfelder oder Messsignale aufnehmen. Eine Abtastfläche 21 kann das Tragmittel 11 ganz oder teilweise umfassen. Die Führungseinrichtung 18 ist vorteilhafterweise direkt an der Tragmittelüberwachungseinrichtung 17 angeordnet, sie kann jedoch auch am Support 13 angeordnet sein. Die gewählte Ausführungsform richtet sich nach Platz- und Kostenanforderungen. Eine Anordnung der Führungseinrichtung 18 direkt an der Tragmittelüberwachungseinrichtung 17, wie in Fig. 7 realisiert, ist vielfach vorteilhaft, da die Führungsqualität verbessert wird.
Die Abtastfläche 21 der Tragmittelüberwachungseinrichtung 17 ist mit einer austauschbaren Schutzschicht 22 versehen, welche die Abtastfläche 21 vor Beschädigung schützt, wobei diese Schutzschicht 22 eine Kunststoff-Schutzfolie oder eine Kunststoff-Abdeckung sein kann. Dadurch ist sowohl die Abtastfläche 21 selbst, aber auch das Tragmittel 11 vor Beschädigungen geschützt und die Schutzschicht 22 kann bei Verschmutzung oder Beschädigung einfach erneuert werden.
Fig. 3 and Fig. 6 show an inventive arrangement of the support means monitoring device 17. In the example shown is a machine roomless elevator installation 1, wherein the drive device is arranged in the shaft head 3 of the shaft 2, preferably in the areas above a counterweight roadway. The elevator car 4 is guided by means of guide track 9 and the support means 11 are arranged in the vicinity of the guide track 9. The support means 11 are in this case performed by the drive means 8 to the cabin side arranged support rollers 6.
The support means monitoring device 17 is, as in the Fig. 6 and Fig. 7 is fastened by means of a support 13 to a guide track 9. This is advantageous because a distance (L) to the drive device 8 can be chosen such that any electromagnetic fields - such as those generated by an electrically driven motor - do not affect the suspension means 17, positioning very accurately - because guideways 9 are made accurately and are aligned - can take place, and the place of attachment from the roof of the car 4 is easily accessible.
This type of arrangement is particularly advantageous if at least two suspension elements 11 are used and the suspension elements 11 are arranged on the left and right of a guide plane (ZZ ') formed by guideways 9 of the car 4, preferably symmetrically to this guide plane (ZZ') this in Fig. 3a is exemplified. But there are also arrangements of support means 11 only on one side of the guideway 9 possible.
Advantageously, the support means 11, as in Fig. 3 shown at the same time used as a propellant, which is driven by the drive means 8 and the support means monitoring device 17 is mounted near this drive means 8. An attachment in the vicinity of the drive device 8 has the advantage that most heavily loaded points of the support means 11 (blowing zone, heating) are inevitably detected. In this case, a distance (L) of 0. 4 m to about 1.6 m from the support means monitoring device 17 to the drive device 8 has been found to be optimal, with a distance (L) of about 0.7m can be described as ideal. An influence of interference fields of the drive device 8 is thereby negligible and at the same time a large length range of the support means 11 can be detected in a measurement or test drive. A test ride usually extends, as in the 4 and 5 represented by a topmost maintenance position (OW), Fig. 4 , up to a lowest maintenance position (UW), Fig. 5 , The top one Maintenance position (OW) is the position that can be approached by the elevator car 4 in the upward direction for the purpose of maintenance. If required, this top maintenance position (OW) can be moved downwards if the mounting of the suspension device monitoring device makes this necessary. The lowest maintenance position (UW) is the position that can be approached by the elevator car 4 in the down direction for the purpose of maintenance. Of course, other test routes are possible, but then the testable area is restricted accordingly.
The support means monitoring device 17 is usually temporary, that is installed only for the purpose of testing in the elevator system 1. This is advantageous because therefore a support means monitoring device 17 can be used for monitoring several or many elevator installations 1. According to the invention, the suspension element monitoring device 17, as in FIG Fig. 7 shown, provided with guide means 18, which ensure a precise introduction and accurate positioning or guidance of the support means 11 with respect to the support means monitoring device 17. The guide device 18 is advantageously arranged at the two ends, or at the inlet end and / or outlet region, of the suspension element monitoring device 17. Thus, the support means 11 is inserted in the correct position in the support means monitoring device 17 and it is thereby performed over the entire length of the support means monitoring device 17 in an ideal measuring position. As a result, an accurate measurement is possible and damage to the support means 11 by obliquely shrinking the same is prevented. An inclined inlet can result if the suspension element 11 is twisted, or if there is a positional deviation between adjacent deflection rollers.
The guide means 18 may include sliders, but preferably guide rollers 19 are used which guide the support means 11 along a scanning surface 21 of the suspension means 17. The sensing surface 21 is designed according to the test method used. It contains activation elements such as electromagnets or ultrasonic elements as well as measuring sensors which record the resulting measuring fields or measuring signals. A scanning surface 21 may comprise the support means 11 in whole or in part. The guide device 18 is advantageously directly on the support means monitoring device 17th arranged, but it can also be arranged on the support 13. The chosen embodiment is based on space and cost requirements. An arrangement of the guide device 18 directly to the support means monitoring device 17, as in Fig. 7 realized, is often advantageous because the leadership quality is improved.
The sensing surface 21 of the support means monitoring device 17 is provided with an exchangeable protective layer 22, which protects the sensing surface 21 from damage, this protective layer 22 may be a plastic protective film or a plastic cover. As a result, both the sensing surface 21 itself, but also the support means 11 are protected from damage and the protective layer 22 can be easily renewed in case of contamination or damage.

