EP1672301B1 - Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft - Google Patents

Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft Download PDF

Info

Publication number
EP1672301B1
EP1672301B1 EP05024947.3A EP05024947A EP1672301B1 EP 1672301 B1 EP1672301 B1 EP 1672301B1 EP 05024947 A EP05024947 A EP 05024947A EP 1672301 B1 EP1672301 B1 EP 1672301B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
direct contact
line
low
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05024947.3A
Other languages
English (en)
French (fr)
Other versions
EP1672301A1 (de
Inventor
Andreas Brox
Markus Huppenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP05024947.3A priority Critical patent/EP1672301B1/de
Priority to PL05024947T priority patent/PL1672301T3/pl
Publication of EP1672301A1 publication Critical patent/EP1672301A1/de
Application granted granted Critical
Publication of EP1672301B1 publication Critical patent/EP1672301B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the invention relates to a device for producing a product by cryogenic separation of a gas mixture, in particular air, with a direct contact cooler for cooling the feed mixture, with a cleaning device for cleaning the cooled feed mixture and with a low temperature part, the main heat exchanger for cooling the purified feed mixture to about dew point and a distillation column for cryogenic decomposition of the feed mixture.
  • cryogenic temperature is meant here basically any temperature which is below the ambient temperature, but preferably a temperature of 200 K or less, most preferably 150 K or less, for example 100 K or less.
  • a direct contact cooler In a "direct contact cooler” the feed mixture is brought into direct heat exchange with a coolant, for example water, and thereby cooled. It is used in particular for removing heat of compression, which has arisen in a feed gas compressor, which is usually connected upstream.
  • a coolant for example water
  • a subsequent "cleaning device” is usually designed as an adsorption device and in particular has at least two switchable container, which are operated cyclically. It serves to separate unwanted components, for example those which can freeze out in the low-temperature part.
  • the feed mixture is first cooled to about dew point temperature and then decomposed in a distillation column system.
  • the low-temperature part thus contains one or more heat exchangers and one or more distillation columns.
  • the product is in Withdrawn gas or liquid form.
  • the cryogenic part is usually thermally insulated by being enclosed by one or more cold boxes.
  • the “main heat exchanger” serves to heat the gaseous product (s) in indirect heat exchange with at least one feed mixture stream.
  • the three mentioned plant components are usually arranged so that the consumption of floor space is as low as possible. This is not satisfactory in all cases.
  • the invention is therefore based on the object to further optimize the arrangement of the components of a cryogenic separation plant in order to achieve a particularly high efficiency of the system.
  • This object is achieved in that the direct contact cooler, the cleaning device and the low-temperature part are arranged in a line.
  • the arrangement “on a line” means that there must be at least one horizontal straight line, which intersects the bases of all three plant components mentioned.
  • “Base area” is understood here as the footprint that is required for the corresponding system components including the directly associated functional units such as, for example, pumps and fittings.
  • the arrangement in a line minimizes in particular the effort in the fluidic connection of the system components with each other.
  • the corresponding pipe lengths and the scope of the associated steel construction devices such as pipe bridges are minimized. For very large plants with a single-gas flow rate of 300,000 Nm, this means 3 / h or more - a noticeable reduction in investment costs.
  • the linear arrangement also has the advantage that the system components are basically accessible from both sides for assembly and maintenance. This reduces the operating and repair costs of the system.
  • the direct contact cooler is preceded by a feed gas compressor for compressing the feed mixture.
  • a feed gas compressor for compressing the feed mixture.
  • This can be arranged in the context of the invention, for example, laterally next to the group of direct contact cooler, cleaning device and low temperature part.
  • it is particularly favorable when the feed gas compressor, the direct contact cooler, the cleaning device and the low-temperature part are arranged in a line. This further enhances the above advantages.
  • connection means may be arranged, for example on the side of the cryogenic part a pipe bridge for discharging the products and / or on the compressor side a gas or steam turbine for driving the feed gas compressor with appropriate accessories, such as an air condenser, steam -, gas and / or cooling water lines for machines or the like. Nevertheless, the various system components remain easily accessible.
  • the drive shaft of the feed gas compressor runs, in this case in particular, preferably substantially perpendicular to the line on which the direct contact cooler, the cleaning device and the low-temperature part are arranged.
  • the feed gas compressor may be arranged laterally next to the other system parts.
  • the drive shaft of the feed gas compressor runs essentially parallel to the line on which the direct contact cooler, the cleaning device and the low-temperature part are arranged.
  • the base of the previously mentioned system components has a relatively elongated shape. More specifically, in this case, the ratio of the dimension of the smallest rectangle including the bases of the direct contact cooler, the purifier, and the cryogenic part and possibly the feed gas compressor in the direction of a straight line connecting direct contact cooler and low temperature part to the extension in the direction perpendicular thereto is larger than 1, in particular greater than 1.5. For example, this ratio is 2.0 or more, especially 3.0 or more.
  • the device for connecting the individual systems with each other (for example, pipe bridge for product lines) is arranged along the narrow sides and can thus be made relatively short and inexpensive.
