EP1318025B1 - Ink jet recording element and printing method - Google Patents
Ink jet recording element and printing method Download PDFInfo
- Publication number
- EP1318025B1 EP1318025B1 EP20020079866 EP02079866A EP1318025B1 EP 1318025 B1 EP1318025 B1 EP 1318025B1 EP 20020079866 EP20020079866 EP 20020079866 EP 02079866 A EP02079866 A EP 02079866A EP 1318025 B1 EP1318025 B1 EP 1318025B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- image
- ink jet
- polymeric
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000007639 printing Methods 0.000 title claims description 13
- 239000002245 particle Substances 0.000 claims description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 32
- 230000002209 hydrophobic effect Effects 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 6
- 238000007641 inkjet printing Methods 0.000 claims description 5
- 239000003906 humectant Substances 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 239000000976 ink Substances 0.000 description 56
- 238000000576 coating method Methods 0.000 description 36
- 239000000178 monomer Substances 0.000 description 34
- 239000011248 coating agent Substances 0.000 description 31
- -1 polyoxy-methylene Polymers 0.000 description 29
- 239000000243 solution Substances 0.000 description 28
- 238000002360 preparation method Methods 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 20
- 239000000839 emulsion Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 16
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 15
- 239000000975 dye Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 13
- 239000004816 latex Substances 0.000 description 11
- 229920000126 latex Polymers 0.000 description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 10
- 239000011258 core-shell material Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 8
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000007720 emulsion polymerization reaction Methods 0.000 description 7
- 150000005846 sugar alcohols Polymers 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- OPRIWFSSXKQMPB-UHFFFAOYSA-N 2-methyl-2-(prop-2-enoylamino)propane-1-sulfonic acid;sodium Chemical compound [Na].OS(=O)(=O)CC(C)(C)NC(=O)C=C OPRIWFSSXKQMPB-UHFFFAOYSA-N 0.000 description 5
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000001044 red dye Substances 0.000 description 4
- YLVACWCCJCZITJ-UHFFFAOYSA-N 1,4-dioxane-2,3-diol Chemical compound OC1OCCOC1O YLVACWCCJCZITJ-UHFFFAOYSA-N 0.000 description 3
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- YYYARFHFWYKNLF-UHFFFAOYSA-N 4-[(2,4-dimethylphenyl)diazenyl]-3-hydroxynaphthalene-2,7-disulfonic acid Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=C12 YYYARFHFWYKNLF-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920001890 Novodur Polymers 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000012674 dispersion polymerization Methods 0.000 description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical class C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000010420 shell particle Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- UIYCHXAGWOYNNA-UHFFFAOYSA-N vinyl sulfide Chemical compound C=CSC=C UIYCHXAGWOYNNA-UHFFFAOYSA-N 0.000 description 2
- TVXNKQRAZONMHJ-UHFFFAOYSA-M (4-ethenylphenyl)methyl-trimethylazanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=C(C=C)C=C1 TVXNKQRAZONMHJ-UHFFFAOYSA-M 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- SLBOQBILGNEPEB-UHFFFAOYSA-N 1-chloroprop-2-enylbenzene Chemical compound C=CC(Cl)C1=CC=CC=C1 SLBOQBILGNEPEB-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- ICBJBNAUJWZPBY-UHFFFAOYSA-N 2-hydroxyethyl 3-methylbut-2-enoate Chemical group CC(=CC(=O)OCCO)C ICBJBNAUJWZPBY-UHFFFAOYSA-N 0.000 description 1
- DSBZMUUPEHHYCY-UHFFFAOYSA-N 2-oxo-1,3,2-dioxathietan-4-one Chemical compound O=C1OS(=O)O1 DSBZMUUPEHHYCY-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 244000151018 Maranta arundinacea Species 0.000 description 1
- 235000010804 Maranta arundinacea Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 235000012419 Thalia geniculata Nutrition 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000002012 dioxanes Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- VXSASNNBOYCZMY-UHFFFAOYSA-M ethenyl-dimethyl-(2-phenylethyl)azanium;chloride Chemical compound [Cl-].C=C[N+](C)(C)CCC1=CC=CC=C1 VXSASNNBOYCZMY-UHFFFAOYSA-M 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- AWJZTPWDQYFQPQ-UHFFFAOYSA-N methyl 2-chloroprop-2-enoate Chemical compound COC(=O)C(Cl)=C AWJZTPWDQYFQPQ-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- WOGJXWRRBRDSDS-UHFFFAOYSA-N n,n-dimethyl-1,2-diphenylbut-3-en-1-amine Chemical compound C=1C=CC=CC=1C(N(C)C)C(C=C)C1=CC=CC=C1 WOGJXWRRBRDSDS-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000003361 porogen Substances 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/52—Macromolecular coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/506—Intermediate layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/50—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
- B41M5/502—Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
- B41M5/508—Supports
Definitions
- the present invention relates to a porous ink jet recording element and a printing method using the element.
- ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium.
- the ink droplets, or recording liquid generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent.
- the solvent, or carrier liquid typically is made up of water and an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
- An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-receiving layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
- porous recording elements have been developed which provide nearly instantaneous drying as long as they have sufficient thickness and pore volume to effectively contain the liquid ink.
- a porous recording element can be manufactured by cast coating, in which a particulate-containing coating is applied to a support and is dried in contact with a polished smooth surface.
- Inkjet prints prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to damage resulting from contact with water and atmospheric gases such as ozone. The damage resulting from the post imaging contact with water can take the form of water spots resulting from deglossing of the top coat, dye smearing due to unwanted dye diffusion, and even gross dissolution of the image recording layer. Ozone bleaches inkjet dyes resulting in loss of density. To overcome these deficiencies ink jet prints are often laminated. Lamination is however expensive as it requires a separate roll of material. Alternatively ink jet recording elements having a two-layer construction have been employed.
- These elements typically have a porous ink-transporting topcoat of thermally fusible particles residing on either a swellable or porous ink-retaining layer. Upon printing the ink passes through the topcoat and into an ink-retaining layer. The topcoat layer is then sealed to afford a water and stain resistant print.
- Such topcoats containing thermally fusible particles typically either, contain a binder or are thermally sintered to provide a level of mechanical integrity to the layer prior to the imaging and fusing steps.
- Print protection can also be provided by coating a polymer solution or dispersion on the surface of an inkjet media after image is formed.
- the aqueous coating solutions are often polymer dispersions capable of film-formation when water is removed.
- EP 0858905 A1 relates to the preparation of a recording medium comprising a porous outermost layer by coating and drying a particulate thermoplastic resin above its glass transition temperature (Tg), but below its minimum film formation temperature (MFFT).
- Tg glass transition temperature
- MFFT minimum film formation temperature
- the drying temperature has to be controlled very precisely between the Tg and MFFT in order to achieve the desired result. If the drying temperature is below the Tg, then a powdery layer is formed. If the drying temperature is above MFFT, then a complete coalesced film is formed which will not transport ink.
- EP 1132218 A1 discloses an ink jet element having an image-receiving layer comprising an inorganic filler and coated particles.
- the inorganic filler is present in an amount of from 50 to 95% by weight.
- an ink jet recording element comprising a support having thereon a fusible, porous, image-receiving layer comprising non-porous polymeric particles having a core/shell structure comprising a polymeric, hydrophobic core covered with a polymeric, hydrophobic shell, the Tg of the polymeric, hydrophobic core being at least 25° C higher than the Tg of the polymeric, hydrophobic shell, and wherein there is an ink-retaining layer between said support and said image-receiving layer.
- a porous ink jet recording element is obtained that, when printed with an ink jet ink, has good abrasion and water-resistance, and is flexible after printing and fusing to provide resistance to cracking.
- the non-porous polymeric particles which are used in the invention, comprise a polymeric core covered with a shell of a water-insoluble polymer.
- Polymers which can be used as a core and a shell for the core/shell particles used in the invention comprise, for example, acrylic resins, styrenic resins, or cellulose derivatives, such as cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose acetate propionate, and ethyl cellulose; polyvinyl resins such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate and polyvinyl butyral, polyvinyl acetal, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and ethylene-allyl copolymers such as ethylene-allyl alcohol copolymers, ethylene-allyl acetone copolymers, ethylene-allyl benzene copolymers, ethylene-allyl ether copolymers, ethylene acrylic copolymers and polyoxy-methylene; polycondensation polymers, such as, polyesters, including polyethylene
- the polymeric core and the polymeric shell are made from a styrenic or an acrylic monomer. Any suitable ethylenically unsaturated monomer or mixture of monomers may be used in making such styrenic or acrylic polymer.
