EP1406990B1 - Method for production of medium distillates by hydroisomerisation and hydrocracking in two stages of material from the fischer-tropsch process - Google Patents
Method for production of medium distillates by hydroisomerisation and hydrocracking in two stages of material from the fischer-tropsch process Download PDFInfo
- Publication number
- EP1406990B1 EP1406990B1 EP02751285A EP02751285A EP1406990B1 EP 1406990 B1 EP1406990 B1 EP 1406990B1 EP 02751285 A EP02751285 A EP 02751285A EP 02751285 A EP02751285 A EP 02751285A EP 1406990 B1 EP1406990 B1 EP 1406990B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- fraction
- effluent
- weight
- hydrocracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1022—Fischer-Tropsch products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4081—Recycling aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/06—Gasoil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/08—Jet fuel
Definitions
- the present invention relates to a process and a treatment plant with hydrocracking and hydroisomerization, feedstock from the Fischer-Tropsch process, for obtaining middle distillates (gas oil, kerosene).
- the synthesis gas (CO + H 2 ) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form.
- These products are generally free of heteroatomic impurities such as, for example, sulfur, nitrogen or metals. They also contain practically little or no aromatics, naphthenes and more generally cycles especially in the case of cobalt catalysts.
- they may have a significant content of oxygenated products which, expressed by weight of oxygen, is generally less than about 5% by weight and also an unsaturated content (olefinic products in general) generally less than 10% by weight.
- these products mainly paraffins normal, can not be used as such, in particular because of their cold-holding properties not compatible with the usual uses of oil cuts.
- the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule is +37 ° C about what makes its use impossible, the specification being -15 ° C for diesel.
- the hydrocarbons resulting from the Fischer-Tropsch process comprising mainly n-paraffins must be converted into more valuable products such as, for example, gas oil, kerosene, which are obtained after catalytic reactions of hydroisomerization.
- the patent EP-583,836 discloses a process for the production of middle distillates from filler obtained by Fischer-Tropsch synthesis.
- the filler is treated in its entirety, at most it is possible to remove the fraction C 4 minus and obtain the fraction C 5 + boiling at near 100 ° C.
- Said feed is subjected to a hydrotreatment and then to a hydroisomerisation with a conversion (products boiling above 370 ° C in lower boiling products) by at least 40% by weight.
- a catalyst that can be used in hydroconversion is a platinum-silica-alumina formulation. The conversions described in the examples are at most 60% by weight.
- the results obtained show that it is more profitable to send said gasoline cut (C 5 to at most 200 ° C) to a steam cracker to make olefins that to treat it in the process according to the invention, where it has been found that the quality of this cut is only slightly improved. In particular, its engine and search octane numbers remain too low for this cut to be integrated into the gasoline pool.
- the process according to the invention allows the production of middle distillates (kerosene, diesel) with a minimum of gasoline obtained.
- the yields of middle distillates (kerosene + gas oil) of the process according to the invention are higher than those of the prior art, in particular because the kerosene cut (generally initial boiling point of 150 to 160 ° C.
- the catalytic performances (activity, selectivity) and / or the cycle time of the hydrotreatment and hydroisomerization / hydrocracking catalysts used in the process according to the invention could be improved.
- the effluent from the Fischer-Tropsch synthesis unit comprises mainly paraffins but also contains olefins and oxygenated compounds such as alcohols. It also contains water, CO 2 , CO and unreacted hydrogen as well as light hydrocarbon compounds C1 to C4 in the form of gas.
- the effluent from the Fischer-Tropsch synthesis unit is fractionated (for example by distillation) into at least two fractions: at least one light fraction and at least one heavy-point fraction. initial boiling equal to a temperature between 120 and 200 ° C and preferably between 130 and 180 ° C and even more preferably at a temperature of about 150 ° C, in other words the cutting point is between 120 and 200 ° C.
- the heavy fraction generally has paraffin contents of at least 50% by weight.
- This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation, etc.
- the effluent from the Fischer-Tropsch synthesis unit will be subject to flash, decantation to remove water and distillation to obtain at least the 2 fractions described above.
- the light fraction is not treated according to the process of the invention but may for example constitute a good load for petrochemicals and more particularly for a steam cracking unit. At least one heavy fraction previously described is treated according to the method of the invention.
- this fraction or at least part of the initial charge is admitted via line (1) in the presence of hydrogen (supplied via line (2)) to an area (3) containing a hydrotreatment catalyst which has aim is to reduce the content of olefinic and unsaturated compounds as well as to hydrotreat the oxygenates (alcohols) present in the heavy fraction described above.
- the catalysts used in this step (b) are hydrotreating catalysts which are non-crunchy or slightly crisp and comprise at least one metal of group VIII and / or group VI of the periodic table of elements.
- the catalyst comprises at least one metal of the metal group formed by nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one support.
- the hydro-dehydrogenating function is preferably provided by at least one metal or group VIII metal compound such as nickel and cobalt in particular.
- a combination of at least one metal or group VI metal compound (especially molybdenum or tungsten) and at least one metal or group VIII metal compound (especially cobalt and nickel) of the classification may be used periodic elements.
- the non-noble group VIII metal concentration, when used, is 0.01-15% by weight based on the finished catalyst.
- At least one element selected from P, B, Si is deposited on the support.
- This catalyst may advantageously contain phosphorus; indeed, this compound brings two advantages to hydrotreatment catalysts: an ease in particular during the impregnation of the nickel and molybdenum solutions, and a better hydrogenation activity.
- the total concentration of metals of groups VI and VIII, expressed as metal oxides is between 5 and 40% by weight and preferably between 7 and 30% by weight and the weight ratio expressed as metal oxide. (or metals) of group VI on metal (or metals) of group VIII is between 1.25 and 20 and preferably between 2 and 10.
- the concentration of phosphorus oxide P2O5 will be lower 15% by weight and preferably less than 10% by weight.
- boron and phosphorus are promoter elements deposited on the support, and for example the catalyst according to the patent. EP-297.949 .
- the sum of the amounts of boron and phosphorus, expressed respectively by weight of boron trioxide and phosphorus pentoxide, relative to the weight of support, is about 5 to 15% and the atomic ratio boron on phosphorus is about 1 1 to 2: 1 and at least 40% of the total pore volume of the finished catalyst is contained in pores with an average diameter greater than 13 nanometers.
- the amount of Group VI metal such as molybdenum or tungsten is such that the phosphorus atomic ratio on Group VIB metal is about 0.5: 1 to 1.5: 1; the amounts of Group VIB metal and Group VIII metal, such as nickel or cobalt, are such that the atomic ratio of Group VIII metal to Group VIB metal is about 0.3: 1 to 0.7 1.
- the amounts of Group VIB metal expressed in weight of metal relative to the weight of finished catalyst is about 2 to 30% and the amount of Group VIII metal expressed as weight of metal relative to the weight of finished catalyst is about 0.01 to 15%.
- Ni alumina, NiMo on alumina, NiMo on alumina doped with boron and phosphorus and NiMo on silica-alumina catalysts are also preferred.
- eta or gamma alumina will be chosen.
- Another particularly advantageous catalyst contains promoter silicon deposited on the support.
- An interesting catalyst contains BSi or PSi.
- the metal content is between 0.05 and 3% by weight relative to the finished catalyst and preferably between 0.1 and 2% by weight.
- catalyst preferably an alumina, but which may also be boron oxide, magnesia, zirconia, titanium oxide, a clay or a combination of these oxides.
- a support which is preferably an alumina, but which may also be boron oxide, magnesia, zirconia, titanium oxide, a clay or a combination of these oxides.
- These catalysts can be prepared by any method known to those skilled in the art or can be acquired from companies specializing in the manufacture and sale of catalysts.
- the feedstock is contacted in the presence of hydrogen and the catalyst at operating temperatures and pressures for carrying out the hydrodeoxygenation (HDO) of the alcohols and the hydrogenation of the olefins present in the load.
- the reaction temperatures used in the hydrotreatment reactor are between 100 and 350, preferably between 150 and 300 ° C, even more preferably between 150 and 275 ° C and more preferably between 175 and 250 ° C.
- the total pressure range used varies from 5 to 150 bar, preferably from 10 to 100 bar and even more preferably from 10 to 90 bar.
- the hydrogen that feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 100 to 3000 Nl / l / h, preferably between 100 and 2000Ml / l / h and even more preferred between 250 and 1500 Nl / l / h.
- the charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 . Under these conditions, the content of unsaturated and oxygenated molecules is reduced to less than 0.5% and to less than 0.1% in general.
- the hydrotreatment step is conducted under conditions such that conversion to products having boiling points greater than or equal to 370 ° C to products having boiling points below 370 ° C is limited to 30% wt. preferably, less than 20% and even more preferably less than 10%.
- the effluent (line 4) from the hydrotreating reactor (3) is optionally introduced into a zone (5) of water removal which is intended to eliminate at least partly the water produced during the hydrotreatment reactions.
- This removal of water can be carried out with or without eliminating the C 4 less gas fraction which is generally produced during the hydrotreating step.
- the elimination of water is understood to mean the elimination of the water produced by the hydrodeoxygenation (HDO) reactions of the alcohols, but it may also include the elimination at least partly of the saturation water of the hydrocarbons.
- the removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
- At least part and preferably all of the hydrocarbon fraction (at least part of the feed or at least part of the heavy fraction of step a) or at least part of the hydrotreated fraction or feed and optionally dried) is then introduced (line 6) and possibly a stream of hydrogen (line 7) into the zone (8) containing said first hydroisomerization / hydrocracking catalyst.
- Another possibility of the process also according to the invention consists in sending part or all of the effluent leaving the hydrotreating reactor (without drying) into the reactor containing the hydroisomerization / hydrocracking catalyst and preferably at the same time. time as a flow of hydrogen.
- the metal contained in the catalyst Before use in the reaction, the metal contained in the catalyst must be reduced.
- One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature of from 150 ° C to 650 ° C and a total pressure of 0.1 to 25 MPa.
- a reduction consists of a stage at 150 ° C. for 2 hours then a rise in temperature up to 450 ° C. at the rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. throughout this reduction step, the hydrogen flow rate is 1000 liters hydrogen / liter catalyst. Note also that any ex-situ reduction method is suitable.
- the temperature used in this stage is between 200 and 450.degree. C. and preferably from 250.degree. C. to 450.degree. C., advantageously from 300 to 450.degree. C., and even more advantageously above 320.degree. C. or, for example, between 320.degree.-420.degree. .
- the two stages, hydrotreatment and hydroisomerization-hydrocracking, can be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
- the hydroisomerized / hydrocracked effluent leaving the reactor (8), step (d), is sent to a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products.
- a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products.
- boiling point below 340 ° C and preferably below 370 ° C and including including those formed in step (d) in the reactor (8), and to separate the residual fraction whose initial point of boiling is generally greater than at least 340 ° C and preferably greater than or equal to at least 370 ° C.
- the process according to the invention uses a second zone (16) containing a hydroisomerization / hydrocracking catalyst (called second catalyst). It passes on this catalyst, in the presence of hydrogen (line 15) an effluent chosen from a part of the kerosene produced (line 12), part of the gas oil (line 13) and the residual fraction and preferably the residual fraction whose initial boiling point is generally greater than at least 370 ° C.
- the catalyst present in the reactor (16) of step (f) of the process according to the invention is in the same way as for stage d), of amorphous acid type and based on at least one noble metal of group VIII; however it may be the same or different from that of step d).
- the fraction entering the reactor (16) undergoes, in the presence of hydrogen, hydroisomerization and / or hydrocracking reactions in the reactor, which will make it possible to improve the quality of the products formed and more particularly the properties cold kerosene and diesel, and obtain distillate yields improved over the prior art.
- the temperature used in this stage is between 200 and 450.degree. C. and preferably from 250.degree. C. to 450.degree. C., advantageously from 300 to 450.degree. C., and even more advantageously above 320.degree. C. or, for example, between 320.degree.-420.degree. .
- the operator will adjust the operating conditions on the first and second hydrocracking / hydroisomerization catalyst so as to obtain the desired product qualities and yields.
- the conversion by pass in Products having a boiling point greater than or equal to 150 ° C. in products with a boiling point below 150 ° C. are less than 50% by weight, preferably less than 30% by weight.
- the conversion by pass to products with boiling points greater than or equal to 370 ° C in products with boiling points lower than 370 ° C is superior. at 40% by weight, preferably above 50% by weight, or better at 60% by weight. It can even be advantageous to have conversions of at least 80% by weight.
- the pass conversion into products with boiling points greater than or equal to 150 ° C into products with boiling points below 150 ° C is lower. at 50% by weight, preferably less than 30% by weight.
- the operating conditions applied in the reactors (8) and (16) may be different or identical.
- the operating conditions used in the 2 hydroisomerization / hydrocracking reactors are chosen to be different in terms of operating pressure, temperature, contact time (wh) and H 2 / feed ratio. This embodiment allows the operator to adjust the qualities and / or yields of kerosene and diesel.
- the effluent from the reactor (16) is then sent via line (17) in the distillation train so as to separate the conversion products, gasoline, kerosene and diesel.
- FIG. 1 there is shown an embodiment with the residual fraction (line 14) passing through the hydroisomerization / hydrocracking zone (16) (step f), the effluent obtained being sent (line 17) to the zone (9) of separation.
- the kerosene and / or diesel fuel may be partly recycled (line 18) in the hydroisomerization / hydrocracking zone (8) (step d) on the first catalyst.
- the invention is not limited to these 2 embodiments.
- the gas oil (s) obtained has a pour point of at most 0 ° C, generally below -10 ° C and often below -15 ° C.
- the cetane number is greater than 60, generally greater than 65, often greater than 70.
- the resulting kerosene (s) has a freezing point of not more than -35 ° C, generally less than -40 ° C.
- the smoke point is greater than 25 mm, usually greater than 30 mm.
- the yield of gasoline will always be less than 50% by weight, preferably less than 40% by weight; advantageously less than 30% by weight or 20% by weight or even 15% by weight.
- the installation comprises a pipe (14) for sending said residual fraction into the zone (16) containing the second catalyst, and a pipe (18) for recycling a portion of the kerosene and / or diesel fuel produced in the zone (8) containing the first catalyst.
- the installation comprises a pipe (12, 13) for feeding a portion of the kerosene and / or diesel fuel produced in the zone (16) containing the second catalyst, and a pipe (14) for recycling. said residual fraction in the zone (8) containing the first catalyst.
- the majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
- the acid function is provided by supports with large surface areas (generally 150 to 800 m 2 .g -1 ) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica-aluminas.
- the equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
- a weak acidic function and a strong hydrogenating function result in weakly active and selective catalysts in the isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
- a third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
- the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function provided by at least one noble metal.
- the support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst.
- the amorphous acidic support is advantageously a silica-alumina but other supports are usable.
- the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example. More generally, and preferably, the catalyst does not contain added halogen, for example fluorine.
- the support has not been impregnated with a silicon compound.
- a catalyst comprising a particular silica-alumina is used which makes it possible to obtain very active catalysts that are also very selective in the isomerization of effluents from Fischer-Synthesis units. Tropsch.
- the metal function is provided by a noble metal of group VIII of the periodic table of elements and more particularly platinum and / or palladium.
- the noble metal content expressed in% by weight of metal relative to the catalyst, is between 0.05 to 10 and more preferably between 0.1 and 5.
- the dispersion representing the reagent-accessible metal fraction based on the total amount of catalyst metal, can be measured, for example, by H 2 / O 2 titration.
- the metal is reduced beforehand, that is to say that it undergoes treatment under hydrogen flow at high temperature under conditions such that all Hydrogen-accessible platinum atoms are converted to metallic form.
- a flow of oxygen is sent under suitable operating conditions so that all the reduced platinum atoms accessible to oxygen is oxidized in PtO 2 form.
- the dispersion is then equal to the ratio of the quantity of platinum accessible to oxygen to the total amount of platinum of the catalyst. In our case, the dispersion is between 20% and 100% and preferably between 30% and 100%.
- the distribution of the noble metal represents the distribution of the metal within the catalyst grain, the metal being able to be well or poorly dispersed.
- the platinum poorly distributed for example detected in a ring whose thickness is significantly less than the radius of the grain
- the platinum distribution is good, that is to say that the platinum profile, measured according to the Castaing microprobe method, has a distribution coefficient greater than 0.1 and preferably greater than 0.1. 0.2.
- the BET surface of the support is between 100 m 2 / g and 500 m 2 / g and preferably between 250 m 2 / g and 450 m 2 / g and for silica-alumina-based supports, even more preferably between 310 m 2 / g and 450 m 2 / g.
- the average pore diameter of the catalyst is measured from the porous distribution profile obtained with a mercury porosimeter.
- the average pore diameter is defined as the diameter corresponding to the cancellation of the derived curve obtained from the mercury porosity curve.
- the mean diameter of the pores, thus defined, is between 1 nm (1x10 -9 meters) and 12 nm (12x10 -9 meters) and preferably between 1 nm (1x10 -9 meters) and 11 nm (11x10 -9 meters). ) and even more preferably between 3 nm (4x10 -9 meters) and 10.5 nm (10.5x10 -9 meters).
- the preferred catalyst has a porous distribution such as the pore volume of the pores whose diameter is between the mean diameter as defined previously decreased by 3 nm and the average diameter as defined above increased by 3 nm (ie the mean diameter ⁇ 3 nm) is greater than 40% of the total pore volume and preferably between 50% and 90% of the total pore volume and more preferably between 50% and 70% of the total pore volume.