  • the cryogenic part regularly comprises a heat exchanger box containing at least one main heat exchanger, a rectification box containing at least one distillation column, and an expansion machine located within a turbine box. It is favorable if the turbine box is arranged at a transition section of the low-temperature part, which is located between the heat exchanger box and the rectification box. Alternatively, the turbine box may be connected directly to the heat exchanger box.
  • the claims 7 to 12 contain further advantageous embodiments of the device according to the invention. Their features can be applied in a device for producing a product by cryogenic separation of a gas mixture, in particular air, as a non-inventive embodiment, independently of the features of claims 1 to 6 or according to the invention in combination with these.
  • the feed mixture line for introducing feed mixture into the main heat exchanger and the product line for drawing off the product flow from the main heat exchanger run substantially parallel to a main orientation axis and are arranged on opposite sides of the main heat exchanger.
  • the "main axis of orientation" represents an abstract straight line that runs in a horizontal direction and is not usually materialized by components of the plant or any other physical device.
  • substantially parallel are two directions if they form an angle of less than 20 °, preferably less than 10 °, most preferably less than 5 ° with each other.
  • the arrangement according to claim 7 offers the advantage that the devices for the discharge of the products, for example one or more manifolds, into which the product line (s) open, on one side of the main heat exchanger and the means for pretreatment of the feed mixture on the opposite side of the main heat exchanger can be arranged. This makes very small pipe lengths possible.
  • the arrangement also has the advantage that the system components are basically accessible from both sides for assembly and maintenance. This reduces the operating and repair costs of the system.
  • the device prefferably has a collecting line, into which the product line opens at its end facing away from the main heat exchanger, and when the collecting line runs essentially perpendicular to the main orientation axis.
  • One direction is "substantially perpendicular" to another when the respective straight lines subtend an angle of 70 ° to 110 °, preferably 80 ° to 100 °, most preferably 85 ° to 95 °.
  • One or more manifolds may connect the device and possibly other identical or similar devices (strands) to a multi-line plant, or to a tank farm and / or to an emergency supply device.
  • the manifold (s) can be arranged on a pipe bridge or on the ground. In the latter case, the manifolds are routinely routed to so-called sleepers.
  • manifold (s) are connected to a product line of one or more other cryogenic decomposition devices.
  • manifold (s) may be connected to a storage container for product.
  • the main heat exchanger is embodied exclusively as a recuperative heat exchanger, that is to say as a non-reversible heat exchanger.
  • the claims 13 to 16 contain further advantageous embodiments of the device according to the invention. Their features can be applied in a device for producing a product by cryogenic separation of a gas mixture, in particular air, as a non-inventive embodiment, independently of the features of claims 1 to 12 or according to the invention in combination with these.
  • the ratio of the distance between the evaporative cooler and the direct contact cooler to the distance between the evaporative cooler and the main heat exchanger is at least 0.5, in particular at least 1.0.
  • the evaporative cooler 15 is thus arranged comparatively close to the main heat exchanger. Although this means higher costs for the coolant piping; However, the line for the gas flow from the low-temperature part can be made very short. In the context of the invention has been found that this arrangement leads to a total of comparatively low investment costs costs. In particular, the effort for the pipelines and the associated steel construction costs is reduced. This is partly due to the very high cross section (for example 1 to 2 m) of the gas line to the evaporative cooler.
  • Atmospheric air is sucked in as "feed mixture” via an inlet filter 1 and fed via feed pipes 51, 52, 53, 54 to other plant components.
  • a main air compressor 2 which in the example represents the "feed gas compressor”
  • the compressed air 52 flows into a direct contact cooler 3 where it is cooled in direct heat exchange with cooling water flowing over a cooling water piping 61.
  • the cooled air 53 is further passed into a purifier 4 having a pair of molecular sieve adsorbers 5, 6.
  • the purified air 54 continues to flow to the cryogenic part 7.
  • the low-temperature part can consist of a single cold box, in which all cryogenic apparatus are arranged, in particular the one or more heat exchangers and the distillation column (s), or from a plurality of separate cold boxes.
  • a cylindrical rectification box 9 contains the distillation columns 9a, here a double column with high-pressure and low-pressure column and a main capacitor arranged therebetween.
  • the remaining cold parts, in particular the main heat exchanger 8a are housed in a cuboid heat exchanger box 8.
  • the two cold boxes 8, 9 insulate the respective cold parts of the apparatus against heat from the environment.
  • a transition section 10 also belongs to the low-temperature part. He is also surrounded by a coldbox; Alternatively, located in the transition section 10 piping and fittings are thermally insulated by means of a correspondingly smaller cold box.
  • the main heat exchanger is designed as exclusively recuperative heat exchanger, so not as a switchable heat exchanger (Revex). It consists, for example, of one block or a plurality of flow-connected blocks.
  • the block or blocks are preferably designed as aluminum plate heat exchangers.
  • Possible further heat exchangers, such as one or more subcooling countercurrents, may also be accommodated in the heat exchanger box; alternatively or additionally, one or more blocks of subcooling countercurrents may be arranged in the rectification box.
  • the form of the rectification box may differ from the exemplary embodiment; For example, it may be substantially cuboidal.
  • the main air compressor 2 is driven via a first shaft 11 by a drive means 12, which is designed as an electric motor, gas or steam turbine.
  • a booster 14 is for a portion of the purified air 54 intended.