- styrenic compounds such as styrene, vinyl toluene, p-chlorostyrene, vinylbenzylchloride or vinyl naphthalene
- acrylic compounds such as methyl acrylate, ethyl acrylate, n-butyl acrylate, n-octyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl- ⁇ -chloroacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate; and mixtures thereof.
- methyl methacrylate or styrene is used.
- Core-shell particles employed in this invention are in general prepared by a sequential emulsion polymerization technique.
- the core polymer latex is polymerized first followed by the sequential feeding of the second monomer emulsions to form a core-shell structure.
- Examples of core-shell particle preparation can be found in "Emulsion Polymerization and Emulsion Polymers", P. A. Lovell and M. S. El-Aasser, John Wiley & Sons, Ltd., 1997.
- the Tg of the polymeric hydrophobic core is from 50° C. to 200°C. In another embodiment, the Tg of the polymeric hydrophobic shell is from -60° C. to 125°C. In still another preferred embodiment, the particles having a core/shell structure have an average particle size of from 0.05 ⁇ m to 10 ⁇ m. In yet still another preferred embodiment, the particles having a core/shell structure have a weight ratio of the core to the shell of from 1:10 to 1:0.1. In yet another preferred embodiment, the particles having a core/shell structure have a polydispersity index of particle size distribution of less than 1.3.
- a suitable crosslinking monomer may be used in forming the polymeric core in order to modify the non-porous polymeric particle to produce particularly desired properties.
- Typical crosslinking monomers are aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene or derivatives thereof; diethylene carboxylate esters and amides such as ethylene glycol dimethacrylate, diethylene glycol diacrylate, and other divinyl compounds such as divinyl sulfide or divinyl sulfone compounds. Divinylbenzene and ethylene glycol dimethacrylate are especially preferred. While the crosslinking monomer may be used in any amount, at least 27 mole % is preferred.
- UV absorbing monomers may be used in forming the polymeric core or polymeric shell in order to improve light fastness of the image.
- UV absorbing monomers include the following: UV-Absorber R 1 R 2 R 3 X Y UV-1 CH 3 H H COO (CH 2 ) 2 UV-2 H H Cl COO (CH 2 ) 3 UV-3 H H H CH 2 O
- the non-porous polymeric particles used in this invention have a polymeric core that can be prepared, for example, by pulverizing and classification of organic compounds, by emulsion, suspension, and dispersion polymerization of organic monomers, by spray drying of a solution containing organic compounds, or by a polymer suspension technique which consists of dissolving an organic material in a water immiscible solvent, dispersing the solution as fine liquid droplets in aqueous solution, and removing the solvent by evaporation or other suitable techniques.
- the bulk, emulsion, dispersion, and suspension polymerization procedures are well known to those skilled in the polymer art and are taught in such textbooks as G. Odian in "Principles of Polymerization", 2nd Ed. Wiley (1981), and W.P. Sorenson and T.W. Campbell in “Preparation Method of Polymer Chemistry", 2nd Ed, Wiley (1968).
- the polymeric particles used in the invention are non-porous.
- non-porous is meant a particle that is either void-free or not permeable to liquids. These particles can have either a smooth or a rough surface.
- the image-receiving layer may also contain additives such as pH-modifiers like nitric acid, rheology modifiers, surfactants, UV-absorbers, biocides, lubricants, water-dispersible latexes, mordants, dyes, optical brighteners etc.
- pH-modifiers like nitric acid, rheology modifiers, surfactants, UV-absorbers, biocides, lubricants, water-dispersible latexes, mordants, dyes, optical brighteners etc.
- the image-receiving layer may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll, slot die, curtain, slide, etc.
- coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed.
- the image-receiving layer thickness may range from 5 to 100 ⁇ m, preferably from 10 to 50 ⁇ m.
- the coating thickness required is determined through the need for the coating to act as a sump for absorption of ink solvent.
- the ink jet inks used to image the recording elements of the present invention are well-known in the art.
- the ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like.
- the solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols.
- Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols.
- the dyes used in such compositions are typically water-soluble direct or acid type dyes.
- Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- Pen plotters operate by writing directly on the surface of a recording medium using a pen consisting of a bundle of capillary tubes in contact with an ink reservoir.
- an ink-retaining layer is present between the support and the image-receiving layer and is preferably continuous and coextensive with the fusible, porous, image-receiving layer.
- the continuous, coextensive, ink-retaining layer is porous and contains organic or inorganic particles. Examples of organic particles which may be used include core/shell particles such as those disclosed in U.S.Patent 6,492,006 of Kapusniak et al., granted December 10, 2002, and homogeneous particles such as those disclosed in U.S.Patent 6,475,602 of Kapusniak et al., granted November 5, 2002.
- organic particles examples include acrylic resins, styrenic resins, cellulose derivatives, polyvinyl resins, ethylene-allyl copolymers and polycondensation polymers such as polyesters.
- inorganic particles examples include silica, alumina, titanium dioxide, clay, calcium carbonate, barium sulfate, or zinc oxide.
- the porous ink-retaining layer comprises from 20% to 100% of particles and from 0% to 80% of a polymeric binder, preferably from 50% to 95% of particles and from 5% to 50% of a polymeric binder.
- the polymeric binder may be a hydrophilic polymer such as poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, cellulose ethers, poly(oxazolines), poly(vinylacetamides), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), poly(acrylic acid), poly(acrylamide), poly(alkylene oxide), sulfonated or phosphated polyesters and polystyrenes, casein, zein, albumin, chitin, chitosan, dextran, pectin, collagen derivatives, collodian, agar-agar, arrowroot, guar, carrageenan, tragacanth, xanthan, rhamsan and
- the hydrophilic polymer is poly(vinyl alcohol), hydroxypropyl cellulose, hydroxypropyl methyl cellulose, a poly(alkylene oxide), poly(vinyl pyrrolidinone), poly(vinyl acetate) or copolymers thereof or gelatin.
- the ink-retaining layer has a thickness of I ⁇ m to 50 ⁇ m and the image-receiving layer has a thickness of 2 ⁇ m to 30 ⁇ m.
- crosslinkers that act upon the binder discussed above may be added in small quantities. Such an additive improves the cohesive strength of the layer.
- Crosslinkers such as carbodiimides, polyfunctional aziridines, aldehydes, isocyanates, epoxides, polyvalent metal cations, vinyl sulfones, pyridinium, pyridylium dication ether, methoxyalkyl melamines, triazines, dioxane derivatives, chrom alum, zirconium sulfate and the like may be used.
- the crosslinker is an aldehyde, an acetal or a ketal, such as 2,3-dihydroxy-1,4-dioxane.
- porous coatings allow a fast "drying" of the ink and produces a smear-resistant image.
- the porous ink-retaining layer can also comprise an open-pore polyolefin, an open-pore polyester or an open pore membrane.
- An open pore membrane can be formed in accordance with the known technique of phase inversion. Examples of a porous ink-retaining layer comprising an open-pore membrane are disclosed in U. S. Patent 6,497,941 and U. S. Patent 6,503,607, both of Landry-Coltrain et al., filed July 27, 2000.
- the support used in the ink jet recording element of the invention may be opaque, translucent, or transparent.
- the support is a resin-coated paper.
- the thickness of the support employed in the invention can be from 12 to 500 ⁇ m, preferably from 75 to 300 ⁇ m.
- the surface of the support may be corona-discharge-treated prior to applying the base layer or solvent-absorbing layer to the support.
- the image recording element may come in contact with other image recording articles or the drive or transport mechanisms of image recording devices, additives such as surfactants, lubricants, matte particles and the like may be added to the element to the extent that they do not degrade the properties of interest.
- the top layer of the invention may also contain other additives such as viscosity modifiers or mordants.
- the layers described above, including the base layer and the top layer, may be coated by conventional coating means onto a support material commonly used in this art.
