EP1445761B1 - Apparatus and method for operating voice controlled systems in vehicles - Google Patents
Apparatus and method for operating voice controlled systems in vehicles Download PDFInfo
- Publication number
- EP1445761B1 EP1445761B1 EP04000822.9A EP04000822A EP1445761B1 EP 1445761 B1 EP1445761 B1 EP 1445761B1 EP 04000822 A EP04000822 A EP 04000822A EP 1445761 B1 EP1445761 B1 EP 1445761B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microphone
- power
- frequency
- signal
- generated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000012937 correction Methods 0.000 claims description 21
- 230000000903 blocking effect Effects 0.000 claims description 20
- 230000004044 response Effects 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 7
- 238000011835 investigation Methods 0.000 claims 45
- 238000001914 filtration Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/02—Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/13—Acoustic transducers and sound field adaptation in vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
Definitions
- the invention relates to a method and a device for operating voice-assisted systems, such as communication and / or voice / intercom devices in motor vehicles, in which recorded via a microphone arrangement speech signals and transmitted to at least one speaker.
- Methods of this type are used in motor vehicles for voice-assisted intercom operation or to support voice input controlled electronic or electrical assemblies.
- the fundamental problem here is that in the motor vehicle depending on the operating condition, a corresponding background noise is present. This covers the voice commands.
- Speech and intercom systems in motor vehicles are mainly advantageous for large vehicles, minibuses and the like. However, they can also be used in normal passenger cars.
- voice-controlled input units for electrical components in the vehicle the suppression of the noise or the filtering of the voice command is still of particular importance.
- a method and system for eliminating acoustic feedback is known wherein a current value taken by a microphone at a particular examination frequency is compared to a previously acquired value of the same examination frequency. The result of this comparison determines the parameters of a bandpass filter.
- the invention is therefore the object of developing a method and a device of the generic type such that the verbal communication of the occupants of a vehicle is improved.
- a voice-assisted system such as a communication and / or voice / intercom in a motor vehicle
- at least one microphone and at least one speaker for reproducing a signal generated by the microphone and a arranged between the microphone and the speaker
- Bandpass- Filter the bandpass filter as a function of a comparison of the power of the signal generated by the microphone at an examination frequency with the power of the signal generated by the microphone at least a substantially integer multiples, ie a substantially harmonious, set the examination frequency.
- examination frequency one or more frequencies of the signal generated by means of the microphone come into question.
- the frequency is selected as examination frequency at which the power of the signal generated by the microphone is substantially maximum.
- several frequency components with high powers are selected as examination frequencies.
- the bandpass filter is both in response to a comparison of the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at least a substantially integer multiples of the examination frequency and in dependence Comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency set at least one earlier time.
- the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with a blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency by more than an upper Limit is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency.
- Notch frequency in the sense of the invention may also be a frequency range and not just a single frequency.
- the upper limit is between 20 and 40 dB.
- the upper limit is substantially 30dB.
- the bandpass filter is set so that it determines the proportion of the signal generated by the microphone with the Not inhibiting the blocking frequency if the power of the signal generated by the microphone at the examination frequency is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency by less than a lower limit.
- the lower limit is between 5 and 20dB.
- the lower limit is substantially 12dB.
- the invention is determined by comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency at least earlier times, whether the power of the signal generated by the microphone in the Examination frequency increases exponentially.
- the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone at the blocking frequency when it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
- the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency longer than a first response time is greater than a threshold, the first response time advantageously being greater than substantially 750ms.
- the power is determined at more than one examination frequency and the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency only when the power of the signal generated by the microphone at a Examination frequency longer than a second response time is greater than the power of the signal generated by the microphone at any other examination frequency, the second response time is advantageously greater than substantially 750ms.
- the setting of the bandpass filter is repeated with respect to the examination frequency earliest after a minimum dead time.
- the minimum dead time is advantageously 200ms to 300ms.
- the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at a frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the performance of is generated by the microphone at the examination frequency by more than the upper limit than the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
- the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at an increased frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the power the signal generated by the microphone at the examination frequency is greater than the upper limit of the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if the power of the signal generated by the microphone is decided at the examination frequency increases exponentially.
- the examination frequency may be at which the power of the signal generated by means of the microphone is maximum.
- the rejection frequency is the examination frequency added at a correction frequency at which the power of the signal generated by the microphone is maximum, ie to the examination frequency at which the power of the signal generated by the microphone is maximum becomes a correction frequency added.
- This correction frequency is advantageously in
- the examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3832 Hz.
- the examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3835.56 Hz.
- the distances between at least part of the examination frequencies or all examination frequencies are equidistant.
- a presence of feedback is detected only if the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by more than an upper limit is greater than the power of the signal generated by the microphone at the first harmonic of this examination frequency, wherein the upper limit is advantageously between 20 and 40 dB, in particular at substantially 30 dB.
- the absence of feedback is determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by less than a lower limit is greater than the power of signal generated by the microphone at the first harmonic this examination frequency, wherein the lower limit is advantageously between 5 and 20 dB, in particular at substantially 12 dB.
- a presence of feedback is (only) determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum, at least approximately, increases exponentially.
- a presence of feedback is (only) determined when the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than a threshold.
- the first response time is advantageously greater than substantially 750ms.
- the threshold can be selected depending on the power of the signal S or the sum of the power of all examination frequencies.
- a presence of feedback is determined if the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than the power of the signal generated by the microphone at any other examination frequency ,
- the second response time is advantageously greater than substantially 750ms.
- the adjustment of the bandpass filter is repeated at the earliest after a minimum dead time has expired, which is advantageously between 100 ms to 300 ms.
- the power of the signal generated by means of the microphone is determined at at least 50, in particular at 150 to 300, examination frequencies.
- the bandpass filter is a notch filter or a filter bank with at least one notch filter.
- the filter bank may include, for example, 10 notch filters.
- Fig. 1 shows the interior view of a motor vehicle 1 from above.
- reference numerals 2 and 3 the front seats and reference numerals 4, 5 and 6, the rear seats of the motor vehicle.
- Reference numerals 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 denote speakers.
- Reference numerals 21, 22, 23 and 24 denote microphones.
- the loudspeakers 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 are partly associated with a music system and partly with a communication / intercom device. They can also be used by both systems.
- the loudspeakers 9, 17, 18, 19, 20 give a signal generated by the microphone 21, the loudspeakers 7, 17, 18, 19, 20 a signal generated by the microphone 22, the loudspeakers 7, 9, 19, 20 a signal generated by the microphone 23 and the speakers 7, 9, 17, 18 a signal generated by the microphone 24 from.
- the communication is in principle the better the stronger a signal between one of the microphones 21, 22, 23, 24 and one of the speakers 7, 9, 17, 18, 19, 20 is amplified.
- Limited is the possibility of one However, such gain due to possible feedback effects due to sound emitted by a loudspeaker 7, 9, 17, 18, 19, 20 received by a microphone 21, 22, 23, 24 and then amplified and through the speaker 7, 9, 17, 18, 19, 20 is broadcast.
- a bandpass filter 32 is provided. This filters a signal S generated by the microphone 30 and provides a filtered signal S 'in which certain frequency ranges are filtered out, for which a decision logic 33 has recognized the risk of feedback.
- the decision logic 33 determines filter parameters f c and Q by means of which the bandpass filter 32 is set.
- the amplifier function can also be taken over by the bandpass filter.
- Fig. 3 shows the characteristic of a designed as a notch filter bandpass filter, the gain V of the bandpass filter is plotted against the frequency f.
- f c denotes the center frequency of the bandpass filter and Q its quality.
- the bandpass filter 32 is advantageously a filter bank, as in FIG Fig. 4 shown executed.
- the filter bank advantageously comprises up to 10 notch filters.