  • the inlet of the booster 14 is connected to the pipe 54 for the purified air.
  • the further compressed air in the booster 14 is passed through a further, not shown in the drawing pipe in the low-temperature part 7, in particular in the heat exchanger box 8.
  • the booster 14 is also driven by a further shaft 13 of the drive means 12.
  • the booster could be driven independently of the main air compressor, for example by a separate gas or steam turbine or by a separate electric motor.
  • the products of the low-temperature part 7 are discharged via exemplary product lines 105, 106, which open here into manifolds 107 and 108, respectively.
  • the manifolds 107, 108 are arranged on a pipe bridge 109 and can connect the device and possibly other identical or similar devices (strands) to a multi-strand system or lead to a tank farm and / or to an emergency supply device.
  • an evaporative cooler 15 For cooling water before its introduction into the direct contact cooler 3, an evaporative cooler 15 is used. In it, dry residual nitrogen from the low-temperature part is brought into direct heat and mass transfer with cooling water to be cooled. About the cooling water piping 61 cold cooling water is passed to the direct contact cooler. Warm cooling water is returned directly or indirectly to the evaporative cooler. The moist nitrogen from the evaporative cooler escapes into the atmosphere.
  • the apparatus also includes utility piping 63, the location of which is schematically indicated in the drawing.
  • the equipment piping serves to transport steam, gas and / or cooling water and to dispose of condensate, cooling water, etc. It flows into resource headers (not shown), which can be arranged on the pipe bridge 109.
  • Resource and booster air tubing 63, 62 may be located on the floor (on sleepers) or on one or more pipe bridges.
  • the base surfaces of the direct contact cooler 3, the cleaning device 4 and the low-temperature part 7 have in the embodiment circular, rectangular or a complex shape. These bases are arranged in a line, for example on a main orientation axis 101. In addition, this line 101 also extends through the base area of the main air compressor 2. This results in a particularly short feed gas piping 52/53/54.
  • the product lines 105, 106 which are arranged parallel to the entrance of the insert line 54, have a particularly short length. They can even be so short that their own pipe bridge is not needed.
  • the rectangle 102 which encloses the bases of direct contact cooler 3, cleaning device 4 and low-temperature part 7, is approximately 1.7 times longer in the extent that extends vertically in the drawing than in the direction perpendicular thereto (horizontally in the drawing).
  • a factor of about 1.8 applies for the rectangle 103, which also encloses the base of the main air compressor and the apparatuses connected to it.
  • a short pipe bridge 109 and short lines 107, 108 of sufficient length for the product removal or the resource supply and removal; This is particularly advantageous in multi-strand systems. (Due to its schematic character, the drawing is not necessarily to scale in this respect either.)
  • direct contact coolers 3 and evaporative coolers 15 are arranged as a unit or at least as immediately adjacent units because of their functional relationship. In the embodiment, however, the evaporative cooler 15 is much closer to the low temperature part than the direct contact cooler.
  • the distance 104 between the evaporative cooler 15 and the main heat exchanger 8a is about one fifth of the distance between the direct contact cooler 3 and the low temperature part 7.
  • the residual nitrogen pipe between the main heat exchanger and the evaporative cooler 15 which is not shown in the drawing, only a relatively short Overcome route and can therefore be realized particularly cost effective; This saving is significant because of the very large cross-section of the residual nitrogen pipe.
  • the cooling water piping is longer, but has a much smaller cross-section and increases the cost of the apparatus only insignificantly.
  • Cryogenic air separation plants regularly have one or more expansion machines, which serve to generate cold by work-performing relaxation of one or more process streams and are usually designed as turbines.
  • the plant of the embodiment preferably has a turbine for work-performing expansion of a partial flow of the feed air or a product or intermediate product stream from the low-temperature decomposition. This turbine is seated in a turbine box 16, which is arranged in the embodiment at the transition section 10 between the heat exchanger box 8 and rectification box 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, mit einem Direktkontaktkühler zur Kühlung des Einsatzgemischs, mit einer Reinigungsvorrichtung zu Reinigung des gekühlten Einsatzgemischs und mit einem Tieftemperaturteil, der einen Hauptwärmetauscher zur Abkühlung des gereinigten Einsatzgemischs auf etwa Taupunktstemperatur und eine Destilliersäule zur Tieftemperaturzerlegung des Einsatzgemischs aufweist.
  • Vorrichtungen zur Tieftemperaturzerlegung atmosphärischer Luft oder anderer Gasgemische sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985 bekannt.
  • Unter "Tieftemperatur" wird hier grundsätzlich jede Temperatur verstanden, die unterhalb der Umgebungstemperatur liegt, vorzugsweise jedoch eine Temperatur von 200 K oder weniger, höchst vorzugsweise von 150 K oder weniger, beispielsweise von 100 K oder weniger.
  • In einem "Direktkontaktkühler" (direct contact cooler) wird das Einsatzgemisch in direkten Wärmeaustausch mit einem Kühlmittel, zum Beispiel Wasser, gebracht und dadurch abgekühlt. Er dient insbesondere zum Abführen von Verdichtungswärme, die in einem in der Regel vorgeschalteten Einsatzgasverdichter entstanden ist.
  • Eine nachfolgende "Reinigungseinrichtung" ist in der Regel als Adsorptionsvorrichtung ausgebildet und weist insbesondere mindestens zwei umschaltbare Behälter aus, die zyklisch betrieben werden. Sie dient der Abtrennung unerwünschter Komponenten, beispielsweise solcher, die im Tieftemperaturteil ausfrieren können.
