EP1325537B1 - Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna - Google Patents

Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna Download PDF

Info

Publication number
EP1325537B1
EP1325537B1 EP01976390A EP01976390A EP1325537B1 EP 1325537 B1 EP1325537 B1 EP 1325537B1 EP 01976390 A EP01976390 A EP 01976390A EP 01976390 A EP01976390 A EP 01976390A EP 1325537 B1 EP1325537 B1 EP 1325537B1
Authority
EP
European Patent Office
Prior art keywords
longitudinal
waveguide
source according
source
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01976390A
Other languages
German (de)
French (fr)
Other versions
EP1325537A1 (en
Inventor
Ali Louzir
Philippe Minard
Franck Thudor
Jean-François PINTOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1325537A1 publication Critical patent/EP1325537A1/en
Application granted granted Critical
Publication of EP1325537B1 publication Critical patent/EP1325537B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • H01Q5/47Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device with a coaxial arrangement of the feeds

Definitions

  • the present invention relates to a source antenna (E) / reception (R), hereinafter called E / R source which can be placed at the point focal point of an antenna system and more particularly at the focal point of a Cassegrain type double reflector antenna.
  • E source antenna
  • R reception
  • I / O source I / O source
  • the propeller network for reception and the longitudinal radiation source for emission.
  • the losses of the printed supply network affect doubly the link budget.
  • the G / T merit factor of the antenna is reduced on the one hand due to the reduction in the gain G of the antenna, and on the other hand, the increase in the noise temperature T of the system linked to the losses dissipative from the power network.
  • the solution proposed in patent application 00 07424 allows, using a network of propellers rather than a network of patches, to improve the factor G / T of the antenna.
  • the object of the present invention is to remedy this problem by proposing an E / R source structure having its phase center between the main reflector and the secondary reflector without inducing blockage for the functioning of the antenna system with two reflectors. It thus makes possible reduction of the side lobes of the antenna system.
  • the present invention also aims to propose a new E / R source structure which reduces the side lobes of sources of emission and reception.
  • a dual reflector antenna system has a perfectly defined focal point and requires for E / R sources a perfect coincidence of their phase centers.
  • the present invention also aims to provide a E / R source structure which allows to perfectly match the phase centers of emission and reception sources.
  • the subject of the present invention is therefore a source of emission / reception (E / R) of electromagnetic waves for antenna with multi-reflector of the Cassegrain type comprising means with longitudinal radiation operating in a first frequency band and a network of n Traveling wave type radiating elements operating in a second frequency band with the n radiating elements arranged symmetrically around the longitudinal radiation means, the network and the longitudinal radiation means having a phase center substantially common, characterized in that the network of n elements radiating is excited by a waveguide forming a slice-shaped cavity pineapple "of rectangular cross section.
  • the network of n elements radiating is a circular network and the guide forms a cavity in the form of "Pineapple slice".
  • the waveguide is sized to such that, D being the mean diameter of the circular network:
  • n the number of radiating elements and ⁇ g the guided wavelength at the operating frequency.
  • ⁇ g ⁇ 0 [ ⁇ r - ( ⁇ 0 / ⁇ c) 2 ] - 1 ⁇ 2 with ⁇ c the cut-off wavelength of the rectangular guide for the fundamental mode TE01, ⁇ 0 the wavelength in vacuum and ⁇ r the permittivity of the filling dielectric material guide.
  • ⁇ c 2a ( ⁇ r) 1 ⁇ 2 where a is the width of the rectangular guide.
  • D is chosen such that: 1.3 ⁇ 0 ⁇ D ⁇ 1.9 ⁇ 0.
  • the rectangular guide above is excited by a connected probe reception circuits (LNA (Low Noise Amplifier in English), mixer, etc ...) by a coaxial line.
  • LNA Low Noise Amplifier in English
  • a second conical cavity surrounds it.
  • Figure 3 schematically shows a sectional view of the E / R source 10 object of the invention, placed at the focal point FP of a system antenna with double reflector located between the two reflectors 1 and 3.
  • the rear cavities 13 and 14 making it possible to reduce the radiation of the lateral lobes for the "Polyrod" and for the propeller network are conical.
  • the rectangular waveguide 15 in the form of a "slice pineapple ” is excited by a coaxial line 16.
  • the radiating helices 11 are in turn coupled by probe 17 to the cavity in a rectangular guide.
  • FIG. 5 shows the detail and the dimensioning of a propeller 11 excited at 12 GHz mounted on a waveguide 15 of straight section polygonal, more particularly rectangular with dimensions a and b.
  • Figure 6a presents simulations showing the result of the coupling of the rectangular guide to the propellers according to the invention as well as the adaptation of the guide cavity to the central frequency of 12 GHz., in the case of 4 propellers such as 11-2, 11-3, 11-4, 11-5 compared to port A1 ( Figure 6b).
  • equations (I) and (III) allow to deduce a relation between ⁇ g and ⁇ 0 . Taking this relation into account in (II), we deduce a.
  • the height b of the rectangular guide is chosen to be approximately half its width. So let b ⁇ a / 2.
  • the quantities ⁇ , ⁇ and h are adjusted so as to reduce the level of the secondary lobes of the propeller network.
  • the diameter d c is given by the dimensioning of the rectangular guide 15, and more particularly by its width a.
  • the depth d is such that the phase center FP of the "polyrod »12 (which is about 1/3 the length of the polyrod) coincides with the phase center FH of the propeller network 11 (ie in the middle of the propeller network and about 1/3 of the length of l 'propeller).
  • the point Fp is at a height of approximately Lp / 3 where Lp is the total length of the polyrod 12 counted from the origin.
  • the shape of the rear cavity of the central polyrod can be changed.
  • the rear cavity can have a cylindrical or similar shape.
  • FIG. 7 represents a particular embodiment of the source transmission / reception object of the invention.
  • the emission part is made up of polyrod 12 and operates in the 14-14.5 GHz band.
  • the conical cavity allowed for this configuration to get the best result.
  • the adaptation of the polyrod in the target band (14-14.5 GHz) as well as the radiation patterns obtained in the presence of the conical cavity are given in FIG. 8.
  • the source is constituted by a propeller 12 mounted in a conical cavity 13 and coupled by a probe 17 to Tx supply.
  • the polarizations of the sources at transmission and reception are circular and can be from same or opposite direction.
  • the 12 'propeller can be positioned in a cylindrical cavity like the polyrod.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne une antenne source d'émission (E) / réception (R), appelée ci-après source E/R pouvant être placée au point focal d'un système d'antenne et plus particulièrement au point focal d'une antenne à double réflecteur de type Cassegrain. Une application possible pour cette source d'E/R se trouve dans les systèmes de communication par satellite utilisant les bandes C, Ku ou Ka.The present invention relates to a source antenna (E) / reception (R), hereinafter called E / R source which can be placed at the point focal point of an antenna system and more particularly at the focal point of a Cassegrain type double reflector antenna. A possible application for this I / O source is in communication systems by satellite using the C, Ku or Ka bands.