Vorteilhafterweise ist die Führungsbahn 9 eine Führungsschiene 10, welche vorzugsweise eine T-förmige Form aufweist, wie in Fig. 7 ersichtlich und der Support 13 der zur Befestigung der Tragmittelüberwachungseinrichtung 17 an der Führungsschiene 10 verwendet ist, weist einen ersten Supportteil 14 auf welcher mittels einer Schnellverbindung 16, beispielsweise einer Klemmverbindung, zu der Führungsschiene 10 verbunden ist und er weist einen zweiten Supportteil 15 auf, welcher zum ersten Supportteil 14 verschieb- und / oder einstellbar angeordnet ist und die Tragmittelüberwachungseinrichtung 17 ist an diesem zweiten Supportteil 15 befestigt. In Fig. 8 ist ein Support 13 im nicht eingebauten Zustand, jedoch mit vormontierter Tragmittelüberwachungseinrichtung 17 dargestellt. Der zweite Supportteil 15 ist mit einem Schnellspanner 20 zum ersten Supportteil 14 befestigt. Dadurch ist ein schnelles, genaues und einfaches Ausrichten der Tragmittelüberwachungseinrichtung 17 in Bezug auf das zu prüfende Tragmittel 11 möglich.
Der zweite Supportteil 15 ist derart ausgeführt ist, dass ohne Verschiebung des ersten Supportteiles 14 ein Wechsel der Tragmittelüberwachungseinrichtung 17 von einem linksseitigen Tragmittel 11I zum rechtseitigen Tragmittel 11r möglich ist. Hierzu ist eine weitere Schnellverbindung 23 vorgesehen welche ein schnelles lösen und befestigen der Tragmittelüberwachungseinheit 17 am zweiten Supportteil 15 ermöglicht. Die Verschiebbarkeit ist somit derart ausgelegt, dass die zu erwartende Vielfalt von Tragmittelanordnungen einer bestimmten Aufzugsart eingestellt werden kann. Sind beispielsweise mehrere Tragmittel 11 auf einer Seite der Führungsbahn 9 angeordnet ist die Verschiebbarkeit derart ausgelegt, dass die Tragmittelüberwachungseinrichtung 17 von einem ersten bis zum letzten Tragmittel 11 geschoben werden kann.
In einer besonderen Ausführung kann der Support 13 derart ausgeführt sein, dass er stationär in der Anlage verbleibt bzw. installiert ist. Bei dieser Ausführung ist er derart angebracht, dass er einen Normalbetrieb der Aufzugsanlage nicht stört. Bei einer erforderlichen Prüfung kann die Tragmittelüberwachungseinheit 17 schnell und ohne weitere Richtarbeit angebracht werden. Dies ist besonders effizient, bedingt jedoch einen grösseren Materialaufwand, da der Support 13 für jede einzelne Aufzugsanlage bereitgestellt werden muss. Selbstverständlich sind auch Kombinationen dieser Ausführung möglich. Zum Beispiel kann lediglich der erste Supportteil 14 stationär installiert sein und der zweite Supportteil 15 wird mittels dem Schnellspanner 20 im Prüffalle montiert.
Advantageously, the guideway 9 is a guide rail 10, which preferably has a T-shaped form, as in Fig. 7 can be seen and the support 13 which is used to attach the support means monitoring device 17 on the guide rail 10, has a first support member 14 on which by means of a quick connection 16, for example a clamp connection, is connected to the guide rail 10 and it has a second support member 15, which to the first support member 14 is slidably and / or adjustably arranged and the support means monitoring device 17 is attached to this second support member 15. In Fig. 8 is a support 13 in the non-installed state, but shown with pre-mounted support means monitoring device 17. The second support part 15 is fastened with a quick release 20 to the first support part 14. As a result, a fast, accurate and simple alignment of the support means monitoring device 17 with respect to the support means 11 to be tested is possible.
The second support part 15 is designed such that without displacement of the first support member 14, a change of the support means monitoring device 17 from a left-side support means 11I to the right-side support means 11r is possible. For this purpose, a further quick connection 23 is provided which allows a quick release and secure the support means monitoring unit 17 on the second support member 15 allows. The displaceability is thus designed so that the expected variety of suspension arrangements of a particular type of elevator can be adjusted. If, for example, a plurality of support means 11 are arranged on one side of the guide track 9, the displaceability is designed such that the support means monitoring device 17 can be pushed from a first to the last support means 11.
In a particular embodiment, the support 13 may be designed so that it remains stationary or installed in the system. In this embodiment, it is mounted so that it does not interfere with normal operation of the elevator system. In a required test, the support means monitoring unit 17 can be mounted quickly and without further straightening work. This is particularly efficient, but requires a greater cost of materials, since the support 13 must be provided for each elevator installation. Of course, combinations of this design are possible. For example, only the first support member 14 may be installed stationary and the second support member 15 is mounted by means of the quick release 20 in the test case.

Das Tragmittel 11 ist beispielsweise ein riemenartiges Tragmittel 12 und lasttragende Teile des Tragmittels sind metallisch, vorzugsweise litzenförmig ausgeführt. Bei derartigen Tragmitteln 11 enthält die Tragmittelüberwachungseinrichtung 17 vorzugsweise Magnet-Induktive Messeinrichtungen. Es sind aber auch Ultraschallgeräte oder optische Messgeräte möglich.The support means 11 is for example a belt-like support means 12 and load-bearing parts of the support means are metallic, preferably designed stranded. In such support means 11, the support means monitoring device 17 preferably contains magneto-inductive measuring devices. However, ultrasound devices or optical measuring devices are also possible.