- Fig. 5 shows an exemplary embodiment of an implemented in a decision logic 33 subwaypan.
- an examination frequency is first determined in a step 40.
- the frequency f of the signal S is analyzed and, as exemplified in FIG Fig. 6 shown, the power P of the signal S an, for example 192, different examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n +7 , f n + 8 determined, which are eg 40Hz apart.
- the examination frequency f n + 5 at which the power is maximum, the subsequent sequence is run through. However, it is also possible to go through the following procedure for more than one examination frequency.
- the term of the power according to the invention may include the amplitude or its time average. Also included in the sense of the invention are other modifications of the power, the amplitude or their time averages, such as normalized quantities.
- the value of the power of the signal S at this examination frequency f n can be divided by the sum of the power of the signal S at all examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 .
- the step 40 is followed by a query 41, if there is a risk of feedback. Details of this query are with respect to Fig. 7 and 10 executed. If there is a risk of feedback, query 41 is followed by a query 42 as to whether the signal S generated by the microphone 30 has already been reduced by signal components around the examination frequency by means of the bandpass filter.
- the query 42 is followed by a step 43 in which the filter parameters, ie the center frequency f c and the quality Q of the bandpass filter Filters are generated.
- the center frequency f c is an example of the blocking frequency in the sense of the claims.
- the blocking frequency in the sense of the claims can also be, in particular, the frequency range around the center frequency f c , which the bandpass filter actually filters out of the signal S generated by the microphone 30.
- the quality Q is set to a predetermined value of e.g. 1 / 40Hz set.
- Step 43 is followed by inquiry 45 as to whether the program should be terminated. If the program is not terminated, the query 45 follows step 40. Otherwise, the program is terminated.
- the query 43 is followed by a step 44, in which the quality Q is reduced.
- the bandpass filter is adjusted so that it blocks the proportion of the signal generated by the microphone at an increased frequency range around the center frequency f c around.
- Step 44 is followed by step 40.
- query 41 is followed by query 45, or optionally a step 46, in which the filtering of the signal S generated by the microphone 30 is terminated by the examination frequency.
- the query 41 is repeated at the earliest after the expiration of a minimum dead time, wherein the minimum dead time in the present embodiment is 200 ms to 300 ms.
- Fig. 7 shows an embodiment of the query 41.
- a query 50 is provided, whether the power of the signal generated by the microphone 30 S at the examination frequency by not less than a lower limit is greater than the power of the signal generated by the microphone 30 S. at the first harmonic (ie twice) of the examination frequency.
- the lower limit ⁇ 1 is for example between 5 and 20 dB.
- the lower limit ⁇ 1 is substantially 12dB.
- This query illustrates by way of example Fig. 8 , where f H0 denotes the examination frequency , f H1 , f H2 , f H3 and f H4 the first, second, third and fourth harmonics of the examination frequency and f H1 ⁇ 2 the first subharmonic of the examination frequency .
- P denotes the power at a frequency f.
- query 50 may be provided for one or more of the queries P f H 0 - P f H 1 / 2 ⁇ ⁇ 1 P f H 0 - P f H 2 ⁇ ⁇ 1 P f H 0 - P f H 3 ⁇ ⁇ 1 P f H 0 - P f H 4 ⁇ ⁇ 1 to supplement, where appropriate, other limits can be selected.
- the examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 in Fig. 6 are of the subharmonic / harmonics f H1 ⁇ 2 , f H1 , f H2 , f H3 and f H4 in Fig. 8 respectively.
- the query 50 is followed by a query 51.
- the query 51 queries whether the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than the power of the microphone 30 generated by not less than an upper limit ⁇ 2 Signal S at the first harmonic of the examination frequency.
- the upper limit ⁇ 2 is for example between 20 and 40 dB.
- the upper limit ⁇ 2 is substantially 30 dB. This query illustrates by way of example Fig.
- query 51 may be provided for one or more of the queries P f H 0 - P f H 1 / 2 ⁇ ⁇ 2 P f H 0 - P f H 2 ⁇ ⁇ 2 P f H 0 - P f H 3 ⁇ ⁇ 2 P f H 0 - P f H 4 ⁇ ⁇ 2 to supplement, where appropriate, other limits can be selected.
- the query 51 is followed by a query 52, by means of the signal S produced at the examination frequency by comparing the power of the signal S generated by means of the microphone 30 with the power of the signal S generated by the microphone 30 at the examination frequency at least at an earlier point in time, whether the power of the signal generated by means of the microphone is determined by the Examination frequency increases exponentially.
- Fig. 10 shows a further embodiment of the query 41.
- a query 60 is first provided, whether the power of the signal generated by the microphone 30 S at the examination frequency is greater than a predetermined limit.
- a query 61 follows, which corresponds to the query 50.
- the queries 62 and 63 correspond to the queries 51 and 52.
- Fig. 11 shows a preferred embodiment for a process implemented in the decision logic 33 radiationpan.
- the process starts with a step 81, which is the step 40 in Fig. 5 equivalent.
- Step 81 is followed by a query 41 in FIG Fig. 5 corresponding query 82, if there is a risk of feedback.
- Embodiments for the query 82 show Fig. 7 and Fig. 10 ,
- a feedback detection query 82
- Fig. 12 is explained in more detail, found to be advantageous.
- the query 82 follows a query 45 corresponding query 83, whether the program should be terminated. If the program is not terminated, the query 93 follows the step 81. Otherwise, the program is terminated.
- the query 82 is followed by a query 83 corresponding to the query 42 as to whether the signal S generated by the microphone 30 has already been reduced by signal components around the examination frequency by means of the bandpass filter. If the signal S generated by the microphone 30 is already reduced by signal components around the examination frequency by means of the bandpass filter, the query 83 is followed by a query 85, otherwise a query 84.
- Query 84 queries whether a notch filter is available. If a notch filter is available, query 84 is followed by a step 88 corresponding to step 43, in which the filter parameters, ie the center frequency f c and the quality Q of the bandpass filter for the specific embodiment, are generated. If query 84 indicates that no notch filter is available, query 84 is followed by a step 86 in which the power of signal S is reduced by a reduction factor which is advantageously between 2 dB and 5 dB, in particular at substantially 3dB , Step 86 is followed by a step 87 in which the entire run is stopped for a stop time of substantially 3 seconds. However, this step should only be executed once per run.
- step 91 which corresponds to step 44, the quality Q is reduced.
- Steps 87, 88 and 91 are followed by a step 92, in which the process is stopped for a minimum dead time, the minimum dead time in the present embodiment being 100 ms.
- step 89 the power of the signal S is reduced by a reduction factor which is advantageously between 2dB and 5dB, in particular at substantially 3dB.
- step 89 is followed by a step 90 in which the entire run is stopped for a stop time of substantially 3 seconds.
- Fig. 7 shows an embodiment for the query 82, according to which also query 41 can be implemented.
- a query 95 is initially provided as to whether the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than 750 ms greater than the power of the signal S produced by the microphone 30 of every other examination frequency. If the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than 750 ms greater than the power of the signal S generated by the microphone 30 of every other examination frequency, the query 95 is followed by a query 96. Otherwise, the query 95 follows the query 93rd
- the query 96 queries whether the power of the signal S generated by means of the microphone 30 at the examination frequency is not greater than 12 dB greater than the power of the signal S generated by the microphone 30 at the first harmonic (ie twice) of the examination frequency is. If the power of the signal S generated by means of the microphone 30 at the examination frequency is not greater than 12 dB greater than the power of the signal S generated by the microphone 30 at the first harmonic of the examination frequency, the query 96 is followed by a query 97. Otherwise, it follows the query 96 the query 93.