La demande de brevet européen publiée EP1 162 686 A1 faisant partie de l'état de la technique au sens de l'article 54(3) revendique la priorité de la demande de brevet national français FR2810163 enregistré sous le n° 00 07424.The published European patent application EP1 162 686 A1 forming part of the state of the art within the meaning of section 54 (3) claims priority of French national patent application FR2810163 registered under the number 00 07424.

Dans la demande de brevet français n° 00 07424 déposée le 9 Juin 2000 au nom de THOMSON multimedia avec pour titre « perfectionnement aux antennes-source d'émission/réception d'ondes électromagnétiques », on a proposé une source E/R hybride constituée d'un réseau d'hélices excité par un circuit d'alimentation imprimé, entourant une antenne à rayonnement longitudinal telle qu'une hélice ou un « polyrod ».In French patent application n ° 00 07424 filed on June 9, 2000 on behalf of THOMSON multimedia with the title "Improvement to antennas - source of emission / reception of waves electromagnetic ", we proposed a hybrid E / R source consisting of a propeller network excited by a printed supply circuit, surrounding a longitudinal radiation antenna such as a propeller or a "polyrod".

Afin de minimiser les interactions entre les sources d'émission et de réception, il est avantageux d'utiliser le réseau d'hélices pour la réception et la source à rayonnement longitudinal pour l'émission. Cependant, en réception les pertes du réseau imprimé d'alimentation affectent doublement le bilan de liaison. En effet, le facteur de mérite G/T de l'antenne est diminué du fait d'une part de la réduction du gain G de l'antenne, et d'autre part, de l'augmentation de la température de bruit T du système liée aux pertes dissipatives du réseau d'alimentation. De ce point de vue, la solution proposée dans la demande de brevet 00 07424 permet, en utilisant un réseau d'hélices de préférence à un réseau de patchs, d'améliorer le facteur G/T de l'antenne.In order to minimize interactions between emission sources and reception, it is advantageous to use the propeller network for reception and the longitudinal radiation source for emission. However, in reception the losses of the printed supply network affect doubly the link budget. Indeed, the G / T merit factor of the antenna is reduced on the one hand due to the reduction in the gain G of the antenna, and on the other hand, the increase in the noise temperature T of the system linked to the losses dissipative from the power network. From this point of view, the solution proposed in patent application 00 07424 allows, using a network of propellers rather than a network of patches, to improve the factor G / T of the antenna.

Par ailleurs, dans la demande de brevet français 00 07424, le substrat sur lequel est gravé le réseau imprimé d'alimentation des hélices et qui inclut les circuits de réception de l'antenne est disposé perpendiculairement à l'axe de rayonnement des hélices. Ainsi, dans une structure Cassegrain, afin d'éviter des blocages par le LNB (Low Noise Block en langue anglaise), il est nécessaire de placer le foyer du système à double réflecteur au sommet du réflecteur principal. Cette contrainte sur la géométrie du système Cassegrain nécessite l'usage d'une source trop directive qui a pour effet d'augmenter le niveau des lobes secondaires du système d'antenne.Furthermore, in French patent application 00 07424, the substrate on which the printed propeller supply network is engraved and which includes the antenna reception circuits is arranged perpendicular to the axis of radiation of the propellers. So in a Cassegrain structure, in order to avoid blockages by the LNB (Low Noise Block in English), it is necessary to place the focus of the double system reflector at the top of the main reflector. This constraint on the Cassegrain system geometry requires the use of a source too directive which has the effect of increasing the level of the side lobes of the antenna system.

En effet, comme illustré sur la figure 1 qui représente schématiquement une structure Cassegrain comportant un réflecteur principal 1, une source 2 et un réflecteur secondaire 3 face à la source 2, les lobes secondaires proviennent principalement :

  • i) de la diffraction par le réflecteur secondaire 3. L'énergie diffractée a un niveau absolu en dB égal à (G-Edge). G est le gain de la source primaire défini essentiellement par sa directivité. Pour un fonctionnement optimal du système d'antenne à double réflecteur, Edge est de l'ordre de 20 dB. Le niveau des lobes secondaires issus de cette diffraction est de l'ordre de la valeur de (G-Edge),
  • ii) des lobes secondaires I rayonnés par la source même 2 et n'interceptant pas le réflecteur secondaire 3. Si la source primaire 1 présente un niveau de lobes secondaires égal en dB à SLL, alors le niveau absolu des lobes secondaires du système d'antenne issus des lobes secondaires de la source primaire est égal à (G-SLL).
  • Une solution pour réduire les lobes d'un système Cassegrain est de réduire G. Cependant, comme illustré en figure 2, pour réduire G et maintenir une valeur de Edge optimale ( de l'ordre de 20 dB ), il faut que la focale 2' du système d'antenne soit située entre le réflecteur principal 1 et le réflecteur secondaire 3.Indeed, as illustrated in FIG. 1 which schematically represents a Cassegrain structure comprising a main reflector 1, a source 2 and a secondary reflector 3 facing the source 2, the secondary lobes mainly come from:
  • i) diffraction by the secondary reflector 3. The diffracted energy has an absolute level in dB equal to (G-Edge). G is the gain of the primary source defined essentially by its directivity. For optimal operation of the dual reflector antenna system, Edge is around 20 dB. The level of the secondary lobes resulting from this diffraction is of the order of the value of (G-Edge),
  • ii) secondary lobes I radiated by the same source 2 and not intercepting the secondary reflector 3. If the primary source 1 has a level of secondary lobes equal in dB to SLL, then the absolute level of the secondary lobes of the system antenna from the secondary lobes of the primary source is equal to (G-SLL).
  • One solution to reduce the lobes of a Cassegrain system is to reduce G. However, as illustrated in Figure 2, to reduce G and maintain an optimal Edge value (of the order of 20 dB), the focal length 2 'of the antenna system is located between the main reflector 1 and the secondary reflector 3.