Eine Auswertung oder Interpretation der Messergebnisse kann prinzipiell manuell erfolgen. Hierbei ist die Anwesenheit eines geschulten Prüfers erforderlich, der diese Auswertung durchführt.
In einer vorgeschlagenen Ausführungsform ist jedoch die Tragmittelüberwachungseinrichtung 17 mit einer Auswerteeinheit 24 verbunden. In Fig. 7 ist eine solche Auswerteeinheit 24 in angebautem Zustand gezeigt. Die Tragmittelüberwachungseinrichtung 17 erzeugt hierbei ein Signal (SA) welches Veränderungen der Struktur des tragenden Querschnitts des lasttragenden Teils des Tragmittels 11 entspricht und die Auswerteeinheit 24 wertet dieses Signal während der Durchführung der Prüfung aus. Die Auswerteeinheit 24 ermittelt, wie in Fig. 9 schematisch dargestellt, einen Fehlerwert (FD) und / oder einen Verschleisswert (FW) und / oder einen resultierenden Verschleisswert (FWR) und die Auswerteeinheit 24 zeigt einen Maximalwert des Fehlerwertes (FDmax) und / oder des Verschleisswerts (FWmax) und / oder des resultierenden Verschleisswerts (FWRmax) und / oder einen Gesamtzustand des Tragmittels (MT) an. Eine derartige Auswerteeinheit ermöglicht eine Personenunabhängige Auswertung. Die Auswertung erfolgt nach vorgegebenen Kriterien, d.h ein Risiko von Fehlinterpretationen wird praktisch ausgeschlossen. Eine derartige Auswertung ist sehr sicher. Je nach Definition kann eine Prüfung in Bezug auf Verschleiss oder in Bezug auf Fehler oder in Bezug auf einen Gesamtzustand des Tragmittels 11 ermittelt werden. Unter Verschleiss ist hierbei eine kontinuierliche Veränderung wie Abrieb oder Korrosion oder Zersetzung verstanden und unter Fehler sind Einzelereignisse wie beispielsweise ein Bruch eines Lasttragenden Elementes oder eines Teiles davon. Der Gesamtzustand oder der resultierende Verschleisswert gewichtet den Zustand des Seiles in der Regel über einen definierten Zeitabschnitt (TW).
An evaluation or interpretation of the measurement results can in principle be done manually. This requires the presence of a trained inspector who carries out this evaluation.
In a proposed embodiment, however, the support means monitoring device 17 is connected to an evaluation unit 24. In Fig. 7 Such an evaluation unit 24 is shown in the mounted state. The support means monitoring device 17 in this case generates a signal (SA) which corresponds to changes in the structure of the load-bearing cross-section of the load-bearing part of the suspension element 11 and the evaluation unit 24 evaluates this signal during the execution of the test. The evaluation unit 24 determines, as in Fig. 9 shown schematically, an error value (FD) and / or a wear value (FW) and / or a resulting Verschleisswert (FWR) and the evaluation unit 24 shows a maximum value of the error value (FD max ) and / or the Verschleisswerts (FW max ) and / or the resulting Verschleisswerts (FWR max ) and / or a total state of the Suspension (MT). Such an evaluation unit enables a person-independent evaluation. The evaluation is carried out according to predetermined criteria, ie a risk of misinterpretation is practically excluded. Such an evaluation is very safe. Depending on the definition, a test can be determined with respect to wear or with respect to errors or with respect to an overall condition of the suspension element 11. Under wear here is a continuous change such as abrasion or corrosion or decomposition understood and under error are single events such as a breakage of a load-bearing element or a part thereof. The overall condition or resulting wear value usually weights the condition of the rope over a defined period of time (TW).

In einer ausgeführten Version ermittelt die Auswerteeinheit den Fehlerwert (FD) indem, nach lokalen Absolutwerten des Signals (SA) gesucht wird. Fig. 10 stellt ein Beispiel einer derartigen Auswertung dar. Das von der Tragmittelüberwachungseinrichtung 17 gemessene Signal (SA) ist in Abhängigkeit einer Messzeit (t) aufgetragen. Ein Fehlerschwellwert (SD) ist definiert ab dem alle Signale (SA), die größer als der Fehlerschwellwert (SD) sind, zu einem Fehlerwert (FD) aufsummiert werden. Die Summation erfolgt solange bis das Signals (SA) den Fehlerschwellwert (SD) wieder unterschreitet. Mit dieser "Integralbildung" werden dann noch ein globaler Skalierungsfaktor und ein Geschwindigkeitskompensationsfaktor (KF) multipliziert. Die Faktoren sind experimentell einmalig an Muster-Tragmitteln ermittelt.
Während einer Messung wird dann im Fehlerwertspeicher (FDS) immer der größte ermittelte Fehlerwert (FDmax) abgespeichert. In Fig. 10 ist ein beispielhafter Verlauf des im Fehlerwertspeicher (FDS) gespeicherten Fehlerwert (FD) mit Bezug auf das Signal (SA) dargestellt.
Von den Messwerten wird nur der Betrag verwendet. Somit spielt die Fahrtrichtung / Polarität keine Rolle bei der Analyse.
In an executed version, the evaluation unit determines the error value (FD) by searching for local absolute values of the signal (SA). Fig. 10 represents an example of such an evaluation. The signal (SA) measured by the support means monitoring device 17 is plotted as a function of a measuring time (t). An error threshold (SD) is defined from which all signals (SA) which are greater than the error threshold value (SD) are added up to an error value (FD). The summation takes place until the signal (SA) falls below the error threshold (SD) again. This "integral formation" then multiplies a global scaling factor and a velocity compensation factor (KF). The factors are determined experimentally once on sample suspension elements.
During a measurement, the largest error value (FD max ) is always stored in the error value memory (FDS). In Fig. 10 an exemplary course of the error value (FD) stored in the error value memory (FDS) with respect to the signal (SA) is shown.
Of the measurements, only the amount is used. Thus, the direction of travel / polarity plays no role in the analysis.