- Coating methods may include, but are not limited to, wound wire rod coating, slot coating, slide hopper coating, gravure, curtain coating and the like. Some of these methods allow for simultaneous coatings of both layers, which is preferred from a manufacturing economic perspective.
- the ink jet inks used to image the recording elements of the present invention are well-known in the art.
- the ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like.
- the solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols.
- Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols.
- the dyes used in such compositions are typically water-soluble direct or acid type dyes.
- Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- a latex was prepared by an emulsion polymerization technique. 450 g of deionized water, 3.0 g of surfactant Triton 770® (30 wt. % solids), 1.0 g of initiator potassium persulfate, and 19 g of monomer methyl methacrylate were first charged to a 2L 3-neck flask equipped with a nitrogen inlet, mechanical stirrer and condenser. The flask was immersed in a constant temperature bath at 80°C and purged with nitrogen for 20 min.
- An monomer emulsion was prepared by mixing 280 g of deionized water, 7.8 g of surfactant Triton 770®, 0.8 g of initiator potassium persulfate (KPS), 139 g of monomer methyl methacrylate (MMA) and 4.2 g of sodium 2-sulfo-1,1-dimethylethyl acrylamide (SSDMEAA) monomer.
- the monomer emulsion mixture was added to the flask with agitation. The addition time of the monomer emulsion was three hours. The polymerization was continued for one more hour after the addition of the monomer emulsion.
- the latex was cooled to room temperature and filtered. The final % solids was 18.77% and the particle size was 149 nm.
- a latex was prepared by an emulsion polymerization technique similarly to the synthesis described above. 260 g of deionized water, 3.0 g of surfactant Triton 770®, 1.0 g of initiator potassium persulfate, and 10 g of monomer methyl methacrylate were first charged to a 2L 3-neck flask equipped with a nitrogen inlet, mechanical stirrer and condenser. The flask was immersed in a constant temperature bath at 80°C and purged with nitrogen for 20 min.
- a monomer emulsion was prepared by mixing 100 g of deionized water, 7.8 g of surfactant Triton 770®, 0.8 g of initiator potassium persulfate, 31 g of monomer methyl methacrylate and 122 g of butyl methacrylate monomer.
- the monomer emulsion mixture was added to the flask with agitation.
- the addition time of the monomer emulsion was three hours.
- the polymerization was continued for one more hour after the addition of the monomer emulsion.
- the latex was cooled to room temperature and filtered.
- the final % solids was 32.9% and the particle size was 122.0 nm.
- the core-shell latex employed in this invention was prepared by a sequential emulsion polymerization technique. In general, the core polymer latex is polymerized first followed by the sequential feeding of the second monomer emulsions. A typical synthetic procedure of the core-shell latex of this invention is described below. The following ingredients were used for the preparation of P-1 particles of this invention.
- Tg glass transition temperature
- Particles were characterized by a 90 plus Particle Sizer manufactured by Brookhaven Instruments Corporation. The volume mean diameters are reported.
- a 2-layer porous glossy ink jet media on a polyethylene-coated paper was prepared.
- the bottom layer consisted of fumed alumina, Cab-O-Sperse PG003 ®, (Cabot Corp.), polyvinyl alcohol, GH-23, (Nippon Ghosei) and 2,3-dihydroxy-1,4-dioxane (Clariant Corp.) at a weight ratio of 87:9:4 and a thickness of 38 ⁇ m.
- the top layer consisted of fumed alumina, Cab-O-Sperse PG003 ®, (Cabot Corp.), polyvinyl alcohol, GH-23, (Nippon Ghosei), surfactant Zonyl FSN ® (DuPont Corp.) and dye mordanting material MM at a weight ratio of 69:6:5:20 and a thickness of 2 ⁇ m.
- MM was a crosslinked hydrogel polymer particle of 80 nm in average particle size prepared from 87% by weight of N-vinylbenzyl-N,N,N-trimethylammonium chloride and 13% by weight of divinylbenzene.
- Control Element C-1 was further coated with an aqueous dispersion comprising polymer particle CP-1 and dried at 25° C for 3 minutes followed by 40°C for another 3 minutes with forced air circulation.
- This element was prepared similar to C-2, except polymer particle CP-2 was used.
- This element was prepared similar to C-2, except polymer particle CP-3 was used.
- This element was prepared similar to C-2, except a mixture of polymer particles CP-1 and CP-2 at 50/50 weight ratio was used.
- This element was prepared similar to C-2, except polymer particle P-1 was used.
- Inkjet samples were loaded in Hewlett-Packard DeskJet 950°C printer and printed with a pre-assembled digital image of color patches and pictures.
- the printed sample was immediately rubbed by a finger on heavily inked areas as it was ejected from the printer.
- Instant dry is defined as the print was dry to the touch and the image was not smudged or damaged by the finger-rubbing action. If the particles coalesced and formed a continuous film on drying after coating, ink would form droplets on the surface and not penetrate through the layer; the image would be low in optical density and easily smudged by rubbing.
- the printed samples were fused between a set of heated pressurized rollers, at least one of which was heated at a temperature of 157°C and a speed of 2.5 cm per second.
- Ponceau red dye solution was prepared by dissolving 1 g of dye in 1000 grams mixture of acetic acid and water (5 parts: 95 parts). An approximately 1 cm-diameter Ponceau Red dye solution was placed on the sample surface for 5 minutes. The liquid was then wiped up with a Sturdi-Wipes paper towel. A visual observation of the tested area was made and recorded. No mark of dye stain left on the image indicates the existence of a water resistant overcoat layer; a red stain on the image indicates no existence of a water resistant overcoat layer.
- Elements 1-2 to 1-6 were prepared by coating particles on Control Element C-1 to achieve the dry laydown of 7.6 g/m 2 .
- the performance of ink jet media of this invention in comparison with ink jet media without fusible core-shell particles or ink jet media with single-composition (non core-shell) particles are summarized in Table 2 below.
- This element was prepared similar to control element C-1 except the top layer was omitted.
- a 2-layer porous glossy ink jet media on a polyethylene-coated paper was prepared.
- the bottom layer was prepared by coating a solution mixture of AQ29 (available from Eastman Chemical Co.) and Borax at a 50/50 dry weight ratio to achieve a total dry laydown of 3.8 g/m 2 .
- the pH of the coating solution was adjusted to 7.0 prior to coating.
- the top layer was coated from a solution mixture of polyvinyl alcohol, organic porous particles described below and Olin 10G to achieve a dry laydown of 29.8 g/m 2 , 4.5 g/m 2 and 0.11 g/m 2 respectively.
- MAZU® antifoam agent BASF Corp.
- 0.3 g MAZU® antifoam agent BASF Corp.
- the organic porous particles were measured by a particle size analyzer, Horiba LA-920®, and found to be 0.38 ⁇ m in median diameter.
- This element was prepared by coating a solution mixture of barium sulfate particles, polyvinyl alcohol, 2,3-dihydroxy-1,4-dioxane (Clariant Corp.) and Olin 10G (Olin) on a polyethylene-coated paper to achieve a final dry laydown of 53.8 g/m 2 , 8.0 g/m 2 , 0.4 g/m 2 and 0.11 g/m 2 respectively.
- the barium sulfate particles, identified as Sachtosperse HU-N was obtained from Sachtleben Chemie Corporation; it is pure precipitated BaSO4 with an average particle size of less than 0.1 um and specific surface area > 25 m 2 /g.
- the polyvinyl alcohol used in this element was GH-17, available from Nippon Gohsei Chemical.
- a plain paper support with basis weight of 185 g/m 2 (Eastman Kodak Co.) was used.
- a two-layer coating on plain paper was prepared as follows.
- the coating solution for the base layer was prepared by mixing 254 dry g of precipitated calcium carbonate Albagloss-s® (Specialty Minerals Inc.) as a 70% solution, 22 dry g of silica gel Gasil® 23F (Crosfield Ltd.), 2.6 dry g of poly(vinyl alcohol) Airvol® 125 (Air Products) as a 10% solution, 21 dry g of styrenebutadiene latex CP692NA® (Dow Chemical Co.) as a 50% solution and 0.8 g of Alcogum® L-229 (Alco Chemical Co.). The concentration of the coating solution was adjusted to 35 wt. % by adding water.