- silica-alumina catalyst it is generally less than 1.0 ml / g and preferably between 0.3 and 0.9 ml / g and even more preferably less than 0.85 ml / g.
- the preparation and shaping of the support, and in particular of the silica-alumina (especially used in the preferred embodiment) is made by usual methods well known to those skilled in the art.
- the support may undergo calcination, for example a heat treatment at 300-750 ° C. (preferred 600 ° C.) for 0.25-10 hours (preferred 2 hours) under 0. -30% volume of water vapor (for the silica alumina 7.5% preferred).
- the noble metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum and / or palladium, platinum being still preferred) on the surface of a support.
- One of the preferred methods is dry impregnation which consists of introducing the metal salt into a volume of solution which is equal to the pore volume of the catalyst mass to be impregnated.
- the catalyst Prior to the reduction operation, the catalyst may be calcined such as, for example, in dry air at 300-750 ° C (520 ° C preferred) for 0.25-10 hours (preferred 2 hours).
- the bifunctional catalyst comprises at least one noble metal deposited on an amorphous acid support, the noble metal dispersion being less than 20%.
- the fraction of the noble metal particles having a size of less than 2 nm represents at most 2% by weight of the noble metal deposited on the catalyst.
- At least 70% preferably at least 80%, and more preferably at least 90%
- noble metal particles have a size greater than 4 nm (% number).
- the support is amorphous, it does not contain molecular sieve; the catalyst does not contain molecular sieves either.
- the amorphous acid support is generally chosen from the group formed by a silica-alumina, a halogenated alumina (preferably fluorinated), a silicon-doped alumina (deposited silicon), a titanium oxide alumina mixture, a sulphated zirconia, a doped zirconia with tungsten, and mixtures thereof with one another or with at least one amorphous matrix chosen from the group formed by alumina, titanium oxide, silica, boron oxide, magnesia, zirconia, clay by example.
- the support consists of an amorphous silica alumina.
- a preferred catalyst comprises (preferably consists essentially of) from 0.05 to 10% by weight of at least one Group VIII noble metal deposited on an amorphous silica-alumina support.
- the metal function is provided by at least one noble metal of group VIII of the periodic table of elements and more particularly platinum and / or palladium.
- the noble metal content expressed in% by weight of metal relative to the catalyst, is between 0.05 to 10 and more preferably between 0.1 and 5.
- the dispersion (measured in the same manner as above) is less than 20%, it is generally greater than 1% or better at 5%.
- the catalyst sample is finely ground in an agate mortar and is then ethanol-dispersed. Samples at different locations to ensure good representativeness in size are made and deposited on a copper grid covered with a thin carbon film. The grids are then air dried under infra-red light before being introduced into the microscope for observation. In order to estimate the average size of noble metal particles, several hundred measurements are made from dozens of shots. All of these measurements make it possible to produce a histogram of distribution of the particle size. Thus, we can accurately estimate the proportion of particles corresponding to each particle size domain.
- the distribution of platinum is good that is to say that the platinum profile, measured according to the method of the microprobe of Castaing, has a distribution coefficient greater than 0.1 advantageously greater than 0.2 and preferably greater than 0.5.
- the BET surface of the support is generally between 100 m 2 / g and 500m 2 / g and preferably between 250 m 2 / g and 450 m 2 / g and the silica alumina carriers, even more preferably 310 m 2 / g.
- silica-based alumina supports it is generally less than 1.2 ml / g and preferably between 0.3 and 1.1 ml / g and even more advantageously less than 1.05 ml / g.
- the preparation and shaping of the silica-alumina and of any support in general is made by usual methods well known to those skilled in the art.
- the support may undergo calcination, for example a heat treatment at 300-750 ° C. (600 ° C. preferred) for a period of between 0.25 and 10 hours (2 hours). preferred) under 0-30% volume of water vapor (about 7.5% preferred for a silica-alumina).
- the metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum) on the surface of a support.
- One of the preferred methods is dry impregnation which consists of introducing the metal salt into a volume of solution which is equal to the pore volume of the catalyst mass to be impregnated.
- the catalyst Prior to the reduction operation and to obtain the size distribution of the metal particles, the catalyst is calcined in humidified air at 300-750 ° C (550 ° C preferred) for 0.25-10 hours (preferred 2 hours).
- the partial pressure of H2O during the calcination is for example 0.05 bar to 0.50 bar (0.15 bar preferred).
- Other known methods of treatment making it possible to obtain the dispersion of less than 20% are suitable within the scope of the invention.
- the support may consist of pure silica-alumina or result from mixing with said silica-alumina a binder such as silica (SiO 2 ), alumina (Al 2 O 3 ), clays, titanium oxide (TiO 2 ), boron oxide (B 2 O 3 ) and zirconia (ZrO 2 ) and any mixture of binders previously mentioned.
- the preferred binders are silica and alumina and even more preferably alumina in all these forms known to those skilled in the art, for example gamma-alumina.
- the weight content of binder in the catalyst support is between 0 and 40%, more particularly between 1 and 40% and even more preferably between 5% and 20%. As a result, the weight content of silica-alumina is 60 - 100%.
- the catalysts according to the invention whose support consists solely of silica-alumina without any binder are preferred.
- the support may be prepared by shaping the silica-alumina in the presence or absence of binder by any technique known to those skilled in the art.
- the shaping can be carried out for example by extrusion, pelletizing, by the method of coagulation in drop (oil-drop), by rotating plate granulation or by any other method well known to those skilled in the art.
- At least one calcination may be carried out after any of the steps of the preparation, it is usually carried out under air at a temperature of at least 150 ° C, preferably at least 300 ° C.
- the catalyst is a bifunctional catalyst in which a noble metal is supported by a support consisting essentially of an amorphous silica-alumina gel and micro / mesoporous membrane with a controlled pore size, having an area of at least 500 m 2 / g and an SiO 2 / Al 2 O 3 molar ratio of between 30/1 and 500/1, preferably between 40/1 and 150/1.
- the noble metal supported on the support may be chosen from metals of Groups 8, 9 and 10 of the Periodic Table, in particular Co, Ni, Pd and Pt. Palladium and platinum are preferably used.
- the proportion of noble metals is normally between 0.05 and 5.0% by weight relative to the weight of the support. Particularly advantageous results have been obtained using palladium and platinum in proportions of between 0.2 and 1.0% by weight.
- Said support is generally obtained from a mixture of tetra-alkylated ammonium hydroxide, an aluminum compound which can be hydrolysed to Al 2 O 3 of a silicon compound which can be hydrolyzed to SiO 2 and a sufficient amount of water to dissolve and hydrolyze these compounds, said tetra-alkylated ammonium hydroxide having 2 to 6 carbon atoms in each alkyl residue, said hydrolyzable aluminum compound being preferably a trialkoxide of aluminum having 2 to 4 carbon atoms in each alkoxide residue and said hydrolysable silicon compound being a tetraalkylorthosilicate having 1 to 5 carbon atoms for each alkyl residue.
- the tetra-alkylated ammonium hydroxide which may be used in the context of the present invention is, for example, chosen from hydroxides of tetraethylammonium, propylammonium, isopropylammonium, butylammonium, isobutylammonium, terbutylammonium and pentylammonium, and preferably from the hydroxides of tetrapropylammonium, tetraisopropylammonium and tetrabutylammonium.
- Trialkoxide aluminum is for example chosen from triethoxide, propoxide, isopropoxide, butoxide, isobutoxide and aluminum tertbutoxide, preferably from tripropoxide and tri-isopropoxide of aluminum.
- the tetra-alkylated orthosilicate is chosen, for example, from tetramethyl-, tetraethyl-, propyl-, isopropyl-, butyl-, isobutyl-, terbutyl- and pentyl-orthosilicate, tetraethylorthosilicate being used preferably.
- an aqueous solution containing tetra-alkylated ammonium hydroxide and aluminum trialkoxide is first prepared at a temperature sufficient to ensure effective dissolution of the aluminum compound.
- the tetra-alkylated orthosilicate is added to said aqueous solution.
- This mixture is brought to a temperature suitable for the activation of the hydrolysis reaction. This temperature depends on the composition of the reaction mixture (generally 70 to 100 ° C).
- the hydrolysis reaction is exothermic, which guarantees a self-sustaining reaction after activation.
- the proportions of the constituents of the mixture are such that they respect the following molar ratios: SiO 2 / Al 2 O 3 of 30/1 to 500/1, tetra-alkylated ammonium hydroxide / SiO 2 of 0.05 / 1 to 0.2 / 1, and H 2 O / SiO 2 from 5/1 to 40/1.
- the preferred values for these molar ratios are as follows: SiO 2 / Al 2 O 3 from 40/1 to 150/1, tetra-alkylated ammonium hydroxide / SiO 2 from 0.05 / 1 to 0.2 / 1, and H 2 O / SiO 2 from 10/1 to 25/1.
- the hydrolysis of the reagents and their gelling are carried out at a temperature equal to or higher than the boiling point, at atmospheric pressure, of any alcohol developed as a by-product of said hydrolysis reaction, without any significant elimination or elimination. of these alcohols of the reaction medium.
- the hydrolysis and gelling temperature is therefore critical and is suitably maintained at values above about 65 ° C, of the order of about 110 ° C.
- the hydrolysis and gelling are carried out in the presence of an amount of alcohol greater than that developed as a by-product.
- a free alcohol preferably ethanol, is added to the reaction mixture in a proportion up to a maximum molar ratio of added alcohol / SiO 2 of 8/1.
- the time required to carry out the hydrolysis and gelling under the conditions indicated above is normally between 10 minutes and 3 hours, preferably between 1 and 2 hours.
- the alcohol is finally extracted from the gel which is then dried, preferably under a reduced pressure (from 3 to 6 kPa for example), at a temperature of 110 ° C.
- the dried gel is then subjected to a calcination process under an oxidizing atmosphere (normally in air), at a temperature between 500 and 700 ° C for 4 to 20 hours, preferably at 500-600 ° C for 6 to 10 hours.
- the silica gel and alumina thus obtained has a composition which corresponds to that of the reagents used, if it is considered that the reaction yields are practically complete.
- the molar ratio SiO 2 / Al 2 O 3 is therefore between 30/1 and 500/1, preferably between 40/1 and 150/1, the preferred values being of the order of 100/1.
- This gel is amorphous, when subjected to X-ray powder diffraction analysis, it has an area of at least 500 m 2 / g, generally between 600 and 850 m 2 / g, and a pore volume of 0.4 to 0.8 cm 3 / g .
- a metal selected from the noble metals of groups 8, 9 or 10 of the periodic table is supported on the micro / mesoporous amorphous silica-alumina gel obtained as described above. As indicated above, this metal is preferably chosen from platinum or palladium, platinum being preferably used.
- the proportion of noble metal, especially platinum, in the catalyst thus supported is between 0.4 and 0.8%, preferably between 0.6 and 0.8% by weight relative to the weight of the support.
- the porous support having the characteristics of the acid carrier (a) described above is brought into contact with an aqueous or alcohol solution of a compound of the desired metal for a time sufficient to allow a homogeneous distribution of the metal in the solid. This operation normally requires a few minutes to several hours, preferably with stirring.
- H 2 PtF 6 , H 2 PtCl 6 , [Pt (NH 3 ) 4] Cl 2 , [Pt (NH 3 ) 4 ] (OH) 2 are, for example, soluble salts suitable for this purpose, as well as salts of palladium; mixtures of salts of different metals are also used in the context of the invention. It is advantageous to use the minimum amount of aqueous liquid (usually water or an aqueous mixture with a second inert liquid or with an acid in a proportion of less than 50% by weight) necessary for dissolving the salt and impregnating uniformly said support, preferably with a solution / support ratio of between 1 and 3. The amount of metal used is chosen according to the desired concentration in the catalyst, the entire metal being fixed on the support.
- the solution is evaporated and the solid obtained is dried and calcined under an inert or reducing atmosphere, under conditions of temperature and time similar to those previously described for the calcination of the support.
- Another method of impregnation is by means of an ion exchange.
- the support consisting of amorphous silica-alumina gel is brought into contact with an aqueous solution of a salt of the metal used, as in the previous case, but the deposition is carried out by ion exchange, under conditions made basic (pH between 8.5 and 11) by the addition of a sufficient amount of an alkaline compound, usually an ammonium hydroxide.
- the suspended solid is then separated from the liquid by filtration or decantation, and then dried and calcined as described above.
- the salt of the transition metal may be included in the silica-alumina gel during the preparation phase, for example before hydrolysis for the formation of the wet gel, or before its calcination.
- the latter method is advantageously easier to implement, the catalyst thus obtained is slightly less active and selective than that obtained with the two previous methods.
- the supported catalyst described above can be used as it is during the hydrocracking step of the process according to the present invention, after activation according to one of the known methods and / or described below.
- said supported catalyst is reinforced by the addition with mixing of a suitable amount of an inert mineral solid capable of improving its mechanical properties.
- the catalyst is preferably used in granular form rather than in powder form with a relatively tight particle distribution.
- Extrusion and shaping methods are also known which use a suitable inert additive (or binder) capable of providing the properties mentioned above, for example according to the methods described in the European patent applications.
- EP-A 550,922 and EP-A 665.055 are also known which use a suitable inert additive (or binder) capable of providing the properties mentioned above, for example according to the methods described in the European patent applications.
- EP-A 550,922 and EP-A 665.055 being preferably implemented, their contents being mentioned here by way of reference.
- Plasticizers such as methylcellulose are also preferably added during step (b) to promote the formation of a homogeneous, easily treated mixture.
- a granular acidic support comprising from 30 to 70% by weight of inert inorganic binder is thus obtained, the remaining proportion consisting of amorphous silica-alumina having essentially the same characteristics of porosity, surface and structure as those described above for the same gel without binder.
- the granules are advantageously in the form of pellets approximately 2-5 mm in diameter and 2-10 mm long.
- the deposition step of the noble metal on the granular acidic support is then carried out according to the same procedure as that described above.
- the metal contained in the catalyst must be reduced.
- One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature of from 150 ° C to 650 ° C and a total pressure of 0.1 to 25 MPa.
- a reduction consists of a stage at 150 ° C. for 2 hours then a rise in temperature up to 450 ° C. at the rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. throughout this reduction step, the hydrogen flow rate is 1000 l hydrogen / catalyst. Note that any in situ or ex-situ reduction method is suitable.
- the pressure in the reactor is maintained between 30 and 80 atm.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
La présente invention concerne un procédé et une installation de traitement avec hydrocraquage et hydroisomérisation, de charges issues du procédé Fischer-Tropsch, permettant d'obtenir des distillats moyens (gazole, kérosène).The present invention relates to a process and a treatment plant with hydrocracking and hydroisomerization, feedstock from the Fischer-Tropsch process, for obtaining middle distillates (gas oil, kerosene).
Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Ces produits sont généralement exempts d'impuretés hétéroatomiques telles que, par exemple, le soufre, l'azote ou des métaux. Ils ne contiennent également pratiquement peu ou pas d'aromatiques, de naphtènes et plus généralement de cycles en particulier dans le cas de catalyseurs au cobalt. Par contre, ils peuvent présenter une teneur non négligeable en produits oxygénés qui, exprimée en poids d'oxygène, est généralement inférieure à 5% poids environ et également une teneur en insaturés (produits oléfiniques en général) généralement inférieure à 10% en poids. Cependant, ces produits, principalement constitués de normales de paraffines, ne peuvent être utilisés tels quels, notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 340°C environ c'est-à-dire souvent comprise dans la coupe distillat moyen) est de +37°C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gasoil. Les hydrocarbures issus du procédé Fischer-Tropsch comprenant majoritairement des n-paraffines doivent être transformés en produits plus valorisables tels que par exemple le gazole, kérosène, qui sont obtenus après des réactions catalytiques d'hydroisomérisation.In the Fischer-Tropsch process, the synthesis gas (CO + H 2 ) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form. These products are generally free of heteroatomic impurities such as, for example, sulfur, nitrogen or metals. They also contain practically little or no aromatics, naphthenes and more generally cycles especially in the case of cobalt catalysts. On the other hand, they may have a significant content of oxygenated products which, expressed by weight of oxygen, is generally less than about 5% by weight and also an unsaturated content (olefinic products in general) generally less than 10% by weight. However, these products, mainly paraffins normal, can not be used as such, in particular because of their cold-holding properties not compatible with the usual uses of oil cuts. For example, the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule (boiling point equal to about 340 ° C., that is to say often included in the middle distillate cut) is +37 ° C about what makes its use impossible, the specification being -15 ° C for diesel. The hydrocarbons resulting from the Fischer-Tropsch process comprising mainly n-paraffins must be converted into more valuable products such as, for example, gas oil, kerosene, which are obtained after catalytic reactions of hydroisomerization.
Le brevet
La publication
- a) passage de la charge sur un premier catalyseur d'hydroisomérisation/hydrocraquage, qui est un catalyseur amorphe contenant au moins un métal noble du groupe VIII,
- b) distillation de l'effluent hydroisomérisé/hydrocraqué pour obtenir des distillats moyens et une fraction résiduelle bouillant au-dessus des distillats moyens,
- c) sur un second catalyseur d'hydroisomérisation/hydrocraquage, qui est un catalyseur amorphe contenant au moins un métal noble du groupe VIII, passage de la fraction lourde résiduelle et distillation de l'effluent pour obtenir des distillats moyens.
- a) passing the feedstock over a first hydroisomerization / hydrocracking catalyst, which is an amorphous catalyst containing at least one noble metal of group VIII,
- b) distillation of the hydroisomerized / hydrocracked effluent to obtain middle distillates and a residual fraction boiling over the middle distillates,
- c) on a second hydroisomerization / hydrocracking catalyst, which is an amorphous catalyst containing at least one noble metal of group VIII, passage of the residual heavy fraction and distillation of the effluent to obtain middle distillates.