In gleichartiger Art und Weise kann auch ein Verschleisswert (FW) ermittelt werden. Ein Beispiel einer solchen Auswertung in graphischer Form ist in Fig.11 dargestellt. Die Darstellung ist analog zur oben erläuterten Fehlerwertauswertung. Die Auswerteeinheit ermittelt den Verschleisswert (FW), indem sie den Absolutwert des Signals (SA), beginnend zu einem Zeitpunkt bei dem der Absolutwert des Signals (SA) einen Verschleissschwellwert (SW) überschreitet, zum Verschleisswert (FW) aufsummiert bis der Absolutwert des Signals (SA) den Verschleissschwellwert (SW) unterschreitet und diesen Verschleisswert (FW) mit einem Verschleiss-Korrekturfaktor (KW) multipliziert und in einen Verschleisswertspeicher (FWS) ablegt. Die Auswerteeinheit summiert, zu einem jedem allfällig weiteren Zeitpunkt bei dem der Absolutwert des Signals (SA) den Verschleissschwellwert (SW) wiederum überschreitet, den Absolutwert des Signals (SA) weiter, zu einem weiteren Verschleisswert (FW') auf bis der Absolutwert des Signals (SA) den Verschleissschwellwert (SW) jeweils wiederum unterschreitet. Dieser weitere Verschleisswert (FW') wird mit dem Verschleiss-Korrekturfaktor (KW) multipliziert und im Verschleisswertspeicher (FWS) ablegt, wenn der derart ermittelte Verschleisswert (FW') grösser als der im Verschleisswertspeicher (FWS) abgelegte vorgängige Verschleisswert (FW) ist.In a similar manner, a wear value (FW) can also be determined. An example of such an evaluation in graphical form is in Figure 11 shown. The representation is analogous to the error value evaluation explained above. The evaluation unit determines the wear value (FW) by summing the absolute value of the signal (SA), beginning at a time at which the absolute value of the signal (SA) exceeds a wear threshold (SW), to the wear value (FW) until the absolute value of the signal (SA) falls below the wear threshold (SW) and multiplies this wear value (FW) by a wear correction factor (KW) and stores it in a wear value memory (FWS). The evaluation unit sums, at a possibly further point in time at which the absolute value of the signal (SA) again exceeds the wear threshold (SW), the absolute value of the signal (SA), to a further wear value (FW ') up to the absolute value of the signal (SA) again falls below the wear threshold (SW). This further wear value (FW ') is multiplied by the wear correction factor (KW) and deposited in the wear value memory (FWS) if the thus determined wear value (FW') is greater than the previous wear value (FW) stored in the wear value memory (FWS).

Diese Ausführungsformen ermöglichen eine rückverfolgbare Aussage zum Zustand eines Tragmittels 11 einer Aufzugsanlage 1 und das Resultat ist frei von Interpretationen.
Vorzugsweise ist der Verschleiss- und / oder der Fehlerkorrekturfaktor (KF / KW) derart skaliert, dass ein Grenzwert von unter 1000 als akzeptierbar und ein Grenzwert von 1000 und mehr als ungenügend angegeben wird. Der Verschleiss- und / oder der Fehlerkorrekturfaktor (KF / KW) berücksichtigt dabei eine Prüfgeschwindigkeit und einen allgemeinen Skalierwert. Dieser Grenzwert ist in den Fig. 10 und 11 als Fehlergrenzwert oder zulässiger Fehlerwert (FDG) bzw. Verschleissgrenzwert oder zulässiger Verschleisswert (FWG) bezeichnet.
These embodiments allow a traceable statement about the condition of a suspension 11 of an elevator installation 1 and the result is free of interpretations.
Preferably, the wear and / or the error correction factor (KF / KW) is scaled such that a limit of less than 1000 is given as acceptable and a limit of 1000 and more as insufficient. The wear and / or the error correction factor (KF / KW) takes into account a test speed and a general scaling value. This limit is in the 10 and 11 referred to as the error limit or permissible error value (FDG) or the wear limit value or permissible wear value (FWG).