- the query 97 queries whether the power of the signal S generated by the microphone 30 at the examination frequency is greater than 750 ms greater than a response threshold. If the power of the signal S generated by means of the microphone 30 at the examination frequency is greater than a response threshold for more than 750 ms, the query 97 follows the query 83. Otherwise, the query 95 is followed by the query 93.
- the feedback detection according to the invention is not based on the embodiments Fig. 7 . Fig. 10 and Fig. 12 limited. It can be provided, for example, that the queries 52 and 63 follow the no outputs of the queries 50 and 61, respectively. In addition, it can be provided, the embodiments according to Fig. 7 . Fig. 10 and Fig. 12 with their binary decision logic by a fuzzy decision logic, so to replace fuzzy logic or neural networks.
Landscapes
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Circuit For Audible Band Transducer (AREA)
Description
Die Erfindung betrifft ein Verfahren sowie eine Einrichtung zum Betrieb von sprachunterstützten Systemen, wie Kommunikations- und/oder Sprech-/Gegensprecheinrichtungen in Kraftfahrzeugen, bei welchen über eine Mikrofonanordnung Sprachsignale aufgenommen und an mindestens einen Lautsprecher weitergegeben werden.The invention relates to a method and a device for operating voice-assisted systems, such as communication and / or voice / intercom devices in motor vehicles, in which recorded via a microphone arrangement speech signals and transmitted to at least one speaker.
Verfahren dieser Art werden in Kraftfahrzeugen zum sprachunterstützten Gegensprechbetrieb oder zur Unterstützung von spracheingabegesteuerten elektronischen oder elektrischen Baugruppen eingesetzt. Die grundsätzliche Problematik hierbei ist, dass im Kraftfahrzeug je nach Betriebszustand eine entsprechende Geräuschkulisse vorhanden ist. Diese überdeckt die Sprachbefehle. Sprech- und Gegensprechanlagen in Kraftfahrzeugen sind überwiegend bei großen Fahrzeugen, Minibussen und dergleichen vorteilhaft. Sie können jedoch auch bei normalen Personenkraftwagen eingesetzt werden. Bei der Verwendung von sprachgesteuerten Eingabeeinheiten für elektrische Komponenten im Fahrzeug ist die Unterdrückung der Geräuschkulisse bzw. das Herausfiltern des Sprachbefehles noch von besonderer Bedeutung.Methods of this type are used in motor vehicles for voice-assisted intercom operation or to support voice input controlled electronic or electrical assemblies. The fundamental problem here is that in the motor vehicle depending on the operating condition, a corresponding background noise is present. This covers the voice commands. Speech and intercom systems in motor vehicles are mainly advantageous for large vehicles, minibuses and the like. However, they can also be used in normal passenger cars. When using voice-controlled input units for electrical components in the vehicle, the suppression of the noise or the filtering of the voice command is still of particular importance.
So ist aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Aus der
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren sowie eine Einrichtung der gattungsgemässen Art dahingehend weiterzubilden, dass die verbale Kommunikation der Insassen eines Fahrzeug verbessert wird.The invention is therefore the object of developing a method and a device of the generic type such that the verbal communication of the occupants of a vehicle is improved.
Diese Aufgabe wird durch ein Verfahren gemäß Patentanspruch 1 und eine Einrichtung gemäß Patentanspruch 28 gelöst. Dabei wird zum Betrieb eines sprachunterstützten Systems, wie eine Kommunikations- und/oder Sprech-/Gegensprecheinrichtung in einem Kraftfahrzeug, mit zumindest einem Mikrofon und zumindest einem Lautsprecher zur Wiedergabe eines mittels des Mikrofons erzeugten Signals sowie einem zwischen dem Mikrofon und dem Lautsprecher angeordneten Bandpass-Filter das Bandpass-Filter in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei einer Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer im wesentlichen ganzzahligen Vielfachen, also einer im wesentlichen Harmonischen, der Untersuchungsfrequenz eingestellt. Als Untersuchungsfrequenz kommen eine oder mehrere Frequenzen des mittels des Mikrofons erzeugten Signals in Frage. In vorteilhafter Ausgestaltung der Erfindung wird dabei die Frequenz als Untersuchungsfrequenz ausgewählt, bei der die Leistung des mittels des Mikrofons erzeugten Signals im wesentlichen maximal ist. Alternativ werden mehrere Frequenzanteile mit großen Leistungen als Untersuchungsfrequenzen ausgewählt.This object is achieved by a method according to
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter sowohl in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer im wesentlichen ganzzahligen Vielfachen der Untersuchungsfrequenz als auch in Abhängigkeit eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz zu zumindest einem früheren Zeitpunkt eingestellt.In a further advantageous embodiment of the invention, the bandpass filter is both in response to a comparison of the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at least a substantially integer multiples of the examination frequency and in dependence Comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency set at least one earlier time.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit einer Sperrfrequenz (nur dann) sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als einen oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen der Untersuchungsfrequenz. Sperrfrequenz im Sinne der Erfindung kann auch ein Frequenzbereich und nicht nur eine einzelne Frequenz sein.In a further advantageous embodiment of the invention, the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with a blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency by more than an upper Limit is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency. Notch frequency in the sense of the invention may also be a frequency range and not just a single frequency.
In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der obere Grenzwert zwischen 20 und 40dB. Verteilhafterweise beträgt der obere Grenzwert im wesentlichen 30dB.In a further advantageous embodiment of the invention, the upper limit is between 20 and 40 dB. Distributively, the upper limit is substantially 30dB.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz nicht sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um weniger als einen unteren Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen der Untersuchungsfrequenz.In a further advantageous embodiment of the invention, the bandpass filter is set so that it determines the proportion of the signal generated by the microphone with the Not inhibiting the blocking frequency if the power of the signal generated by the microphone at the examination frequency is greater than the power of the signal generated by the microphone at the first harmonic of the examination frequency by less than a lower limit.
In weiterhin vorteilhafter Ausgestaltung der Erfindung liegt der untere Grenzwert zwischen 5 und 20dB. Vorteilhafterweise beträgt der untere Grenzwert im wesentlichen 12dB.In a further advantageous embodiment of the invention, the lower limit is between 5 and 20dB. Advantageously, the lower limit is substantially 12dB.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird mittels eines Vergleichs der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz zu zumindest früheren Zeitpunkten entschieden, ob die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.In a further advantageous embodiment of the invention is determined by comparing the power of the signal generated by the microphone at the examination frequency with the power of the signal generated by the microphone at the examination frequency at least earlier times, whether the power of the signal generated by the microphone in the Examination frequency increases exponentially.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei der Sperrfrequenz sperrt, wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.In a further advantageous embodiment of the invention, the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone at the blocking frequency when it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz (nur dann) sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als eine Ansprechschwelle ist, wobei die erste Ansprechzeit vorteilhaftereise größer als im wesentlichen 750ms ist.In a further advantageous embodiment of the invention, the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency (only) if the power of the signal generated by the microphone at the examination frequency longer than a first response time is greater than a threshold, the first response time advantageously being greater than substantially 750ms.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Leistung bei mehr als einer Untersuchungsfrequenz ermittelt und das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals mit der Sperrfrequenz nur sperrt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei einer Untersuchungsfrequenz länger als eine zweite Ansprechzeit größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei jeder anderen Untersuchungsfrequenz, wobei die zweite Ansprechzeit vorteilhaftereise größer als im wesentlichen 750ms ist.In a further advantageous embodiment of the invention, the power is determined at more than one examination frequency and the bandpass filter is set such that it blocks the proportion of the signal generated by the microphone with the blocking frequency only when the power of the signal generated by the microphone at a Examination frequency longer than a second response time is greater than the power of the signal generated by the microphone at any other examination frequency, the second response time is advantageously greater than substantially 750ms.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Einstellung des Bandpass-Filters bezüglich der Untersuchungsfrequenz frühestens nach Ablauf einer Mindest-Totzeit wiederholt. Die Mindest-Totzeit beträgt vorteilhafterweise 200ms bis 300ms.In a further advantageous embodiment of the invention, the setting of the bandpass filter is repeated with respect to the examination frequency earliest after a minimum dead time. The minimum dead time is advantageously 200ms to 300ms.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als den oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der im wesentlichen ersten Harmonischen der Untersuchungsfrequenz und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.In a further advantageous embodiment of the invention, the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at a frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the performance of is generated by the microphone at the examination frequency by more than the upper limit than the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if it is decided that the power of the signal generated by the microphone at the examination frequency increases exponentially.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem vergrößerten Frequenzbereich um die Sperrfrequenz sperrt, wenn nach Ablauf einer Wiederholungszeit, die größer als die Mindest-Totzeit ist, die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz um mehr als den oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der im wesentlichen ersten Harmonischen der Untersuchungsfrequenz und/oder wenn entschieden wird, dass die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.In a further advantageous embodiment of the invention, the bandpass filter is set so that it blocks the proportion of the signal generated by the microphone at an increased frequency range around the cutoff frequency, if after a repetition time, which is greater than the minimum dead time, the power the signal generated by the microphone at the examination frequency is greater than the upper limit of the power of the signal generated by the microphone at the substantially first harmonic of the examination frequency and / or if the power of the signal generated by the microphone is decided at the examination frequency increases exponentially.