Le document
La présente invention propose un procédé alternatif pour la production de distillats moyens sans production d'huiles.The present invention provides an alternative process for the production of middle distillates without the production of oils.
Ce procédé permet :
- d'améliorer fortement les propriétés à froid des paraffines issues du procédé Fisher-Tropsch et ayant des points d'ébullition correspondants à ceux des fractions gazole et kérosène (encore appelés distillats moyens) et notamment d'améliorer le point de congélation des kérosène,.
- d'augmenter la quantité de distillats moyens disponibles par hydrocraquage des composés paraffiniques les plus lourds, présents dans l'effluent de sortie de l'unité Fischer-Tropsch, et qui ont des points d'ébullition supérieurs à ceux des coupes kérosène et gazole, par exemple la fraction 380°C+.
- to strongly improve the cold properties of paraffins from the Fisher-Tropsch process and having boiling points corresponding to those of diesel and kerosene fractions (also called middle distillates) and in particular to improve the freezing point of kerosene ,.
- to increase the amount of available middle distillates by hydrocracking the heavier paraffinic compounds present in the outlet effluent of the Fischer-Tropsch unit, and which have boiling points higher than those of the kerosene and diesel fractions, for example the fraction 380 ° C + .
Plus précisément, l'invention concerne un procédé pour la production de distillats moyens à partir d'un effluent paraffinique produit par synthèse Fischer-Tropsch, comportant les étapes successives suivantes :
- a) éventuel fractionnement de l'effluent en au moins une fraction lourde à point d'ébullition initial compris entre 120 et 200°C, et au moins une fraction légère bouillant en-dessous de ladite fraction lourde,
- b) éventuel hydrotraitement d'une partie au moins de l'effluent ou de la fraction lourde, éventuellement suivi (étape c) d'élimination d'au moins une partie de l'eau,
- d) passage d'une partie au moins de l'effluent ou de la fraction éventuellement hydrotraité sur un premier catalyseur d'hydroisomérisation / hydrocraquage qui est un catalyseur amorphe contenant au moins un métal noble du groupe VIII,
- e) distillation de l'effluent hydroisomérisé / hydrocraqué pour obtenir des distillats moyens (kérosène, gasoil) et une fraction résiduelle bouillant au-dessus des distillats moyens,
- f) sur un second catalyseur d'hydroisomérisation / hydrocraquage qui est un catalyseur amorphe contenant au moins un métal noble du groupe VIII, passage d'une partie de ladite fraction lourde résiduelle et/ou d'une partie desdits distillats moyens, et distillation de l'effluent résultant pour obtenir des distillats moyens.
- a) optionally fractionating the effluent into at least one heavy fraction with an initial boiling point of between 120 and 200 ° C, and at least one light fraction boiling below said heavy fraction,
- b) optional hydrotreatment of at least part of the effluent or heavy fraction, possibly followed (step c) of elimination of at least part of the water,
- d) passing at least a portion of the effluent or the optionally hydrotreated fraction onto a first hydroisomerization / hydrocracking catalyst which is an amorphous catalyst containing at least one noble metal of group VIII,
- e) distillation of the hydroisomerized / hydrocracked effluent to obtain middle distillates (kerosene, gas oil) and a residual fraction boiling over the middle distillates,
- f) on a second hydroisomerization / hydrocracking catalyst which is an amorphous catalyst containing at least one noble metal of group VIII, passage of a part of said residual heavy fraction and / or a part of said middle distillates, and distillation of the resulting effluent to obtain middle distillates.
D'une façon plus détaillée, les étapes sont les suivantes :
- a) De préférence, l'effluent paraffinique issu de l'unité de synthèse Fischer-Tropsch est fractionné en au moins deux fractions. Il est séparé de la charge une (ou plusieurs) fractions légères pour obtenir une fraction lourde ayant un point d'ébullition initial égal à une température comprise entre 120 et 200°C et de préférence entre 130 et 180°C et par exemple environ 150°C, la fraction légère bouillant en-dessous de la fraction lourde. La fraction lourde présente généralement des teneurs en paraffines d'au moins 50% pds, et le plus souvent d'au moins 90% pds.
- b) Eventuellement ladite fraction lourde est, en présence d'hydrogène, mise en contact avec un catalyseur d'hydrotraitement. En l'absence de l'étape a), l'effluent issu de l'unité de synthèse Fischer-Tropsch est traité sur le catalyseur d'hydrotraitement.
- c) Eventuellement, l'eau formée durant l'étape d'hydrotraitement (b) est éliminée au moins en partie et de préférence en totalité.
- d) Au moins une partie (et de préférence la totalité) de l'effluent issu de l'étape (c) ou (b) est mis en contact en présence d'hydrogène et d'un catalyseur d'hydroisomérisation / hydrocraquage pour produire des distillats moyens, la conversion de produits 370°C+ en 370°C- étant supérieure à 80% pds.
- e) L'effluent en sortie de l'étape (d) est soumis à une étape de séparation dans un train de distillation de manière à séparer :
- les produits légers inévitablement formés lors de l'étape (d) par exemple les gaz (C1-C4) et une coupe essence et également de manière à distiller au moins une coupe gazole et également au moins une coupe kérosène, et également à distiller une fraction, dite fraction résiduelle, dont les composés qui la constituent ont des points d'ébullition supérieurs à ceux des distillats moyens (kérosène + gazole). Cette fraction non hydrocraquée (dite fraction résiduelle) présente généralement un point d'ébullition initial d'au moins 350°C, de préférence supérieure à 370°C.
- f) Passage d'au moins un distillat moyen et/ou de la fraction résiduelle issu de l'étape (e) en présence d'hydrogène, sur un catalyseur d'hydroisomérisation /hydrocraquage (dit second catalyseur). Les conditions opératoires peuvent être identiques ou différentes de celles utilisées dans l'étape (d). Les catalyseurs peuvent être identiques ou différents de ceux de l'étape (d). L'effluent issu de l'étape (f) est alors recyclé en entrée du train de séparation étape (e).
- a) Preferably, the paraffinic effluent from the Fischer-Tropsch synthesis unit is fractionated into at least two fractions. One (or more) light fractions are separated from the feed to obtain a heavy fraction having an initial boiling point equal to a temperature of between 120 and 200 ° C. and preferably between 130 and 180 ° C. and for example about 150 ° C. ° C, the light fraction boiling below the heavy fraction. The heavy fraction generally has paraffin contents of at least 50 wt%, and most often at least 90 wt%.
- b) If necessary, said heavy fraction is, in the presence of hydrogen, brought into contact with a hydrotreatment catalyst. In the absence of step a), the effluent from the Fischer-Tropsch synthesis unit is treated on the hydrotreatment catalyst.
- c) Optionally, the water formed during the hydrotreating step (b) is removed at least in part and preferably completely.
- d) At least a portion (and preferably all) of the effluent from step (c) or (b) is contacted in the presence of hydrogen and a hydroisomerization / hydrocracking catalyst to produce middle distillates, the product conversion 370 ° C + 370 ° C - being greater than 80% wt.
- e) The effluent leaving step (d) is subjected to a separation step in a distillation train so as to separate:
- the light products inevitably formed during step (d), for example the gases (C1-C4) and a gasoline cut, and also so as to distil at least one gas oil cut and also at least one kerosene cut, and also to distil a fraction, called residual fraction, whose compounds constituting it have boiling points higher than those of middle distillates (kerosene + gas oil). This non-hydrocracked fraction (called residual fraction) generally has an initial boiling point of at least 350 ° C., preferably greater than 370 ° C.
- f) Passage of at least one middle distillate and / or the residual fraction from step (e) in the presence of hydrogen, on a hydroisomerization / hydrocracking catalyst (said second catalyst). The operating conditions can be identical to or different from those used in step (d). The catalysts may be the same or different from those of step (d). The effluent from step (f) is then recycled to the input of the separation step (e).
De façon inattendue, l'utilisation d'un procédé selon l'invention à révélé de nombreux avantages. En particulier, il a été trouvé qu'il est intéressant de ne pas traiter la fraction hydrocarbonée légère de l'effluent Fischer Tropsch, fraction légère qui comprend en termes de points d'ébullition une coupe essence (C5 à au plus 200°C et le plus souvent à environ 150°C).Unexpectedly, the use of a method according to the invention has revealed many advantages. In particular, it has been found that it is advantageous not to treat the light hydrocarbon fraction of the Fischer Tropsch effluent, a light fraction which comprises in terms of boiling points a gasoline fraction (C 5 at most 200 ° C. and most often at about 150 ° C).
En effet, de façon inattendue les résultats obtenus montrent qu'il est plus rentable d'envoyer ladite coupe essence (C5 à au plus 200°C) à un vapocraqueur pour en faire des oléfines que de la traiter dans le procédé selon l'invention, où on a pu constater que la qualité de cette coupe n'est que peu améliorée. En particulier ses indices d'octane moteur et recherche restent trop bas pour que cette coupe puisse être intégrée au pool essence. Ainsi, le procédé selon l'invention permet la production de distillats moyens (kérosène, gazole) avec un minimum d'essence obtenue. Par ailleurs, les rendements en distillats moyens (kérosène + gazole) du procédé selon l'invention sont plus élevés que ceux de l'art antérieur, notamment du fait que la coupe kérosène (généralement point d'ébullition initial de 150 à 160°C - point d'ébullition final de 260 à 280°C) a pu être optimisée (voire maximisée par rapport à l'art antérieur), et de plus, sans que ce soit au détriment de la coupe gazole. Par ailleurs, cette coupe kérosène présente, de façon inattendue, d'excellentes propriétés à froid (point de congélation par exemple).Indeed, unexpectedly the results obtained show that it is more profitable to send said gasoline cut (C 5 to at most 200 ° C) to a steam cracker to make olefins that to treat it in the process according to the invention, where it has been found that the quality of this cut is only slightly improved. In particular, its engine and search octane numbers remain too low for this cut to be integrated into the gasoline pool. Thus, the process according to the invention allows the production of middle distillates (kerosene, diesel) with a minimum of gasoline obtained. Furthermore, the yields of middle distillates (kerosene + gas oil) of the process according to the invention are higher than those of the prior art, in particular because the kerosene cut (generally initial boiling point of 150 to 160 ° C. - final boiling point of 260 to 280 ° C) could be optimized (even maximized compared to the prior art), and more, without detriment to the diesel cut. Moreover, this kerosene cut unexpectedly has excellent cold properties (freezing point for example).
D'autre part, le fait de ne pas traiter la fraction légère de l'effluent Fischer-Tropsch permet de minimiser les volumes des catalyseurs d'hydrotraitement et d'hydroisomérisation / hydrocraquage à utiliser et ainsi de réduire la taille des réacteurs et donc des investissements.On the other hand, the fact of not treating the light fraction of the Fischer-Tropsch effluent makes it possible to minimize the volumes of the hydrotreatment and hydroisomerization / hydrocracking catalysts to be used and thus to reduce the size of the reactors and thus the investments.
Par ailleurs et de façon inattendue, les performances catalytiques (activité, sélectivité) et/ou la durée de cycle des catalyseurs d'hydrotraitement et hydroisomérisation / hydrocraquage utilisés dans le procédé selon l'invention ont pu être améliorées.Moreover, and unexpectedly, the catalytic performances (activity, selectivity) and / or the cycle time of the hydrotreatment and hydroisomerization / hydrocracking catalysts used in the process according to the invention could be improved.
Enfin, de façon inattendue l'utilisation de zones indépendantes d'hydroisomérisation / hydrocraquage permet d'obtenir des rendements plus élevés en distillats moyens et, pour un rendement donné en distillats moyens, de meilleures qualités de produits que les procédés de l'art antérieur et en particulier en ce qui concerne les propriétés à froid. Par ailleurs, la flexibilité du procédé qui est obtenue du fait de l'existence de ces 2 zones séparées permet à l'exploitant de moduler les conditions opératoires en fonction des qualités et/ou rendements en distillats moyens à obtenir.Finally, unexpectedly the use of independent hydroisomerization / hydrocracking zones makes it possible to obtain higher yields of middle distillates and, for a given yield of middle distillates, better product qualities than the processes of the prior art. and in particular with regard to the cold properties. Furthermore, the flexibility of the process that is obtained because of the existence of these two separate zones allows the operator to modulate the operating conditions according to the qualities and / or yields of middle distillates to obtain.
La description sera faite en se référant aux
L'effluent issu de l'unité de synthèse Fischer-Tropsch comporte majoritairement des paraffines mais contient aussi des oléfines et des composés oxygénés tels que des alcools. Il contient aussi de l'eau, du CO2, du CO et de l'hydrogène non réagi ainsi que des composés hydrocarbures légers C1 à C4 sous forme de gaz. Lorsque cette étape est mise en oeuvre, l'effluent issu de l'unité de synthèse Fischer-Tropsch est fractionné (par exemple par distillation) en au moins deux fractions : au moins une fraction légère et au moins une fraction lourde à point d'ébullition initial égal à une température comprise entre 120 et 200°C et de préférence entre 130 et 180°C et de manière encore plus préférée à une température d'environ 150°C, en d'autres termes le point de coupe est situé entre 120 et 200°C.The effluent from the Fischer-Tropsch synthesis unit comprises mainly paraffins but also contains olefins and oxygenated compounds such as alcohols. It also contains water, CO 2 , CO and unreacted hydrogen as well as light hydrocarbon compounds C1 to C4 in the form of gas. When this step is carried out, the effluent from the Fischer-Tropsch synthesis unit is fractionated (for example by distillation) into at least two fractions: at least one light fraction and at least one heavy-point fraction. initial boiling equal to a temperature between 120 and 200 ° C and preferably between 130 and 180 ° C and even more preferably at a temperature of about 150 ° C, in other words the cutting point is between 120 and 200 ° C.
La fraction lourde présente généralement des teneurs en paraffines d'au moins 50% poids.The heavy fraction generally has paraffin contents of at least 50% by weight.
Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc... A titre d'exemple non limitatif, l'effluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les 2 fractions décrites ci-dessus.This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation, etc. As a non-limiting example, the effluent from the Fischer-Tropsch synthesis unit will be subject to flash, decantation to remove water and distillation to obtain at least the 2 fractions described above.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour la pétrochimie et plus particulièrement pour une unité de vapocraquage. Au moins une fraction lourde précédemment décrite est traitée selon le procédé de l'invention.The light fraction is not treated according to the process of the invention but may for example constitute a good load for petrochemicals and more particularly for a steam cracking unit. At least one heavy fraction previously described is treated according to the method of the invention.
Eventuellement, cette fraction ou une partie au moins de la charge initiale, est admise via la ligne (1) en présence d'hydrogène (amené par la conduite (2)) dans une zone (3) contenant un catalyseur d'hydrotraitement qui a pour objectif de réduire la teneur en composés oléfiniques et insaturés ainsi que d'hydrotraiter les composés oxygénés (alcools) présents dans la fraction lourde décrite ci-dessus.Optionally, this fraction or at least part of the initial charge is admitted via line (1) in the presence of hydrogen (supplied via line (2)) to an area (3) containing a hydrotreatment catalyst which has aim is to reduce the content of olefinic and unsaturated compounds as well as to hydrotreat the oxygenates (alcohols) present in the heavy fraction described above.
Les catalyseurs utilisés dans cette étape (b) sont des catalyseurs d'hydrotraitement non craquants ou peu craquants comportant au moins un métal du groupe VIII et/ou du groupe VI de la classification périodique des éléments. De préférence le catalyseur comprend au moins un métal du groupe de métaux formé par le nickel, le molybdène, le tungstène, le cobalt, le ruthénium, l'indium, le palladium et le platine et comportant au moins un support.The catalysts used in this step (b) are hydrotreating catalysts which are non-crunchy or slightly crisp and comprise at least one metal of group VIII and / or group VI of the periodic table of elements. Preferably, the catalyst comprises at least one metal of the metal group formed by nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one support.
La fonction hydro-déshydrogénante est de préférence assurée par au moins un métal ou composé de métal du groupe VIII tels que le nickel et le cobalt notamment. On peut utiliser une combinaison d'au moins un métal ou composé de métal du groupe VI (notamment le molybdène ou le tungstène) et d'au moins un métal ou composé de métal du groupe VIII (notamment cobalt et le nickel) de la classification périodique des éléments. La concentration en métal du groupe VIII non noble, lorsque celui-ci est utilisé, est de 0,01-15% en poids par rapport au catalyseur fini.The hydro-dehydrogenating function is preferably provided by at least one metal or group VIII metal compound such as nickel and cobalt in particular. A combination of at least one metal or group VI metal compound (especially molybdenum or tungsten) and at least one metal or group VIII metal compound (especially cobalt and nickel) of the classification may be used periodic elements. The non-noble group VIII metal concentration, when used, is 0.01-15% by weight based on the finished catalyst.
Avantageusement, au moins un élément choisi parmi P, B, Si est déposé sur le support.Advantageously, at least one element selected from P, B, Si is deposited on the support.
Ce catalyseur pourra contenir avantageusement du phosphore ; en effet, ce composé apporte deux avantages aux catalyseurs d'hydrotraitement : une facilité de préparation lors notamment de l'imprégnation des solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation.This catalyst may advantageously contain phosphorus; indeed, this compound brings two advantages to hydrotreatment catalysts: an ease in particular during the impregnation of the nickel and molybdenum solutions, and a better hydrogenation activity.