In einer weiteren Ausführung wird ein resultierender Verschleisswert (FWR) ermittelt. Hierbei werden die Verschleisswerte (FW') während einer Messung in einem fortlaufenden Betrachtungszeitraum (TW) entsprechend einer Tragmittellänge von beispielsweise 500mm erfasst. Auch bei dieser Ausführung wird der grösste über den Betrachtungszeitraum (TW) ermittelte resultierenden Verschleisssummenwerte (FWR) in einem resultierenden Verschleisswertspeicher (FWSR) gespeichert und zur Beurteilung des Zustandes des Tragmittels verwendet. Eine Korrektur mit einem Korrekturfaktor (KW) erfolgt wie bereits am Beispiel des Verschleisswertes (FW) dargestellt.
Der Betrachtungszeitraum (TW) ist in einem realisierten Beispiel mittels einem Zeitgeber und einer Eingabe der Test-Fahrgeschwindigkeit erfasst. Alternativ ist er mittels einem Zeitgeber und einer Geschwindigkeits- oder Wegmessmesseinrichtung 25 erfasst. Diese Geschwindigkeits- oder Wegmessmesseinrichtung 25 kann beispielsweise in der Führungseinrichtung 18 integriert sein.
In a further embodiment, a resulting wear value (FWR) is determined. Here, the wear values (FW ') during a measurement in a continuous observation period (TW) corresponding to a carrier length captured by 500mm, for example. Also in this embodiment, the largest excess wear value (FWR) determined over the observation period (TW) is stored in a resulting wear value memory (FWSR) and used to judge the condition of the suspension element. A correction with a correction factor (KW) is carried out as already shown in the example of the wear value (FW).
The observation period (TW) is detected in a realized example by means of a timer and an input of the test driving speed. Alternatively, it is detected by means of a timer and a speed or Wegmessmesseinrichtung 25. This speed or Wegmessmesseinrichtung 25 may for example be integrated in the guide device 18.

Die Auswerteeinheit 24 verfügt in der Regel über einen Display 26 welcher beispielsweise den Gesamtzustand des Tragmittels (MT) als in Ordnung (MTO) angibt, wenn

  • der im Fehlerwertspeicher (FDS) abgelegte grösste Fehlerwert (FDmax) kleiner als ein zulässiger Fehlerwert (FDG) ist und / oder
  • der im Verschleisswertspeicher (FWS) abgelegte grösste Verschleisswert (FWmax) kleiner als ein zulässiger Verschleisswert (FWG) ist und / oder
  • der im resultierenden Verschleisswertspeicher (FWSR) abgelegte grösste resultierende Verschleisswert (FWRmax) kleiner als ein zulässiger Verschleisswert (FWG) ist.
und die Auswerteeinheit den Gesamtzustand des Tragmittels (MT) als mangelhaft (MTR) angibt, wenn
  • der im Fehlerwertspeicher (FDS) abgelegte grösste Fehlerwert (FDmax) grösser als der zulässige Fehlerwert (FDG) ist und / oder
  • der im Verschleisswertspeicher (FWS) abgelegte grösste Verschleisswert (FWmax) grösser als der zulässige Verschleisswert (FWG) ist und / oder
  • der im resultierenden Verschleisswertspeicher (FWSR) abgelegte grösste resultierende Verschleisswert (FWRmax) grösser als ein zulässiger Verschleisswert (FWG) ist.
The evaluation unit 24 generally has a display 26 which indicates, for example, the overall state of the suspension element (MT) as in order (MTO), if
  • the largest error value (FD max ) stored in the error value memory (FDS) is smaller than an admissible error value (FDG) and / or
  • the largest wear value (FW max ) stored in the wear value memory (FWS) is smaller than a permissible wear value (FWG) and / or
  • the largest resulting wear value (FWR max ) stored in the resulting wear value memory (FWSR) is smaller than a permissible wear value (FWG).
and the evaluation unit indicates the overall condition of the suspension element (MT) as defective (MTR), if
  • the largest error value (FD max ) stored in the error value memory (FDS) is greater than the permissible error value (FDG) and / or
  • the largest wear value (FW max ) stored in the wear value memory (FWS) is greater than the permissible wear value (FWG) and / or
  • the largest resulting wear value (FWR max ) stored in the resulting wear value memory (FWSR) is greater than a permissible wear value (FWG).

Damit ist eine einfache Entscheidung zum notwendigen Ersatz oder Weiterbetrieb von Tragmitteln 11 möglich.For a simple decision to the necessary replacement or further operation of support means 11 is possible.

Selbstverständlich können in einer erweiterten Ausführung die Messresultate von der Auswerteeinheit 24 im Bedarfsfalle auch ausgedruckt, gespeichert oder an eine Ferndiagnosestelle übermittelt werden. Dies ermöglicht im Besonderen eine Langfristprognose, da mehrere zeitlich auseinander liegende Messungen miteinander verglichen werden können und damit beispielsweise eine Prognose zur Erwarteten weiteren Lebensdauer des Tragmittels 11 gemacht werden kann. Auch kann unter Verwendung dieser Messresultate eine Aussage zum Ort des effektiv grössten Verschleisses oder Fehlers gemacht werden.Of course, in an extended embodiment, the measurement results of the evaluation unit 24 in case of need also be printed, stored or transmitted to a remote diagnostic station. This makes it possible, in particular, to make a long-term prognosis, since a plurality of temporally spaced-apart measurements can be compared with one another, and thus, for example, a prognosis can be made regarding the expected further life of the suspension element 11. Also, using these measurement results, a statement can be made as to the location of the most significant wear or failure.