  • Im "Tieftemperaturteil" wird das Einsatzgemisch zunächst auf etwa Taupunktstemperatur abgekühlt und anschließend in einem Destilliersäulensystem zerlegt. Der Tieftemperaturteil enthält also einen oder mehrere Wärmetauscher und eine oder mehrere Destilliersäulen. Aus dem Tieftemperaturteil wird das Produkt in Gas- oder Flüssigform abgezogen. Selbstverständlich können auch mehrere Produkte in gleichem oder unterschiedlichem Aggregatzustand sowie in gleicher oder verschiedener chemischer Zusammensetzung erzeugt werden. Um Verluste durch einströmende Umgebungswärme zu verhindern, ist der Tieftemperaturteil üblicherweise wärmeisoliert, indem er von einer oder mehreren Coldboxen umschlossen wird.
  • Der "Hauptwärmetauscher" dient zur Anwärmung des oder der gasförmigen Produkts/Produkte in indirektem Wärmeaustausch mit mindestens einem Einsatzgemischstrom.
  • Die drei genannten Anlagenkomponenten werden üblicherweise so angeordnet, dass der Verbrauch an Grundfläche möglichst niedrig ist. Dies ist nicht in allen Fällen zufrieden stellend.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die Anordnung der Komponenten einer Tieftemperaturzerlegungsanlage weiter zu optimieren, um eine besonders hohe Wirtschaftlichkeit der Anlage zu erreichen.
  • Diese Aufgabe wird dadurch gelöst, dass der Direktkontaktkühler, die Reinigungsvorrichtung und der Tieftemperaturteil auf einer Linie angeordnet sind.
  • Die Anordnung "auf einer Linie" bedeutet, dass es mindestens eine horizontale Gerade geben muss, welche die Grundflächen aller drei genannten Anlagenkomponenten schneidet. Unter "Grundfläche" wird hier die Aufstellfläche verstanden, die für die entsprechenden Anlagenkomponenten einschließlich der unmittelbar zugehörigen Funktionseinheiten wie zum Beispiel Pumpen und Armaturen benötigt wird.
  • Eine solche Anordnung ist natürlich - entgegen der bisherigen Praxis - nicht optimal hinsichtlich der Ausnutzung der Grundfläche der Gesamtanlage, weil die Grundflächen der drei Komponenten unterschiedlich groß sind. (In der Regel benötigen Direktkontaktkühler beziehungsweise Reinigungseinrichtung weniger Platz als der Tieftemperaturteil.) Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass dieser Nachteil durch wesentliche Vorteile überkompensiert wird.
  • Die Anordnung in einer Linie minimiert insbesondere den Aufwand bei der strömungstechnischen Verbindung der Anlagenkomponenten untereinander. Die entsprechenden Rohrlängen und der Umfang der zugehörigen Stahlbauvorrichtungen wie zum Beispiel Rohrbrücken werden minimiert. Dies bedeutet bei sehr großen Anlagen mit einem Einsätzgasdurchsatz von 300.000 Nm3/h oder mehr - eine spürbare Verminderung der Investitionskosten.
  • Die lineare Anordnung hat außerdem den Vorteil, dass die Anlagekomponenten grundsätzlich von beiden Seiten her für Montage- und Wartungsarbeiten zugänglich sind. Dies reduziert die Betriebs- und Reparaturkosten der Anlage.
  • Üblicherweise ist dem Direktkontaktkühler ein Einsatzgasverdichter zur Verdichtung des Einsatzgemischs vorgeschaltet. Dieser kann im Rahmen der Erfindung beispielsweise seitlich neben der Gruppe aus Direktkontaktkühler, Reinigungsvorrichtung und Tieftemperaturteil angeordnet sein. Besonders günstig ist es jedoch, wenn der Einsatzgasverdichter, der Direktkontaktkühler, die Reinigungsvorrichtung und der Tieftemperaturteil auf einer Linie angeordnet sind. Dies verstärkt die oben genannten Vorteile weiter.
  • Die lineare Anordnung aller vier Anlagenkomponenten ist insbesondere bei mehrsträngigen Einheiten vorteilhaft, bei denen mehrere der erfindungsgemäßen Vorrichtungen (Stränge, trains) nebeneinander angeordnet sind. Hierbei können an den Enden der Einzelstränge verschiedene Verbindungseinrichtungen angeordnet sein, beispielsweise auf der Seite des Tieftemperaturteils eine Rohrbrücke zum Abführen der Produkte und/oder auf der Verdichterseite eine Gas- oder Dampfturbine zum Antrieb des Einsatzgasverdichters mit entsprechendem Zubehör, wie zum Beispiel einem Luftkondensator, Dampf-, Gas- und/oder Kühlwasserleitungen für Maschinen oder Ähnlichem. Dennoch bleiben die verschiedenen Anlagenkomponenten leicht zugänglich.
  • Die Antriebswelle des Einsatzgasverdichters verläuft insbesondere in diesem Fall vorzugsweise im Wesentlichen senkrecht zu der Linie, auf welcher der Direktkontaktkühler, die Reinigungsvorrichtung und der Tieftemperaturteil angeordnet sind.
  • Alternativ dazu kann der Einsatzgasverdichter seitlich neben den übrigen Anlagenteilen angeordnet sein. Dabei verläuft insbesondere die Antriebswelle des Einsatzgasverdichters im Wesentlichen parallel zu der Linie, auf welcher der Direktkontaktkühler, die Reinigungsvorrichtung und der Tieftemperaturteil angeordnet sind.
  • Insbesondere bei mehrsträngigen Anlagen ist es außerdem günstig, wenn die Grundfläche der bisher genannten Anlagenkomponenten eine relativ langgestreckte Form hat. Genauer gesagt ist in diesem Fall das Verhältnis der Ausdehnung des kleinsten Rechtecks, das die Grundflächen des Direktkontaktkühlers, der Reinigungsvorrichtung und des Tieftemperaturteils und ggf. des Einsatzgasverdichters einschließt, in Richtung einer Verbindungsgeraden zwischen Direktkontaktkühler und Tieftemperaturteil zu der Ausdehnung in der dazu senkrechten Richtung größer als 1, insbesondere größer als 1,5. Zum Beispiel beträgt dieses Verhältnis 2,0 oder mehr, insbesondere 3,0 oder mehr.
  • Mehrere derartiger Vorrichtungen können dann längsseitig nebeneinander angeordnet werden, um die mehrsträngige Anlage zu bilden. Die Vorrichtung zur Verbindung der Einzelanlagen untereinander (zum Beispiel Rohrbrücke für Produktleitungen) wird entlang der Schmalseiten angeordnet und kann damit relativ kurz und kostengünstig ausgeführt werden.
  • Das in Anspruch 5 beschriebene Merkmal, nämlich die eher längliche Grundfläche der Einzelanlage, kann grundsätzlich auch bei Vorrichtungen verwirklicht werden, welche die Merkmale des Anspruchs 1 nicht erfüllen.
  • Der Tieftemperaturteil weist regelmäßig eine Wärmetauscher-Box, die mindestens einen Hauptwärmetauscher enthält, eine Rektifikationsbox, die mindestens eine Destilliersäule enthält, und eine innerhalb eines Turbinenkastens angeordnete Entspannungsmaschine auf. Es ist günstig, wenn der Turbinenkasten an einem Übergangsabschnitt des Tieftemperaturteils angeordnet ist, der sich zwischen Wärmetauscher-Box und Rektifikationsbox befindet. Alternativ kann der Turbinenkasten direkt mit der Wärmetauscher-Box verbunden sein.
  • Das in Anspruch 6 beschriebene Merkmal, nämlich die Anordnung einer Entspannungsmaschine am Übergangsabschnitt zwischen Wärmetauscher-Box und Rektifikationsbox, kann grundsätzlich auch bei nicht erfindungsgemäßen Vorrichtungen verwirklicht werden, welche die Merkmale des Anspruchs 1 nicht erfüllen.