- the coating solution was bead-coated at 25 ° C on a plain paper support with basis weight of 185 g/m 2 (Eastman Kodak Co.) and dried by forced air at 45°C.
- the thickness of the base layer was 25 ⁇ m or 27 g/m 2 .
- the coating solution for the top layer was prepared by mixing 15.0 dry g of alumina Dispal® 14N4-80 (Condea Vista) as a 20 wt. % solution, 2.4 dry g of fumed alumina Cab-O-Sperse® PG003 (Cabot Corp.) as a 40 wt. % solution, 0.6 dry g of poly(vinyl alcohol) Gohsenol® GH-17 (Nippon Gohsei Co. Ltd.) as a 10 wt. % solution, 1.2 dry g of a copolymer of (vinylbenzyl)trimethylammonium chloride and divinylbenzene (87:13 molar ratio) as a 20 wt.
- Encapsulated Particles 1 As a 40 wt. % solution, 0.1 g of Silwet® L-7602 (Witco. Corp.), 0.2 g of Zonyl® FS300 (DuPont Co.) and water to total 153 g.
- the preparation of Encapsulated Particles 1 is disclosed in Example 1 of U.S.S.N. 09/944,547, of Sadasivan et al. filed August 31, 2001.
- the coating solution was bead-coated at 25°C on top of the base layer described above.
- the recording element was then dried by forced air at 45°C for 80 seconds followed by 38°C for 8 minutes.
- the thickness of the image-receiving layer was 8 ⁇ m or 8.6 g/m 2 .
- Control Elements C-1 and C-6 through C-10 were further coated with an aqueous dispersion comprising polymer particle CP-3 used in Example 1 and dried at 25° C for 3 minutes followed by 40° C for another 3 minutes with forced air circulation to achieve a dry laydown of 7.6 g/m 2 .
Landscapes
- Ink Jet Recording Methods And Recording Media Thereof (AREA)
- Ink Jet (AREA)
- Duplication Or Marking (AREA)
Description
- The present invention relates to a porous ink jet recording element and a printing method using the element.
- In a typical ink jet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water and an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
- An ink jet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-receiving layer, and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
- An important characteristic of ink jet recording elements is their need to dry quickly after printing. To this end, porous recording elements have been developed which provide nearly instantaneous drying as long as they have sufficient thickness and pore volume to effectively contain the liquid ink. For example, a porous recording element can be manufactured by cast coating, in which a particulate-containing coating is applied to a support and is dried in contact with a polished smooth surface.
- Inkjet prints, prepared by printing onto ink jet recording elements, are subject to environmental degradation. They are especially vulnerable to damage resulting from contact with water and atmospheric gases such as ozone. The damage resulting from the post imaging contact with water can take the form of water spots resulting from deglossing of the top coat, dye smearing due to unwanted dye diffusion, and even gross dissolution of the image recording layer. Ozone bleaches inkjet dyes resulting in loss of density. To overcome these deficiencies ink jet prints are often laminated. Lamination is however expensive as it requires a separate roll of material. Alternatively ink jet recording elements having a two-layer construction have been employed. These elements typically have a porous ink-transporting topcoat of thermally fusible particles residing on either a swellable or porous ink-retaining layer. Upon printing the ink passes through the topcoat and into an ink-retaining layer. The topcoat layer is then sealed to afford a water and stain resistant print. Such topcoats containing thermally fusible particles typically either, contain a binder or are thermally sintered to provide a level of mechanical integrity to the layer prior to the imaging and fusing steps.
- Print protection can also be provided by coating a polymer solution or dispersion on the surface of an inkjet media after image is formed. The aqueous coating solutions are often polymer dispersions capable of film-formation when water is removed.
- EP 0858905 A1 relates to the preparation of a recording medium comprising a porous outermost layer by coating and drying a particulate thermoplastic resin above its glass transition temperature (Tg), but below its minimum film formation temperature (MFFT). There is a problem with the element in that the drying temperature has to be controlled very precisely between the Tg and MFFT in order to achieve the desired result. If the drying temperature is below the Tg, then a powdery layer is formed. If the drying temperature is above MFFT, then a complete coalesced film is formed which will not transport ink.
- EP 1132218 A1 discloses an ink jet element having an image-receiving layer comprising an inorganic filler and coated particles. The inorganic filler is present in an amount of from 50 to 95% by weight.
- It is an object of this invention to provide a porous ink jet recording element that, when printed with an ink jet ink, provides an image which has good quality and is water and abrasion resistant. It is another object of the invention to provide a porous ink jet recording element, which is easy to manufacture and is flexible after printing and fusing to provide resistance to cracking. Still another object of the invention is to provide a printing method using the above-described element.
- These and other objects are achieved in accordance with the invention which comprises an ink jet recording element comprising a support having thereon a fusible, porous, image-receiving layer comprising non-porous polymeric particles having a core/shell structure comprising a polymeric, hydrophobic core covered with a polymeric, hydrophobic shell, the Tg of the polymeric, hydrophobic core being at least 25° C higher than the Tg of the polymeric, hydrophobic shell, and wherein there is an ink-retaining layer between said support and said image-receiving layer.
- By use of the invention, a porous ink jet recording element is obtained that, when printed with an ink jet ink, has good abrasion and water-resistance, and is flexible after printing and fusing to provide resistance to cracking.
- A preferred embodiment of the invention relates to an ink jet printing method comprising the steps of:
- A) providing an ink jet printer that is responsive to digital data signals;
- B) loading the printer with an ink jet recording element described above;
- C) loading the printer with an ink jet ink composition comprising water, a humectant, and a water-soluble dye; and
- F) printing on the image-receiving layer using the ink jet ink in response to the digital data signals; and
- G) fusing said image-receiving layer.
- The non-porous polymeric particles, which are used in the invention, comprise a polymeric core covered with a shell of a water-insoluble polymer.
- Polymers which can be used as a core and a shell for the core/shell particles used in the invention comprise, for example, acrylic resins, styrenic resins, or cellulose derivatives, such as cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose acetate propionate, and ethyl cellulose; polyvinyl resins such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate and polyvinyl butyral, polyvinyl acetal, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and ethylene-allyl copolymers such as ethylene-allyl alcohol copolymers, ethylene-allyl acetone copolymers, ethylene-allyl benzene copolymers, ethylene-allyl ether copolymers, ethylene acrylic copolymers and polyoxy-methylene; polycondensation polymers, such as, polyesters, including polyethylene terephthalate, polybutylene terephthalate, polyurethanes and polycarbonates.
- In a preferred embodiment of the invention, the polymeric core and the polymeric shell are made from a styrenic or an acrylic monomer. Any suitable ethylenically unsaturated monomer or mixture of monomers may be used in making such styrenic or acrylic polymer. There may be used, for example, styrenic compounds, such as styrene, vinyl toluene, p-chlorostyrene, vinylbenzylchloride or vinyl naphthalene; or acrylic compounds, such as methyl acrylate, ethyl acrylate, n-butyl acrylate, n-octyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl- α-chloroacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate; and mixtures thereof. In another preferred embodiment, methyl methacrylate or styrene is used.
- Core-shell particles employed in this invention are in general prepared by a sequential emulsion polymerization technique. The core polymer latex is polymerized first followed by the sequential feeding of the second monomer emulsions to form a core-shell structure. Examples of core-shell particle preparation can be found in "Emulsion Polymerization and Emulsion Polymers", P. A. Lovell and M. S. El-Aasser, John Wiley & Sons, Ltd., 1997.
- In a preferred embodiment of the invention, the Tg of the polymeric hydrophobic core is from 50° C. to 200°C. In another embodiment, the Tg of the polymeric hydrophobic shell is from -60° C. to 125°C. In still another preferred embodiment, the particles having a core/shell structure have an average particle size of from 0.05 µm to 10 µm. In yet still another preferred embodiment, the particles having a core/shell structure have a weight ratio of the core to the shell of from 1:10 to 1:0.1. In yet another preferred embodiment, the particles having a core/shell structure have a polydispersity index of particle size distribution of less than 1.3.