Ein erfindungsgemässer Prüfablauf enthält vorzugsweise folgende Schritte:

  • visuelle Kontrolle des Tragmittels 11
  • parken der Aufzugskabine 4 in der Nähe der obersten Wartungsposition (OW)
  • Anordnen der Tragmittelüberwachungseinrichtung 17 mittels eines Supports 13 an der Führungsbahn 9 in einer Distanz (L) zum Antrieb.
  • Ausrichten der Tragmittelüberwachungseinrichtung 17 zu einem ersten Tragmittel 11.
  • gegebenenfalls Eingabe einer Prüffahrtgeschwindigkeit in eine Auswerteeinheit 24 der Tragmittelüberwachungseinrichtung 17.
  • starten der Prüfungsaufzeichnung
  • Manuelles (Inspektionssteuerung) oder gesteuertes (Aufzugsregelung) Abfahren der gesamten befahrbaren Strecke des Aufzugschachtes 2 in Abwärtsrichtung bis zur untersten Wartungsposition (UW).
  • beenden der Prüfungsaufzeichnung
  • Auswertung der Messung und Feststellung des Prüfergebnisses des ersten Tragmittels 11
  • fallweise wiederholen der Prüfung für dasselbe Tragmittel 11 oder für weitere Tragmittel 11.
A test procedure according to the invention preferably comprises the following steps:
  • visual inspection of the suspension element 11
  • Park the elevator car 4 near the topmost maintenance position (OW)
  • Arranging the support means monitoring device 17 by means of a support 13 on the guideway 9 at a distance (L) to the drive.
  • Aligning the support means monitoring device 17 to a first support means 11th
  • optionally entering a test speed in an evaluation unit 24 of the support means monitoring device 17th
  • start the test record
  • Manual (inspection control) or controlled (elevator control) Departure of the entire accessible track of the elevator shaft 2 in the downward direction to the lowest maintenance position (UW).
  • finish the exam record
  • Evaluation of the measurement and determination of the test result of the first support means 11
  • occasionally repeat the test for the same support means 11 or for further support means 11th

Mit der vorzugsweisen Kombination von visueller und geräteunterstützter Kontrolle wird eine beste Sicherheit erreicht, da sowohl aussergewöhnliche Schäden, wie Überhitzung eines Tragmittelmantels oder äussere Verletzungen, wie auch innere Schäden, beispielsweise in Folge von Korrosion oder Ermüdung, festgestellt werden. Die Prüfung kann durch einen Servicefachmann 27 alleine durchgeführt werden. Dies ist besonders effizient.The best combination of visual and device-assisted control achieves best safety by detecting both exceptional damage, such as overheating of a structural jacket or external injuries, as well as internal damage due to, for example, corrosion or fatigue become. The check may be performed by a service person 27 alone. This is especially efficient.

Die visuelle Prüfung enthält dabei vorzugsweise auch:

  • Kontrolle von Befestigungspunkten des Tragmittels 11,
  • Prüfung der richtigen Ausrichtung des Tragmittels 11 zu Rollen 6 welche in Verbindung zum Tragmittel 11 sind,
  • Prüfung, dass der Tragriemen 11,12 keine unbeabsichtigte Berührung zu umgebenden Teilen aufweist,
  • Prüfung der korrekten Montage von Schutzeinrichtungen wie Schutzbügel, Führungshilfen, etc.
The visual examination preferably also contains:
  • Inspection of attachment points of the support means 11,
  • Checking the correct alignment of the suspension element 11 with rollers 6 which are in connection with the suspension element 11,
  • Checking that the carrying strap 11, 12 does not touch unintentionally against surrounding parts,
  • Checking the correct installation of protective equipment such as protective bars, guide aids, etc.

Bei Kenntnis der vorliegenden Erfindung kann der Aufzugsfachmann die gesetzten Formen und Anordnungen beliebig verändern. Beispielsweise kann der erläuterte Betrachtungszeitraum (TW) bedarfsgemäss verändert werden oder die Dargestellte Tragmittelüberwachungseinheit 17 kann auch an anderen Befestigungspunkten, wie beispielsweise auf der Kabine 4 verwendet werden. Auch eine Verwendung für 1:1 aufgehängte Aufzugsanlagen oder für mehrfachumgehängte Aufzugsanlagen ist möglich.With knowledge of the present invention, the elevator expert can arbitrarily change the set shapes and arrangements. For example, the illustrated period of observation (TW) can be changed as needed, or the illustrated support means monitoring unit 17 can also be used at other attachment points, such as on the car 4. A use for 1: 1 suspended elevator systems or for multi-suspended elevator systems is also possible.

Claims (9)