  • Die Ansprüche 7 bis 12 enthalten weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung. Ihre Merkmale können bei einer Vorrichtung zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, als eine nicht erfindungsgemäße Ausführungsform auch unabhängig von den Merkmalen der Ansprüche 1 bis 6 oder erfindungsgemäß in Kombination mit diesen angewendet werden. Die Einsatzgemischleitung zur Einleitung von Einsatzgemisch in den Hauptwärmetauscher und die Produktleitung zum Abziehen des Produktstroms aus dem Hauptwärmetauscher verlaufen dabei im Wesentlichen parallel zu einer Hauptorientierungsachse und sind an einander gegenüberliegenden Seiten des Hauptwärmetauschers angeordnet.
  • Die "Hauptorientierungsachse" stellt eine abstrakte Gerade dar, die in horizontaler Richtung verläuft und in der Regel nicht durch Bauteile der Anlage oder eine sonstige physische Einrichtung materialisiert ist.
  • "Im Wesentlichen parallel" sind zwei Richtungen dann, wenn sie einen Winkel von weniger als 20°, vorzugsweise weniger als 10°, höchst vorzugsweise weniger als 5° miteinander bilden.
  • Die Anordnung gemäß Anspruch 7 bietet den Vorteil, dass die Einrichtungen für die Abführung der Produkte, zum Beispiel eine oder mehrere Sammelleitungen, in welche die Produktleitung(en) mündet/münden, auf der einen Seite des Hauptwärmetauschers und die Einrichtungen zur Vorbehandlung des Einsatzgemischs auf der gegenüber liegenden Seite des Hauptwärmetauschers angeordnet werden können. Damit werden sehr geringe Rohrleitungslängen möglich.
  • Die gegenüber liegende Anordnung von Einsatzgemisch- und Produktleitungen minimiert insbesondere den Aufwand bei der strömungstechnischen Verbindung der Anlagenkomponenten untereinander. Die entsprechenden Rohrlängen und der Umfang der zugehörigen Stahlbauvorrichtungen wie zum Beispiel Rohrbrücken werden minimiert. Dies bedeutet - bei sehr großen Anlagen mit einem Einsatzgasdurchsatz 300.000 Nm3/h oder mehr- eine spürbare Verminderung der Investitionskosten.
  • Die Anordnung hat außerdem den Vorteil, dass die Anlagekomponenten grundsätzlich von beiden Seiten her für Montage- und Wartungsarbeiten zugänglich sind. Dies reduziert die Betriebs- und Reparaturkosten der Anlage.
  • Außerdem ist es günstig, wenn die Vorrichtung eine Sammelleitung aufweist, in welche die Produktleitung an ihrem dem Hauptwärmetauscher abgewandten Ende einmündet, und wenn die Sammelleitung im Wesentlichen senkrecht zur Hauptorientierungsachse verläuft.
  • Eine Richtung ist "im Wesentlichen senkrecht" zu einer anderen, wenn die entsprechenden Geraden einen Winkel von 70° bis 110°, vorzugsweise 80° bis 100° höchst vorzugsweise 85° bis 95° einschließen.
  • Eine oder mehrere Sammelleitungen können die Vorrichtung und mögliche weitere identische oder ähnliche Vorrichtungen (Stränge) zu einer mehrsträngigen Anlage verbinden beziehungsweise zu einem Tanklager und/oder zu einer Notversorgungsvorrichtung führen.
  • Die Sammelleitung(en) kann/können auf einer Rohrbrücke oder auf dem Boden angeordnet sein. Im letzteren Fall werden die Sammelleitungen regelmäßig auf so genannten Sleepern verlegt.
  • Vorzugsweise ist/sind Sammelleitung(en) mit einer Produktleitung einer oder mehrerer weiteren Tieftemperaturzerlegungs-Vorrichtungen verbunden.
  • Alternativ oder zusätzlich kann/können die Sammelleitung(en) mit einem Speicherbehälter für Produkt verbunden sein.
  • Es ist günstig, wenn bei der erfindungsgemäßen Vorrichtung der Hauptwärmetauscher ausschließlich als rekuperativer Wärmetauscher ausgeführt ist, das heißt als nicht umschaltbarer Wärmetauscher.
  • Die Ansprüche 13 bis 16 enthalten weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung. Ihre Merkmale können bei einer Vorrichtung zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, als eine nicht erfindungsgemäße Ausführungsform auch unabhängig von den Merkmalen der Ansprüche 1 bis 12 oder erfindungsgemäß in Kombination mit diesen angewendet werden.
  • Wenn ein Verdunstungskühler eingesetzt wird, ist es günstig, wenn das Verhältnis des Abstandes zwischen Verdunstungskühler und Direktkontaktkühler zu dem Abstand zwischen Verdunstungskühler und Hauptwärmetauscher mindestens 0,5 , insbesondere mindestens 1,0 beträgt.
  • Der Verdunstungskühler 15 ist somit vergleichsweise nahe dem Hauptwärmetauscher angeordnet. Dies bedeutet zwar höheren Aufwand für die Kühlmittelverrohrung; allerdings kann die Leitung für den Gasstrom aus dem Tieftemperaturteil besonders kurz ausgeführt werden. Im Rahmen der Erfindung hat sich herausgestellt, dass diese Anordnung zu insgesamt vergleichsweise niedrigen Investitionskosten kosten führt. Es wird insbesondere der Aufwand für die Rohrleitungen und den dazugehörigen Stahlbau-Kosten verringert. Dies ist teilweise auf den sehr hohen Querschnitt (beispielsweise 1 bis 2 m) der Gasleitung zum Verdunstungskühler zurückzuführen.
  • Die abhängigen Patentansprüche 14 bis 16 enthalten weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Vorrichtung.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels für eine erfindungsgemäße Vorrichtung näher erläutert, die als Tieftemperatur-Luftzerlegungsanlage ausgebildet ist.
  • Atmosphärische Luft wird als "Einsatzgemisch" über ein Einlassfilter 1 angesaugt und über Einsatz-Rohrleitungen 51, 52, 53, 54 zu weiteren Anlagenkomponenten geführt. Zunächst wird die gefilterte Luft 51 in einem Hauptluftverdichter 2, der in dem Beispiel den "Einsatzgasverdichter" darstellt, komprimiert. Die verdichtete Luft 52 strömt in einen Direktkontaktkühler 3 und wird dort in direktem Wärmeaustausch mit Kühlwasser, das über eine Kühlwasser-Verrohrung 61 heranströmt, abgekühlt. Die abgekühlte Luft 53 wird weiter in eine Reinigungseinrichtung 4 geleitet, die ein Paar von Molekularsieb-Adsorbern 5, 6 aufweist. Die gereinigte Luft 54 strömt weiter zum Tieftemperaturteil 7.
  • Der Tieftemperaturteil kann aus einer einzigen Coldbox bestehen, in der alle kryogenen Apparate angeordnet sind, insbesondere der oder die Wärmetauscher und die Destilliersäule(n), oder auch aus einer Vielzahl separater Coldboxen. In dem Beispiel sind zwei separate Coldboxen vorgesehen. Eine zylinderförmige Rektifikationsbox 9 enthält die Destilliersäulen 9a, hier eine Doppelsäule mit Hochdruck- und Niederdrucksäule und einem dazwischen angeordneten Hauptkondensator. Die übrigen kalten Teile, insbesondere der Hauptwärmetauscher 8a sind in einer quaderförmigen Wärmetauscher-Box 8 untergebracht. Die beiden Coldboxen 8, 9 isolieren die jeweiligen kalten Apparateteile gegen Wärmeeinfall aus der Umgebung. Ein Übergangsabschnitt 10 gehört ebenfalls zum Tieftemperaturteil. Er wird ebenfalls von einer Coldbox umschlossen; alternativ werden die im Übergangsabschnitt 10 befindlichen Rohrleitungen und Armaturen mittels einer entsprechend kleineren Coldbox wärmeisoliert.