Sperrfrequenz Im Sinne der Erfindung kann die Untersuchungsfrequenz sein, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist. In vorteilhafter Ausgestaltung der Erfindung ist die Sperrfrequenz jedoch die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, d.h. zu der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, wird eine Korrekturfrequenz addiert. Diese Korrekturfrequenz wird vorteilhafterweise inNotch frequency For the purposes of the invention, the examination frequency may be at which the power of the signal generated by means of the microphone is maximum. In an advantageous embodiment of the invention, however, the rejection frequency is the examination frequency added at a correction frequency at which the power of the signal generated by the microphone is maximum, ie to the examination frequency at which the power of the signal generated by the microphone is maximum becomes a correction frequency added. This correction frequency is advantageously in
Abhängigkeit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, sowie der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer, insbesondere unmittelbar, neben dieser Untersuchungsfrequenz liegenden Untersuchungsfrequenz gebildet.Dependence of the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum, and the power of the signal generated by the microphone at at least one, in particular directly, next to this examination frequency lying examination frequency formed.
So kann die Korrekturfrequenz beispielsweise gemäß
- fkorr die Korrekturfrequenz,
- fdist der Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist (Pmax ist also die Leistung bei der Untersuchungsfrequenz, die größer ist als die Leistung jeder anderen Untersuchungsfrequenz),
- Pmaxneigh die Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisende
Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und - sign ein Vorzeichen
- fkorr the correction frequency,
- fd is the distance between the examination frequency at which the power of the signal generated by the microphone is maximum, and a test power having the highest performance immediately adjacent to the examination frequency at which the power of the signal generated by the microphone is maximum,
- Pmax the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum (Pmax is the power at the examination frequency which is greater than the power of any other examination frequency),
- Pmaxneigh the power of the signal generated by the microphone at the highest power
Examination frequency immediately adjacent to the examination frequency at which the power of the signal generated by the microphone is maximum, and - sign a sign
Dies ist anhand von folgendem Beispiel näher erläutert:
- Es werden 192 Untersuchungsfrequenzen f1, f2, .... f192 angenommen. f1 ist gleich 40Hz. fdist ist für alle Untersuchungsfrequenzen 40Hz. Zudem gilt für die Leistungen des mittels des Mikrofons erzeugten Signals bei den Untersuchungsfrequenzen f1, f2, f192:
- 192 examination frequencies f 1 , f 2 , .... f 192 are assumed. f 1 is equal to 40Hz. fdist is 40Hz for all exam frequencies. In addition, for the powers of the signal generated by means of the microphone at the examination frequencies f 1 , f 2 , f 192:
Dann gilt:
Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3832Hz.The examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3832 Hz.
Es hat sich zumindest bei bestimmten Ausführungsformen als vorteilhaft erwiesen, die Korrekturfrequenz gemäß
- fkorr die Korrekturfrequenz,
- Δf der Abstand zwischen zwei Untersuchungsfrequenzen,
- Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- Pneighright die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb (also rechts' neben) der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
- Pneighleft die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb (also links' neben) der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- fkorr the correction frequency,
- Δf the distance between two examination frequencies,
- Pmax the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by means of the microphone is maximum,
- Pneighright the power of the signal generated by the microphone at the examination frequency immediately above (that is right 'next to) the examination frequency at which the power of the signal generated by the microphone is maximum, and
- Pneighleft the power of the signal generated by the microphone at the examination frequency immediately below (ie left 'next to) the examination frequency at which the power of the signal generated by the microphone is maximum,
Unter Zugrundelegung obigen Zahlenbeispiels gilt somit in diesem Fall:
Die Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, ist somit 3840Hz und die Sperrfrequenz 3835,56Hz.The examination frequency at which the power of the signal generated by the microphone is maximum is thus 3840 Hz and the blocking frequency 3835.56 Hz.
In weiterhin vorteilhafter Ausgestaltung der Erfindung sind die Abstände zwischen zumindest einem Teil der Untersuchungsfrequenzen oder allen Untersuchungsfrequenzen äquidistant.In a further advantageous embodiment of the invention, the distances between at least part of the examination frequencies or all examination frequencies are equidistant.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung nur dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, um mehr als einen oberen Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen dieser Untersuchungsfrequenz, wobei der obere Grenzwert vorteilhafterweise zwischen 20 und 40dB, insbesondere bei im wesentlichen 30dB, liegt.In a further advantageous embodiment of the invention, a presence of feedback is detected only if the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by more than an upper limit is greater than the power of the signal generated by the microphone at the first harmonic of this examination frequency, wherein the upper limit is advantageously between 20 and 40 dB, in particular at substantially 30 dB.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird Nichtvorliegen von Rückkopplung festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, um weniger als einen unteren Grenzwert größer ist als die Leistung des mittels des Mikrofons erzeugten Signals bei der ersten Harmonischen dieser Untersuchungsfrequenz, wobei der untere Grenzwert vorteilhafterweise zwischen 5 und 20dB, insbesondere bei im wesentlichen 12dB, liegt.In a further advantageous embodiment of the invention, the absence of feedback is determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum by less than a lower limit is greater than the power of signal generated by the microphone at the first harmonic this examination frequency, wherein the lower limit is advantageously between 5 and 20 dB, in particular at substantially 12 dB.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, zumindest näherungsweise, exponentiell ansteigt.In a further advantageous embodiment of the invention, a presence of feedback is (only) determined when the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by the microphone is maximum, at least approximately, increases exponentially.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als eine Ansprechschwelle ist. Die erste Ansprechzeit ist vorteilhafterweise größer als im wesentlichen 750ms. Die Ansprechschwelle kann abhängig von der Leistung des Signals S bzw. von der Summe der Leistungen aller Untersuchungsfrequenzen gewählt werden.In a further advantageous embodiment of the invention, a presence of feedback is (only) determined when the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than a threshold. The first response time is advantageously greater than substantially 750ms. The threshold can be selected depending on the power of the signal S or the sum of the power of all examination frequencies.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird ein Vorliegen von Rückkopplung (nur) dann festgestellt, wenn die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer Untersuchungsfrequenz länger als eine erste Ansprechzeit größer als die Leistung des mittels des Mikrofons erzeugten Signals bei jeder anderen Untersuchungsfrequenz ist. Die zweite Ansprechzeit ist vorteilhafterweise größer als im wesentlichen 750ms.In a further advantageous embodiment of the invention, a presence of feedback (only) is determined if the power of the signal generated by the microphone at at least one examination frequency is longer than a first response time greater than the power of the signal generated by the microphone at any other examination frequency , The second response time is advantageously greater than substantially 750ms.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Einstellung des Bandpass-Filters frühestens nach Ablauf einer Mindest-Totzeit wiederholt, die vorteilhafterweise zwischen 100ms bis 300ms beträgt.In a further advantageous embodiment of the invention, the adjustment of the bandpass filter is repeated at the earliest after a minimum dead time has expired, which is advantageously between 100 ms to 300 ms.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird die Leistung des mittels des Mikrofons erzeugten Signals bei zumindest 50, insbesondere bei 150 bis 300, Untersuchungsfrequenzen bestimmt.In a further advantageous embodiment of the invention, the power of the signal generated by means of the microphone is determined at at least 50, in particular at 150 to 300, examination frequencies.