    La présente invention a pour but de remédier à ce problème en proposant une structure de source E/R ayant son centre de phase entre le réflecteur principal et le réflecteur secondaire sans induire de blocage pour le fonctionnement du système d'antenne à deux réflecteurs. Elle rend ainsi possible une réduction des lobes secondaires du système d'antenne.The object of the present invention is to remedy this problem by proposing an E / R source structure having its phase center between the main reflector and the secondary reflector without inducing blockage for the functioning of the antenna system with two reflectors. It thus makes possible reduction of the side lobes of the antenna system.

    D'autre part, la réduction du niveau SLL des lobes secondaires de la source primaire permet aussi de réduire les lobes secondaires du système d'antenne.On the other hand, reducing the SLL level of the side lobes of the primary source also makes it possible to reduce the secondary lobes of the system antenna.

    La présente invention a aussi pour but de proposer une nouvelle structure de source E/R qui permet de réduire les lobes secondaires de sources d'émission et de réception.The present invention also aims to propose a new E / R source structure which reduces the side lobes of sources of emission and reception.

    De plus, contrairement à un système de focalisation à base de lentille homogène, un système d'antenne à double réflecteur présente un point focal parfaitement défini et nécessite pour les sources E/R une coïncidence parfaite de leurs centres de phase.In addition, unlike a focusing system based on homogeneous lens, a dual reflector antenna system has a perfectly defined focal point and requires for E / R sources a perfect coincidence of their phase centers.

    Ainsi, la présente invention a encore pour but de proposer une structure de source E/R qui permet de faire coïncider parfaitement les centres de phase des sources d'émission et de réception.Thus, the present invention also aims to provide a E / R source structure which allows to perfectly match the phase centers of emission and reception sources.

    La présente invention a donc pour objet une source d'émission / réception (E/R) d'ondes électromagnétiques pour antenne à multiréflecteur du type Cassegrain comportant des moyens à rayonnement longitudinal fonctionnant dans une première bande de fréquences et un réseau de n éléments rayonnants du type à ondes progressives fonctionnant dans une seconde bande de fréquences avec les n éléments rayonnants disposés symétriquement autour des moyens à rayonnement longitudinal, le réseau et les moyens à rayonnement longitudinal ayant un centre de phase sensiblement commun, caractérisée en ce que le réseau de n éléments rayonnants est excité par un guide d'ondes formant une cavité en forme de "tranche d'ananas" de section droite rectangulaire.The subject of the present invention is therefore a source of emission / reception (E / R) of electromagnetic waves for antenna with multi-reflector of the Cassegrain type comprising means with longitudinal radiation operating in a first frequency band and a network of n Traveling wave type radiating elements operating in a second frequency band with the n radiating elements arranged symmetrically around the longitudinal radiation means, the network and the longitudinal radiation means having a phase center substantially common, characterized in that the network of n elements radiating is excited by a waveguide forming a slice-shaped cavity pineapple "of rectangular cross section.

    Selon un mode de réalisation, le réseau de n éléments rayonnants est un réseau circulaire et le guide forme une cavité en forme de « tranche d'ananas ». Dans ce cas, le guide d'ondes est dimensionné de telle sorte que, D étant le diamètre moyen du réseau circulaire : According to one embodiment, the network of n elements radiating is a circular network and the guide forms a cavity in the form of "Pineapple slice". In this case, the waveguide is sized to such that, D being the mean diameter of the circular network:

    D = nλg/2 où n représente le nombre d'éléments rayonnants et λg la longueur d'onde guidée à la fréquence de fonctionnement.D = nλg / 2 where n represents the number of radiating elements and λg the guided wavelength at the operating frequency.

    λg = λ0[εr - (λ0/λc)2] - ½ avec λc la longueur d'onde de coupure du guide rectangulaire pour le mode fondamental TE01, λ0 la longueur d'onde dans le vide et εr la permittivité du matériau diélectrique remplissant le guide.λg = λ0 [εr - (λ0 / λc) 2 ] - ½ with λc the cut-off wavelength of the rectangular guide for the fundamental mode TE01, λ0 the wavelength in vacuum and εr the permittivity of the filling dielectric material guide.

    λc = 2a(εr) ½ où a est la largeur du guide rectangulaire. Pour obtenir une bonne directivité de la source, D est choisi tel que : 1,3 λ0 < D < 1,9 λ0. λc = 2a (εr) ½ where a is the width of the rectangular guide. To obtain good directivity of the source, D is chosen such that: 1.3 λ0 <D <1.9 λ0.

    Le guide rectangulaire ci-dessus est excité par une sonde reliée aux circuits de réception ( LNA (Low Noise Amplifier en langue anglaise), mélangeur, etc...) par une ligne coaxiale.The rectangular guide above is excited by a connected probe reception circuits (LNA (Low Noise Amplifier in English), mixer, etc ...) by a coaxial line.