Dans un catalyseur préféré, la concentration totale en métaux des groupes VI et VIII, exprimée en oxydes de métaux, est comprise entre 5 et 40% en poids et de préférence entre 7 et 30% en poids et le rapport pondéral exprimé en oxyde de métal (ou de métaux) du groupe VI sur métal (ou métaux) du groupe VIII est compris entre 1.25 et 20 et de préférence entre 2 et 10. Avantageusement, s'il y a du phosphore, la concentration en oxyde de phosphore P2O5 sera inférieure à 15% en poids et de préférence inférieure à 10% en poids.In a preferred catalyst, the total concentration of metals of groups VI and VIII, expressed as metal oxides, is between 5 and 40% by weight and preferably between 7 and 30% by weight and the weight ratio expressed as metal oxide. (or metals) of group VI on metal (or metals) of group VIII is between 1.25 and 20 and preferably between 2 and 10. Advantageously, if there is phosphorus, the concentration of phosphorus oxide P2O5 will be lower 15% by weight and preferably less than 10% by weight.
On peut utiliser également un catalyseur contenant du bore et du phosphore avantageusement le bore et le phosphore sont des éléments promoteurs déposés sur le support, et par exemple le catalyseur selon le brevet
Les catalyseurs Ni alumine, NiMo sur alumine, NiMo sur alumine dopée avec du bore et du phosphore et NiMo sur silice-alumine sont également préférés. Avantageusement, on choisira de l'alumine éta ou gamma.The Ni alumina, NiMo on alumina, NiMo on alumina doped with boron and phosphorus and NiMo on silica-alumina catalysts are also preferred. Advantageously, eta or gamma alumina will be chosen.
Un autre catalyseur particulièrement avantageux contient du silicium promoteur déposé sur le support. Un catalyseur intéressant contient BSi ou PSi.Another particularly advantageous catalyst contains promoter silicon deposited on the support. An interesting catalyst contains BSi or PSi.
Dans le cas de l'emploi de métaux nobles (platine et/ou palladium) de préférence, la teneur en métal est comprise entre 0,05 et 3% poids par rapport au catalyseur fini et de préférence entre 0,1 et 2% poids du catalyseur.
Ces métaux sont déposés sur un support qui est de préférence une alumine, mais qui peut aussi être de l'oxyde de Bore, de la magnésie, de la zircone, de l'oxyde de titane, une argile ou une combinaison de ces oxydes. Ces catalyseurs peuvent être préparés par toutes les méthodes connues de l'homme de l'art ou bien peuvent être acquis auprès de sociétés spécialisées dans la fabrication et la vente de catalyseurs.In the case of the use of noble metals (platinum and / or palladium) preferably, the metal content is between 0.05 and 3% by weight relative to the finished catalyst and preferably between 0.1 and 2% by weight. catalyst.
These metals are deposited on a support which is preferably an alumina, but which may also be boron oxide, magnesia, zirconia, titanium oxide, a clay or a combination of these oxides. These catalysts can be prepared by any method known to those skilled in the art or can be acquired from companies specializing in the manufacture and sale of catalysts.
Dans le réacteur d'hydrotraitement (3), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrodeoxygénation (HDO) des alcools et l'hydrogénation des oléfines présents dans la charge. Les températures réactionnelles utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 350, de préférence entre 150 et 300°C, de façon encore plus préférée entre 150 et 275°C et mieux encore entre 175 et 250°C. La gamme de pression totale utilisée varie de 5 à 150 bars, de préférence entre 10 et 100 bars et de manière encore plus préférée entre 10 et 90 bars. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 100 à 3000 Nl/l/h, de préférence entre 100 et 2000Ml/l/h et de façon encore plus préférée entre 250 et 1500 Nl/l/h. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10h-1, de préférence entre 0,2 et 5h-1 et de manière encore plus préférée entre 0,2 et 3h-1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% et à environ moins de 0,1% en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 370°C en des produits ayant des points d'ébullition inférieurs à 370°C est limitée à 30% pds, de préférence est inférieure à 20% et de façon encore plus préférée est inférieure à 10%.In the hydrotreatment reactor (3), the feedstock is contacted in the presence of hydrogen and the catalyst at operating temperatures and pressures for carrying out the hydrodeoxygenation (HDO) of the alcohols and the hydrogenation of the olefins present in the load. The reaction temperatures used in the hydrotreatment reactor are between 100 and 350, preferably between 150 and 300 ° C, even more preferably between 150 and 275 ° C and more preferably between 175 and 250 ° C. The total pressure range used varies from 5 to 150 bar, preferably from 10 to 100 bar and even more preferably from 10 to 90 bar. The hydrogen that feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 100 to 3000 Nl / l / h, preferably between 100 and 2000Ml / l / h and even more preferred between 250 and 1500 Nl / l / h. The charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 . Under these conditions, the content of unsaturated and oxygenated molecules is reduced to less than 0.5% and to less than 0.1% in general. The hydrotreatment step is conducted under conditions such that conversion to products having boiling points greater than or equal to 370 ° C to products having boiling points below 370 ° C is limited to 30% wt. preferably, less than 20% and even more preferably less than 10%.
L'effluent (conduite 4) issu du réacteur (3) d'hydrotraitement est éventuellement introduit dans une zone (5) d'enlèvement d'eau qui a pour but d'éliminer au moins en partie l'eau produite lors des réactions d'hydrotraitement. Cette élimination d'eau peut s'effectuer avec ou sans élimination de la fraction gazeuse C4 moins qui est généralement produite lors de l'étape d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodeoxygénation (HDO) des alcools mais on peut aussi y inclure l'élimination au moins en partie de l'eau de saturation des hydrocarbures. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation....The effluent (line 4) from the hydrotreating reactor (3) is optionally introduced into a zone (5) of water removal which is intended to eliminate at least partly the water produced during the hydrotreatment reactions. This removal of water can be carried out with or without eliminating the C 4 less gas fraction which is generally produced during the hydrotreating step. The elimination of water is understood to mean the elimination of the water produced by the hydrodeoxygenation (HDO) reactions of the alcohols, but it may also include the elimination at least partly of the saturation water of the hydrocarbons. The removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
Une partie au moins et de préférence la totalité de la fraction hydrocarbonée (une partie au moins de la charge ou une partie au moins de la fraction lourde de l'étape a) ou une partie au moins de la fraction ou de la charge hydrotraitée et éventuellement séchée) est alors introduite (conduite 6) ainsi qu'éventuellement un flux d'hydrogène (conduite 7) dans la zone (8) contenant ledit premier catalyseur d'hydroisomérisation / hydrocraquage. Une autre éventualité du procédé aussi selon l'invention consiste à envoyer une partie ou la totalité de l'effluent sortant du réacteur d'hydrotraitement (sans séchage) dans le réacteur contenant le catalyseur d'hydroisomérisation / d'hydrocraquage et de préférence en même temps qu'un flux d'hydrogène.At least part and preferably all of the hydrocarbon fraction (at least part of the feed or at least part of the heavy fraction of step a) or at least part of the hydrotreated fraction or feed and optionally dried) is then introduced (line 6) and possibly a stream of hydrogen (line 7) into the zone (8) containing said first hydroisomerization / hydrocracking catalyst. Another possibility of the process also according to the invention consists in sending part or all of the effluent leaving the hydrotreating reactor (without drying) into the reactor containing the hydroisomerization / hydrocracking catalyst and preferably at the same time. time as a flow of hydrogen.
Les catalyseurs utilisés dans l'étape d'hydroisomérisation/ hydrocraquage seront décrits plus loin en détail.The catalysts used in the hydroisomerization / hydrocracking step will be described later in detail.
Avant utilisation dans la réaction, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 Mpa. Par exemple, une réduction consiste en un palier à 150°C de 2 heures puis une montée en température jusqu'à 450°C à la vitesse de 1 °C/min puis un palier de 2 heures à 450°C ; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 litres hydrogène/ litre catalyseur. Notons également que toutes méthode de réduction ex-situ est convenable.Before use in the reaction, the metal contained in the catalyst must be reduced. One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature of from 150 ° C to 650 ° C and a total pressure of 0.1 to 25 MPa. For example, a reduction consists of a stage at 150 ° C. for 2 hours then a rise in temperature up to 450 ° C. at the rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. throughout this reduction step, the hydrogen flow rate is 1000 liters hydrogen / liter catalyst. Note also that any ex-situ reduction method is suitable.
Les conditions opératoires dans lesquelles est effectuée cette étape (d) sont :
- La pression est maintenue entre 2 et 150 bars et de préférence entre 5 et 100 bars et avantageusement de 10 à 90 bars, la vitesse spatiale est comprise entre 0,1 h-1 et 10 h-1 et de préférence entre 0,2 et 7h-1 est avantageusement entre 0,5 et 5,0h-1. Le taux d'hydrogène est compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
- The pressure is maintained between 2 and 150 bar and preferably between 5 and 100 bar and advantageously from 10 to 90 bar, the space velocity is between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7h -1 is advantageously between 0.5 and 5,0h -1. The hydrogen content is between 100 and 2000 normal liters of hydrogen per liter of filler and per hour and preferably between 150 and 1500 liters of hydrogen per liter of filler.
La température utilisée dans cette étape est comprise entre 200 et 450°C et préférentiellement de 250°C à 450°C avantageusement de 300 à 450°C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320-420°C.The temperature used in this stage is between 200 and 450.degree. C. and preferably from 250.degree. C. to 450.degree. C., advantageously from 300 to 450.degree. C., and even more advantageously above 320.degree. C. or, for example, between 320.degree.-420.degree. .
Les deux étapes, hydrotraitement et hydroisomérisation-hydrocraquage, peuvent être réalisées sur les deux types de catalyseurs dans deux ou plusieurs réacteurs différents, ou/et dans un même réacteur.The two stages, hydrotreatment and hydroisomerization-hydrocracking, can be carried out on the two types of catalysts in two or more different reactors, and / or in the same reactor.
L'effluent hydroisomérisé / hydrocraqué en sortie du réacteur (8), étape (d), est envoyé dans un train de distillation (9) qui intègre une distillation atmosphérique et éventuellement une distillation sous vide qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 340°C et de préférence inférieur à 370°C et incluant notamment ceux formés lors de l'étape (d) dans le réacteur (8), et de séparer la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 340°C et de préférence supérieur ou égal à au moins 370°C. Parmi les produits de conversion et hydroisomérisés il est séparé, outre les gaz légers C1-C4 (conduite 10) au moins une fraction essence (conduite 11), et au moins une fraction distillat moyen kérosène (conduite 12) et gazole (conduite 13).The hydroisomerized / hydrocracked effluent leaving the reactor (8), step (d), is sent to a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products. of boiling point below 340 ° C and preferably below 370 ° C and including including those formed in step (d) in the reactor (8), and to separate the residual fraction whose initial point of boiling is generally greater than at least 340 ° C and preferably greater than or equal to at least 370 ° C. Among the conversion products and hydroisomerized it is separated, in addition to the light gases C1-C4 (line 10) at least a gasoline fraction (line 11), and at least a middle distillate fraction kerosene (line 12) and diesel (line 13) .
Le procédé selon l'invention utilise une seconde zone (16) contenant un catalyseur d'hydroisomérisation / hydrocraquage (dit second catalyseur). Il passe sur ce catalyseur, en présence d'hydrogène (conduite 15) un effluent choisi parmi une partie du kérosène produit (conduite 12), une partie du gazole (conduite 13) et la fraction résiduelle et de préférence, la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 370°C.
Le catalyseur présent dans le réacteur (16) de l'étape (f) du procédé selon l'invention est de la même façon que pour l'étape d), de type acide amorphe et à base d'au moins un métal noble de groupe VIII ; cependant il peut être identique ou différent de celui de l'étape d).The process according to the invention uses a second zone (16) containing a hydroisomerization / hydrocracking catalyst (called second catalyst). It passes on this catalyst, in the presence of hydrogen (line 15) an effluent chosen from a part of the kerosene produced (line 12), part of the gas oil (line 13) and the residual fraction and preferably the residual fraction whose initial boiling point is generally greater than at least 370 ° C.
The catalyst present in the reactor (16) of step (f) of the process according to the invention is in the same way as for stage d), of amorphous acid type and based on at least one noble metal of group VIII; however it may be the same or different from that of step d).
Durant cette étape la fraction entrant dans le réacteur (16) subit au contact du catalyseur et en présence d'hydrogène des réactions d'hydroisomérisation et/ou d'hydrocraquage qui vont permettre d'améliorer la qualité des produits formés et plus particulièrement les propriétés à froid du kérosène et du gazole, et d'obtenir des rendements en distillat amélioré par rapport à l'art antérieur.During this step, the fraction entering the reactor (16) undergoes, in the presence of hydrogen, hydroisomerization and / or hydrocracking reactions in the reactor, which will make it possible to improve the quality of the products formed and more particularly the properties cold kerosene and diesel, and obtain distillate yields improved over the prior art.
Le choix des conditions opératoires permet d'ajuster finement la qualité des produits (distillats moyens) et en particulier les propriétés à froid.The choice of operating conditions makes it possible to finely adjust the quality of the products (middle distillates) and in particular the cold properties.
Les conditions opératoires dans lesquelles est effectuée cette étape (f) sont :
- La pression est maintenue entre 2 et 150 bars et de préférence entre 5 et 100 bars et avantageusement de 10 à 90 bars, la vitesse spatiale est comprise entre 0,1 h-1 et 10 h-1 et de préférence entre 0,2 et 7h-1 est avantageusement entre 0,5 et 5,0h-1. Le taux d'hydrogène est compris entre 100 et 2000 Normaux litres d'hydrogène par litre de charge et par heure et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
- The pressure is maintained between 2 and 150 bar and preferably between 5 and 100 bar and advantageously from 10 to 90 bar, the space velocity is between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7h -1 is advantageously between 0.5 and 5,0h -1. The hydrogen content is between 100 and 2000 normal liters of hydrogen per liter of filler and per hour and preferably between 150 and 1500 liters of hydrogen per liter of filler.
La température utilisée dans cette étape est comprise entre 200 et 450°C et préférentiellement de 250°C à 450°C avantageusement de 300 à 450°C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320-420°C.The temperature used in this stage is between 200 and 450.degree. C. and preferably from 250.degree. C. to 450.degree. C., advantageously from 300 to 450.degree. C., and even more advantageously above 320.degree. C. or, for example, between 320.degree.-420.degree. .
L'exploitant ajustera les conditions opératoires sur le premier et second catalyseur d'hydrocraquage/hydroisomérisation de façon à obtenir les qualités de produits et les rendements souhaités.The operator will adjust the operating conditions on the first and second hydrocracking / hydroisomerization catalyst so as to obtain the desired product qualities and yields.
Ainsi, de façon générale, sur le premier catalyseur, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 150°C en des produits à points d'ébullition inférieurs à 150°C est inférieure à 50%pds, de préférence inférieure à 30% pds. Ces conditions permettent au particulier d'ajuster le rapport kérosène/gazole produits ainsi que les produits à froid des distillats moyens, et plus particulièrement du kérosène.Thus, in general, on the first catalyst, the conversion by pass in Products having a boiling point greater than or equal to 150 ° C. in products with a boiling point below 150 ° C. are less than 50% by weight, preferably less than 30% by weight. These conditions allow the individual to adjust the ratio of kerosene / diesel produced as well as the cold products of middle distillates, and more particularly kerosene.
Egalement de façon générale, sur le second catalyseur, lorsque la fraction résiduelle est traitée, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 370°C en produits à points d'ébullition inférieurs à 370°C, est supérieure à 40% pds, de préférence supérieure à 50% pds, ou mieux à 60% pds. Il peut même s'avérer avantageux d'avoir des conversions d'au moins 80% pds.Also generally, on the second catalyst, when the residual fraction is treated, the conversion by pass to products with boiling points greater than or equal to 370 ° C in products with boiling points lower than 370 ° C, is superior. at 40% by weight, preferably above 50% by weight, or better at 60% by weight. It can even be advantageous to have conversions of at least 80% by weight.
Lorsque une partie du kérosène et/ou du gazole est traitée sur le second catalyseur, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 150°C en des produits à points d'ébullition inférieurs à 150°C est inférieure à 50% pds, de préférence inférieure à 30% pds.When a part of the kerosene and / or diesel fuel is treated on the second catalyst, the pass conversion into products with boiling points greater than or equal to 150 ° C into products with boiling points below 150 ° C is lower. at 50% by weight, preferably less than 30% by weight.
De façon générale les conditions opérations appliquées dans les réacteurs (8) et (16) peuvent être différentes ou identiques. De façon préférée les conditions opératoires utilisées dans les 2 réacteurs d'hydroisomérisation / hydrocraquage sont choisies différentes en termes de pression opératoire, température, temps de contact (wh) et rapport H2/charge. Ce mode de réalisation permet à l'exploitant d'ajuster les qualités et/ou rendements en kérosène et gazole.In general, the operating conditions applied in the reactors (8) and (16) may be different or identical. Preferably, the operating conditions used in the 2 hydroisomerization / hydrocracking reactors are chosen to be different in terms of operating pressure, temperature, contact time (wh) and H 2 / feed ratio. This embodiment allows the operator to adjust the qualities and / or yields of kerosene and diesel.
L'effluent issu du réacteur (16) est ensuite envoyé via la ligne (17) dans le train distillation de manière à séparer les produits de conversion, essence, kérosène et gazole.The effluent from the reactor (16) is then sent via line (17) in the distillation train so as to separate the conversion products, gasoline, kerosene and diesel.