- If desired, a suitable crosslinking monomer may be used in forming the polymeric core in order to modify the non-porous polymeric particle to produce particularly desired properties. Typical crosslinking monomers are aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene or derivatives thereof; diethylene carboxylate esters and amides such as ethylene glycol dimethacrylate, diethylene glycol diacrylate, and other divinyl compounds such as divinyl sulfide or divinyl sulfone compounds. Divinylbenzene and ethylene glycol dimethacrylate are especially preferred. While the crosslinking monomer may be used in any amount, at least 27 mole % is preferred.
- If desired, UV absorbing monomers may be used in forming the polymeric core or polymeric shell in order to improve light fastness of the image. Examples of UV absorbing monomers that can be used include the following:
UV-Absorber R1 R2 R3 X Y UV-1 CH3 H H COO (CH2)2 UV-2 H H Cl COO (CH2)3 UV-3 H H H CH2O - The non-porous polymeric particles used in this invention have a polymeric core that can be prepared, for example, by pulverizing and classification of organic compounds, by emulsion, suspension, and dispersion polymerization of organic monomers, by spray drying of a solution containing organic compounds, or by a polymer suspension technique which consists of dissolving an organic material in a water immiscible solvent, dispersing the solution as fine liquid droplets in aqueous solution, and removing the solvent by evaporation or other suitable techniques. The bulk, emulsion, dispersion, and suspension polymerization procedures are well known to those skilled in the polymer art and are taught in such textbooks as G. Odian in "Principles of Polymerization", 2nd Ed. Wiley (1981), and W.P. Sorenson and T.W. Campbell in "Preparation Method of Polymer Chemistry", 2nd Ed, Wiley (1968).
- As noted above, the polymeric particles used in the invention are non-porous. By non-porous is meant a particle that is either void-free or not permeable to liquids. These particles can have either a smooth or a rough surface.
- The image-receiving layer may also contain additives such as pH-modifiers like nitric acid, rheology modifiers, surfactants, UV-absorbers, biocides, lubricants, water-dispersible latexes, mordants, dyes, optical brighteners etc.
- The image-receiving layer may be applied to one or both substrate surfaces through conventional pre-metered or post-metered coating methods such as blade, air knife, rod, roll, slot die, curtain, slide, etc. The choice of coating process would be determined from the economics of the operation and in turn, would determine the formulation specifications such as coating solids, coating viscosity, and coating speed.
- The image-receiving layer thickness may range from 5 to 100 µm, preferably from 10 to 50 µm. The coating thickness required is determined through the need for the coating to act as a sump for absorption of ink solvent.
- Ink jet inks used to image the recording elements of the present invention are well-known in the art. The ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like. The solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols. Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols. The dyes used in such compositions are typically water-soluble direct or acid type dyes. Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- Although the recording elements disclosed herein have been referred to primarily as being useful for ink jet printers, they also can be used as recording media for pen plotter assemblies. Pen plotters operate by writing directly on the surface of a recording medium using a pen consisting of a bundle of capillary tubes in contact with an ink reservoir.
- In another embodiment of the invention, an ink-retaining layer is present between the support and the image-receiving layer and is preferably continuous and coextensive with the fusible, porous, image-receiving layer. In a preferred embodiment of the invention, the continuous, coextensive, ink-retaining layer is porous and contains organic or inorganic particles. Examples of organic particles which may be used include core/shell particles such as those disclosed in U.S.Patent 6,492,006 of Kapusniak et al., granted December 10, 2002, and homogeneous particles such as those disclosed in U.S.Patent 6,475,602 of Kapusniak et al., granted November 5, 2002. Examples of organic particles that may be used include acrylic resins, styrenic resins, cellulose derivatives, polyvinyl resins, ethylene-allyl copolymers and polycondensation polymers such as polyesters. Examples of inorganic particles that may be used in the invention include silica, alumina, titanium dioxide, clay, calcium carbonate, barium sulfate, or zinc oxide.
- In a preferred embodiment of the invention, the porous ink-retaining layer comprises from 20% to 100% of particles and from 0% to 80% of a polymeric binder, preferably from 50% to 95% of particles and from 5% to 50% of a polymeric binder. The polymeric binder may be a hydrophilic polymer such as poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, cellulose ethers, poly(oxazolines), poly(vinylacetamides), partially hydrolyzed poly(vinyl acetate/vinyl alcohol), poly(acrylic acid), poly(acrylamide), poly(alkylene oxide), sulfonated or phosphated polyesters and polystyrenes, casein, zein, albumin, chitin, chitosan, dextran, pectin, collagen derivatives, collodian, agar-agar, arrowroot, guar, carrageenan, tragacanth, xanthan, rhamsan and the like. Preferably, the hydrophilic polymer is poly(vinyl alcohol), hydroxypropyl cellulose, hydroxypropyl methyl cellulose, a poly(alkylene oxide), poly(vinyl pyrrolidinone), poly(vinyl acetate) or copolymers thereof or gelatin.
- In a preferred embodiment of the invention, the ink-retaining layer has a thickness of I µm to 50 µm and the image-receiving layer has a thickness of 2 µm to 30 µm.
- In order to impart mechanical durability to an ink jet recording element, crosslinkers that act upon the binder discussed above may be added in small quantities. Such an additive improves the cohesive strength of the layer. Crosslinkers such as carbodiimides, polyfunctional aziridines, aldehydes, isocyanates, epoxides, polyvalent metal cations, vinyl sulfones, pyridinium, pyridylium dication ether, methoxyalkyl melamines, triazines, dioxane derivatives, chrom alum, zirconium sulfate and the like may be used. Preferably, the crosslinker is an aldehyde, an acetal or a ketal, such as 2,3-dihydroxy-1,4-dioxane.
- During the ink jet printing process, ink droplets are rapidly absorbed into the porous coating through capillary action and the image is dry-to-touch right after it comes out of the printer. Therefore, porous coatings allow a fast "drying" of the ink and produces a smear-resistant image.
- The porous ink-retaining layer can also comprise an open-pore polyolefin, an open-pore polyester or an open pore membrane. An open pore membrane can be formed in accordance with the known technique of phase inversion. Examples of a porous ink-retaining layer comprising an open-pore membrane are disclosed in U. S. Patent 6,497,941 and U. S. Patent 6,503,607, both of Landry-Coltrain et al., filed July 27, 2000.
- The support used in the ink jet recording element of the invention may be opaque, translucent, or transparent. There may be used, for example, plain papers, resin-coated papers, various plastics including a polyester resin such as poly(ethylene terephthalate), poly(ethylene naphthalate) and poly(ester diacetate), a polycarbonate resin, a fluorine resin such as poly(tetra-fluoro ethylene), metal foil, various glass materials, and the like. In a preferred embodiment, the support is a resin-coated paper. The thickness of the support employed in the invention can be from 12 to 500 µm, preferably from 75 to 300 µm.
- If desired, in order to improve the adhesion of the base layer to the support, the surface of the support may be corona-discharge-treated prior to applying the base layer or solvent-absorbing layer to the support.
- Since the image recording element may come in contact with other image recording articles or the drive or transport mechanisms of image recording devices, additives such as surfactants, lubricants, matte particles and the like may be added to the element to the extent that they do not degrade the properties of interest. In addition, the top layer of the invention may also contain other additives such as viscosity modifiers or mordants.
- The layers described above, including the base layer and the top layer, may be coated by conventional coating means onto a support material commonly used in this art. Coating methods may include, but are not limited to, wound wire rod coating, slot coating, slide hopper coating, gravure, curtain coating and the like. Some of these methods allow for simultaneous coatings of both layers, which is preferred from a manufacturing economic perspective.
- Ink jet inks used to image the recording elements of the present invention are well-known in the art. The ink compositions used in ink jet printing typically are liquid compositions comprising a solvent or carrier liquid, dyes or pigments, humectants, organic solvents, detergents, thickeners, preservatives, and the like. The solvent or carrier liquid can be solely water or can be water mixed with other water-miscible solvents such as polyhydric alcohols. Inks in which organic materials such as polyhydric alcohols are the predominant carrier or solvent liquid may also be used. Particularly useful are mixed solvents of water and polyhydric alcohols. The dyes used in such compositions are typically water-soluble direct or acid type dyes. Such liquid compositions have been described extensively in the prior art including, for example, U.S. Patents 4,381,946; 4,239,543 and 4,781,758.