    Par ailleurs, pour l'émission, l'antenne à rayonnement longitudinal qui peut être constituée soit par un « polyrod » excité par un guide circulaire ou carré soit par une hélice longue excitée par une ligne coaxiale, située au centre du réseau présente une sorte de cavité arrière qui permet :

  • 1) de réduire les lobes secondaires et arrières de l'antenne à rayonnement longitudinal,
  • 2) de faire coïncider les centres de phase des sources d'émission et de réception, et
  • 3) d'améliorer les performances d'isolation entre les sources d'émission et de réception.
  • Furthermore, for transmission, the longitudinal radiation antenna which can be constituted either by a “polyrod” excited by a circular or square guide or by a long helix excited by a coaxial line, located in the center of the array has a sort rear cavity which allows:
  • 1) to reduce the side and rear lobes of the longitudinal radiation antenna,
  • 2) to match the phase centers of the emission and reception sources, and
  • 3) improve the insulation performance between the emission and reception sources.
  • Enfin pour réduire les lobes secondaires du réseau d'hélices, une deuxième cavité conique entoure celui-ci.Finally to reduce the secondary lobes of the propeller network, a second conical cavity surrounds it.

    D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description faite ci-après de différents modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • figure 1 déjà décrite est une représentation schématique d'un système Cassegrain selon l'art antérieur,
  • figure 2 déjà décrite est une représentation schématique correspondant à celle de la figure 1 et expliquant un des problèmes que cherche à résoudre l'invention,
  • figure 3 est une représentation schématique d'un système Cassegrain comportant une source conforme à la présente invention,
  • figures 4a et 4b représentent respectivement une vue en coupe et une vue de dessus d'un système-source selon un mode de réalisation de la présente invention,
  • figure 5 est une vue en coupe de détail d'une hélice utilisée dans le système des figures 4,
  • figure 6 est une courbe donnant les résultats du couplage du guide rectangulaire aux hélices en fonction de la fréquence,
  • figure 7 est une vue identique à celle de la figure 4a représentant le système réalisé pour simulation,
  • figures 8,9 et10 sont des courbes donnant des résultats de simulations réalisées avec le système-source de la figure 7, et
  • figure 11 représente une autre mode de réalisation d'un système-source selon la présente invention.
  • Other characteristics and advantages of the present invention will appear on reading the description given below of various embodiments, this description being made with reference to the attached drawings in which:
  • FIG. 1 already described is a schematic representation of a Cassegrain system according to the prior art,
  • FIG. 2 already described is a schematic representation corresponding to that of FIG. 1 and explaining one of the problems that the invention seeks to solve,
  • FIG. 3 is a schematic representation of a Cassegrain system comprising a source in accordance with the present invention,
  • FIGS. 4a and 4b respectively represent a sectional view and a top view of a source system according to an embodiment of the present invention,
  • FIG. 5 is a detailed sectional view of a propeller used in the system of FIGS. 4,
  • FIG. 6 is a curve giving the results of the coupling of the rectangular guide to the propellers as a function of the frequency,
  • FIG. 7 is a view identical to that of FIG. 4a representing the system produced for simulation,
  • FIGS. 8, 9 and 10 are curves giving results of simulations carried out with the source system of FIG. 7, and
  • FIG. 11 represents another embodiment of a source system according to the present invention.
  • Pour simplification, dans les figures les mêmes éléments portent les mêmes références.For simplification, in the figures the same elements bear the same references.

    On décrira maintenant avec référence aux figures 3 à 11 différents modes de réalisation de la présente invention.We will now describe with reference to Figures 3 to 11 different embodiments of the present invention.

    La Figure 3 montre schématiquement une vue en coupe de la source E/R 10 objet de l'invention, placée au foyer FP d'un système d'antenne à double réflecteur situé entre les deux réflecteurs 1 et 3.Figure 3 schematically shows a sectional view of the E / R source 10 object of the invention, placed at the focal point FP of a system antenna with double reflector located between the two reflectors 1 and 3.

    L'antenne source d'émission/réception objet de l'invention bénéficie, par rapport aux solutions plus conventionnelles utilisant la technologie guide d'onde, des avantages suivants, à savoir :

  • un encombrement, un poids et un coût réduits en même temps qu'une bonne isolation électrique entre les voies d'émission et de réception grâce à une isolation physique entre les deux voies.
  • The source / transmit antenna object of the invention has, compared to more conventional solutions using waveguide technology, the following advantages, namely:
  • reduced dimensions, weight and cost, as well as good electrical insulation between the transmission and reception channels thanks to physical insulation between the two channels.
  • De plus, par rapport au système décrit dans la demande de brevet français 00 07424 :

  • i) Elle permet de réduire encore les pertes de la source constituée du réseau d'hélices grâce aux très faibles pertes de son réseau d'alimentation utilisant un guide rectangulaire monomode, connu pour ces pertes minimales, et dont la longueur est réduite en moyenne au demi-périmètre du réseau circulaire.
  • ii) Elle apporte une solution à faible coût au problème des lobes secondaires trop élevés des antennes à double réflecteur de type Cassegrain :
    • en permettant de placer le centre de phase du système source hybride entre le réflecteur principal et le réflecteur secondaire
    • en réduisant les lobes secondaires des sources primaires d'émission et de réception.
  • iii) Elle permet de faire parfaitement coïncider les centres de phase des sources d'émission et de réception et permet ainsi de positionner la source primaire de manière optimale en émission et en réception.
  • In addition, compared to the system described in French patent application 00 07424:
  • i) It makes it possible to further reduce the losses of the source made up of the propeller network thanks to the very low losses of its supply network using a single-mode rectangular guide, known for these minimum losses, and the length of which is reduced on average to half-perimeter of the circular network.
  • ii) It provides a low-cost solution to the problem of excessively high side lobes of Cassegrain type double reflector antennas:
    • by allowing the phase center of the hybrid source system to be placed between the main reflector and the secondary reflector
    • by reducing the secondary lobes of the primary sources of emission and reception.
  • iii) It makes it possible to perfectly match the phase centers of the emission and reception sources and thus makes it possible to position the primary source optimally in transmission and in reception.
  • On décrira maintenant de manière plus détaillée, avec référence aux figures 4 à 10, un mode de réalisation préférentiel de la présente invention.We will now describe in more detail, with reference in Figures 4 to 10, a preferred embodiment of the present invention.