In weiterhin vorteilhafter Ausgestaltung der Erfindung ist das Bandpass-Filter ein Notchfilter oder eine Filterbank mit zumindest einem Notchfilter. Die Filterbank kann z.B. 10 Notchfilter umfassen.In a further advantageous embodiment of the invention, the bandpass filter is a notch filter or a filter bank with at least one notch filter. The filter bank may include, for example, 10 notch filters.
Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Dabei zeigen:
- Fig. 1
- ein Kraftfahrzeug,
- Fig. 2
- ein Ausführungsbeispiel für eine erfindungsgemäße Einrichtung,
- Fig. 3
- ein Notchfilter,
- Fig. 4
- eine Filterbank,
- Fig. 5
- ein Ausführungsbeispiel für einen in einer Entscheidungslogik implementierten Ablaufpan,
- Fig. 6
- ein Leistung-Frequenz-Diagramm,
- Fig. 7
- ein
Ausführungsbeispiel für Abfrage 41, inFig. 5 , - Fig. 8
- ein Leistung-Frequenz-Diagramm,
- Fig. 9
- ein Leistung-Frequenz-Diagramm,
- Fig. 10
- ein weiteres Ausführungsbeispiel für Abfrage 41 in
Fig. 5 , - Fig. 11
- ein weiteres Ausführungsbeispiel für einen in einer Entscheidungslogik implementierten Ablaufpan,
- Fig. 12
- ein Ausführungsbeispiel für die
Abfragen 41und 82,
- Fig. 1
- a motor vehicle,
- Fig. 2
- an embodiment of an inventive device,
- Fig. 3
- a notch filter,
- Fig. 4
- a filter bank,
- Fig. 5
- an embodiment of a sequence implemented in a decision logic,
- Fig. 6
- a power-frequency diagram,
- Fig. 7
- an embodiment for
query 41, inFig. 5 . - Fig. 8
- a power-frequency diagram,
- Fig. 9
- a power-frequency diagram,
- Fig. 10
- another embodiment for
query 41 inFig. 5 . - Fig. 11
- a further embodiment of a sequence implemented in a decision logic,
- Fig. 12
- an embodiment for the
41 and 82,queries
Im vorliegenden Ausführungsbeispiel geben die Lautsprecher 9, 17, 18, 19, 20 ein von dem Mikrofon 21 erzeugtes Signal, die Lautsprecher 7, 17, 18, 19, 20 ein von dem Mikrofon 22 erzeugtes Signal, die Lautsprecher 7, 9, 19, 20 ein von dem Mikrofon 23 erzeugtes Signal und die Lautsprecher 7, 9, 17, 18 ein von dem Mikrofon 24 erzeugtes Signal aus. Auf diese Weise wird die Möglichkeit verbaler Kommunikation in einem Kraftfahrzeug unterstützt. Dabei ist die Kommunikation prinzipiell umso besser je stärker ein Signal zwischen einem der Mikrofone 21, 22, 23, 24 und einem der Lautsprecher 7, 9, 17, 18, 19, 20 verstärkt wird. Begrenzt wird die Möglichkeit einer solchen Verstärkung jedoch durch mögliche Rückkopplungseffekte bedingt durch mittels eines Lautsprechers 7, 9, 17, 18, 19, 20 ausgestrahlten Schalls, der durch ein Mikrofon 21, 22, 23, 24 empfangen und anschließend verstärkt und durch den Lautsprecher 7, 9, 17, 18, 19, 20 ausgestrahlt wird.In the present exemplary embodiment, the
Zur Verminderung einer solchen Rückkopplung ist gemäß
Zur Verstärkung des Signals S und/oder des Signals S' können nicht dargestellte Verstärker vorgesehen werden. Die Verstärkerfunktion kann jedoch auch durch das Bandpass-Filter übernommen werden.To amplify the signal S and / or the signal S 'amplifiers, not shown, may be provided. However, the amplifier function can also be taken over by the bandpass filter.
Es hat sich als vorteilhaft erwiesen, die Leistung bei den Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zeitlich zu mitteln, d.h. einen Mittelwert über die Zeit zu bilden, und diesen zeitlichen Mittelwert der Leistung anstelle der aktuellen Leistung des Signals S an den Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zu untersuchen. Sofern in der Beschreibung und den Ansprüchen die Leistung des Signals S erwähnt ist, kann dieses somit auch den über einen gewissen Zeitraum gebildeten Mittelwert der Leistung umfassen. Ferner kann der Begriff der Leistung im Sinne der Erfindung die Amplitude oder deren zeitlichen Mittelwert umfassen. Umfasst im Sinne der Erfindung sollen auch weitere Abwandlungen der Leistung, der Amplitude oder deren zeitlichen Mittelwerte sein, wie etwa normierte Größen. So kann z.B. unter der Leistung des Signals S bei einer Untersuchungsfrequenz fn im Sinne der Erfindung der Wert der Leistung des Signals S bei dieser Untersuchungsfrequenz fn geteilt durch die Summe der Leistung des Signals S bei allen Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 zu verstehen sein.It has proved to be advantageous to determine the power at the examination frequencies fn , fn + 1 , fn + 2 , fn + 3 , fn + 4 , fn + 5 , fn + 6 , fn + 7 , f n + 8 , ie to form an average value over time, and this time average of the power instead of the actual power of the signal S at the examination frequencies f n , f n + 1 , f n + 2 , f n + 3 to investigate f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 . If the power of the signal S is mentioned in the description and the claims, this can thus also include the average value of the power formed over a certain period of time. Furthermore, the term of the power according to the invention may include the amplitude or its time average. Also included in the sense of the invention are other modifications of the power, the amplitude or their time averages, such as normalized quantities. For example, under the power of the signal S at an examination frequency f n in the sense of the invention, the value of the power of the signal S at this examination frequency f n can be divided by the sum of the power of the signal S at all examination frequencies f n , f n + 1 , f n + 2 , f n + 3 , f n + 4 , f n + 5 , f n + 6 , f n + 7 , f n + 8 .