- The following examples are provided to illustrate the invention.
- A latex was prepared by an emulsion polymerization technique. 450 g of deionized water, 3.0 g of surfactant Triton 770® (30 wt. % solids), 1.0 g of initiator potassium persulfate, and 19 g of monomer methyl methacrylate were first charged to a 2L 3-neck flask equipped with a nitrogen inlet, mechanical stirrer and condenser. The flask was immersed in a constant temperature bath at 80°C and purged with nitrogen for 20 min. An monomer emulsion was prepared by mixing 280 g of deionized water, 7.8 g of surfactant Triton 770®, 0.8 g of initiator potassium persulfate (KPS), 139 g of monomer methyl methacrylate (MMA) and 4.2 g of sodium 2-sulfo-1,1-dimethylethyl acrylamide (SSDMEAA) monomer. The monomer emulsion mixture was added to the flask with agitation. The addition time of the monomer emulsion was three hours. The polymerization was continued for one more hour after the addition of the monomer emulsion. The latex was cooled to room temperature and filtered. The final % solids was 18.77% and the particle size was 149 nm.
- To a 20-gallon, stainless-steel reactor was added 44 kg of demineralized water. The system was purged for 15-30 minutes with nitrogen. The temperature was set at 15°C and the stirrer was set at 150 rev/min. The following were added to the reactor in order: 104.6g potassium metabisulfite dissolved in 500 ml demineralized water, 421.9g itaconic acid, 2109.5g ethylacrylate, 18.56 kg of vinylidene chloride, 469g of Dowfax® 2EP rinsed in with 1 kg demineralized water, and 104.6g potassium persulfate dissolved in 1.5 kg demineralized water. The reactor port and the vent were closed. The reactor was pressurised to 2 psi with nitrogen. The internal temperature was set to 40°C, and held there for 16-20 hours. The product was then cooled to 20°C, and the vacuum was broken with nitrogen. The product was filtered through cheesecloth.
- A latex was prepared by an emulsion polymerization technique similarly to the synthesis described above. 260 g of deionized water, 3.0 g of surfactant Triton 770®, 1.0 g of initiator potassium persulfate, and 10 g of monomer methyl methacrylate were first charged to a 2L 3-neck flask equipped with a nitrogen inlet, mechanical stirrer and condenser. The flask was immersed in a constant temperature bath at 80°C and purged with nitrogen for 20 min. A monomer emulsion was prepared by mixing 100 g of deionized water, 7.8 g of surfactant Triton 770®, 0.8 g of initiator potassium persulfate, 31 g of monomer methyl methacrylate and 122 g of butyl methacrylate monomer. The monomer emulsion mixture was added to the flask with agitation. The addition time of the monomer emulsion was three hours. The polymerization was continued for one more hour after the addition of the monomer emulsion. The latex was cooled to room temperature and filtered. The final % solids was 32.9% and the particle size was 122.0 nm.
- The core-shell latex employed in this invention was prepared by a sequential emulsion polymerization technique. In general, the core polymer latex is polymerized first followed by the sequential feeding of the second monomer emulsions. A typical synthetic procedure of the core-shell latex of this invention is described below. The following ingredients were used for the preparation of P-1 particles of this invention.
- A: Deionized water (50 g)
Triton 770® (30% active) (0.4 g) - B: Potassium persulfate (0.12 g)
- C: Methyl methacrylate (17.1 g)
Sodium 2-sulfo-1,1-dimethylethyl acrylamide (0.9 g)
Potassium persulfate (0.1 g)
Triton 770® (30% active) (0.9g)
Deionized water (35 g) - D: Ethyl acrylate (3.6 g)
Vinylidene chloride (31.0 g)
Sodium 2-sulfo-1,1-dimethylethyl acrylamide (1.44 g)
Potassium persulfate (0.21 g)
Sodium bisulfate (0.42 g)
Triton 770® (30% active) (5.80 g)
Deionized water (160 g) - 1. (A) was first charged to a 1L 3-neck flask equipped with a nitrogen inlet, mechanical stirrer and condenser. The flask was immersed in a constant temperature bath at 80°C and purged with nitrogen for 20 min.
- 2. (B) was added and followed by the addition of monomer emulsion (C). The mixture was agitated all the time during the feeding of monomer emulsion. The addition time of the monomer emulsion (C) was two hours.
- 3. The polymerization was continued for 30 min after the addition of the first monomer emulsion and the latex was cooled to 40°C.
- 4. The second monomer emulsion (D) was prepared in the same way. The total addition time was two hours.
- 5. The latex was heated at 40°C for one hour.
- 6. 4 ml of 10% t-butyl hydroperoxide and 10% formaldehyde-sulfite were added to remove the residual monomer and held for 30 min.
- 7. The mixture was cooled to room temperature and filtered.
- The glass transition temperature (Tg) of the dry polymer materials was determined by differential scanning calorimetry (DSC), using a heating rate of 20°C/minute, and shown in Table 1 below. Tg is defined herein as the inflection point of the glass transition.
- Particles were characterized by a 90 plus Particle Sizer manufactured by Brookhaven Instruments Corporation. The volume mean diameters are reported.
- The properties of the polymer particles used in the examples are shown in Table 1 as follows :
Table 1 Particle Core composition (wt. %) and Tg [°C] Shell composition (wt. %) and Tg [°C] Wt. ratio of core:shell Average Particle Size CP-1 MMA/SSDMEAA (95/5) [120] None 180 nm CP-2 EA/VC/IA (10/88/2) [9] None 70 nm CP-3 MMA/BMA (25/75) [51] None 109 nm P-1 MMA/SSDMEAA (95/5) [120] EA/VC/SSDMEAA (10/86/4) [12] 1:2 117 nm MMA = methyl methacrylate
BMA = butyl methacrylate
EA = ethyl acrylate
SSDMEAA = sodium 2-sulfo-1,1-dimethylethyl acrylamide
VC = vinylidene cholride - A 2-layer porous glossy ink jet media on a polyethylene-coated paper was prepared. The bottom layer consisted of fumed alumina, Cab-O-Sperse PG003 ®, (Cabot Corp.), polyvinyl alcohol, GH-23, (Nippon Ghosei) and 2,3-dihydroxy-1,4-dioxane (Clariant Corp.) at a weight ratio of 87:9:4 and a thickness of 38 µm. The top layer consisted of fumed alumina, Cab-O-Sperse PG003 ®, (Cabot Corp.), polyvinyl alcohol, GH-23, (Nippon Ghosei), surfactant Zonyl FSN ® (DuPont Corp.) and dye mordanting material MM at a weight ratio of 69:6:5:20 and a thickness of 2 µm. MM was a crosslinked hydrogel polymer particle of 80 nm in average particle size prepared from 87% by weight of N-vinylbenzyl-N,N,N-trimethylammonium chloride and 13% by weight of divinylbenzene.
- Control Element C-1 was further coated with an aqueous dispersion comprising polymer particle CP-1 and dried at 25° C for 3 minutes followed by 40°C for another 3 minutes with forced air circulation. A small amount of a nonionic surfactant, Olin 10 G®, used at 0.1 % to 4% based on the total dry laydown of the layer, was used in the coating solution to control the surface tension during coating.
- This element was prepared similar to C-2, except polymer particle CP-2 was used.
- This element was prepared similar to C-2, except polymer particle CP-3 was used.
- This element was prepared similar to C-2, except a mixture of polymer particles CP-1 and CP-2 at 50/50 weight ratio was used.
- This element was prepared similar to C-2, except polymer particle P-1 was used.
- Inkjet samples were loaded in Hewlett-Packard DeskJet 950°C printer and printed with a pre-assembled digital image of color patches and pictures. The printed sample was immediately rubbed by a finger on heavily inked areas as it was ejected from the printer. Instant dry is defined as the print was dry to the touch and the image was not smudged or damaged by the finger-rubbing action. If the particles coalesced and formed a continuous film on drying after coating, ink would form droplets on the surface and not penetrate through the layer; the image would be low in optical density and easily smudged by rubbing.
- The printed samples were fused between a set of heated pressurized rollers, at least one of which was heated at a temperature of 157°C and a speed of 2.5 cm per second.