    Les figures 4a et 4b présentent respectivement une vue en coupe et une vue de dessus du système source objet de l'invention. Dans ce cas particulier :

    • le réseau de n éléments rayonnants du type à ondes progressives est constitué de huit hélices 11. Elles sont placées sur la circonférence d'un cercle de diamètre D fonctionnant dans une seconde bande de fréquences. Elles sont montées sur la face supérieure 15a d'un guide d'onde 15 en forme de « tranche d'ananas ».
    • l'antenne à rayonnement longitudinal située au milieu du réseau est un « polyrod » 12,
    Figures 4a and 4b respectively show a sectional view and a top view of the source system object of the invention. In this particular case:
    • the array of n radiating elements of the traveling wave type consists of eight helices 11. They are placed on the circumference of a circle of diameter D operating in a second frequency band. They are mounted on the upper face 15a of a waveguide 15 in the form of a “pineapple slice”.
    • the longitudinal radiation antenna located in the middle of the array is a “polyrod” 12,

    Comme représenté sur les figures 4a et 7, les cavités arrières 13 et 14 permettant de réduire le rayonnement des lobes latéraux pour le « polyrod » et pour le réseau d'hélices sont coniques.As shown in Figures 4a and 7, the rear cavities 13 and 14 making it possible to reduce the radiation of the lateral lobes for the "Polyrod" and for the propeller network are conical.

    Le guide d'onde 15 rectangulaire en forme de « tranche d'ananas » est excité par une ligne coaxiale 16. Les hélices rayonnantes 11 sont à leur tour couplées par sonde 17 à la cavité en guide rectangulaire.The rectangular waveguide 15 in the form of a "slice pineapple ”is excited by a coaxial line 16. The radiating helices 11 are in turn coupled by probe 17 to the cavity in a rectangular guide.

    Pour une excitation optimale des hélices, celles-ci sont placées au milieu de la section droite du guide dans des plans de champ maximum, à savoir les plans de circuits ouverts.For optimal excitation of the propellers, these are placed in the middle of the straight section of the guide in maximum field planes, namely open circuit plans.

    La figure 5 montre le détail et le dimensionnement d'une hélice 11 excitée à 12 GHz montée sur un guide d'onde 15 de section droite polygonale, plus particulièrement rectangulaire avec des dimensions a et b.FIG. 5 shows the detail and the dimensioning of a propeller 11 excited at 12 GHz mounted on a waveguide 15 of straight section polygonal, more particularly rectangular with dimensions a and b.

    La figure 6a présente des simulations montrant le résultat du couplage du guide rectangulaire aux hélices selon l'invention ainsi que l'adaptation de la cavité en guide, à la fréquence centrale de 12 GHz., dans le cas de 4 hélices telles que 11-2, 11-3, 11-4, 11-5 par rapport au port A1 (figure 6b).Figure 6a presents simulations showing the result of the coupling of the rectangular guide to the propellers according to the invention as well as the adaptation of the guide cavity to the central frequency of 12 GHz., in the case of 4 propellers such as 11-2, 11-3, 11-4, 11-5 compared to port A1 (Figure 6b).

    Ainsi, le dimensionnement du guide rectangulaire 15 se fait de la manière suivante :

    • Figure 00070001
      ( dans le cas d'un réseau de 8 hélices 11) ; λg est la longueur d'onde guidée à la fréquence de fonctionnement ;
      Figure 00070002
      λc est la longueur d'onde de coupure du guide rectangulaire pour le mode TE10 et λ0 est la longueur d'onde dans le vide ;
         λc = 2a(εr)1/2; a est la largeur du guide rectangulaire
         εr = permittivité du matériau diélectrique remplissant le guide
    • Par ailleurs pour un éclairement optimal du réflecteur secondaire, la directivité de la source primaire varie entre +/- 20° et +/- 30° à -20 dB. Ces valeurs de directivité sont obtenues pour des diamètres moyens D tels que :
      Figure 00080001
      λ0 étant la longueur d'onde dans le vide
    Thus, the dimensioning of the rectangular guide 15 is done as follows:
    • Figure 00070001
      (in the case of a network of 8 propellers 11); λ g is the guided wavelength at the operating frequency;
      Figure 00070002
      λ c is the cut-off wavelength of the rectangular guide for TE10 mode and λ0 is the wavelength in vacuum;
      λ c = 2a (ε r ) 1/2 ; a is the width of the rectangular guide
      ε r = permittivity of the dielectric material filling the guide
    • In addition, for optimal illumination of the secondary reflector, the directivity of the primary source varies between +/- 20 ° and +/- 30 ° at -20 dB. These directivity values are obtained for average diameters D such that:
      Figure 00080001
      λ 0 being the wavelength in a vacuum

    Pour D fixé par la directivité de la source, les équations (I) et (III) permettent de déduire une relation entre λg et λ0. En tenant compte de cette relation dans (II), on en déduit a. Pour minimiser les pertes dans le guide rectangulaire, la hauteur b du guide rectangulaire est choisie égale à environ la moitié de sa largeur. Soit donc b ∼a/2.For D fixed by the directivity of the source, equations (I) and (III) allow to deduce a relation between λ g and λ 0 . Taking this relation into account in (II), we deduce a. To minimize losses in the rectangular guide, the height b of the rectangular guide is chosen to be approximately half its width. So let b ∼a / 2.