Sur la
Avantageusement, dans le même temps le kérosène et/ou le gazole peut être en partie recyclé (conduite 18) dans la zone (8) d'hydroisomérisation / hydrocraquage (étape d) sur le premier catalyseur.Advantageously, at the same time, the kerosene and / or diesel fuel may be partly recycled (line 18) in the hydroisomerization / hydrocracking zone (8) (step d) on the first catalyst.
Sur la
Dans le même temps, la fraction résiduelle (conduite 14) est recyclée dans la zone (8) d'hydroisomérisation / hydrocraquage (étape d) sur le premier catalyseur.At the same time, the residual fraction (line 14) is recycled to the hydroisomerization / hydrocracking zone (8) (step d) on the first catalyst.
On a pu constater qu'il est avantageux de recycler une partie du kérosène sur un catalyseur d'hydrocraquage / hydroisomérisation pour améliorer ses propriétés à froid.It has been found that it is advantageous to recycle part of the kerosene on a hydrocracking / hydroisomerization catalyst to improve its cold properties.
Sur les figures, on a représenté seulement le recyclage du kérosène. Il va sans dire qu'on peut aussi bien recycler une partie du gazole (séparément ou avec le kérosène) et de préférence sur le même catalyseur que le kérosène.In the figures, only the recycling of kerosene has been shown. It goes without saying that one can also recycle a portion of the gas oil (separately or with kerosene) and preferably on the same catalyst as kerosene.
L'invention n'est pas limitée à ces 2 modes de réalisation.The invention is not limited to these 2 embodiments.
Le(s) gazole(s) obtenu présente un point d'écoulement d'au plus 0°C, généralement inférieur à -10°C et souvent inférieur à -15°C. L'indice de cétane est supérieur à 60, généralement supérieur à 65, souvent supérieur à 70.The gas oil (s) obtained has a pour point of at most 0 ° C, generally below -10 ° C and often below -15 ° C. The cetane number is greater than 60, generally greater than 65, often greater than 70.
Le(s) kérosène(s) obtenu(s) présente un point de congélation d'au plus -35°C, généralement inférieur à -40°C. Le point de fumée est supérieur à 25 mm, généralement supérieur à 30 mm. Dans ce procédé, la production d'essence (non recherchée) est la plus faible possible. Le rendement en essence sera toujours inférieur à 50% pds, de préférence inférieur à 40% pds; avantageusement inférieur à 30% pds ou encore 20% pds ou même de 15% pds.The resulting kerosene (s) has a freezing point of not more than -35 ° C, generally less than -40 ° C. The smoke point is greater than 25 mm, usually greater than 30 mm. In this process, the production of gasoline (not sought) is as low as possible. The yield of gasoline will always be less than 50% by weight, preferably less than 40% by weight; advantageously less than 30% by weight or 20% by weight or even 15% by weight.
L'invention concerne également une installation pour la production de distillats moyens comportant :
- éventuellement au moins une zone d'hydrotraitement (3) d'un effluent paraffinique provenant d'une unité de synthèse Fischer-Tropsch,
- au moins une zone (8) contenant un premier catalyseur d'hydroisomérisation / hydrocraquage, munie d'une conduite (6) pour l'entrée d'une partie au moins de l'effluent éventuellement hydrotraité,
- au moins une colonne à distiller (9) munie des conduites (12, 13) pour la sortie des distillats moyens et (14) pour la sortie d'une fraction résiduelle bouillant au-dessus des distillats moyens,
- au moins une zone (16) contenant un second catalyseur
- d'hydroisomérisation / hydrocraquage, munie d'une conduite pour l'entrée de ladite fraction résiduelle et/ou d'une partie des distillats moyens, et d'une conduite (17) pour envoyer l'effluent obtenu dans la colonne (9).
- optionally at least one hydrotreatment zone (3) of a paraffinic effluent from a Fischer-Tropsch synthesis unit,
- at least one zone (8) containing a first hydroisomerization / hydrocracking catalyst, provided with a pipe (6) for the entry of at least a portion of the optionally hydrotreated effluent,
- at least one distillation column (9) provided with lines (12, 13) for the outlet of the middle distillates and (14) for the outlet of a residual fraction boiling over the middle distillates,
- at least one zone (16) containing a second catalyst
- hydroisomerization / hydrocracking device, provided with a pipe for the entry of said residual fraction and / or a part of the middle distillates, and a line (17) for sending the effluent obtained in the column (9) .
Dans un mode de réalisation avantageux, l'installation comporte une conduite (14) pour envoyer ladite fraction résiduelle dans la zone (16) contenant le second catalyseur, et une conduite (18) pour recycler une partie du kérosène et/ou du gazole produit dans la zone (8) contenant le premier catalyseur.In an advantageous embodiment, the installation comprises a pipe (14) for sending said residual fraction into the zone (16) containing the second catalyst, and a pipe (18) for recycling a portion of the kerosene and / or diesel fuel produced in the zone (8) containing the first catalyst.
Dans un autre mode de réalisation avantageux, l'installation comporte une conduite (12, 13) pour amener une partie du kérosène et/ou du gazole produit dans la zone (16) contenant le second catalyseur, et une conduite (14) pour recycler ladite fraction résiduelle dans la zone (8) contenant le premier catalyseur.In another advantageous embodiment, the installation comprises a pipe (12, 13) for feeding a portion of the kerosene and / or diesel fuel produced in the zone (16) containing the second catalyst, and a pipe (14) for recycling. said residual fraction in the zone (8) containing the first catalyst.
La majorité des catalyseurs utilisés actuellement en hydroisomérisation / hydrocraquage sont de type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.The majority of catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function. The acid function is provided by supports with large surface areas (generally 150 to 800 m 2 .g -1 ) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of oxides of boron and aluminum, silica-aluminas. The hydrogenating function is provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
L'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs'envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
Plus précisément, les catalyseurs d'hydroisomérisation-hydrocraquage sont des catalyseurs bifonctionnels comportant un support acide amorphe (de préférence une silice-alumine) et une fonction métallique hydro-déshydrogénante assurée par au moins un métal noble.The equilibrium between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst. A weak acidic function and a strong hydrogenating function result in weakly active and selective catalysts in the isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts. A third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
More specifically, the hydroisomerization-hydrocracking catalysts are bifunctional catalysts comprising an amorphous acid support (preferably a silica-alumina) and a hydro-dehydrogenating metal function provided by at least one noble metal.
Le support est dit amorphe, c'est-à-dire dépourvu de tamis moléculaire, et en particulier de zéolithe, ainsi que le catalyseur. Le support acide amorphe est avantageusement une silice-alumine mais d'autres supports sont utilisables. Lorsque il s'agit d'une silice-alumine, le catalyseur, de préférence, ne contient pas d'halogène ajouté, autre que celui qui pourrait être introduit pour l'imprégnation du métal noble par exemple. De façon plus générale et de préférence, le catalyseur ne contient pas d'halogène ajouté, par exemple fluor. De façon générale et de préférence le support n'a pas subi d'imprégnation par un composé de silicium.The support is said to be amorphous, that is to say devoid of molecular sieves, and in particular of zeolite, as well as the catalyst. The amorphous acidic support is advantageously a silica-alumina but other supports are usable. When it is a silica-alumina, the catalyst preferably does not contain added halogen, other than that which could be introduced for the impregnation of the noble metal, for example. More generally, and preferably, the catalyst does not contain added halogen, for example fluorine. In general, and preferably, the support has not been impregnated with a silicon compound.
Plusieurs catalyseurs préférés sont décrits ci-après pour être utilisés dans les étapes d'hydrocraquage / hydroisomérisation du procédé selon l'invention.Several preferred catalysts are described below for use in the hydrocracking / hydroisomerization steps of the process according to the invention.
Dans un premier mode de réalisation préféré de l'invention, il est utilisé un catalyseur comprenant une silice-alumine particulière qui permet d'obtenir des catalyseurs très actifs mais aussi très sélectifs dans l'isomérisation d'effluents issus des unités de synthèse Fischer-Tropsch.In a first preferred embodiment of the invention, a catalyst comprising a particular silica-alumina is used which makes it possible to obtain very active catalysts that are also very selective in the isomerization of effluents from Fischer-Synthesis units. Tropsch.
Plus précisément, le catalyseur préféré comprend (et de préférence est essentiellement constitué de) 0,05-10 % en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine (qui de préférence contient entre 5 et 70 % en poids de silice) qui présente une surface spécifique BET de 100-500m2/g et le catalyseur présente :
- un diamètre moyen des mésopores compris entre 1-12 nm,
- un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à 40 % du volume poreux total,
- une dispersion du métal noble comprise entre 20-100 %,
- un coefficient de répartition du métal noble supérieur à 0,1.
- an average diameter of the mesopores of between 1-12 nm,
- a pore volume of pores whose diameter is between the mean diameter as defined above decreased by 3 nm and the average diameter as defined above increased by 3 nm is greater than 40% of the total pore volume,
- a dispersion of the noble metal of between 20-100%,
- a distribution coefficient of the noble metal greater than 0.1.
Les caractéristiques du catalyseur sont plus en détail :
- Le support préféré utilisé pour l'élaboration du catalyseur est composé de silice SiO2 et d'alumine Al2O3. La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95 %, avantageusement voire entre 5 et 95 % et de manière préférée entre 10 et 80 % et de manière encore plus préférée entre 20 et 70 % et entre 22 et 45 %. Cette teneur en silice est parfaitement mesurée à l'aide de la fluorescence X.
- The preferred support used for the production of the catalyst is composed of silica SiO 2 and alumina Al 2 O 3 . The silica content of the support, expressed as a weight percentage, is generally between 1 and 95%, advantageously even between 5 and 95%, and preferably between 10 and 80% and even more preferably between 20 and 70%, and between 22 and 45%. This silica content is perfectly measured using X-ray fluorescence.
Pour ce type particulier de réaction, la fonction métallique est apportée par un métal noble du groupe VIII de la classification périodique des éléments et plus particulièrement le platine et/ou du palladium.For this particular type of reaction, the metal function is provided by a noble metal of group VIII of the periodic table of elements and more particularly platinum and / or palladium.
La teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5.The noble metal content, expressed in% by weight of metal relative to the catalyst, is between 0.05 to 10 and more preferably between 0.1 and 5.
La dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, peut être mesurée, par exemple, par titrage H2/O2. Le métal est préalablement réduit c'est-à-dire qu'il subit un traitement sous flux d'hydrogène à haute température dans des conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO2. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée ; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur. Dans notre cas, la dispersion est comprise entre 20 % et 100 % et de préférence entre 30 % et 100 %.The dispersion, representing the reagent-accessible metal fraction based on the total amount of catalyst metal, can be measured, for example, by H 2 / O 2 titration. The metal is reduced beforehand, that is to say that it undergoes treatment under hydrogen flow at high temperature under conditions such that all Hydrogen-accessible platinum atoms are converted to metallic form. Then, a flow of oxygen is sent under suitable operating conditions so that all the reduced platinum atoms accessible to oxygen is oxidized in PtO 2 form. By calculating the difference between the quantity of oxygen introduced and the quantity of oxygen leaving, the quantity of oxygen consumed is reached; thus, it is possible to deduce from this latter value the amount of platinum accessible to oxygen. The dispersion is then equal to the ratio of the quantity of platinum accessible to oxygen to the total amount of platinum of the catalyst. In our case, the dispersion is between 20% and 100% and preferably between 30% and 100%.
La répartition du métal noble représente la distribution du métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé. Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à-dire que tous les atomes de platine, situés en couronne, seront accessibles aux réactifs. Dans notre cas, la répartition du platine est bonne c'est-à-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 et de préférence supérieur à 0,2.The distribution of the noble metal represents the distribution of the metal within the catalyst grain, the metal being able to be well or poorly dispersed. Thus, it is possible to obtain the platinum poorly distributed (for example detected in a ring whose thickness is significantly less than the radius of the grain) but well dispersed that is to say that all the platinum atoms, located in crown, will be accessible to the reagents. In our case, the platinum distribution is good, that is to say that the platinum profile, measured according to the Castaing microprobe method, has a distribution coefficient greater than 0.1 and preferably greater than 0.1. 0.2.
La surface BET du support est comprise entre 100 m2/g et 500 m2/g et de préférence comprise entre 250 m2/g et 450m2/g et pour les supports à base de silice-alumine, de manière encore plus préférée entre 310 m2/g et 450 m2/g.The BET surface of the support is between 100 m 2 / g and 500 m 2 / g and preferably between 250 m 2 / g and 450 m 2 / g and for silica-alumina-based supports, even more preferably between 310 m 2 / g and 450 m 2 / g.
Pour les catalyseurs préférés à base de silice-alumine le diamètre moyen des pores du catalyseur est mesuré à partir du profil de répartition poreuse obtenu à l'aide d'un porosimètre au mercure. Le diamètre moyen des pores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée obtenue à partir de la courbe de porosité au mercure. Le diamètre moyen des pores, ainsi défini, est compris entre 1 nm (1x10-9 mètres) et 12 nm (12x10-9 mètres) et de préférence compris entre 1 nm (1x10-9 mètres) et 11 nm (11x10-9 mètres) et de manière encore plus préférée entre 3 nm (4x10-9 mètres) et 10,5 nm (10,5x10-9 mètres).For the preferred silica-alumina catalysts the average pore diameter of the catalyst is measured from the porous distribution profile obtained with a mercury porosimeter. The average pore diameter is defined as the diameter corresponding to the cancellation of the derived curve obtained from the mercury porosity curve. The mean diameter of the pores, thus defined, is between 1 nm (1x10 -9 meters) and 12 nm (12x10 -9 meters) and preferably between 1 nm (1x10 -9 meters) and 11 nm (11x10 -9 meters). ) and even more preferably between 3 nm (4x10 -9 meters) and 10.5 nm (10.5x10 -9 meters).
Le catalyseur préféré a une répartition poreuse telle que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm (soit le diamètre moyen ± 3 nm) est supérieur à 40 % du volume poreux total et de manière préférée compris entre 50 % et 90 % du volume poreux total et plus avantageusement encore entre 50 % et 70 % du volume poreux total.The preferred catalyst has a porous distribution such as the pore volume of the pores whose diameter is between the mean diameter as defined previously decreased by 3 nm and the average diameter as defined above increased by 3 nm (ie the mean diameter ± 3 nm) is greater than 40% of the total pore volume and preferably between 50% and 90% of the total pore volume and more preferably between 50% and 70% of the total pore volume.
Pour le catalyseur préféré à base de silice-alumine il est généralement inférieur à 1,0 ml/g et de préférence compris entre 0,3 et 0,9 ml/g et encore plus avantageusement inférieur à 0,85 ml/g.For the preferred silica-alumina catalyst it is generally less than 1.0 ml / g and preferably between 0.3 and 0.9 ml / g and even more preferably less than 0.85 ml / g.
La préparation et la mise en forme du support, et en particulier de la silice-alumine (notamment utilisée dans le mode de réalisation préféré) est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-750°C (600°C préféré) pendant 0,25-10 heures (2 heures préféré) sous 0-30 % volume de vapeur d'eau (pour la silice alumine 7,5 % préféré).The preparation and shaping of the support, and in particular of the silica-alumina (especially used in the preferred embodiment) is made by usual methods well known to those skilled in the art. Advantageously, prior to the impregnation of the metal, the support may undergo calcination, for example a heat treatment at 300-750 ° C. (preferred 600 ° C.) for 0.25-10 hours (preferred 2 hours) under 0. -30% volume of water vapor (for the silica alumina 7.5% preferred).
Le sel de métal noble est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine et/ou le palladium, la platine étant encore préféré) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction, le catalyseur pourra subir une calcination comme par exemple un traitement sous air sec à 300-750°C (520°C préféré) pendant 0,25-10 heures (2 heures préféré).The noble metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum and / or palladium, platinum being still preferred) on the surface of a support. One of the preferred methods is dry impregnation which consists of introducing the metal salt into a volume of solution which is equal to the pore volume of the catalyst mass to be impregnated. Prior to the reduction operation, the catalyst may be calcined such as, for example, in dry air at 300-750 ° C (520 ° C preferred) for 0.25-10 hours (preferred 2 hours).
Dans un deuxième mode de réalisation préféré selon l'invention, le catalyseur bifonctionnel comporte au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal noble étant inférieure à 20%.In a second preferred embodiment according to the invention, the bifunctional catalyst comprises at least one noble metal deposited on an amorphous acid support, the noble metal dispersion being less than 20%.
De préférence, la fraction des particules de métal noble ayant une taille inférieure à 2 nm représente au plus 2% pds du métal noble déposé sur le catalyseur.Preferably, the fraction of the noble metal particles having a size of less than 2 nm represents at most 2% by weight of the noble metal deposited on the catalyst.
Avantageusement, au moins 70% (de préférence au moins 80%,et mieux au moins 90%), des particules de métal noble présentent une taille supérieure à 4 nm (% nombre).Advantageously, at least 70% (preferably at least 80%, and more preferably at least 90%), noble metal particles have a size greater than 4 nm (% number).
Le support est amorphe, il ne contient pas de tamis moléculaire ; le catalyseur ne contient pas non plus de tamis moléculaire.
Le support acide amorphe est généralement choisi dans le groupe formé par une silice-alumine, une alumine halogénée (fluorée de préférence), une alumine dopée au silicium (silicium déposé), un mélange alumine oxyde de titane, une zircone sulfatée, une zircone dopée au tungstène, et leurs mélanges entre eux ou avec au moins une matrice amorphe choisie dans le groupe formé par l'alumine, l'oxyde de titane, la silice, l'oxyde de bore, la magnésie, la zircone, l'argile par exemple. De préférence, le support est constitué d'une silice alumine amorphe.The support is amorphous, it does not contain molecular sieve; the catalyst does not contain molecular sieves either.