- Ponceau red dye solution was prepared by dissolving 1 g of dye in 1000 grams mixture of acetic acid and water (5 parts: 95 parts). An approximately 1 cm-diameter Ponceau Red dye solution was placed on the sample surface for 5 minutes. The liquid was then wiped up with a Sturdi-Wipes paper towel. A visual observation of the tested area was made and recorded. No mark of dye stain left on the image indicates the existence of a water resistant overcoat layer; a red stain on the image indicates no existence of a water resistant overcoat layer.
- Fused samples were wrapped around a rod 0.65 cm in diameter with the overcoat layer on the outside. Samples were then tested with Ponceau red dye solution as described above in the bent area. Lines of red dye stain indicate that the overcoat was brittle and cracked when bent; no stain indicates that the overcoat was flexible.
- Elements 1-2 to 1-6 were prepared by coating particles on Control Element C-1 to achieve the dry laydown of 7.6 g/m2. The performance of ink jet media of this invention in comparison with ink jet media without fusible core-shell particles or ink jet media with single-composition (non core-shell) particles are summarized in Table 2 below.
Table 2 Element Description Appearance Ink Absorption Stain Resistance Overcoat Flexibility C-1 No overcoat Glossy Instant dry None C-2 CP-1 as overcoat Powdery, particles were easily rubbed off Instant dry Yes No, cracks formed C-3 CP-2 as overcoat Glossy Not ink absorptive Yes Yes C-4 CP-3 as overcoat Powdery, particles were easily rubbed off Instant dry Yes No, cracks formed C-5 Mixture of CP-1 and CP-2 (50%/50%) as overcoat Glossy Not ink absorptive Yes Yes 1 P-1 as overcoat Glossy Instant dry Yes Yes - The above results show that the overcoat layer on Element 1 of the invention had better cohesive integrity before fusing, fast ink absorption and was fusible after printing to give print protection as compared to the control elements.
- These particles were prepared the same as P-1 in Example 1, except using different polymer compositions as shown in Table 3 as follows :
Table 3 Particle Core composition (wt. %) and Tg [°C] Shell composition (wt. %) and Tg [°C] Wt. ratio of core:shell Average Particle Size (nm) P-2 MMA/EGDM/SSD MEAA (93/2/5) [125] EA/VC/SSDMEAA (10/86/4) [12] 1:2 158 P-3 EMA/EGDM (98/2) [70] EA/VC/NaAMPS (10/84/6) [12] 1:1 136 P-4 EMA/EGDM (98/2) [70] EA/VC (10/90) [10] 1:1.5 161 MMA = methyl methacrylate
EA = ethyl acrylate
EMA = ethyl methacrylate
EGDM = ethylene glycol dimethylacrylate
SSDMEAA = sodium 2-sulfo-1,1-dimethylethyl acrylamide
VC = vinylidene cholride - This element was prepared similar to control element C-1 except the top layer was omitted.
- A 2-layer porous glossy ink jet media on a polyethylene-coated paper was prepared. The bottom layer was prepared by coating a solution mixture of AQ29 (available from Eastman Chemical Co.) and Borax at a 50/50 dry weight ratio to achieve a total dry laydown of 3.8 g/m2. The pH of the coating solution was adjusted to 7.0 prior to coating. The top layer was coated from a solution mixture of polyvinyl alcohol, organic porous particles described below and Olin 10G to achieve a dry laydown of 29.8 g/m2, 4.5 g/m2 and 0.11 g/m2 respectively.
- To a beaker were added the following ingredients: 200 g ethyleneglycol dimethacrylate as monomer, 188 g toluene as a porogen, 12 g hexadecane, and 3.0 g 2,2'-azobis(2,4-dimethylvaleronitrile) (Vazo 52®, from DuPont Corp.). The ingredients were stirred until all the solids were dissolved.
- To this solution was added a mixture of 12 g sodium dodecylbenzenesulfonate in 1200 g water. The mixture was then stirred with a marine prop type agitator for 5 minutes to form a crude emulsion. The crude emulsion was passed once through a Gaulin® homogenizer at 4000 psi. The resulting monomer droplet dispersion was placed into a 2-liter three-necked round bottom flask. The flask was placed in a 50°C constant temperature bath and the dispersion stirred under positive pressure nitrogen for 16 hours to polymerize the monomer droplets into organic porous particles. The product was filtered through a coarse filter to remove coagulum. Next, 0.3 g MAZU® antifoam agent (BASF Corp.) was added to the dispersion and toluene and some water were distilled off under vacuum at 50°C to give 18.3 % solids. The organic porous particles were measured by a particle size analyzer, Horiba LA-920®, and found to be 0.38 µm in median diameter.
- This element was prepared by coating a solution mixture of barium sulfate particles, polyvinyl alcohol, 2,3-dihydroxy-1,4-dioxane (Clariant Corp.) and Olin 10G (Olin) on a polyethylene-coated paper to achieve a final dry laydown of 53.8 g/m2, 8.0 g/m2, 0.4 g/m2 and 0.11 g/m2 respectively. The barium sulfate particles, identified as Sachtosperse HU-N, was obtained from Sachtleben Chemie Corporation; it is pure precipitated BaSO4 with an average particle size of less than 0.1 um and specific surface area > 25 m2/g. The polyvinyl alcohol used in this element was GH-17, available from Nippon Gohsei Chemical.
- A plain paper support with basis weight of 185 g/m2 (Eastman Kodak Co.) was used.
- A two-layer coating on plain paper was prepared as follows. The coating solution for the base layer was prepared by mixing 254 dry g of precipitated calcium carbonate Albagloss-s® (Specialty Minerals Inc.) as a 70% solution, 22 dry g of silica gel Gasil® 23F (Crosfield Ltd.), 2.6 dry g of poly(vinyl alcohol) Airvol® 125 (Air Products) as a 10% solution, 21 dry g of styrenebutadiene latex CP692NA® (Dow Chemical Co.) as a 50% solution and 0.8 g of Alcogum® L-229 (Alco Chemical Co.). The concentration of the coating solution was adjusted to 35 wt. % by adding water. The coating solution was bead-coated at 25 ° C on a plain paper support with basis weight of 185 g/m2 (Eastman Kodak Co.) and dried by forced air at 45°C. The thickness of the base layer was 25 µm or 27 g/m2.
- The coating solution for the top layer was prepared by mixing 15.0 dry g of alumina Dispal® 14N4-80 (Condea Vista) as a 20 wt. % solution, 2.4 dry g of fumed alumina Cab-O-Sperse® PG003 (Cabot Corp.) as a 40 wt. % solution, 0.6 dry g of poly(vinyl alcohol) Gohsenol® GH-17 (Nippon Gohsei Co. Ltd.) as a 10 wt. % solution, 1.2 dry g of a copolymer of (vinylbenzyl)trimethylammonium chloride and divinylbenzene (87:13 molar ratio) as a 20 wt. % solution, 1.2 dry g of a terpolymer of styrene, (vinylbenzyl)dimethylbenzylamine and divinylbenzene (49.5:49.5:1.0 molar ratio) as a 20 wt. % solution, 0.9 dry g of Encapsulated Particles 1 as a 40 wt. % solution, 0.1 g of Silwet® L-7602 (Witco. Corp.), 0.2 g of Zonyl® FS300 (DuPont Co.) and water to total 153 g. The preparation of Encapsulated Particles 1 is disclosed in Example 1 of U.S.S.N. 09/944,547, of Sadasivan et al. filed August 31, 2001. The coating solution was bead-coated at 25°C on top of the base layer described above. The recording element was then dried by forced air at 45°C for 80 seconds followed by 38°C for 8 minutes. The thickness of the image-receiving layer was 8 µm or 8.6 g/m2.
- Control Elements C-1 and C-6 through C-10 were further coated with an aqueous dispersion comprising polymer particle CP-3 used in Example 1 and dried at 25° C for 3 minutes followed by 40° C for another 3 minutes with forced air circulation to achieve a dry laydown of 7.6 g/m2. A small amount of a nonionic surfactant, Olin 10 G®, used at 0.1% to 4% based on the total dry laydown of the layer, was used in the coating solution to control the surface tension during coating.