    En général, pour minimiser les pertes et le coût, le guide est choisi vide (εr = 1). Cependant si le guide est trop large, ou s'il y a besoin de dégager plus d'espace au milieu pour le placement du polyrod 12 avec sa cavité arrière 13, il suffit de remplir le guide d'un matériau diélectrique de permittivité εr> 1. La largeur du guide est réduite d'un facteur (εr)-1/2.In general, to minimize losses and cost, the guide is chosen empty (ε r = 1). However, if the guide is too wide, or if there is a need to clear more space in the middle for the placement of the polyrod 12 with its rear cavity 13, it suffices to fill the guide with a dielectric material of permittivity ε r > 1. The width of the guide is reduced by a factor (ε r ) -1/2 .

    Pour le dimensionnement de la cavité extérieure, les grandeurs Δ, α et h sont ajustées de manière à réduire le niveau des lobes secondaires du réseau d'hélices.For the dimensioning of the external cavity, the quantities Δ, α and h are adjusted so as to reduce the level of the secondary lobes of the propeller network.

    Pour la cavité intérieure 13, le diamètre dc est donné par le dimensionnement du guide rectangulaire 15, et plus particulièrement par sa largeur a.. Comme représenté sur la figure 7, la profondeur d est telle que le centre de phase FP du « polyrod » 12 ( qui se trouve environ au 1/3 de la longueur du polyrod ) coïncide avec le centre de phase FH du réseau d'hélices 11 ( soit au milieu du réseau d'hélices et environ au 1/3 de la longueur de l'hélice ). Ainsi, en faisant référence à la figure 7, et à partir d'une origine située sur la base et au centre de la cavité conique de profondeur d, le point Fp se trouve à une hauteur d'environ Lp/3 où Lp est la longueur totale du polyrod 12 comptée à partir de l'origine. Pour faire coïncider les centres de phase, il faut que les points Fh soient à la même hauteur que Fp, ce qui se traduit par la relation : d + Lh/3 = Lp/3 soit donc d = (Lp - Lh)/3 ;
       Lh est la longueur de chacune des hélices 11.
    For the interior cavity 13, the diameter d c is given by the dimensioning of the rectangular guide 15, and more particularly by its width a. As shown in FIG. 7, the depth d is such that the phase center FP of the "polyrod »12 (which is about 1/3 the length of the polyrod) coincides with the phase center FH of the propeller network 11 (ie in the middle of the propeller network and about 1/3 of the length of l 'propeller). Thus, with reference to FIG. 7, and starting from an origin situated on the base and in the center of the conical cavity of depth d, the point Fp is at a height of approximately Lp / 3 where Lp is the total length of the polyrod 12 counted from the origin. To make the phase centers coincide, the points Fh must be at the same height as Fp, which results in the relation: d + Lh / 3 = Lp / 3 therefore d = (Lp - Lh) / 3; or
    Lh is the length of each of the propellers 11.

    Les dimensions de chacune des hélices 11 fonctionnant en mode longitudinal à la fréquence centrale, ainsi que celles du polyrod central en fonction des directivités recherchées, sont données par des formules classiques connues de l'homme de l'art.The dimensions of each of the propellers 11 operating in mode longitudinal at the central frequency, as well as those of the central polyrod in depending on the directionality sought, are given by formulas classics known to those skilled in the art.

    Enfin la forme de la cavité arrière du polyrod central peut être modifiée. Ainsi, à la place d'une forme conique 13, la cavité arrière peut avoir une forme cylindrique ou similaire.Finally the shape of the rear cavity of the central polyrod can be changed. Thus, instead of a conical shape 13, the rear cavity can have a cylindrical or similar shape.

    La figure 7 représente une réalisation particulière de la source d'émission/réception objet de l'invention. La partie émission est constituée du polyrod 12 et fonctionne dans la bande 14-14,5 GHz. La partie réception fonctionne dans la bande 11.7-12.5 GHz et est constituée d'un réseau de 8 hélices 11 situées sur un cercle de diamètre D = 42 mm soit environ 1,7λ0 où λ0 représente la longueur d'onde dans le vide à la fréquence centrale de la bande de réception soit donc λ0 = 24,7 mm.FIG. 7 represents a particular embodiment of the source transmission / reception object of the invention. The emission part is made up of polyrod 12 and operates in the 14-14.5 GHz band. The reception part operates in the 11.7-12.5 GHz band and consists of a network of 8 propellers 11 located on a circle with diameter D = 42 mm, or approximately 1.7λ0 where λ0 represents the wavelength in vacuum at the center frequency of the receiving strip is therefore λ0 = 24.7 mm.

    Pour cette réalisation, la forme du polyrod 12 a tout d'abord été optimisée. Puis les trois types de cavités intérieures (à savoir une cavité cylindrique , une cavité cylindrique avec pièges et une cavité conique ), toutes de profondeur d = 30 mm (soit donc environ (Lp-Lh)/3 = (110-30)/3 = 26,6 mm) de manière à faire coïncider les centres de phase des deux sources ont été simulées. La cavité conique a permis pour cette configuration d'obtenir le meilleur résultat. L'adaptation du polyrod dans la bande visée (14-14,5 GHz) ainsi que les diagrammes de rayonnement obtenus en présence de la cavité conique sont donnés en figure 8.For this realization, the shape of the polyrod 12 was first of all optimized. Then the three types of interior cavities (namely a cavity cylindrical, a cylindrical cavity with traps and a conical cavity), all of depth d = 30 mm (i.e. approximately (Lp-Lh) / 3 = (110-30) / 3 = 26.6 mm) so as to make the phase centers of the two coincide sources have been simulated. The conical cavity allowed for this configuration to get the best result. The adaptation of the polyrod in the target band (14-14.5 GHz) as well as the radiation patterns obtained in the presence of the conical cavity are given in FIG. 8.

    On a ensuite réalisé l'optimisation de l'angle ∝ et de la hauteur h de la cavité conique extérieure 14, vis-à-vis des lobes secondaires du polyrod. Le meilleur résultat est alors obtenu pour ∝ = 45° et h = 25 mm. La figure 9 montre les résultats de simulation de la courbe d'adaptation et les diagrammes de rayonnement obtenus pour ces valeurs de ∝ et h. On peut noter une réduction significative des lobes secondaires en présence de la cavité extérieure.We then carried out the optimization of the angle ∝ and the height h of the outer conical cavity 14, with respect to the secondary lobes of the polyrod. The best result is then obtained for ∝ = 45 ° and h = 25 mm. The Figure 9 shows the simulation results of the adaptation curve and the radiation patterns obtained for these values of ∝ and h. We can note a significant reduction in the side lobes in the presence of the outer cavity.