  • Der Hauptwärmetauscher ist als ausschließlich rekuperativer Wärmetauscher ausgebildet, also nicht als umschaltbarer Wärmetauscher (Revex). Er besteht zum Beispiel aus einem Block oder einer Mehrzahl von strömungstechnisch miteinander verbundenen Blöcken. Der oder die Blöcke sind vorzugsweise als Aluminium-Plattenwärmetauscher ausgebildet. Mögliche weitere Wärmetauscher wie zum Beispiel ein oder mehrere Unterkühlungs-Gegenströmer können ebenfalls in der Wärmetauscher-Box untergebracht sein; alternativ oder zusätzlich können ein oder mehrere Blöcke von Unterkühlungs-Gegenströmern in der Rektifikationsbox angeordnet sein. Die Form der Rektifikationsbox kann vom Ausführungsbeispiel abweichen; sie kann zum Beispiel im Wesentlichen quaderförmig ausgebildet sein.
  • Der Hauptluftverdichter 2 wird über eine erste Welle 11 von einem Antriebsmittel 12 angetrieben, das als Elektromotor, Gas- oder Dampfturbine ausgebildet ist. Außerdem ist in dem Beispiel ein Nachverdichter 14 für einen Teil der gereinigten Luft 54 vorgesehen. Über eine in der Zeichnung lediglich angedeutete Booster-Luft-Verrohrung 62 ist der Einlass des Nachverdichters 14 mit der Rohrleitung 54 für die gereinigte Luft verbunden. Die im Nachverdichter 14 weiterverdichtete Luft wird über eine weitere, in der Zeichnung nicht dargestellte Rohrleitung in den Tieftemperaturteil 7 geleitet, insbesondere in die Wärmetauscher-Box 8. In dem Beispiel wird der Nachverdichter 14 über eine weitere Welle 13 ebenfalls von dem Antriebsmittel 12 angetrieben. Alternativ könnte der Nachverdichter unabhängig vom Hauptluftverdichter angetrieben werden, beispielsweise durch eine separate Gas- oder Dampfturbine oder durch einen separaten Elektromotor.
  • Die Produkte des Tieftemperaturteils 7 werden über beispielhaft eingezeichnete Produktleitungen 105, 106 abgegeben, die hier in Sammelleitungen 107 beziehungsweise 108 münden. Die Sammelleitungen 107, 108 sind auf einer Rohrbrücke 109 angeordnet und können die Vorrichtung und mögliche weitere identische oder ähnliche Vorrichtungen (Stränge) zu einer mehrsträngigen Anlage verbinden beziehungsweise zu einem Tanklager und/oder zu einer Notversorgungsvorrichtung führen.
  • Zur Abkühlung von Wasser vor dessen Einleitung in den Direktkontaktkühler 3 dient ein Verdunstungskühler 15. Darin wird trockener Reststickstoff aus dem Tieftemperaturteil in direkten Wärme- und Stoffaustausch mit abzukühlendem Kühlwasser gebracht. Über die Kühlwasser-Verrohrung 61 wird kaltes Kühlwasser zum Direktkontaktkühler geleitet. Warmes Kühlwasser wird direkt oder indirekt zum Verdunstungskühler zurückgeführt. Der feuchte Stickstoff aus dem Verdunstungskühler entweicht in die Atmosphäre.
  • Die Vorrichtung weist außerdem eine Betriebsmittel-Verrohrung (utility piping) 63 auf, deren Lage in der Zeichnung schematisch angedeutet ist. Die Betriebsmittel-Verrohrung dient zum Transport von Dampf, Gas und/oder Kühlwasser und zum Entsorgen von Kondensat, Kühlwasser etc. Sie mündet in Betriebsmittel-Sammelleitungen (nicht eingezeichnet), die auf der Rohrbrücke 109 angeordnet sein können. Betriebsmittel- und Booster-Luft-Verrohrung 63, 62 können auf dem Boden (auf Sleepern) oder auf einer oder mehreren Rohrbrücken angeordnet sein.
  • Die Grundflächen des Direktkontaktkühlers 3, der Reinigungseinrichtung 4 und des Tieftemperaturteils 7 weisen in dem Ausführungsbeispiel Kreisform, Rechteckform beziehungsweise eine komplexe Form auf. Diese Grundflächen sind auf einer Linie, zum Beispiel auf einer Hauptorientierungsachse 101 angeordnet. Zusätzlich verläuft diese Linie 101 auch durch die Grundfläche des Hauptluftverdichters 2. Hierdurch ergibt sich eine besonders kurze Einsatzgasverrohrung 52/53/54. Auch die Produktleitungen 105, 106, die gegenüber dem Eintritt der Einsatzleitung 54 parallel angeordnet sind, weisen eine besonders geringe Länge auf. Sie können sogar so kurz sein, dass eine eigene Rohrbrücke nicht benötigt wird.
  • Das Rechteck 102, das die Grundflächen von Direktkontaktkühler 3, Reinigungseinrichtung 4 und Tieftemperaturteil 7 umschließt, ist in der Ausdehnung, die in der Zeichnung vertikal verläuft, etwa um den Faktor 1,7 länger als in der dazu senkrechten Richtung (horizontal in der Zeichnung). Für das Rechteck 103, das auch die Grundfläche des Hauptluftverdichters und der mit ihm verbundenen Apparate umschließt, gilt ein Faktor von etwa 1,8. Hierdurch reichen eine kurze Rohrbrücke 109 und Sammelleitungen 107, 108 geringer Länge für die Produktabfuhr bzw. die Betriebsmittel-Zu- und Abfuhr aus; dies ist insbesondere bei mehrsträngigen Anlagen von Vorteil. (Die Zeichnung ist wegen ihres schematischen Charakters auch in dieser Hinsicht nicht unbedingt maßstäblich.)
  • Üblicherweise werden Direktkontaktkühler 3 und Verdunstungskühler 15 wegen ihrer funktionellen Beziehung als eine Einheit oder zumindest als unmittelbar benachbarte Einheiten angeordnet. In dem Ausführungsbeispiel ist der Verdunstungskühler 15 jedoch dem Tieftemperaturteil wesentlich näher als dem Direktkontaktkühler. Der Abstand 104 zwischen dem Verdunstungskühler 15 und dem Hauptwärmetauscher 8a beträgt etwa ein Fünftel des Abstandes zwischen dem Direktkontaktkühler 3 und dem Tieftemperaturteil 7. Hierdurch muss die Reststickstoffleitung zwischen dem Hauptwärmetauscher und dem Verdunstungskühler 15, die in der Zeichnung nicht dargestellt ist, nur eine relativ kurze Strecke überwinden und kann daher besonders kostengünstig realisiert werden; diese Einsparung fällt wegen des sehr großen Querschnitts der Reststickstoffleitung erheblich ins Gewicht. Die Kühlwasser-Verrohrung ist zwar länger, weist aber einen sehr viel geringeren Querschnitt auf und verteuert den Apparat nur unwesentlich.
  • Tieftemperatur-Luftzerlegungsanlagen weisen regelmäßig eine oder mehrere Entspannungsmaschinen auf, die zur Erzeugung von Kälte durch arbeitsleistende Entspannung eines oder mehrerer Prozess-Ströme dienen und üblicherweise als Turbinen ausgebildet sind. Die Anlage des Ausführungsbeispiels weist vorzugsweise eine Turbine zur arbeitsleistenden Entspannung eines Teilstroms der Einsatzluft oder eines Produkt- oder Zwischenproduktstroms aus der Tieftemperaturzerlegung auf. Diese Turbine sitzt in einem Turbinenkasten 16, der in dem Ausführungsbeispiel am Übergangsabschnitt 10 zwischen Wärmetauscher-Box 8 und Rektifikationsbox 9 angeordnet ist.