The amorphous acid support is generally chosen from the group formed by a silica-alumina, a halogenated alumina (preferably fluorinated), a silicon-doped alumina (deposited silicon), a titanium oxide alumina mixture, a sulphated zirconia, a doped zirconia with tungsten, and mixtures thereof with one another or with at least one amorphous matrix chosen from the group formed by alumina, titanium oxide, silica, boron oxide, magnesia, zirconia, clay by example. Preferably, the support consists of an amorphous silica alumina.
Un catalyseur préféré comprend (de préférence est essentiellement constitué de) 0,05 à 10% en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine.A preferred catalyst comprises (preferably consists essentially of) from 0.05 to 10% by weight of at least one Group VIII noble metal deposited on an amorphous silica-alumina support.
Les caractéristiques du catalyseur sont plus en détails :
- Le support préféré utilisé pour l'élaboration du catalyseur est composé de silice SiO2 et d'alumine Al2O3 dès la synthèse. La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95%, avantageusement entre 5 et 95% et de manière préférée entre 10 et 80% et de manière encore plus préférée entre 20 et 70% voire entre 22 et 45%. Cette teneur est parfaitement mesurée à l'aide de la-fluorescence X.
- The preferred support used for the preparation of the catalyst is composed of silica SiO 2 and alumina Al 2 O 3 from the synthesis. The silica content of the support, expressed as a percentage by weight, is generally between 1 and 95%, advantageously between 5 and 95%, and preferably between 10 and 80% and even more preferably between 20 and 70%, or even between 20 and 70%. and 45%. This content is perfectly measured using X-fluorescence.
Pour ce type particulier de réaction, la fonction métallique est apportée par au moins un métal noble du groupe VIII de la classification périodique des éléments et plus particulièrement le platine et/ou le palladium.For this particular type of reaction, the metal function is provided by at least one noble metal of group VIII of the periodic table of elements and more particularly platinum and / or palladium.
La teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5.The noble metal content, expressed in% by weight of metal relative to the catalyst, is between 0.05 to 10 and more preferably between 0.1 and 5.
La dispersion (mesurée de la même façon que précédemment) est inférieure à 20%, elles est généralement supérieure à 1 % ou mieux à 5%.The dispersion (measured in the same manner as above) is less than 20%, it is generally greater than 1% or better at 5%.
Afin de déterminer la taille et la répartition des particules de métal nous avons utilisé la Microscopie Electronique à Transmission. Après préparation, l'échantillon de catalyseur est finement broyé dans un mortier en agate puis il est dispersé dans de l'éthanol par ultrasons. Des prélèvements à différents endroits permettant d'assurer une bonne représentativité en taille sont réalisés et déposés sur une grille en cuivre recouverte d'un film de carbone mince. Les grilles sont ensuite séchées à l'air sous lampe infra-rouge avant d'être introduites dans le microscope pour l'observation. Afin d'estimer la taille moyenne des particules de métal noble, plusieurs centaines de mesures sont effectuées à partir de plusieurs dizaines de clichés. L'ensemble de ces mesures permet de réaliser un histogramme de répartition de la taille des particules. Ainsi, nous pouvons estimer précisément la proportion de particules correspondant à chaque domaine de taille des particules.To determine the size and distribution of the metal particles we used Transmission Electron Microscopy. After preparation, the catalyst sample is finely ground in an agate mortar and is then ethanol-dispersed. Samples at different locations to ensure good representativeness in size are made and deposited on a copper grid covered with a thin carbon film. The grids are then air dried under infra-red light before being introduced into the microscope for observation. In order to estimate the average size of noble metal particles, several hundred measurements are made from dozens of shots. All of these measurements make it possible to produce a histogram of distribution of the particle size. Thus, we can accurately estimate the proportion of particles corresponding to each particle size domain.
La répartition du platine est bonne c'est-à-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 avantageusement supérieur à 0,2 et de préférence supérieure à 0,5.The distribution of platinum is good that is to say that the platinum profile, measured according to the method of the microprobe of Castaing, has a distribution coefficient greater than 0.1 advantageously greater than 0.2 and preferably greater than 0.5.
La surface BET du support est généralement comprise entre 100m2/g et 500m2/g et de préférence comprise entre 250 m2/g et 450 m2/g et pour les supports à base de silice alumine, de manière encore plus préférée entre 310 m2/g.The BET surface of the support is generally between 100 m 2 / g and 500m 2 / g and preferably between 250 m 2 / g and 450 m 2 / g and the silica alumina carriers, even more preferably 310 m 2 / g.
Pour les supports à base de silice alumine, il est généralement inférieur à 1,2 ml/g et de préférence compris entre 0,3 et 1,1 ml/g et encore plus avantageusement inférieur à 1,05 ml/g.For silica-based alumina supports, it is generally less than 1.2 ml / g and preferably between 0.3 and 1.1 ml / g and even more advantageously less than 1.05 ml / g.
La préparation et la mise en forme de la silice-alumine et de tout support en général est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-750°C (600°C préféré) pendant une durée comprise entre 0,25 et 10 heures (2 heures préféré) sous 0-30% volume de vapeur d'eau (environ 7,5% préféré pour une silice-alumine).The preparation and shaping of the silica-alumina and of any support in general is made by usual methods well known to those skilled in the art. Advantageously, prior to the impregnation of the metal, the support may undergo calcination, for example a heat treatment at 300-750 ° C. (600 ° C. preferred) for a period of between 0.25 and 10 hours (2 hours). preferred) under 0-30% volume of water vapor (about 7.5% preferred for a silica-alumina).
Le sel de métal est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction et pour obtenir la répartition en taille des particules métalliques, le catalyseur subit une calcination sous air humidifié à 300-750°C (550°C préféré) pendant 0,25-10 heures (2 heures préféré). La pression partielle d'H2O lors de la calcination est par exemple 0,05 bar à 0,50 bar (0,15 bar préférée). D'autres méthodes de traitement connues permettant d'obtenir la dispersion inférieure à 20% conviennent dans le cadre de l'invention.The metal salt is introduced by one of the usual methods used to deposit the metal (preferably platinum) on the surface of a support. One of the preferred methods is dry impregnation which consists of introducing the metal salt into a volume of solution which is equal to the pore volume of the catalyst mass to be impregnated. Prior to the reduction operation and to obtain the size distribution of the metal particles, the catalyst is calcined in humidified air at 300-750 ° C (550 ° C preferred) for 0.25-10 hours (preferred 2 hours). The partial pressure of H2O during the calcination is for example 0.05 bar to 0.50 bar (0.15 bar preferred). Other known methods of treatment making it possible to obtain the dispersion of less than 20% are suitable within the scope of the invention.
Un autre catalyseur préféré pour l'invention comporte au moins un élément hydro-déshydrogénant (de préférence déposé sur le support) et un support comprenant (ou de préférence constitué par) au moins une silice-alumine, ladite silice-alumine possédant les caractéristiques suivantes :
- une teneur pondérale en silice SiO2 comprise entre 10 et 60% de préférence entre 20 et 60% et de manière encore plus préférée entre 20 et 50% poids ou 30-50% poids.
- une teneur en Na inférieure à 300 ppm poids et de préférence inférieure à 200 ppm poids,
- un volume poreux total compris entre 0.5 et 1.2 ml/g mesuré par porosimétrie au mercure,
- la porosité de ladite silice-alumine étant la suivante :
- i/ Le volume des mésopores dont le diamètre est compris entre 40Å et 150Å, et dont le diamètre moyen varie entre 80 et 120 Å représente entre 30 et 80% du volume poreux total précédemment défini et de préférence entre 40 et 70%.
- ii/ Le volume des macropores, dont le diamètre est supérieur à 500 Å, et de préférence compris entre 1000 Å et 10000 Å représente entre 20 et 80% du volume poreux total et de préférence entre 30 et 60% du volume poreux total et de manière encore plus préférée le volume des macropores représente au moins 35% du volume poreux total.
- une surface spécifique supérieure à 200 m2/g et de préférence supérieure à 250 m2/g.
- a weight content of silica SiO 2 of between 10 and 60%, preferably between 20 and 60% and even more preferably between 20 and 50% by weight or 30-50% by weight.
- an Na content of less than 300 ppm by weight and preferably less than 200 ppm by weight,
- a total pore volume of between 0.5 and 1.2 ml / g measured by mercury porosimetry,
- the porosity of said silica-alumina being as follows:
- The volume of the mesopores whose diameter is between 40Å and 150Å and whose mean diameter varies between 80 and 120Å represents between 30% and 80% of the total pore volume previously defined and preferably between 40% and 70%.
- ii / The volume of the macropores, whose diameter is greater than 500 Å, and preferably between 1000 Å and 10000 Å, represents between 20 and 80% of the total pore volume and preferably between 30 and 60% of the total pore volume and of even more preferably, the volume of the macropores represents at least 35% of the total pore volume.
- a specific surface area greater than 200 m 2 / g and preferably greater than 250 m 2 / g.
Les mesures suivantes ont également été effectuées sur la silice-alumine :
- Les diffractogrammes des silice-alumines de l'invention, obtenus par diffraction aux rayons X, correspondent à un mélange de la silice et de l'alumine avec une certaine évolution entre l'alumine gamma et la silice en fonction de la teneur en SiO2 des échantillons. Dans ces silice-alumines on observe une alumine moins bien cristallisée par rapport à l'alumine seule.
- Les spectres du RMN de 27Al des silice-alumines montrent deux massifs de pics distincts. Chaque massif peut être décomposé en au moins deux espèces. Nous observons une large domination des espèces dont le maximum résonne vers 10 ppm et qui s'étend entre 10 et 60 ppm. La position du maximum suggère que ces espèces sont essentiellement de type AlVI (octaédrique). Sur tous les spectres nous observons un deuxième de type d'espèce qui résonne vers 80-110 ppm. Ces espèces correspondraient aux atomes d'AIIV (tétraédrique). Pour des teneurs en silice de la présente invention (
entre 10 et 60%), les proportions des AlIV tétraédriques sont proches et s'établissent autour de 20 à 40%, et de manière préférée entre 24 et 31 %. - L'environnement du silicium des silice-alumines étudié par la RMN de 29Si montrent les déplacements chimiques des différentes d'espèces de silicium telles que Q4 (-105ppm à - 120 ppm), Q3 (-90ppm à -102 ppm) et Q2 (-75ppm à - 93 ppm). Les sites avec un déplacement chimique à -102 ppm peuvent être des sites de type Q3 ou Q4, nous les appelons dans ce travail sites Q3-4. Les silice-alumines de l'invention sont composées de silicium de types Q2, Q3, Q3-4 et Q4. De nombreuses espèces seraient de type Q2, approximativement de l'ordre de 30 à 50 %. La proportion des espèces Q3 est également importante, approximativement de l'ordre de 10 à 30 %. Les définitions des sites sont les suivantes :
- sites Q4 : Si lié à 4Si(ou Al)
- sites Q3 : Si lié à 3 Si(ou Al) et 1 OH
- sites Q2 : Si lié à 2 Si(ou Al) et 2 OH;
- L'homogénéité des supports a été évaluée par Microscopie Electronique à Transmission. Nous cherchons par cette méthode à vérifier l'homogénéité de la répartition de Si et Al à l'échelle nanométrique. Les analyses sont réalisées sur des coupes ultra-fines des supports, par des sondes de taille différente, 50nm ou 15nm. Pour chaque solide étudié, 32 spectres sont enregistrés, dont 16 avec sonde de 50nm et 16 avec sonde à 15nm. Pour chaque spectre, des rapports atomiques Si/Al sont ensuite calculés, avec les moyennes des rapports, le rapport minimum, le rapport maximum et l'écart type de la série. La moyenne des rapports Si/Al mesurée par Microscopie Electronique à Transmission pour les différentes silice-alumines sont proches du rapport Si/Al obtenu par Fluorescence X. L'évaluation du critère homogénéité se fait sur la valeur de l'écart type.
Suivant ces critères, un grand nombre de silice-alumines de la présente invention peuvent être considérées comme hétérogènes car elles présentent des rapports atomiques Si/Al avec des écarts types de l'ordre de 30-40%.
- The diffractograms of the silica-aluminas of the invention, obtained by X-ray diffraction, correspond to a mixture of silica and alumina with a certain evolution between gamma-alumina and silica as a function of the SiO 2 content. some samples. In these silica-aluminas, a less crystalline alumina is observed with respect to the alumina alone.
- The 27 Al NMR spectra of silica-aluminas show two distinct peak mass. Each massif can be broken down into at least two species. We observe a broad dominance of species whose maximum resonates at 10 ppm and which ranges between 10 and 60 ppm. The position of the maximum suggests that these species are essentially of type Al VI (octahedral). On all the spectra we observe a second of type of species which resonates towards 80-110 ppm. These species correspond to the atoms of AI IV (tetrahedral). For silica contents of the present invention (between 10 and 60%), the proportions of the tetrahedral Al IV are close and are around 20 to 40%, and preferably between 24 and 31%.
- The silica-alumina silicon environment studied by the 29 Si NMR shows the chemical shifts of the various silicon species such as Q 4 (-105 ppm to -120 ppm), Q 3 (-90 ppm to -102 ppm). and Q 2 (-75ppm to -93 ppm). Sites with a chemical displacement at -102 ppm may be sites of type Q 3 or Q 4, we call this work Q websites 3-4. The silica-aluminas of the invention are composed of silicon of types Q 2 , Q 3 , Q 3-4 and Q 4 . Many species would be of type Q 2 , approximately of the order of 30 to 50%. The proportion of Q 3 species is also important, approximately of the order of 10 to 30%. The definitions of the sites are as follows:
- sites Q 4 : If linked to 4Si (or Al)
- sites Q 3 : If linked to 3 Si (or Al) and 1 OH
- sites Q 2 : If linked to 2 Si (or Al) and 2 OH;
- The homogeneity of the supports was evaluated by Transmission Electron Microscopy. We seek by this method to verify the homogeneity of the distribution of Si and Al at the nanoscale. The analyzes are carried out on ultra-thin sections of the supports, by probes of different size, 50nm or 15nm. For each solid studied, 32 spectra are recorded, including 16 with a 50 nm probe and 16 with a 15 nm probe. For each spectrum, reports Atomic Si / Al are then calculated, with the averages of the ratios, the minimum ratio, the maximum ratio and the standard deviation of the series. The average Si / Al ratios measured by Transmission Electron Microscopy for the various silica-aluminas are close to the Si / Al ratio obtained by X-ray fluorescence. The evaluation of the homogeneity criterion is made on the value of the standard deviation.
According to these criteria, a large number of silica-aluminas of the present invention can be considered as heterogeneous because they have Si / Al atomic ratios with standard deviations of the order of 30-40%.
Le support peut être constitué de silice-alumine pure ou résulte du mélange avec ladite silice-alumine d'un liant tel que la silice (SiO2), l'alumine (Al2O3), les argiles, l'oxyde de titane (TiO2), l'oxyde de bore (B2O3) et la zircone (ZrO2) et tout mélange des liants précédemment cités. Les liants préférés sont la silice et l'alumine et de manière encore plus préférée l'alumine sous toutes ces formes connues de l'homme du métier, par exemple l'alumine gamma. La teneur pondérale en liant dans le support du catalyseur est comprise entre 0 et 40%, plus particulièrement entre 1 et 40% et de manière encore plus préférée entre 5% et 20%. Il en résulte que la teneur pondérale en silice-alumine est de 60 - 100 %. Cependant, les catalyseurs selon l'invention dont le support est constitué uniquement de silice-alumine sans aucun liant sont préférés.The support may consist of pure silica-alumina or result from mixing with said silica-alumina a binder such as silica (SiO 2 ), alumina (Al 2 O 3 ), clays, titanium oxide (TiO 2 ), boron oxide (B 2 O 3 ) and zirconia (ZrO 2 ) and any mixture of binders previously mentioned. The preferred binders are silica and alumina and even more preferably alumina in all these forms known to those skilled in the art, for example gamma-alumina. The weight content of binder in the catalyst support is between 0 and 40%, more particularly between 1 and 40% and even more preferably between 5% and 20%. As a result, the weight content of silica-alumina is 60 - 100%. However, the catalysts according to the invention whose support consists solely of silica-alumina without any binder are preferred.
Le support peut être préparé par mise en forme de la silice-alumine en présence ou en absence de liant par toute technique connue de l'homme du métier. La mise en forme peut être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant ou par toute autre méthode bien connue de l'homme du métier. Au moins une calcination peut être effectuée après l'une quelconque des étapes de la préparation, elle est habituellement effectuée sous air à une température d'au moins 150°C, de préférence au moins 300°C.The support may be prepared by shaping the silica-alumina in the presence or absence of binder by any technique known to those skilled in the art. The shaping can be carried out for example by extrusion, pelletizing, by the method of coagulation in drop (oil-drop), by rotating plate granulation or by any other method well known to those skilled in the art. At least one calcination may be carried out after any of the steps of the preparation, it is usually carried out under air at a temperature of at least 150 ° C, preferably at least 300 ° C.
Enfin, dans un quatrième mode de réalisation préféré de l'invention, le catalyseur est un catalyseur bifonctionnel dans lequel un métal noble est supporté par un support essentiellement constitué d'un gel de silice-alumine amorphe et micro/mésoporeux avec une taille des pores contrôlée, présentant une surface d'au moins 500 m2/g et un rapport molaire SiO2/Al2O3 compris entre 30/1 et 500/1, de préférence entre 40/1 et 150/1.Finally, in a fourth preferred embodiment of the invention, the catalyst is a bifunctional catalyst in which a noble metal is supported by a support consisting essentially of an amorphous silica-alumina gel and micro / mesoporous membrane with a controlled pore size, having an area of at least 500 m 2 / g and an SiO 2 / Al 2 O 3 molar ratio of between 30/1 and 500/1, preferably between 40/1 and 150/1.