    Enfin, la figure 10 montre les diagrammes de rayonnement du réseau de huit hélices toutes de longueur 30 mm régulièrement espacés sur un cercle de diamètre D = 42 mm soit environ 1.7λ0 où λ0 représente la longueur d'onde dans le vide à la fréquence centrale de la bande de réception.Finally, Figure 10 shows the radiation patterns of the network of eight propellers, all 30 mm long, evenly spaced on a circle with diameter D = 42 mm or about 1.7λ0 where λ0 represents the wavelength in vacuum at the center frequency of the band reception.

    L'optimisation des lobes secondaires de la source de réception par la cavité extérieure aboutit à des valeurs optimales de h = 25mm et ∝ = 40°. Ces valeurs sont légèrement différentes de celles obtenues pour l'optimisation des lobes secondaires de la source d'émission (h = 25 mm et ∝ = 45°). Ce sont les valeurs obtenues pour la source d'émission qui ont été privilégiées, compte-tenu des contraintes plus fortes sur le diagramme d'émission.Optimization of the secondary lobes of the receiving source through the outer cavity leads to optimal values of h = 25mm and ∝ = 40 °. These values are slightly different from those obtained for optimization of the secondary lobes of the emission source (h = 25 mm and ∝ = 45 °). These are the values obtained for the emission source that have been privileged, given the stronger constraints on the diagram resignation.

    Sur la figure 11, on a représenté une variante de réalisation de la source à rayonnement longitudinal. Dans ce cas, la source est constituée par une hélice 12 montée dans une cavité conique 13 et couplée par une sonde 17 à l'alimentation Tx.In FIG. 11, an alternative embodiment of the longitudinal radiation source. In this case, the source is constituted by a propeller 12 mounted in a conical cavity 13 and coupled by a probe 17 to Tx supply.

    Dans les modes de réalisation représentés, les polarisations des sources à l'émission et à la réception sont circulaires et peuvent être de même sens ou de sens opposé.In the embodiments shown, the polarizations of the sources at transmission and reception are circular and can be from same or opposite direction.

    De manière évidente pour l'homme de l'art, l'hélice 12' peut être positionnée dans une cavité cylindrique comme le polyrod.Obviously for those skilled in the art, the 12 'propeller can be positioned in a cylindrical cavity like the polyrod.

    La présente invention peut être modifiée de nombreuses manières sans sortir du cadre des revendications ci-après.The present invention can be modified in numerous ways. manners without going beyond the scope of the claims below.

    Claims (9)

    1. Electromagnetic wave transmission/reception (T/R) source for a multireflector antenna of the Cassegrain type comprising longitudinal-radiation means (12, 12') operating in a first frequency band and an array of n radiating elements (11) of the travelling-wave type operating in a second frequency band with the n radiating elements arranged symmetrically around the longitudinal-radiation means, the array and the longitudinal-radiation means having an approximately common phase centre, characterized in that the array of n radiating elements is excited by a waveguide (15) forming a cavity in the shape of a "slice of pineapple" of polygonal cross section.
    2. Source according to Claim 1, characterized in that the array of n radiating elements is a circular array.
    3. Source according to Claims 1 and 2, characterized in that the waveguide (15) has dimensions such that, D being the mean diameter of the circular array :
      D = nλg/2 where n represents the number of radiating elements and λg represents the wavelength of the guided wave at the operating frequency ;
      λg = λ0r - (λ0c)2] , where λc is the cut-off wavelength of the reactangular waveguide for the TE01 fundamental mode, λ0 is the wavelength in vacuo and εr is the permittivity of the dielectric filling the waveguide ; and
      λc = 2a(εr)½, where a is the width of the rectangular waveguide.
    4. Source according to Claim 3, characterized in that D is chosen such that: 1.3λ0 < D < 1.9λ0.
    5. Source according to any one of Claims 1 to 4, characterized in that the waveguide is filled with a dielectric of permittivity ≥ 1.
    6. Source according to any one of Claims 1 to 5, characterized in that the radiating elements of the travelling-wave type are helices (11).
    7. Source according to any one of Claims 1 to 3, characterized in that the longitudinal-radiation means consist of a longitudinal-radiation dielectric rod or "polyrod" (12) whose axis is coincident with the radiation axis, the said rod being excited by means comprising a waveguide.
    8. Source according to any one of Claims 1 to 3, characterized in that the longitudinal-radiation means consist of a device (12') in the form of a helix whose axis is coincident with the radiation axis, the said device being excited by means comprising a coaxial line.
    9. Source according to either of Claims 7 and 8, characterized in that the longitudinal-radiation means are surrounded by a cavity (14) that reduces the side lobes.
    EP01976390A 2000-10-12 2001-10-11 Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna Expired - Lifetime EP1325537B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR0013213 2000-10-12
    FR0013213 2000-10-12
    PCT/FR2001/003132 WO2002031920A1 (en) 2000-10-12 2001-10-11 Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna

    Publications (2)

    Publication Number Publication Date
    EP1325537A1 EP1325537A1 (en) 2003-07-09
    EP1325537B1 true EP1325537B1 (en) 2004-06-02

    Family

    ID=8855380

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01976390A Expired - Lifetime EP1325537B1 (en) 2000-10-12 2001-10-11 Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna

    Country Status (10)

    Country Link
    US (1) US6861998B2 (en)
    EP (1) EP1325537B1 (en)
    JP (1) JP4090875B2 (en)
    KR (1) KR20030040513A (en)
    CN (1) CN1254883C (en)
    AU (1) AU2001295677A1 (en)
    DE (1) DE60103653T2 (en)
    ES (1) ES2222394T3 (en)
    MX (1) MXPA03002670A (en)
    WO (1) WO2002031920A1 (en)