  1. Lift installation with a lift cage (4) and a counterweight (5), which are connected with a support means (11) and which are movable in opposite sense in a vertical shaft (2) along guide tracks (9), and a support means monitoring device (17) for monitoring the state of the support means (11), wherein the support means monitoring device (17) is fastened to the guide track (9) by means of a support (13), wherein the support means (11) is a belt-like support means (12), and a guide device (18), preferably a guide roller (19), which guides the support means (11) along a scanning surface (21) of the support means monitoring device (17) is present, and the scanning surface (21) along which the belt-like support means (12) is guided is provided with an exchangeable protective layer (22) protecting the scanning surface (21) from damage.
  2. Lift installation according to claim 1, characterised in that the guide device (18) is arranged at the ends of the support means monitoring device (17) at both sides and this guide device (18) is a component of the support means monitoring device (17).
  3. Lift installation according to one of the preceding claims, characterised in that the protective layer (22) is a plastics material protective film or a plastics material cover.
  4. Lift installation according to any one of the preceding claims, characterised in that the support means monitoring device (17) is mounted at a distance (L) of 0.4 metres to 1.6 metres from a drive device (8), wherein substantial length sections of the support means (11.1) are detected by a test travel.
  5. Lift installation according to any one of the preceding claims, characterised in that the support means monitoring device (17) includes a scanning device integrated in the scanning surface (21) and an evaluating unit (24) connected with the scanning device, wherein the support means monitoring device (17) generates a signal (SA) which corresponds with a change in the structure of the supporting cross-section of the load-bearing part of the support means (11) and the evaluating unit (24) evaluates this signal during performance of the test and
    - the evaluating unit (24) detects an error value (FD) and/or a wear value (FW) and/or a resultant wear value (FWR),
    - the evaluating unit (24) indicates a maximum value of the error value (FDmax) of the wear value (FWmax) and/or the resultant wear value (FWRmax) and/or an overall state of the support means (MT) and
    the evaluating unit (24) indicates the overall state (MT) of the support means (11) as being in order (MTO) when
    - the maximum value of the error value (FDmax) is less than a permissible error value (FDG) and/or
    - the maximum value of the wear value (FWmax) is less than a permissible wear value (FWG) and/or
    - the maximum value of the resultant wear value (FWRmax) is less than a permissible wear value (FWG)
    and the evaluating unit (24) indicates the overall state (MT) of the support means (11) as being deficient (MTR) if
    - the maximum value of the error value (FDmax) is greater than a permissible error value (FDG) and/or
    - the maximum value of the wear value (FWmax) is greater than a permissible wear value (FWG) and/or
    - the maximum value of the resultant wear value (FWRmax) is greater than a permissible wear value (FWG).
  6. Lift installation according to any one of the preceding claims, characterised in that the resultant wear value (FWRmax) is defined with consideration of a consideration time period (TW) corresponding with a measuring distance of 500 millimetres.
  7. Lift installation according to any one of the preceding claims, characterised in that the support means monitoring device (17) can be connected with an output apparatus which creates a measurement log and/or state log of the test performed or transmits this data to a central control station.
  8. Method of testing a support means in a lift installation (1) according to any one of claims 1 to 7, characterised in that the method includes the following steps:
    - arranging the support means monitoring device (17) by means of a support (13) at the guide track (9) at a distance (L) from the drive (8),
    - aligning the support means monitoring device (17) with a first support means (11),
    - optional input of a test travel speed into an evaluating unit of the support means monitoring device (17).
    - starting the test rewording,
    - manual (inspection control) or controller (lift regulation) travel over the entire length of the lift shaft which can be travelled over,
    - ending the test recording,
    - evaluating the measurement and determining the test result of the first support means and
    - if appropriate repeating the test for further support means.
  9. Method of testing a support means in a lift installation (1) according to claim 8, characterised in that initially a visual check of the support means (11, 12) is carried out, wherein the visual check selectably includes the following steps:
    - visual checking of the state of the support means (11, 12) and of fastening points of the support means,
    - testing the correct alignment of the support means (11, 12) with rollers which are in connection with the support means,
    - checking that the support belt (11, 12) has no unintended contact with surrounding parts,
    - optionally checking correct mounting of protective devices such as protective brackets, guide aids, and
    - visual checking of the support means (11, 12) for damage such as breakages, knocks or visible wear.
EP07106053.7A 2006-04-18 2007-04-12 Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier Not-in-force EP1847501B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07106053.7A EP1847501B1 (en) 2006-04-18 2007-04-12 Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06112728 2006-04-18
EP07106053.7A EP1847501B1 (en) 2006-04-18 2007-04-12 Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier

Publications (3)

Publication Number Publication Date
EP1847501A2 EP1847501A2 (en) 2007-10-24
EP1847501A3 EP1847501A3 (en) 2012-05-02
EP1847501B1 true EP1847501B1 (en) 2014-10-01

Family

ID=36580404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07106053.7A Not-in-force EP1847501B1 (en) 2006-04-18 2007-04-12 Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier

Country Status (4)