Dem Schritt 40 folgt eine Abfrage 41, ob die Gefahr der Rückkopplung besteht. Einzelheiten dieser Abfrage sind bezüglich
Wird das von dem Mikrofon 30 erzeugte Signal S nicht bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 42 ein Schritt 43, in dem die Filterparameter, d.h. die Mittenfrequenz fc und die Güte Q des Bandpass-Filters, erzeugt werden. Die Mittenfrequenz fc ist ein Beispiel für die Sperrfrequenz im Sinne der Ansprüche. Die Sperrfrequenz im Sinne der Ansprüche kann aber auch insbesondere der Frequenzbereich um die Mittenfrequenz fc sein, den das Bandpass-Filter tatsächlich aus dem von dem Mikrofon 30 erzeugten Signal S herausfiltert.If the signal S generated by the
Die Mittenfrequenz fc kann z.B. gleich der Untersuchungsfrequenz gesetzt werden. In vorteilhafter Ausgestaltung der Erfindung ist die Mittenfrequenz fc jedoch die mit einer Korrekturfrequenz addierte Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, d.h. zu der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, wird eine Korrekturfrequenz addiert. Diese Korrekturfrequenz wird vorteilhafterweise in Abhängigkeit der Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, sowie der Leistung des mittels des Mikrofons erzeugten Signals bei zumindest einer neben dieser Untersuchungsfrequenz liegenden Untersuchungsfrequenz gebildet. So kann die Korrekturfrequenz beispielsweise gemäß
- fkorr die Korrekturfrequenz,
- fdist der Abstand zwischen der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und einer die größte Leistung aufweisenden Untersuchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- Pmaxneigh die Leistung des mittels des Mikrofons erzeugten Signals bei der die größte Leistung aufweisenden Unter-suchungsfrequenz unmittelbar neben der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
- sign ein Vorzeichen
- fkorr the correction frequency,
- fd is the distance between the examination frequency at which the power of the signal generated by the microphone is maximum, and a test power having the highest performance immediately adjacent to the examination frequency at which the power of the signal generated by the microphone is maximum,
- Pmax the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by means of the microphone is maximum,
- Pmaxneigh the power of the signal generated by the microphone at the highest performance examination frequency immediately adjacent to the examination frequency at which the power of the signal generated by the microphone is maximum, and
- sign a sign
Im vorliegenden Ausführungsbeispiel wird die Korrekturfrequenz gemäß
- fkorr die Korrekturfrequenz,
- Δf der Abstand zwischen zwei Untersuchungsfrequenzen,
- Pmax die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- Pneighright die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar oberhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist, und
- Pneighleft die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz unmittelbar unterhalb der Untersuchungsfrequenz, bei der die Leistung des mittels des Mikrofons erzeugten Signals maximal ist,
- fkorr the correction frequency,
- Δf the distance between two examination frequencies,
- Pmax the power of the signal generated by the microphone at the examination frequency at which the power of the signal generated by means of the microphone is maximum,
- Pneighright the power of the signal generated by the microphone at the examination frequency immediately above the examination frequency at which the power of the signal generated by the microphone is maximum, and
- Pneighleft the power of the signal generated by the microphone at the examination frequency immediately below the examination frequency at which the power of the signal generated by the microphone is maximum,
Die Güte Q wird auf einen vorgegebenen Wert von z.B. 1/40Hz eingestellt.The quality Q is set to a predetermined value of e.g. 1 / 40Hz set.
Dem Schritt 43 folgt die Abfrage 45, ob das Programm beendet werden soll. Soll das Programm nicht beendet werden, so folgt der Abfrage 45 der Schritt 40. Andernfalls wird das Programm beendet.
Wird das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 43 ein Schritt 44, in dem die Güte Q verringert wird. Dadurch wird das Bandpass-Filter derart eingestellt, dass es den Anteil des mittels des Mikrofons erzeugten Signals bei einem vergrößerten Frequenzbereich um die Mittenfrequenz fc herum sperrt. Dem Schritt 44 folgt der Schritt 40.If the signal S generated by the
Sofern keine Gefahr der Rückkopplung besteht, folgt der Abfrage 41 die Abfrage 45 oder optional ein Schritt 46, in dem das Filtern des von dem Mikrofon 30 erzeugten Signals S um die Untersuchungsfrequenz herum beendet wird.If there is no risk of feedback,
In besonders vorteilhafter Ausgestaltung ist vorgesehen, dass die Abfrage 41 frühestens nach Ablauf einer Mindest-Totzeit wiederholt wird, wobei die Mindest-Totzeit im vorliegenden Ausführungsbeispiel 200ms bis 300ms beträgt.In a particularly advantageous embodiment, it is provided that the
Gegebenenfalls kann vorgesehen werden, Abfrage 50 um eine oder mehrere der Abfragen
Die Untersuchungsfrequenzen fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8 in
Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als ein unterer Grenzwert Δ1 größer als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 50 eine Abfrage 51. Mittels der Abfrage 51 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als ein oberer Grenzwert Δ2 größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz. Der obere Grenzwert Δ2 liegt beispielsweise zwischen 20 und 40dB. Vorteilhafterweise beträgt der obere Grenzwert Δ2 im wesentlichen 30dB. Diese Abfrage verdeutlicht beispielhaft
Gegebenenfalls kann vorgesehen werden, Abfrage 51 um eine oder mehrere der Abfragen
Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz nicht um mehr als einen oberen Grenzwert Δ2 größer als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 51 eine Abfrage 52, mittels der durch Vergleich der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz mit der Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz zu zumindest einem früheren Zeitpunkt abgefragt wird, ob die Leistung des mittels des Mikrofons erzeugten Signals bei der Untersuchungsfrequenz exponentiell ansteigt.If the power of the signal S generated by means of the
Sofern nicht die Gefahr der Rückkopplung besteht bzw. festgestellt wird, folgt der Abfrage 82 eine der Abfrage 45 entsprechende Abfrage 83, ob das Programm beendet werden soll. Soll das Programm nicht beendet werden, so folgt der Abfrage 93 der Schritt 81. Andernfalls wird das Programm beendet.Unless the risk of feedback exists or is found, the
Sofern die Gefahr der Rückkopplung besteht, folgt der Abfrage 82 eine der Abfrage 42 entsprechende Abfrage 83, ob das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert wird. Wird das von dem Mikrofon 30 erzeugte Signal S bereits mittels des Bandpass-Filters um Signalanteile um die Untersuchungsfrequenz herum reduziert, so folgt der Abfrage 83 eine Abfrage 85 andernfalls eine Abfrage 84.If there is a risk of feedback, the
Mittels der Abfrage 84 wird abgefragt, ob ein Notchfilter zur Verfügung steht. Steht ein Notchfilter zur Verfügung, so folgt der Abfrage 84 ein dem Schritt 43 entsprechender Schritt 88, in dem die Filterparameter, d.h. für das konkrete Ausführungsbeispiel die Mittenfrequenz fc und die Güte Q des Bandpass-Filters, erzeugt werden. Ergibt die Abfrage 84 dagegen, dass kein Notchfilter zur Verfügung steht, so folgt der Abfrage 84 ein Schritt 86, in dem die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert wird. Dem Schritt 86 folgt ein Schritt 87, in dem der gesamte Durchlauf für eine Anhaltezeit von im wesentlichen 3s gestoppt wird. Dieser Schritt soll jedoch nur einmal pro Durchlauf ausgeführt werden.
Mittels der Abfrage 85 wird abgefragt, ob durch eine weitere Aufweitung des Frequenzbereichs, in dem das Bandpass-Filter sperrt, also durch weitere Verringerung von dessen Güte Q, eine vorbestimmte Minimalgüte unterschritten werden würde. Würde durch eine weitere Aufweitung des Frequenzbereichs eine vorbestimmte Minimalgüte unterschritten werden, so folgt der Abfrage 85 ein Schritt 89, andernfalls ein Schritt 91. Im Schritt 91, der dem Schritt 44 entspricht, wird die Güte Q verringert.By means of the
Den Schritten 87, 88 und 91 folgt ein Schritt 92, in dem der Ablauf eine Mindest-Totzeit lang angehalten wird, wobei die Mindest-Totzeit im vorliegenden Ausführungsbeispiel 100ms beträgt.