Claims (16)

  1. Vorrichtung zur Erzeugung eines Produkts durch Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft, mit einem Direktkontaktkühler (3) zur Kühlung des Einsatzgemischs, mit einer Reinigungsvorrichtung (4) zu Reinigung des gekühlten Einsatzgemischs und mit einem Tieftemperaturteil (7), der einen Hauptwärmetauscher (8a) zur Abkühlung des gereinigten Einsatzgemischs auf etwa Taupunktstemperatur und eine Destilliersäule (9a) zur Tieftemperaturzerlegung des Einsatzgemischs aufweist, dadurch gekennzeichnet, dass der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) auf einer Linie (101) angeordnet sind und die Vorrichtung für einen Einsatzgasdurchsatz von 300.000 Nm3/h oder mehr ausgelegt ist, wobei die Anordnung "auf einer Linie" bedeutet, dass es mindestens eine horizontale Gerade geben muss, welche die Grundflächen aller drei genannten Anlagenkomponenten schneidet und unter "Grundfläche" hier die Aufstellfläche verstanden wird, die für die entsprechenden Anlagenkomponenten einschließlich der unmittelbar zugehörigen Funktionseinheiten wie zum Beispiel Pumpen und Armaturen benötigt wird.
  2. Vorrichtung nach Anspruch 1, gekennzeichnet durch einen dem Direktkontaktkühler (3) vorgeschalteten Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, wobei der Einsatzgasverdichter (2), der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) auf einer Linie (101) angeordnet sind.
  3. Vorrichtung nach Anspruch 1 oder 2, gekennzeichnet durch einen dem Direktkontaktkühler (3) vorgeschalteten Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, wobei die Antriebswelle (11) des Einsatzgasverdichters (2) im Wesentlichen senkrecht zu der Linie (101) verläuft, auf welcher der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) angeordnet sind.
  4. Vorrichtung nach Anspruch 1, gekennzeichnet durch einen dem Direktkontaktkühler (3) vorgeschalteten Einsatzgasverdichter (2) zur Verdichtung des Einsatzgemischs, wobei die Antriebswelle des Einsatzgasverdichters (2) im Wesentlichen parallel zu der Linie (101) verläuft, auf welcher der Direktkontaktkühler (3), die Reinigungsvorrichtung (4) und der Tieftemperaturteil (7) angeordnet sind.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verhältnis der Ausdehnung des kleinsten Rechtsecks (102; 103), das die Grundflächen des Direktkontaktkühlers (3), der Reinigungsvorrichtung (4) und des Tieftemperaturteils (7) und ggf. des Einsatzgasverdichters (2) einschließt, in Richtung einer Verbindungsgeraden (101) zwischen Direktkontaktkühler (3) und Tieftemperaturteil (7) zu der Ausdehnung in der dazu senkrechten Richtung größer als 1, insbesondere größer als 1,8 ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Tieftemperaturteil (7) eine Wärmetauscher-Box (8), die mindestens einen Hauptwärmetauscher enthält, eine Rektifikationsbox (9), die mindestens eine Destilliersäule enthält, einen Übergangsabschnitt (10), der zwischen Wärmetauscher-Box (8) und Rektifikationsbox (9) angeordnet ist, und einen Turbinenkasten (16), der eine Entspannungsmaschine enthält, aufweist, wobei der Turbinenkasten (16) mit dem Übergangsabschnitt (10) verbunden ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, mit einer Einsatzgemischleitung (51, 52, 53, 54) zur Einleitung von Einsatzgemisch in den Hauptwärmetauscher und mit einer Produktleitung (105, 106) zum Abziehen des Produktstroms aus dem Hauptwärmetauscher, dadurch gekennzeichnet, dass die Einsatzgemischleitung (54) und die Produktleitung (104, 105) im Wesentlichen parallel zu einer Hauptorientierungsachse (101) verlaufen und an einander gegenüberliegenden Seiten des Hauptwärmetauschers angeordnet sind.
  8. Vorrichtung nach Anspruch 7, gekennzeichnet durch eine Sammelleitung (107, 108), in welche die Produktleitung (104, 105) an ihrem dem Hauptwärmetauscher abgewandten Ende einmündet, wobei die Sammelleitung (107, 108) im Wesentlichen senkrecht zur Hauptorientierungsachse (101) verläuft.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Sammelleitung (107, 108) auf einer Rohrbrücke (109) oder auf dem Boden angeordnet ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Sammelleitung mit einer Produktleitung einer oder mehrerer weiteren Tieftemperaturzerlegungs-Vorrichtungen verbunden ist.
  11. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Sammelleitung mit einem Speicherbehälter für Produkt verbunden ist.
  12. Vorrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass der Hauptwärmetauscher (8a) ausschließlich als rekuperativer Wärmetauscher ausgeführt ist.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12 mit einem Kühlmittelkreislauf (61) zur Lieferung von Kühlmittel für den Direktkontaktkühler, wobei der Kühlmittelkreislauf einen Verdunstungskühler (15) zur Abkühlung von Kühlmittel im direkten Wärmeaustausch mit einem Gasstrom aus dem Tieftemperaturteil aufweist, dadurch gekennzeichnet, dass das Verhältnis des Abstandes zwischen Verdunstungskühler (15) und Direktkontaktkühler (3) zu dem Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) mindestens 0,5 , insbesondere mindestens 1,0 beträgt.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass das Verhältnis des Abstandes zwischen Verdunstungskühler (15) und Direktkontaktkühler (3) zu dem Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) mindestens 2, insbesondere mindestens 4 beträgt.
  15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Abstand (104) zwischen Verdunstungskühler (15) und Hauptwärmetauscher (8a) höchstens 20 m, insbesondere höchstens 10 m beträgt.
  16. Vorrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass der Abstand zwischen Verdunstungskühler und Direktkontaktkühler (3) mindestens 10 m, insbesondere mindestens 25 m beträgt.
EP05024947.3A 2004-12-03 2005-11-15 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft Not-in-force EP1672301B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05024947.3A EP1672301B1 (de) 2004-12-03 2005-11-15 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft
PL05024947T PL1672301T3 (pl) 2004-12-03 2005-11-15 Urządzenie do niskotemperaturowego rozkładu mieszanki gazowej, zwłaszcza powietrza