Le métal noble supporté sur le support peut être choisi parmi les métaux des groupes 8, 9 et 10 de la classification périodique, en particulier Co, Ni, Pd et Pt. Le palladium et le platine sont utilisés de préférence. La proportion de métaux nobles est normalement comprise entre 0,05 et 5,0 % en poids par rapport au poids du support. Des résultats particulièrement avantageux ont été obtenus en utilisant du palladium et du platine dans des proportions comprises entre 0,2 et 1,0 % en poids.The noble metal supported on the support may be chosen from metals of
Ledit support est généralement obtenu à partir d'un mélange d'hydroxyde d'ammonium tétra-alkylé, d'un composé d'aluminium qui peut être hydrolysé en Al2O3 d'un composé de silicium qui peut être hydrolyse en SiO2 et d'une quantité suffisante d'eau pour dissoudre et hydrolyser ces composés, ledit hydroxyde d'ammonium tétra-alkylé comportant 2 à 6 atomes de carbone dans chaque résidu d'alkyle, ledit composé d'aluminium hydrolysable étant de préférence un trialkoxyde d'aluminium comportant 2 à 4 atomes de carbone dans chaque résidu d'alkoxyde et ledit composé de silicium hydrolysable étant un tétra-alkylorthosilicate comportant 1 à 5 atomes de carbone pour chaque résidu d'alkyle.Said support is generally obtained from a mixture of tetra-alkylated ammonium hydroxide, an aluminum compound which can be hydrolysed to Al 2 O 3 of a silicon compound which can be hydrolyzed to SiO 2 and a sufficient amount of water to dissolve and hydrolyze these compounds, said tetra-alkylated ammonium hydroxide having 2 to 6 carbon atoms in each alkyl residue, said hydrolyzable aluminum compound being preferably a trialkoxide of aluminum having 2 to 4 carbon atoms in each alkoxide residue and said hydrolysable silicon compound being a tetraalkylorthosilicate having 1 to 5 carbon atoms for each alkyl residue.
Il existe diverses méthodes permettant d'obtenir différents supports présentant les caractéristiques mentionnées ci-dessus, par exemple selon les descriptions présentées dans les demandes de brevets européens
L'hydroxyde d'ammonium tétra-alkylé qui peut être utilisé dans le cadre de la présente invention est par exemple choisi parmi les hydroxydes de tétraéthylammonium, de propylammonium, d'isopropylammonium, de butylammonium, d'isobutyl-ammonium, de terbutylammonium et de pentylammonium, et de préférence parmi les hydroxydes de tétrapropylammonium, de tétra-isopropylammonium et de tétrabutyl-ammonium. Le trialkoxyde d'aluminium est par exemple choisi parmi le triéthoxyde, le propoxyde, l'isopropoxyde, le butoxyde, l'isobutoxyde et le terbutoxyde d'aluminium, de préférence parmi le tripropoxyde et le tri-isopropoxyde d'aluminium. L'orthosilicate tétra-alkylé est choisi par exemple parmi le tétraméthyl-, le tétraéthyl-, le propyl-, l'isopropyl-, le butyl-, l'isobutyl-, le terbutyl- et le pentyl-orthosilicate, le tétraéthyl-orthosilicate étant utilisé de préférence.The tetra-alkylated ammonium hydroxide which may be used in the context of the present invention is, for example, chosen from hydroxides of tetraethylammonium, propylammonium, isopropylammonium, butylammonium, isobutylammonium, terbutylammonium and pentylammonium, and preferably from the hydroxides of tetrapropylammonium, tetraisopropylammonium and tetrabutylammonium. Trialkoxide aluminum is for example chosen from triethoxide, propoxide, isopropoxide, butoxide, isobutoxide and aluminum tertbutoxide, preferably from tripropoxide and tri-isopropoxide of aluminum. The tetra-alkylated orthosilicate is chosen, for example, from tetramethyl-, tetraethyl-, propyl-, isopropyl-, butyl-, isobutyl-, terbutyl- and pentyl-orthosilicate, tetraethylorthosilicate being used preferably.
Selon une procédure typique pour la préparation du support une solution aqueuse contenant l'hydroxyde d'ammonium tétra-alkylé et le trialkoxyde d'aluminium est préparée dans un premier temps à une température suffisante pour garantir une dissolution effective du composé d'aluminium. L'orthosilicate tétra-alkylé est ajouté à ladite solution aqueuse. Ce mélange est porté à une température appropriée pour l'activation de la réaction d'hydrolyse. Cette température dépend de la composition du mélange réactionnel (généralement de 70 à 100°C). La réaction d'hydrolyse est exothermique, ce qui garantit une réaction auto-entretenue après activation. De plus, les proportions des constituants du mélange sont telles qu'elles respectent les rapports molaires suivants : SiO2/Al2O3 de 30/1 à 500/1, hydroxyde d'ammonium tétra-alkylé/SiO2 de 0,05/1 à 0,2/1, et H2O/SiO2 de 5/1 à 40/1. Les valeurs préférées pour ces rapports molaires sont les suivantes : SiO2/Al2O3 de 40/1 à 150/1, hydroxyde d'ammonium tétra-alkylé/SiO2 de 0,05/1 à 0,2/1, et H2O/SiO2 de 10/1 à 25/1.According to a typical procedure for the preparation of the carrier, an aqueous solution containing tetra-alkylated ammonium hydroxide and aluminum trialkoxide is first prepared at a temperature sufficient to ensure effective dissolution of the aluminum compound. The tetra-alkylated orthosilicate is added to said aqueous solution. This mixture is brought to a temperature suitable for the activation of the hydrolysis reaction. This temperature depends on the composition of the reaction mixture (generally 70 to 100 ° C). The hydrolysis reaction is exothermic, which guarantees a self-sustaining reaction after activation. In addition, the proportions of the constituents of the mixture are such that they respect the following molar ratios: SiO 2 / Al 2 O 3 of 30/1 to 500/1, tetra-alkylated ammonium hydroxide / SiO 2 of 0.05 / 1 to 0.2 / 1, and H 2 O / SiO 2 from 5/1 to 40/1. The preferred values for these molar ratios are as follows: SiO 2 / Al 2 O 3 from 40/1 to 150/1, tetra-alkylated ammonium hydroxide / SiO 2 from 0.05 / 1 to 0.2 / 1, and H 2 O / SiO 2 from 10/1 to 25/1.
L'hydrolyse des réactifs et leur gélification sont effectuées à une température égale ou supérieure au point d'ébullition, à la pression atmosphérique, de tout alcool développé sous la forme de sous-produit de ladite réaction d'hydrolyse, sans élimination ou élimination significative de ces alcools du milieu réactionnel. La température d'hydrolyse et de gélification est de ce fait critique et elle est maintenue de manière appropriée à des valeurs supérieures à environ 65°C, de l'ordre d'environ 110°C. De plus, afin de maintenir le développement de l'alcool dans le milieu réactionnel, il est possible d'opérer dans un autoclave à la pression autogène du système à la température présélectionnée (normalement de l'ordre de 0,11-0,15 MPa abs.), ou à la pression atmosphérique dans un réacteur équipé d'un condenseur à reflux.The hydrolysis of the reagents and their gelling are carried out at a temperature equal to or higher than the boiling point, at atmospheric pressure, of any alcohol developed as a by-product of said hydrolysis reaction, without any significant elimination or elimination. of these alcohols of the reaction medium. The hydrolysis and gelling temperature is therefore critical and is suitably maintained at values above about 65 ° C, of the order of about 110 ° C. In addition, in order to maintain the development of the alcohol in the reaction medium, it is possible to operate in an autoclave at the autogenous pressure of the system at the preselected temperature (normally of the order of 0.11-0.15 MPa abs.), Or at atmospheric pressure in a reactor equipped with a reflux condenser.
Selon un mode de réalisation particulier du procédé, l'hydrolyse et la gélification sont effectuées en présence d'une quantité d'alcool supérieure à celle développée sous forme de sous-produit. A cet effet, un alcool libre, de préférence de l'éthanol, est ajouté au mélange réactionnel dans une proportion pouvant aller jusqu'à un rapport molaire maximum alcool ajouté/SiO2 de 8/1.According to a particular embodiment of the process, the hydrolysis and gelling are carried out in the presence of an amount of alcohol greater than that developed as a by-product. For this purpose, a free alcohol, preferably ethanol, is added to the reaction mixture in a proportion up to a maximum molar ratio of added alcohol / SiO 2 of 8/1.
Le temps requis pour mener à bien l'hydrolyse et la gélification dans les conditions indiquées ci-avant est normalement compris entre 10 minutes et 3 heures, de préférence entre 1 et 2 heures.The time required to carry out the hydrolysis and gelling under the conditions indicated above is normally between 10 minutes and 3 hours, preferably between 1 and 2 hours.
On a en outre découvert qu'il pouvait être utile de soumettre le gel ainsi obtenu à un vieillissement en maintenant le mélange réactionnel en présence d'alcool et dans des conditions de température environnementales pendant une durée de l'ordre de 1 à 24 heures.It has further been found that it may be useful to subject the gel thus obtained to aging by maintaining the reaction mixture in the presence of alcohol and under environmental temperature conditions for a period of about 1 to 24 hours.
L'alcool est finalement extrait du gel qui est ensuite séché, de préférence sous une pression réduite (de 3 à 6 kPa par exemple), à une température de 110°C. Le gel séché est ensuite soumis à un processus de calcination sous atmosphère oxydante (normalement dans de l'air), à une température comprise entre 500 et 700°C pendant 4 à 20 heures, de préférence à 500-600°C pendant 6 à 10 heures.The alcohol is finally extracted from the gel which is then dried, preferably under a reduced pressure (from 3 to 6 kPa for example), at a temperature of 110 ° C. The dried gel is then subjected to a calcination process under an oxidizing atmosphere (normally in air), at a temperature between 500 and 700 ° C for 4 to 20 hours, preferably at 500-600 ° C for 6 to 10 hours.
Le gel de silice et d'alumine ainsi obtenu présente une composition qui correspond à celle des réactifs utilisés, si l'on considère que les rendements réactionnels sont pratiquement complets. Le rapport molaire SiO2/Al2O3 est de ce fait compris entre 30/1 et 500/1, de préférence entre 40/1 et 150/1, les valeurs préférentielles étant de l'ordre de 100/1. Ce gel est amorphe, lorsqu'il est soumis à une analyse par diffraction X de poudres, il présente une surface d'au moins 500 m2/g, généralement comprise entre 600 et 850 m2/g, et un volume de pores de 0,4 à 0,8 cm3/g. The silica gel and alumina thus obtained has a composition which corresponds to that of the reagents used, if it is considered that the reaction yields are practically complete. The molar ratio SiO 2 / Al 2 O 3 is therefore between 30/1 and 500/1, preferably between 40/1 and 150/1, the preferred values being of the order of 100/1. This gel is amorphous, when subjected to X-ray powder diffraction analysis, it has an area of at least 500 m 2 / g, generally between 600 and 850 m 2 / g, and a pore volume of 0.4 to 0.8 cm 3 / g .
Un métal choisi parmi les métaux nobles des groupes 8, 9 ou 10 de la classification périodique est supporté sur le gel silice-alumine amorphe micro/mésoporeux obtenu comme décrit ci-avant. Comme indiqué plus haut, ce métal est de préférence choisi parmi le platine ou le palladium, le platine étant utilisé de préférence.A metal selected from the noble metals of
La proportion de métal noble, notamment le platine, au sein du catalyseur ainsi supporté est comprise entre 0,4 et 0,8 %, de préférence entre 0,6 et 0,8 % en poids par rapport au poids du support.The proportion of noble metal, especially platinum, in the catalyst thus supported is between 0.4 and 0.8%, preferably between 0.6 and 0.8% by weight relative to the weight of the support.
Il est avantageux de répartir le métal de manière uniforme sur la surface poreuse du support afin de maximiser la surface catalytique effectivement active. Différentes méthodes peuvent être mises en oeuvre à cet effet, telles que celles décrites, par exemple, dans la demande de brevet européen
A l'issue de l'imprégnation, la solution est évaporée et le solide obtenu est séché et calciné sous atmosphère inerte ou réductrice, dans des conditions de température et de temps analogues à celles précédemment décrites pour la calcination du support.At the end of the impregnation, the solution is evaporated and the solid obtained is dried and calcined under an inert or reducing atmosphere, under conditions of temperature and time similar to those previously described for the calcination of the support.
Une autre méthode d'imprégnation s'effectue au moyen d'un échange d'ions. A cet effet, le support constitué de gel silice-alumine amorphe est mis en contact avec une solution aqueuse d'un sel du métal utilisé, comme dans le cas précédent, mais le dépôt s'effectue par échange d'ions, dans des conditions rendues basiques (pH compris entre 8,5 et 11) par l'ajout d'une quantité suffisante d'un composé alcalin, généralement un hydroxyde d'ammonium. Le solide en suspension est ensuite séparé du liquide par filtration ou décantation, puis séché et calciné comme décrit ci-avant.Another method of impregnation is by means of an ion exchange. For this purpose, the support consisting of amorphous silica-alumina gel is brought into contact with an aqueous solution of a salt of the metal used, as in the previous case, but the deposition is carried out by ion exchange, under conditions made basic (pH between 8.5 and 11) by the addition of a sufficient amount of an alkaline compound, usually an ammonium hydroxide. The suspended solid is then separated from the liquid by filtration or decantation, and then dried and calcined as described above.
Selon une autre méthode encore, le sel du métal de transition peut être inclus dans le gel silice-alumine au cours de la phase de préparation, par exemple avant hydrolyse pour la formation du gel humide, ou avant sa calcination. Bien que cette dernière méthode soit avantageusement plus facile à mettre en oeuvre, le catalyseur ainsi obtenu est légèrement moins actif et sélectif que celui obtenu avec les deux méthodes précédentes.According to yet another method, the salt of the transition metal may be included in the silica-alumina gel during the preparation phase, for example before hydrolysis for the formation of the wet gel, or before its calcination. Although the latter method is advantageously easier to implement, the catalyst thus obtained is slightly less active and selective than that obtained with the two previous methods.
Le catalyseur supporté décrit ci-dessus peut être utilisé tel quel au cours de l'étape d'hydrocraquage du procédé selon la présente invention, après activation selon l'une des méthodes connues et/ou décrites ci-dessous. Toutefois, selon un mode de réalisation préféré, ledit catalyseur supporté est renforcé par l'adjonction avec mélange d'une quantité appropriée d'un solide minéral inerte capable d'améliorer ses propriétés mécaniques. En fait, le catalyseur est utilisé de préférence sous forme granulaire plutôt que sous forme de poudre avec une distribution des particules relativement serrée. De plus, il est avantageux que le catalyseur présente une résistance mécanique à la compression et aux chocs suffisante pour prévenir un écrasement progressif au cours de l'étape d'hydrocraquage.The supported catalyst described above can be used as it is during the hydrocracking step of the process according to the present invention, after activation according to one of the known methods and / or described below. However, according to a preferred embodiment, said supported catalyst is reinforced by the addition with mixing of a suitable amount of an inert mineral solid capable of improving its mechanical properties. In fact, the catalyst is preferably used in granular form rather than in powder form with a relatively tight particle distribution. In addition, it is advantageous for the catalyst to have sufficient compressive and impact strength to prevent progressive crushing during the hydrocracking step.
On connaît également des méthodes d'extrusion et mise en forme qui utilisent un additif inerte approprié (ou liant) capable d'apporter les propriétés mentionnées ci-dessus, par exemple, selon les méthodes décrites dans les demandes de brevets européens
Une méthode typique de préparation du catalyseur sous forme extrudée (
- (a) la solution de composants hydrolysables obtenue comme décrit ci-avant est chauffée pour provoquer l'hydrolyse et la gélification de ladite solution et pour obtenir un mélange A présentant une viscosité comprise entre 0,01
et 100 Pa.sec ; - (b) un liant appartenant au groupe des bohémites ou des pseudobohémites est d'abord ajouté au mélange A, dans un rapport pondéral avec le mélange A compris entre 0,05 et 0,5, puis un acide minéral ou organique est ajouté dans une proportion comprise entre 0,5
et 8,0 g pour 100 g de liant ; - (c) le mélange obtenu en (b) est porté sous agitation à une température comprise entre 40° et 90°C jusqu'à obtention d'une pâte homogène qui est ensuite soumise à une étape d'extrusion et de granulation ;
- (d) le produit extrudé est séché et calciné sous atmosphère oxydante.
- (a) the solution of hydrolysable components obtained as described above is heated to cause the hydrolysis and gelling of said solution and to obtain a mixture A having a viscosity of between 0.01 and 100 Pa.sec;
- (b) a binder belonging to the group of bohemites or pseudobohemites is first added to the mixture A, in a weight ratio with the mixture A of between 0.05 and 0.5, and then a mineral or organic acid is added in a proportion of between 0.5 and 8.0 g per 100 g of binder;
- (c) the mixture obtained in (b) is stirred at a temperature of between 40 ° and 90 ° C until a homogeneous paste is obtained which is then subjected to an extrusion and granulation step;
- (d) the extruded product is dried and calcined under an oxidizing atmosphere.