In dem Schritt 89 wird die Leistung des Signals S um einen Verringerungsfaktur, der vorteilhafterweise zwischen 2dB und 5dB, insbesondere bei im wesentlichen 3dB, liegt, verringert. Dem Schritt 89 folgt ein Schritt 90, in dem der gesamte Durchlauf für eine Anhaltezeit von im wesentlichen 3s gestoppt wird.In
Mittels der Abfrage 96 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als 12dB größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen (also dem Zweifachen) der Untersuchungsfrequenz ist. Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz um nicht weniger als 12dB größer ist als die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der ersten Harmonischen der Untersuchungsfrequenz, so folgt der Abfrage 96 eine Abfrage 97. Andernfalls folgt der Abfrage 96 die Abfrage 93.The
Mittels der Abfrage 97 wird abgefragt, ob die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer als eine Ansprechschwelle ist. Ist die Leistung des mittels des Mikrofons 30 erzeugten Signals S bei der Untersuchungsfrequenz länger als 750ms größer als eine Ansprechschwelle so folgt der Abfrage 97 die Abfrage 83. Andernfalls folgt der Abfrage 95 die Abfrage 93.The
Die erfindungsgemäße Rückkopplungserkennung ist nicht auf die Ausführungsformen gemäß
Claims (29)
- Method for operating a voice-assisted system, such as a communication and/or voice/intercom device in a motor vehicle (1), having at least one microphone (30) and at least one loudspeaker (31) for reproducing a signal (S) generated using the microphone (30) and having a bandpass filter (32) arranged between the microphone (30) and the loudspeaker (31),
characterized in that
the bandpass filter (32) is set on the basis of a comparison of the power of the signal (S) generated using the microphone (30) at an investigation frequency (fn+5), at which the power of the signal generated using the microphone is substantially at a maximum, with the power of the signal (S) generated using the microphone (30) at at least a substantially integer multiple of the investigation frequency (fn+5). - Method according to Claim 1, characterized in that the bandpass filter (32) is set on the basis of a comparison of the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) with the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) at at least one earlier time.
- Method according to Claim 1 or 2, characterized in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) at a blocking frequency if the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) is greater than the power of the signal (S) generated using the microphone (30) at the first harmonic of the investigation frequency (fn+5) by more than an upper limit value (Δ2).
- Method according to Claim 3, characterized in that the upper limit value (Δ2) is between 20 and 40 dB.
- Method according to Claim 4, characterized in that the upper limit value (Δ2) is substantially 30 dB.
- Method according to one of the preceding claims, characterized in that the bandpass filter (32) is set in such a manner that it does not block the proportion of the signal (S) generated using the microphone (30) at the blocking frequency if the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) is greater than the power of the signal (S) generated using the microphone (30) at the first harmonic of the investigation frequency (fn+5) by less than a lower limit value (Δ1).
- Method according to Claim 6, characterized in that the lower limit value (Δ1) is between 5 and 20 dB.
- Method according to Claim 7, characterized in that the lower limit value (Δ1) is substantially 12 dB.
- Method according to one of the preceding claims, characterized in that a comparison of the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) with the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) at at least earlier times is used to decide whether the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) rises exponentially.
- Method according to Claim 9, characterized in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) at the blocking frequency if it is decided that the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) rises exponentially.
- Method according to one of the preceding claims, characterized in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) at the blocking frequency only if the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) is greater than a response threshold for longer than a first response time.
- Method according to Claim 11, characterized in that the first response time is greater than substantially 750 ms.
- Method according to one of the preceding claims, characterized in that the power is determined at more than one investigation frequency (fn, fn+1, fn+2, fn+3, fn+4, fn+5, fn+6, fn+7, fn+8), and in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) at the blocking frequency only if the power of the signal (S) generated using the microphone (30) at an investigation frequency (fn+5) is greater than the power of the signal (S) generated using the microphone (30) at every other investigation frequency (fn, fn+1, fn+2, fn+3, fn+4, fn+6, fn+7, fn+8) for a longer than a second response time.
- Method according to Claim 13, characterized in that the second response time is greater than substantially 750 ms.
- Method according to one of the preceding claims, characterized in that the setting of the bandpass filter (32) with respect to the investigation frequency (fn+5) is repeated at the earliest after expiry of a minimum dead time.
- Method according to Claim 15, characterized in that the minimum dead time is 100 ms to 300 ms.
- Method according to Claim 15 or 16, characterized in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) in a frequency range around the blocking frequency if, after expiry of a repetition time which is greater than the minimum dead time, the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) is greater than the power of the signal (S) generated using the microphone (30) at the first harmonic of the investigation frequency (fn+5) by more than the upper limit value (Δ2) and/or if it is decided that the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) rises exponentially.
- Method according to Claim 15, 16 or 17, characterized in that the bandpass filter (32) is set in such a manner that it blocks the proportion of the signal (S) generated using the microphone (30) in an increased frequency range around the blocking frequency if, after expiry of a repetition time which is greater than the minimum dead time, the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) is greater than the power of the signal (S) generated using the microphone (30) at the first harmonic of the investigation frequency (fn+5) by more than the upper limit value (Δ2) and/or if it is decided that the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) rises exponentially.
- Method according to Claim 18, characterized in that the frequency range around the blocking frequency is increased only to a minimum quality.
- Method according to Claim 19, characterized in that the signal (S) generated using the microphone (30) is interrupted for an interruption period if the frequency range around the blocking frequency is increased to the minimum quality.
- Method according to Claim 20, characterized in that the interruption period is greater than substantially 1 s to 5 s.
- Method according to Claim 21, characterized in that the interruption period is greater than substantially 3 s.
- Method according to one of Claims 3 to 22, characterized in that the blocking frequency is the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum.
- Method according to one of Claims 3 to 22, characterized in that the blocking frequency is the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum and to which a correction frequency has been added.
- Method according to Claim 24, characterized in that the correction frequency is formed on the basis of the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5), at which the power of the signal (S) generated using the microphone (30) is at a maximum, and the power of the signal (S) generated using the microphone (30) at at least one investigation frequency (fn+4) beside this investigation frequency (fn+5).
- Method according to Claim 25, characterized in that the correction frequency is formed according to- fkorr is the correction frequency,- fdist is the distance between the investigation frequency (fn+5), at which the power of the signal (S) generated using the microphone (30) is at a maximum, and an investigation frequency (fn+4) having the greatest power directly beside the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum,- Pmax is the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum,- Pmaxneigh is the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+4) having the greatest power directly beside the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum, and- sign is a mathematical sign,where sign is positive if the investigation frequency (fn+4) having the greatest power directly beside the investigation frequency (fn+5), at which the power of the signal (S) generated using the microphone (30) is at a maximum, is greater than the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum, and where sign is otherwise negative.
- Method according to Claim 25, characterized in that the correction frequency is formed according to- fkorr is the correction frequency,- Δf is the distance between two investigation frequencies (fn, fn+1, fn+2, fn+3, tn+4, fn+5, fn+6, fn+7, fn+8),- Pmax is the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum,- Pneighright is the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+6) directly above the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum, and- Pneighleft is the power of the signal (S) generated using the microphone (30) at the investigation frequency (fn+4) directly below the investigation frequency (fn+5) at which the power of the signal (S) generated using the microphone (30) is at a maximum.
- Device for operating voice-assisted systems in accordance with a method according to one of the preceding claims, the device having at least one microphone (30) and at least one loudspeaker (31) for reproducing a signal (S) generated using the microphone (30) and a bandpass filter (32) arranged between the microphone (30) and the loudspeaker, and the device having decision logic for setting the bandpass filter (32) on the basis of a comparison of the power of the signal (S) generated using the microphone (30) at an investigation frequency (fn+5), at which the power of the signal generated using the microphone is substantially at a maximum, with the power of the signal (S) generated using the microphone (30) at at least a substantially integer multiple of the investigation frequency (fn+5).