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP04028681A EP1666822A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028683A EP1666823A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028682 2004-12-03
EP05024947.3A EP1672301B1 (de) 2004-12-03 2005-11-15 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft

Publications (2)

Publication Number Publication Date
EP1672301A1 EP1672301A1 (de) 2006-06-21
EP1672301B1 true EP1672301B1 (de) 2018-08-15

Family

ID=36565984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04028681A Withdrawn EP1666822A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028683A Withdrawn EP1666823A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP05024947.3A Not-in-force EP1672301B1 (de) 2004-12-03 2005-11-15 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04028681A Withdrawn EP1666822A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
EP04028683A Withdrawn EP1666823A1 (de) 2004-12-03 2004-12-03 Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft

Country Status (6)

Country Link
US (1) US7516626B2 (de)
EP (3) EP1666822A1 (de)
CN (1) CN100575838C (de)
CA (1) CA2528735C (de)
PL (1) PL1672301T3 (de)
RU (1) RU2382963C2 (de)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052136A1 (de) 2007-09-28 2009-04-02 Linde Aktiengesellschaft Verfahren zum Anfahren einer Tieftemperatur-Luftzerlegungsanlage und Tieftemperatur-Luftzerlegungsanlage
AU2009228062B2 (en) 2008-03-28 2014-01-16 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2934541C (en) 2008-03-28 2018-11-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
EP3489491B1 (de) 2008-10-14 2020-09-23 Exxonmobil Upstream Research Company Verfahren und system zur kontrolle von verbrennungsprodukten
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
JP5898069B2 (ja) 2009-06-05 2016-04-06 エクソンモービル アップストリーム リサーチ カンパニー 燃焼器システムおよびその使用方法
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
CN102985665A (zh) 2010-07-02 2013-03-20 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法
SG186157A1 (en) 2010-07-02 2013-01-30 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
US9732673B2 (en) 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
FR2962526B1 (fr) * 2010-07-09 2014-07-04 Air Liquide Appareil de refroidissement et d'epuration d'air destine a une unite de distillation cryogenique d'air
FR2962799B1 (fr) * 2010-07-13 2014-07-04 Air Liquide Ensemble de refroidissement et appareil de separation d'air par distillation cryogenique comprenant un tel ensemble de refroidissement
WO2012018457A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
US9630123B2 (en) 2011-12-16 2017-04-25 Air Products And Chemicals, Inc. Liquid distributor with a mixer
JP2015504775A (ja) * 2011-12-16 2015-02-16 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated 混合器付き液体分散器
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
CA2902479C (en) 2013-03-08 2017-11-07 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102013018664A1 (de) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
EP2963369B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
PL2963370T3 (pl) * 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
EP3040665A1 (de) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN105222524A (zh) * 2015-11-05 2016-01-06 天津市振津石油天然气工程有限公司 一种小型移动式天然气液化撬
FR3086549B1 (fr) * 2018-09-27 2022-05-13 Air Liquide Enceinte de colonne de distillation
CN109676367A (zh) * 2018-12-28 2019-04-26 乔治洛德方法研究和开发液化空气有限公司 一种热交换器组件及装配所述热交换器组件的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822774C2 (de) * 1978-05-24 1982-08-26 Linde Ag, 6200 Wiesbaden Verfahren und Anlagenteile zum Errichten einer Fabrikanlage
FR2695714B1 (fr) * 1992-09-16 1994-10-28 Maurice Grenier Installation de traitement cryogénique, notamment de distillation d'air.
FR2706025B1 (fr) * 1993-06-03 1995-07-28 Air Liquide Installation de distillation d'air.
JP3527609B2 (ja) * 1997-03-13 2004-05-17 株式会社神戸製鋼所 空気分離方法および装置
FR2780147B1 (fr) * 1999-06-29 2001-01-05 Air Liquide Installation de distillation d'air et boite froide correspondante
US6360815B1 (en) 1999-06-29 2002-03-26 Ecia Industrie Arrangement for mounting a fan motor on a heat exchanger and automobile vehicle front assembly provided with that arrangement
FR2799277B1 (fr) * 1999-10-01 2001-12-28 Air Liquide Echangeur de chaleur et installation de distillation d'air comprenant un tel echangeur de chaleur
FR2828729B1 (fr) * 2001-08-14 2003-10-31 Air Liquide Installation de production d'oxygene sous haute pression par distillation d'air
CA2493098A1 (en) * 2002-08-08 2004-02-19 Pacific Consolidated Industries, L.P. Nitrogen generator
FR2844344B1 (fr) * 2002-09-11 2005-04-08 Air Liquide Installation de production de grandes quantites d'oxygene et/ou d'azote

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1672301A1 (de) 2006-06-21
EP1666823A1 (de) 2006-06-07
RU2382963C2 (ru) 2010-02-27
PL1672301T3 (pl) 2019-01-31
US7516626B2 (en) 2009-04-14
RU2005137481A (ru) 2007-06-20
CA2528735C (en) 2013-08-06
CN1782644A (zh) 2006-06-07
CN100575838C (zh) 2009-12-30
EP1666822A1 (de) 2006-06-07
CA2528735A1 (en) 2006-06-03
US20060156759A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
EP1672301B1 (de) Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft
DE19904527B4 (de) Luftdestillationsanlage mit mehreren kryogenen Destillationseinheiten des gleichen Typs
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE19904526B4 (de) Luftdestillationsanlage und zugehörige Kältebox
WO2007104449A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
DE2557453A1 (de) Verfahren zur zerlegung von luft
DE10021081A1 (de) Verfahren und Vorrichtung zum Wärmeaustausch
DE69311040T2 (de) Kryogenische Behandlungsanlage, insbesondere für die Lufttrennung
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP2313724A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP3059536A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckstickstoffprodukts
DE102012008416A1 (de) Verrohrungsmodul für Luftzerlegungsanlage
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP2657633B1 (de) Verrohrungsmodul für Luftzerlegungsanlage
WO2016146246A1 (de) Anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP2600090B1 (de) Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2647934A1 (de) Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
EP2645032A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
EP2865978A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
EP2770286A1 (de) Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff
WO2023036460A1 (de) Verteilermodul für eine verfahrenstechnische anlage
DE102012006484A1 (de) Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061117

17Q First examination report despatched

Effective date: 20061214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015879

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 65189 WIESBADEN, DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015879

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181030

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1030268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20191105

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005015879

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201115