Country Link
US (1) US7686140B2 (en)
EP (1) EP1847501B1 (en)
CN (1) CN101058384B (en)
BR (1) BRPI0701817B1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1886957A1 (en) 2006-08-11 2008-02-13 Inventio Ag Lift belt for a lift system and method for manufacturing such a lift belt
DE202008001786U1 (en) 2007-03-12 2008-12-24 Inventio Ag Elevator installation, suspension element for an elevator installation and device for producing a suspension element
US20100084223A1 (en) * 2007-05-11 2010-04-08 Fargo Richard N Elevator load bearing assembly having an initial factor of safety based upon a desired life of service
WO2009024452A1 (en) * 2007-08-17 2009-02-26 Inventio Ag Elevator system having a load carrier condition detector device, and method for detecting a condition of a load carrier
WO2010007112A1 (en) * 2008-07-18 2010-01-21 Inventio Ag Method and device for determining the degree of service life use of a carrying means of an elevator
KR20120085884A (en) 2009-11-03 2012-08-01 인벤티오 아게 Method and device for testing the tension stress in tension elements of a tension element cord
WO2012030332A1 (en) * 2010-09-01 2012-03-08 Otis Elevator Company Resistance-based monitoring system and method
US9599582B2 (en) 2010-09-01 2017-03-21 Otis Elevator Company Simplified resistance based belt inspection
US8226469B2 (en) 2010-09-29 2012-07-24 Igt Gaming system, gaming device, and method for providing a poker game with a bonus gaming session having re-draw option
CN104512780B (en) * 2013-09-30 2017-02-01 上海三菱电梯有限公司 Detecting device for suspension element of elevator
US9981828B2 (en) * 2013-12-30 2018-05-29 Otis Elevator Company Guide device with gib wear detector
US10865071B2 (en) * 2014-12-17 2020-12-15 Otis Elevator Company Configurable multicar elevator system
EP3263504B1 (en) * 2016-06-29 2019-05-29 KONE Corporation Elevator
EP3403980B1 (en) 2017-05-16 2022-01-26 Otis Elevator Company Method for tensioning of a load bearing member of an elevator system
US20200130998A1 (en) * 2018-10-24 2020-04-30 Otis Elevator Company Health monitoring for elevator and escalator systems
CN109436981B (en) * 2018-12-21 2024-02-20 中航电测仪器股份有限公司 Elevator sensor fixing device and assembly method thereof
CN111807182B (en) * 2020-07-17 2021-08-10 安徽迅立达电梯有限公司 Operation method convenient for safe installation of elevator
CN112478976B (en) * 2020-12-14 2023-11-07 中铁第四勘察设计院集团有限公司 Real-time online ultrasonic monitoring system and method for elevator traction steel belt capable of being marked autonomously
JP7533391B2 (en) * 2021-07-15 2024-08-14 株式会社島津製作所 Wire rope inspection system and method for positioning a wire rope inspection system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8106528A (en) * 1980-02-08 1981-12-29 Payne R MONITORING AND CONTROL OF ELEVATOR POSITIONS
JPS56148052A (en) * 1980-04-21 1981-11-17 Hitachi Elevator Eng & Serv Co Ltd Electromagnetic flaw detector for continuous magnetic material
ZA871964B (en) * 1986-03-25 1987-09-07
DE3904612A1 (en) * 1988-09-24 1990-03-29 Westfaelische Berggewerkschaft Test method and test device for steel-wire-armoured conveyor belts, especially for underground operation
ITTS20000006A1 (en) * 2000-08-22 2002-02-22 Security Control Srl Controlli MAGNETO-INDUCTIVE DEVICE FOR THE CONTROL OF MULTIPLE STEEL ROPES
SG96681A1 (en) * 2001-02-20 2003-06-16 Inventio Ag Method of generating hoistway information to serve an elevator control
US6653943B2 (en) * 2001-07-12 2003-11-25 Inventio Ag Suspension rope wear detector
US6923065B2 (en) * 2001-09-17 2005-08-02 Thyssen Elevator Capital Corp. Apparatus for testing aramid fiber elevator cables
JP2004149317A (en) * 2002-09-04 2004-05-27 Toshiba Elevator Co Ltd Rope abnormality detector
MY134592A (en) * 2002-10-17 2007-12-31 Inventio Ag Belt with an integrated monitoring mechanism
JP2005139001A (en) * 2003-11-04 2005-06-02 Inventio Ag Method and device for checking support means

Also Published As

Publication number Publication date
EP1847501A3 (en) 2012-05-02
CN101058384B (en) 2010-12-01
US7686140B2 (en) 2010-03-30
US20080202863A1 (en) 2008-08-28
CN101058384A (en) 2007-10-24
BRPI0701817B1 (en) 2019-06-25
BRPI0701817A (en) 2008-03-11
EP1847501A2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
EP1847501B1 (en) Lift installation with a surveillance device of the load carrier for monitoring the status of the load carrier and method for testing the load carrier
EP1866229B1 (en) Method for detecting the state of a lift cage and lift system wherein the method is used
DE3911391C2 (en) Method and device for checking the driving ability
EP2303749B1 (en) Method and device for determining the degree of service life use of a carrying means of an elevator
EP3426587B1 (en) Supporting means for an elevator installation, with multiple sensors arranged along the supporting means
DE3406519A1 (en) TENSIONING DEVICE FOR CHAIN DRIVED AGENTS
EP2794448A1 (en) Elevator system
EP2496508B1 (en) Method and device for testing the tensile strength in pulling elements of a pulling element line
EP3774630B1 (en) Method and device for monitoring the parameters of a loadbearing assembly in a lift system
DE112016003550T5 (en) BREAK DETECTION DEVICE
DE102019205363A1 (en) WEAR MONITORING OF AN ELEVATOR
DE3904612A1 (en) Test method and test device for steel-wire-armoured conveyor belts, especially for underground operation
EP1755998A1 (en) Force-reduced measuring method for traction drives, particularly friction pulley drives for elevators
EP1914186B1 (en) Method and device for checking suspension means on lifts
DE3822466A1 (en) Method of checking the position and movement of transport equipment moved by rope
EP3838825B1 (en) Extension sensor for a position measuring belt of an elevator
EP3628631B1 (en) Method for detecting state of carriers
EP3764075B1 (en) Device for measuring a force in the displacement direction of a footboard of a railway vehicle slidable in the displacement direction
DE102016201962A1 (en) Method and device for conveying a rack storage transport vehicle
WO2019081076A1 (en) Method and device for determining the tensile force in a carrying, conveying or traction means
WO2016066323A1 (en) Method for checking a support means of an elevator system
WO2019115047A1 (en) Method and device for checking an elongate suspension means for lifts, and suspension means of this type
EP2572993B1 (en) Testing device for gangways
WO2014191374A1 (en) Elevator system
DE2826638C2 (en) Transport and / or conveying system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 7/12 20060101AFI20120326BHEP

17P Request for examination filed

Effective date: 20121022

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20130521

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 689417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013489

Country of ref document: DE

Effective date: 20141113

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141001

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

26N No opposition filed

Effective date: 20150702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150412

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150412

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 689417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190418

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007013489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103