Des plastifiants tels que de la méthylcellulose sont également de préférence ajoutés au cours de l'étape (b) afin de favoriser la formation d'un mélange homogène facile à traiter.Plasticizers such as methylcellulose are also preferably added during step (b) to promote the formation of a homogeneous, easily treated mixture.
Un support acide granulaire comportant de 30 à 70 % en poids de liant minéral inerte est ainsi obtenu, la proportion restante étant constituée de silice-alumine amorphe présentant essentiellement les mêmes caractéristiques de porosité, de surface et de structure que celles décrites ci-avant pour le même gel sans liant. Les granules se présentent avantageusement sous la forme de pastilles d'environ 2-5 mm de diamètre et de 2-10 mm de long.A granular acidic support comprising from 30 to 70% by weight of inert inorganic binder is thus obtained, the remaining proportion consisting of amorphous silica-alumina having essentially the same characteristics of porosity, surface and structure as those described above for the same gel without binder. The granules are advantageously in the form of pellets approximately 2-5 mm in diameter and 2-10 mm long.
L'étape de dépôt du métal noble sur le support acide granulaire est ensuite effectuée selon la même procédure que celle décrite plus haut.The deposition step of the noble metal on the granular acidic support is then carried out according to the same procedure as that described above.
Après les préparations (par exemple celles décrites dans les modes de réalisation ci-dessus) et avant utilisation dans la réaction de conversion, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 Mpa. Par exemple, une réduction consiste en un palier à 150°C de 2 heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de 2 heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 l hydrogène/l catalyseur. Notons que toute méthode de réduction in situ ou ex-situ est convenable.After the preparations (e.g. those described in the above embodiments) and before use in the conversion reaction, the metal contained in the catalyst must be reduced. One of the preferred methods for conducting the reduction of the metal is hydrogen treatment at a temperature of from 150 ° C to 650 ° C and a total pressure of 0.1 to 25 MPa. For example, a reduction consists of a stage at 150 ° C. for 2 hours then a rise in temperature up to 450 ° C. at the rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. throughout this reduction step, the hydrogen flow rate is 1000 l hydrogen / catalyst. Note that any in situ or ex-situ reduction method is suitable.
De préférence et en particulier pour le catalyseur du dernier mode de réalisation préférée une méthode typique met en oeuvre la procédure décrite ci-dessous :
- 1) 2 heures à température ambiante sous un courant d'azote ;
- 2) 2 heures à 50°C sous un courant d'hydrogène ;
- 3) chauffage à 310-360°C avec une vitesse d'élévation de la température de 3°C/min sous un courant d'hydrogène ;
- 4) température constante à 310-360°
C pendant 3 heures sous un courant d'hydrogène et refroidissement à 200°C.
- 1) 2 hours at room temperature under a stream of nitrogen;
- 2) 2 hours at 50 ° C under a stream of hydrogen;
- 3) heating at 310-360 ° C with a rate of temperature rise of 3 ° C / min under a stream of hydrogen;
- 4) constant temperature at 310-360 ° C for 3 hours under a stream of hydrogen and cooling at 200 ° C.
Au cours de l'activation, la pression au sein du réacteur est maintenue entre 30 et 80 atm.During activation, the pressure in the reactor is maintained between 30 and 80 atm.
Claims (8)
- A process for producing middle distillates from a paraffin effluent produced by Fischer-Tropsch synthesis, comprising the following successive steps:a) optionally, fractionating the feed into at least one heavy fraction with an initial boiling point in the range 120-200°C, and at least one light fraction boiling below said heavy fraction;b) optionally, hydrotreating at least a portion of the effluent or the heavy fraction, optionally followed (step c) by eliminating at least a portion of the water;d) passing at least a portion of the effluent or of the optionally hydrotreated fraction over a first hydroisomerisation/hydrocracking catalyst, which is an amorphous catalyst containing at least one noble group VIII metal;a) distilling the hydroisomerised/hydrocracked effluent to obtain middle distillates (kerosine, gas oil) and a residual fraction boiling above the middle distillates;b) passing at least a portion of said residual heavy fraction and/or a portion of said middle distillates over a second hydroisomerisation/hydrocracking catalyst, which is an amorphous catalyst containing at least one noble group VIII metal, and distilling the resulting effluent to obtain middle distillates.
- A process according to claim 1, in which a portion of at least one of the kerosine, gas oil cuts from step e) is recycled to step d) and the residual fraction undergoes step f).
- A process according to claim 1, in which at least one of the kerosine, gas oil cuts from step e) undergoes step f), and the residual fraction is recycled to step d).
- A process according to any one of the preceding claims, in which the process includes step a) and the light fraction separated in step a) is sent to a steam cracking step.
- A process according to any one of the preceding claims, in which the hydroisomerisation/hydrocracking catalysts contain no added halogen.
- A process according to any one of the preceding claims, in which for the first catalyst, the conversion is less than 50% by weight for converting products with boiling points of 150°C or more to products with boiling points of less than 150°C.
- A process according to any one of the preceding claims, in which, for the second catalyst, the residual fraction is treated with a conversion of more than 40% by weight, for converting products with a boiling point of 370°C or more to products with a boiling point of less than 370°C.
- A process according to any one of the preceding claims, in which, for the second catalyst, a portion of the kerosine and/or gas oil is treated with a conversion of less than 50% by weight, for converting products with a boiling point of 150°C or more to products with a boiling point of less than 150°C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0108972 | 2001-07-06 | ||
FR0108972A FR2826974B1 (en) | 2001-07-06 | 2001-07-06 | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING IN 2 STEPS OF FISCHER-TROPSCH PROCESS |
PCT/FR2002/002206 WO2003004587A1 (en) | 2001-07-06 | 2002-06-26 | Method for production of medium distillates by hydroisomerisation and hydrocracking in two stages of material from the fischer-tropsch process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1406990A1 EP1406990A1 (en) | 2004-04-14 |
EP1406990B1 true EP1406990B1 (en) | 2012-11-07 |
Family
ID=8865187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02751285A Expired - Lifetime EP1406990B1 (en) | 2001-07-06 | 2002-06-26 | Method for production of medium distillates by hydroisomerisation and hydrocracking in two stages of material from the fischer-tropsch process |
Country Status (7)
Country | Link |
---|---|
US (1) | US7220349B2 (en) |
EP (1) | EP1406990B1 (en) |
FR (1) | FR2826974B1 (en) |
MY (1) | MY136327A (en) |
NO (1) | NO337123B1 (en) |
RU (1) | RU2291184C2 (en) |
WO (1) | WO2003004587A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8455389B2 (en) * | 2000-05-25 | 2013-06-04 | Sasol Technology (Pty) Ltd. | Hydrocracking catalyst and a diesel production process |
MY129748A (en) * | 2001-03-05 | 2007-04-30 | Shell Int Research | Process for the preparation of middle distillates |
FR2826972B1 (en) * | 2001-07-06 | 2007-03-23 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF A HEAVY FRACTION RESULTING FROM AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS |
EP1306632A1 (en) * | 2001-10-25 | 2003-05-02 | Shell Internationale Researchmaatschappij B.V. | Process for liquefying natural gas and producing liquid hydrocarbons |
US6949180B2 (en) * | 2002-10-09 | 2005-09-27 | Chevron U.S.A. Inc. | Low toxicity Fischer-Tropsch derived fuel and process for making same |
BRPI0414475A (en) * | 2003-09-17 | 2006-11-14 | Shell Int Research | fuel composition, use of a kerosene fuel, method of operating a jet engine or diesel engine and / or aircraft and process for the preparation of a fuel composition |
US7354507B2 (en) * | 2004-03-17 | 2008-04-08 | Conocophillips Company | Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons |
US20060016722A1 (en) * | 2004-07-08 | 2006-01-26 | Conocophillips Company | Synthetic hydrocarbon products |
US7345211B2 (en) * | 2004-07-08 | 2008-03-18 | Conocophillips Company | Synthetic hydrocarbon products |
US7323100B2 (en) * | 2004-07-16 | 2008-01-29 | Conocophillips Company | Combination of amorphous materials for hydrocracking catalysts |
FR2887556B1 (en) * | 2005-06-28 | 2009-05-08 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MACROPORE CONTROLLED-CONTROLLED CONTOURED ALOPINE-SILICA DOPE CATALYST |
FR2888584B1 (en) * | 2005-07-18 | 2010-12-10 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF FISCHER-TROPSCH PROCESSES USING A MULTIFUNCTIONAL GUARD BED |
US8231776B2 (en) * | 2007-09-07 | 2012-07-31 | Uop Llc | Hydrotreating processes for fabricating petroleum distillates from light fischer-tropsch liquids |
US20090065395A1 (en) * | 2007-09-07 | 2009-03-12 | Uop, Llc | Hydrotreating processes for fabricating petroleum distillates from light fischer-tropsch liquids |
US8509099B2 (en) * | 2008-01-15 | 2013-08-13 | Microsoft Corporation | Load aware resource allocation in wireless networks |
FR2934794B1 (en) * | 2008-08-08 | 2010-10-22 | Inst Francais Du Petrole | PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROCRACKING FISCHER-TROSPCH-BASED LOADS IN THE PRESENCE OF A CATALYST COMPRISING AN IZM-2 SOLID |
FR2934796B1 (en) * | 2008-08-08 | 2010-09-03 | Inst Francais Du Petrole | IZM-2 ZEOLITE CATALYST AND METHOD FOR HYDROCONVERSION / HYDROCRACKING HYDROCARBON LOADS |
US8562819B2 (en) * | 2008-10-01 | 2013-10-22 | Chevron U.S.A. Inc. | Process to manufacture a base stock and a base oil manufacturing plant |
FR2952380B1 (en) * | 2009-11-10 | 2012-05-18 | Inst Francais Du Petrole | PROCESS FOR PRODUCING MEDIUM DISTILLATE FROM FISCHER TROPSCH WAXES USING ZEOLITHE CATALYST MODIFIED BY BASIC TREATMENT |
FR2989380B1 (en) * | 2012-04-12 | 2015-02-27 | IFP Energies Nouvelles | OPTIMIZED PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES FROM A FISCHER-TROPSCH LOAD COMPRISING A LIMITED QUANTITY OF OXYGEN COMPOUNDS |
US20140005450A1 (en) * | 2012-06-29 | 2014-01-02 | Uop Llc | Use of n-paraffin adsorption to increase selectivity and yield of synthetic distillate fuel |
US10472581B2 (en) * | 2016-06-30 | 2019-11-12 | Uop Llc | Process and apparatus for hydrocracking and hydroisomerizing a hydrocarbon stream |
CN112111300B (en) * | 2019-06-20 | 2023-04-07 | 国家能源投资集团有限责任公司 | Method for preparing lubricating oil base oil from Fischer-Tropsch hydrocracking tail oil |
US11661558B2 (en) * | 2020-08-21 | 2023-05-30 | Uop Llc | Apparatus and process for heating hydroisomerization feed |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2617412B1 (en) | 1987-07-01 | 1993-05-14 | Inst Francais Du Petrole | CATALYST COMPRISING A MINERAL SUPPORT, PHOSPHORUS AND BORON, METHODS OF PREPARATION AND USE IN HYDROREFINING OF OIL CUTS |
US4919786A (en) * | 1987-12-18 | 1990-04-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of was to produce middle distillate products (OP-3403) |
US4832819A (en) * | 1987-12-18 | 1989-05-23 | Exxon Research And Engineering Company | Process for the hydroisomerization and hydrocracking of Fisher-Tropsch waxes to produce a syncrude and upgraded hydrocarbon products |
GB9119505D0 (en) | 1991-09-12 | 1991-10-23 | Shell Int Research | Process for the preparation of middle distillates |
DZ1708A1 (en) | 1992-08-18 | 2002-02-17 | Shell Int Research | Process for the preparation of hydrocarbon fuels. |
CA2104044C (en) | 1992-08-25 | 2004-11-02 | Johan W. Gosselink | Process for the preparation of lower olefins |
US5378348A (en) * | 1993-07-22 | 1995-01-03 | Exxon Research And Engineering Company | Distillate fuel production from Fischer-Tropsch wax |
DE69711348T2 (en) | 1996-12-17 | 2002-10-24 | Inst Francais Du Petrol | Catalyst containing boron and silicon and its use in the hydrotreatment of hydrocarbon inserts |
US6113775A (en) | 1997-12-05 | 2000-09-05 | Uop Llc | Split end hydrocracking process |
ATE263824T1 (en) | 1999-04-06 | 2004-04-15 | Sasol Tech Pty Ltd | METHOD FOR PRODUCING SYNTHETIC NAPHTH FUEL |
FR2792851B1 (en) * | 1999-04-29 | 2002-04-05 | Inst Francais Du Petrole | LOW-DISPERSE NOBLE METAL-BASED CATALYST AND USE THEREOF FOR THE CONVERSION OF HYDROCARBON CHARGES |
EP1101813B1 (en) | 1999-11-19 | 2014-03-19 | ENI S.p.A. | Process for the preparation of middle distillates starting from linear paraffins |
-
2001
- 2001-07-06 FR FR0108972A patent/FR2826974B1/en not_active Expired - Lifetime
-
2002
- 2002-06-26 RU RU2004103461/04A patent/RU2291184C2/en not_active IP Right Cessation
- 2002-06-26 EP EP02751285A patent/EP1406990B1/en not_active Expired - Lifetime
- 2002-06-26 WO PCT/FR2002/002206 patent/WO2003004587A1/en not_active Application Discontinuation
- 2002-07-03 MY MYPI20022516A patent/MY136327A/en unknown
- 2002-07-08 US US10/189,759 patent/US7220349B2/en not_active Expired - Lifetime
-
2003
- 2003-12-29 NO NO20035836A patent/NO337123B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU2291184C2 (en) | 2007-01-10 |
US20030019788A1 (en) | 2003-01-30 |
EP1406990A1 (en) | 2004-04-14 |
MY136327A (en) | 2008-09-30 |
RU2004103461A (en) | 2005-06-20 |
WO2003004587A1 (en) | 2003-01-16 |
FR2826974B1 (en) | 2007-03-23 |
NO20035836L (en) | 2004-03-04 |
FR2826974A1 (en) | 2003-01-10 |
US7220349B2 (en) | 2007-05-22 |
NO337123B1 (en) | 2016-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1406990B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking in two stages of material from the fischer-tropsch process | |
EP1406989B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking of a heavy fraction from the residue obtained by the fischer-tropsch process | |
EP1421157B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking of two fractions from material produced by the fischer-tropsch process | |
EP1406988B1 (en) | Method for production of medium distillates by hydroisomerisation and hydrocracking of material produced by the fischer-tropsch process | |
EP1048346B1 (en) | Catalyst with a weakly dispersed noble metal and the use thereof for hydocarbon feedstock conversion | |
EP2313344B1 (en) | Process for producing middle distillates by hydrocracking of feedstocks resulting from the fischer-tropsch process in the presence of a catalyst comprising an izm-2 solid | |
WO2004076598A1 (en) | Method for the production of middle distillates by hydroisomerisation et hydrocracking of charges arrising from the fischer-tropsch method | |
FR2926087A1 (en) | MULTI-PROCESS PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS | |
EP1346010B1 (en) | Improved flexible method for producing oil bases and distillates by hydroisomerization-conversion on a weakly dispersed catalyst followed by catalytic dewaxing | |
WO2009106704A2 (en) | Method of producing middle distillates by sequenced hydroisomeration and hydrocracking of effluent produced by the fischer-tropsch process | |
EP1462168A1 (en) | Catalyst and its use for improving the pour point of hydrocarbon feedstocks | |
FR2989381A1 (en) | PRODUCTION OF MEDIUM DISTILLATES FROM AN EFFLUENT FROM THE FISCHER-TROPSCH SYNTHESIS COMPRISING A STEP FOR REDUCING OXYGEN COMPOUND CONTENT | |
FR2805542A1 (en) | Production of base oil from hydrocarbon material for lubricant, involves hydrogenating, isomerizing paraffin in charging material in presence of noble metal, and treating effluent formed by contact de-paraffin process | |
WO2005012461A1 (en) | Method for improving a flow point of bituminous fillers obtainable by a fisher-tropsch method using a zeolite mixture-based catalyst | |
FR2950896A1 (en) | Making middle distillates from paraffin charge produced by Fischer-Tropsch synthesis comprises implementing hydrocracking catalyst comprising hydrodehydrogenating metal and composite support formed by Y-type zeolite and silicon carbide | |
WO2005012460A1 (en) | Method for improving a flow point of bituminous fillers obtainable by a fisher-tropsch method using a zeolite zbm 30-based catalyst | |
EP1462166A1 (en) | Catalyst and its use for improving the pour point of hydrocarbon feedstocks | |
FR2792946A1 (en) | Base oil and middle distillate production comprises successive conversions of hydro-isomerization and catalytic deparaffination | |
FR3084082A1 (en) | USE OF A BIFUNCTIONAL CATALYST BASED ON ZEOLITE IZM-2 FOR THE HYDROISOMERIZATION OF LIGHT PARAFFINIC LOADS DERIVED FROM THE FISCHER-TROPSCH SYNTHESIS | |
FR3084084A1 (en) | PROCESS FOR PRODUCING OLEFINS AND MEDIUM DISTILLATES FROM A HYDROCARBON EFFLUENT FROM FISCHER-TROPSCH SYNTHESIS | |
FR2989380A1 (en) | OPTIMIZED PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES FROM A FISCHER-TROPSCH LOAD COMPRISING A LIMITED QUANTITY OF OXYGEN COMPOUNDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20110419 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20110419 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): IT |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210622 Year of fee payment: 20 |