    Families Citing this family (141)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005002505A1 (en) * 2005-01-19 2006-07-27 Robert Bosch Gmbh Device for emitting and receiving electromagnetic radiation
    US7388559B1 (en) * 2006-12-21 2008-06-17 The Boeing Company Reflector antenna
    KR100961221B1 (en) * 2007-12-05 2010-06-03 위월드 주식회사 Axially Displaced Ellipse Antenna System Using Helix feed for Dual polarization
    US9281561B2 (en) * 2009-09-21 2016-03-08 Kvh Industries, Inc. Multi-band antenna system for satellite communications
    US9520637B2 (en) 2012-08-27 2016-12-13 Kvh Industries, Inc. Agile diverse polarization multi-frequency band antenna feed with rotatable integrated distributed transceivers
    US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
    US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
    US20150270615A1 (en) * 2013-10-10 2015-09-24 Michael Andrew Neenan High Frequency GPS GNN GLONASS Antenna
    US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
    US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
    US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
    US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
    US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
    US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
    US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
    US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
    US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
    US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
    US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
    US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
    US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
    US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
    US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
    US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
    US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
    US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
    US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
    US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
    US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
    US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
    US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
    US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
    US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
    US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
    US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
    US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
    US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
    US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
    US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
    US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
    US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
    US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
    US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
    US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
    US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
    US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
    US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
    US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
    US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
    US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
    US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
    US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
    US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
    US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
    US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
    US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
    US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
    US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
    US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
    US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
    US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
    US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
    US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
    US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
    US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
    US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
    US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
    US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
    US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
    US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
    US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
    US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
    US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
    US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
    US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
    US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
    CN105226394B (en) * 2015-09-29 2017-04-12 四川九洲电器集团有限责任公司 C/Ku dual-band array antenna
    US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
    US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
    US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
    JP2018537922A (en) * 2015-12-18 2018-12-20 タレス・アレーニア・スペース・イタリア・エッセ・ピ・ア・コン・ウニコ・ソシオ Dual reflector antenna and associated antenna system for on-board use in low earth orbit satellites for high-throughput data downlink and / or for telemetry, tracking and command
    US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
    US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
    US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
    US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
    US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
    US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
    US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
    US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
    US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
    US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
    US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
    US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
    US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
    US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
    US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
    US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
    US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
    US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
    US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
    US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
    US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
    US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
    US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
    US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
    US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
    US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
    US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
    US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
    US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
    US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
    US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
    US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
    US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
    US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
    US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
    US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
    US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
    US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
    US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
    US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
    US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
    US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
    US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
    US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
    US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
    US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
    US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
    US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
    US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
    US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
    US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
    US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
    US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
    US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
    US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
    US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
    US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
    CN108768500B (en) * 2018-05-25 2021-01-22 北京无线电测量研究所 Communication satellite transponder
    CN109301499A (en) * 2018-11-13 2019-02-01 南京信息工程大学 Ka/W dual-band and dual-polarization high-isolation high-gain Cassegrain antenna
    US11888229B1 (en) * 2019-12-11 2024-01-30 Raytheon Company Axisymmetric reflector antenna for radiating axisymmetric modes

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5041840A (en) * 1987-04-13 1991-08-20 Frank Cipolla Multiple frequency antenna feed
    GB9900411D0 (en) * 1999-01-08 1999-02-24 Cambridge Ind Ltd Multi-frequency antenna feed
    US6320553B1 (en) * 1999-12-14 2001-11-20 Harris Corporation Multiple frequency reflector antenna with multiple feeds

    Also Published As

    Publication number Publication date
    DE60103653T2 (en) 2005-06-09
    CN1254883C (en) 2006-05-03
    US6861998B2 (en) 2005-03-01
    CN1470089A (en) 2004-01-21
    AU2001295677A1 (en) 2002-04-22
    JP2004511940A (en) 2004-04-15
    EP1325537A1 (en) 2003-07-09
    DE60103653D1 (en) 2004-07-08
    WO2002031920A1 (en) 2002-04-18
    ES2222394T3 (en) 2005-02-01
    KR20030040513A (en) 2003-05-22
    US20040021612A1 (en) 2004-02-05
    JP4090875B2 (en) 2008-05-28
    MXPA03002670A (en) 2003-06-24

    Similar Documents

    Publication Publication Date Title
    EP1325537B1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
    EP0481417B1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
    CA2004870C (en) Multifrequency radiating device
    EP2564466B1 (en) Compact radiating element having resonant cavities
    FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
    EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
    EP0899814B1 (en) Radiating structure
    EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
    EP1416586B1 (en) Antenna with an assembly of filtering material
    EP0012055B1 (en) Microstrip monopulse primary feed and antenna using same
    EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
    EP3011639B1 (en) Source for parabolic antenna
    EP0598656A1 (en) Radiating element for an antenna array and sub-set with such elements
    EP2047564A1 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
    FR2811142A1 (en) DEVICE FOR TRANSMITTING AND / OR RECEIVING ELECTROMAGNETIC WAVES SUPPLIED BY A NETWORK PRODUCED IN MICRORUBAN TECHNOLOGY
    EP0149400B1 (en) Aerial with a circular-mode promotion system
    EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
    EP1188202B1 (en) Device for transmitting and/or receiving signals
    CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
    EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
    EP1152483B1 (en) Dual-band microwave radiating element
    EP3506426B1 (en) Beam pointing device for antenna system, associated antenna system and platform
    WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
    FR2703516A1 (en) Travelling-wave antenna

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030313

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60103653

    Country of ref document: DE

    Date of ref document: 20040708

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040809

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040602

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2222394

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050303

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20071120

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20071026

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081011

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20081013

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081013

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100928

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20101022

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20111103

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20121011

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130501

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121011

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60103653

    Country of ref document: DE

    Effective date: 20130501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031