- Device according to Claim 28, characterized in that the bandpass filter (32) is a filter bank having at least one notch filter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US360889 | 2003-02-07 | ||
US10/360,889 US7467084B2 (en) | 2003-02-07 | 2003-02-07 | Device and method for operating a voice-enhancement system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1445761A1 EP1445761A1 (en) | 2004-08-11 |
EP1445761B1 true EP1445761B1 (en) | 2016-05-25 |
Family
ID=32655663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04000822.9A Expired - Lifetime EP1445761B1 (en) | 2003-02-07 | 2004-01-16 | Apparatus and method for operating voice controlled systems in vehicles |
Country Status (2)
Country | Link |
---|---|
US (1) | US7467084B2 (en) |
EP (1) | EP1445761B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7912228B2 (en) * | 2003-07-18 | 2011-03-22 | Volkswagen Ag | Device and method for operating voice-supported systems in motor vehicles |
US20050153758A1 (en) * | 2004-01-13 | 2005-07-14 | International Business Machines Corporation | Apparatus, system and method of integrating wireless telephones in vehicles |
DE102006016593A1 (en) * | 2006-04-06 | 2007-10-11 | Bury Gmbh & Co. Kg | Vehicle-internal communication device for passengers of vehicle, has rear microphone directing backward, and rear loudspeaker fitted locally before rear passenger within upper region of backrest, preferably head support of front seat |
WO2008061205A2 (en) * | 2006-11-16 | 2008-05-22 | Johnson Controls Technology Company | Integrated vehicle communication system |
US8626516B2 (en) * | 2009-02-09 | 2014-01-07 | Broadcom Corporation | Method and system for dynamic range control in an audio processing system |
GB2471719A (en) * | 2009-07-10 | 2011-01-12 | Secomak Ltd | A vehicular communications system |
US10857909B2 (en) | 2019-02-05 | 2020-12-08 | Lear Corporation | Electrical assembly |
US10418019B1 (en) * | 2019-03-22 | 2019-09-17 | GM Global Technology Operations LLC | Method and system to mask occupant sounds in a ride sharing environment |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5870292A (en) | 1981-10-22 | 1983-04-26 | 日産自動車株式会社 | Voice recognition equipment for vehicle |
DE3925589C2 (en) | 1989-08-02 | 1994-03-17 | Blaupunkt Werke Gmbh | Method and arrangement for the elimination of interference from speech signals |
DE4106405C2 (en) | 1990-03-23 | 1996-02-29 | Ricoh Kk | Noise suppression device for a speech recognition system |
WO1992022060A1 (en) * | 1991-05-29 | 1992-12-10 | Pacific Microsonics, Inc. | Improved signal encode/decode system |
US5214708A (en) * | 1991-12-16 | 1993-05-25 | Mceachern Robert H | Speech information extractor |
US5574824A (en) * | 1994-04-11 | 1996-11-12 | The United States Of America As Represented By The Secretary Of The Air Force | Analysis/synthesis-based microphone array speech enhancer with variable signal distortion |
US5920840A (en) * | 1995-02-28 | 1999-07-06 | Motorola, Inc. | Communication system and method using a speaker dependent time-scaling technique |
US5903819A (en) | 1996-03-13 | 1999-05-11 | Ericsson Inc. | Noise suppressor circuit and associated method for suppressing periodic interference component portions of a communication signal |
DE19705471C2 (en) | 1997-02-13 | 1998-04-09 | Sican F & E Gmbh Sibet | Method and circuit arrangement for speech recognition and for voice control of devices |
US6535609B1 (en) | 1997-06-03 | 2003-03-18 | Lear Automotive Dearborn, Inc. | Cabin communication system |
US6496581B1 (en) | 1997-09-11 | 2002-12-17 | Digisonix, Inc. | Coupled acoustic echo cancellation system |
US7010129B1 (en) | 1998-05-06 | 2006-03-07 | Volkswagen Ag | Method and device for operating voice-controlled systems in motor vehicles |
DE19958836A1 (en) | 1999-11-29 | 2001-05-31 | Deutsche Telekom Ag | In car communication system has individual microphones and loudspeakers allows easy conversation |
US7613529B1 (en) | 2000-09-09 | 2009-11-03 | Harman International Industries, Limited | System for eliminating acoustic feedback |
US6674865B1 (en) * | 2000-10-19 | 2004-01-06 | Lear Corporation | Automatic volume control for communication system |
WO2002032356A1 (en) | 2000-10-19 | 2002-04-25 | Lear Corporation | Transient processing for communication system |
US6665411B2 (en) | 2001-02-21 | 2003-12-16 | Digisonix Llc | DVE system with instability detection |
-
2003
- 2003-02-07 US US10/360,889 patent/US7467084B2/en not_active Expired - Fee Related
-
2004
- 2004-01-16 EP EP04000822.9A patent/EP1445761B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7467084B2 (en) | 2008-12-16 |
EP1445761A1 (en) | 2004-08-11 |
US20040158460A1 (en) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60028779T2 (en) | FEEDBACK CANCELLATION WITH LOW FREQUENCY INPUT | |
EP0668007B1 (en) | Mobile radiotelephone set with handsfree device | |
DE60031583T2 (en) | Language distribution system | |
EP3337189A1 (en) | Method for determining a position of a signal source | |
DE112016004394B4 (en) | howl suppression device | |
EP1445761B1 (en) | Apparatus and method for operating voice controlled systems in vehicles | |
DE102006047983A1 (en) | Processing an input signal in a hearing aid | |
DE19640132A1 (en) | Method for automatically limiting distortion on audio devices and circuit arrangement for carrying out the method | |
DE10020756B4 (en) | Device and method for the noise-dependent adaptation of an acoustic useful signal | |
EP3793209B1 (en) | Hearing device with active noise cancellation and method for operating it | |
EP3393143B1 (en) | Method for operating a hearing aid | |
EP1649719B1 (en) | Device and method for operating voice-assisted systems in motor vehicles | |
EP2200341B1 (en) | Method for operating a hearing aid and hearing aid with a source separation device | |
EP3951780B1 (en) | Hearing aid and method for operating a hearing aid | |
EP1808853A1 (en) | Public address system, method and computer program to enhance the speech intelligibility of spoken messages | |
DE10025496A1 (en) | Audio system has control device that generates control signals based on interference signals extracted from signals output by microphone, and switches at least one tweeter of loudspeaker system as microphone | |
EP1351550B1 (en) | Method for adapting a signal amplification in a hearing aid and a hearing aid | |
EP1077013B1 (en) | Method and device for operating voice-controlled systems in motor vehicles | |
DE3602000C2 (en) | ||
DE2456468A1 (en) | Device increasing audibility and intelligibility agst. external noise - uses amplifier and detector to determine interfering noise level | |
EP3955241A1 (en) | Method for operating a hearing aid and hearing aid | |
WO2019215200A1 (en) | Method for operating a hearing system, and hearing system | |
EP3340656A1 (en) | Method for operating a hearing aid | |
DE10140523B4 (en) | Device for feedback canceling the output of microphone signals through loudspeakers | |
DE102016005904A1 (en) | Instantaneous noise suppression in a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RTI1 | Title (correction) |
Free format text: APPARATUS AND METHOD FOR OPERATING VOICE CONTROLLED SYSTEMS IN VEHICLES |
|
RTI1 | Title (correction) |
Free format text: APPARATUS AND METHOD FOR OPERATING VOICE CONTROLLED SYSTEMS IN VEHICLES |
|
17P | Request for examination filed |
Effective date: 20050211 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20050427 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502004015202 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G10L0021020000 Ipc: G10L0021020800 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04R 3/02 20060101ALI20151116BHEP Ipc: G10L 21/0208 20130101AFI20151116BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 802905 Country of ref document: AT Kind code of ref document: T Effective date: 20160615 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015202 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160826 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160926 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015202 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170116 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170116 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170116 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 802905 Country of ref document: AT Kind code of ref document: T Effective date: 20170116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200131 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004015202 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210803 |