- These elements were prepared the same as C-11 through C-16, except core-shell particle P-2 was used.
- These elements were prepared the same as C-11 through C-16, except core-shell particle P-3 was used.
- These elements were prepared the same as C-11 through C-16, except core-shell particle P-4 was used.
- These elements were printed and fused as in Example 1. The following results were obtained:
Table 4 Element Description Appearance Ink Absorption Stain Resistance Overcoat Flexibility C-1 No overcoat Instant dry None C-6 No overcoat Instant dry None C-7 No overcoat Instant dry None C-8 No overcoat Instant dry None C-9 No overcoat Instant dry None C-10 No overcoat Instant dry None C-11 Particle CP-3 on C-1 Powdery surface Instant dry Yes No, cracked C-12 Particle CP-3 on C-6 Powdery surface Instant dry Yes No, cracked C-13 Particle CP-3 on C-7 Powdery surface Instant dry Yes No, cracked C-14 Particle CP-3 on C-8 Powdery surface Instant dry Yes No, cracked C-15 Particle CP-3 on C-9 Powdery surface Instant dry Yes No, cracked C-16 Particle CP-3 on C-10 Powdery surface Instant dry Yes No, cracked 2 Particle P-2 on C-1 Glossy and not powdery Instant dry Yes Yes, no cracks formed 3 Particle P-2 on C-6 Glossy and not powdery Instant dry Yes Yes, no cracks formed 4 Particle P-2 on C-7 Glossy and not powdery Instant dry Yes Yes, no cracks formed 5 Particle P-2 on C-8 Glossy and not powdery Instant dry Yes Yes, no cracks formed 6 Particle P-2 on C-9 Glossy and not powdery Instant dry Yes Yes, no cracks formed 7 Particle P-2 on C-10 Glossy and not powdery Instant dry Yes Yes, no cracks formed 8 Particle P-3 on C-1 Glossy and not powdery Instant dry Yes Yes, no cracks formed 9 Particle P-3 on C-6 Glossy and not powdery Instant dry Yes Yes, no cracks formed 10 Particle P-3 on C-7 Glossy and not powdery Instant dry Yes Yes, no cracks formed 11 Particle P-3 on C-8 Glossy and not powdery Instant dry Yes Yes, no cracks formed 12 Particle P-3 on C-9 Glossy and not powdery Instant dry Yes Yes, no cracks formed 13 Particle P-3 on C-10 Glossy and not powdery Instant dry Yes Yes, no cracks formed 14 Particle P-4 on C-1 Glossy and not powdery Instant dry Yes Yes, no cracks formed 15 Particle P-4 on C-6 Glossy and not powdery Instant dry Yes Yes, no cracks formed 16 Particle P-4 on C-7 Glossy and not powdery Instant dry Yes Yes, no cracks formed 17 Particle P-4 on C-8 Glossy and not powdery Instant dry Yes Yes, no cracks formed 18 Particle P-4 on C-9 Glossy and not powdery Instant dry Yes Yes, no cracks formed 19 Particle P-4 on C-10 Glossy and not powdery Instant dry Yes Yes, no cracks formed - The above results show that the overcoat layer on the elements of the invention had better cohesive integrity before fusing, fast ink absorption and was fusible after printing to give print protection as compared to the control elements.
Claims (10)
- An ink jet recording element comprising a support having thereon a fusible, porous, image-receiving layer comprising non-porous polymeric particles having a core/shell structure comprising a polymeric, hydrophobic core covered with a polymeric, hydrophobic shell, the Tg of said polymeric, hydrophobic core being at least 25° C higher than the Tg of said polymeric, hydrophobic shell, and wherein there is an ink-retaining layer between said support and said image-receiving layer.
- The element of claim 1 wherein the Tg of said polymeric hydrophobic core is from 50° C. to 200°C.
- The element of claim 1 wherein the Tg of said polymeric hydrophobic shell is from -60° C. to 125°C.
- The element of Claim 1 wherein the ink-retaining layer is continuous and coextensive with the fusible, porous, image-receiving layer.
- The element of Claim 4 wherein said ink-retaining layer has a thickness of 1 µm to 50 µm and said image-receiving layer has a thickness of 2 µm to 30 µm.
- The element of Claim 1 wherein said image-receiving layer has a thickness of 5 µm to 100 µm.
- The element of Claim 1 wherein said support is resin-coated paper.
- The element of Claim 4 wherein said ink-retaining layer is continuous, coextensive with the image-receiving layer, and porous.
- The element of Claim 8 wherein said ink-retaining layer comprises from 20% to 100% of particles and from 0% to 80% of a polymeric binder.
- An ink jet printing method, comprising the steps of:A) providing an ink jet printer that is responsive to digital data signals;B) loading said printer with an ink jet recording element of Claim 1;C) loading said printer with an ink jet ink composition comprising water, a humectant, and a water-soluble dye,F) printing on said image-receiving layer using said inkjet ink in response to said digital data signals and;G) fusing said image-receiving layer.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/011,492 US6789891B2 (en) | 2001-12-04 | 2001-12-04 | Ink jet printing method |
US10/011,427 US6777041B2 (en) | 2001-12-04 | 2001-12-04 | Ink jet recording element |
US11427 | 2001-12-04 | ||
US11492 | 2001-12-04 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1318025A2 EP1318025A2 (en) | 2003-06-11 |
EP1318025A3 EP1318025A3 (en) | 2004-12-08 |
EP1318025B1 true EP1318025B1 (en) | 2007-05-23 |
Family
ID=26682380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20020079866 Expired - Lifetime EP1318025B1 (en) | 2001-12-04 | 2002-11-22 | Ink jet recording element and printing method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1318025B1 (en) |
JP (2) | JP2003205678A (en) |
DE (1) | DE60220239T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093896A1 (en) * | 2010-01-31 | 2011-08-04 | Hewlett-Packard Development Company, L.P. | Paper with surface treatment |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030138608A1 (en) * | 2001-12-20 | 2003-07-24 | Eastman Kodak Company | Multilayer ink recording element with porous organic particles |
US7335407B2 (en) | 2001-12-20 | 2008-02-26 | Eastman Kodak Company | Multilayer inkjet recording element with porous polyester particle |
US6858301B2 (en) | 2003-01-02 | 2005-02-22 | Hewlett-Packard Development Company, L.P. | Specific core-shell polymer additive for ink-jet inks to improve durability |
US7914864B2 (en) | 2004-02-27 | 2011-03-29 | Hewlett-Packard Development Company, L.P. | System and a method for forming a heat fusible microporous ink receptive coating |
US8298634B2 (en) * | 2008-09-30 | 2012-10-30 | Eastman Kodak Company | Fusible inkjet recording media |
JP2011168045A (en) | 2010-01-11 | 2011-09-01 | Rohm & Haas Co | Recording material |
JP6281694B2 (en) | 2014-03-19 | 2018-02-21 | セイコーエプソン株式会社 | Ink composition, recording apparatus and recording method |
JP6299339B2 (en) | 2014-03-31 | 2018-03-28 | セイコーエプソン株式会社 | Inkjet ink composition, recording method, and recording apparatus |
KR101946351B1 (en) * | 2017-07-19 | 2019-02-11 | 유병욱 | Printing sheet for phototypography and manufacturing method thereof |
US12084582B2 (en) | 2019-01-23 | 2024-09-10 | Nippon Shokubai Co., Ltd. | Emulsion for water-based ink and ink composition for water-based ink containing the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4239543A (en) | 1979-02-09 | 1980-12-16 | Gould Inc. | Non-crusting jet ink and method of making same |
JPS56118471A (en) | 1980-02-25 | 1981-09-17 | Konishiroku Photo Ind Co Ltd | Ink composition for ink jet recording |
US4781758A (en) | 1987-10-22 | 1988-11-01 | International Business Machines Corporation | Ink composition for drop-on-demand ink jet |
ATE228439T1 (en) | 1997-02-18 | 2002-12-15 | Canon Kk | RECORDING MATERIAL, METHOD OF PRODUCING THEREOF AND INKJET PRINTED IMAGES USING SUCH MATERIAL |
JP4301672B2 (en) * | 2000-01-19 | 2009-07-22 | 旭化成ケミカルズ株式会社 | Binder composition for inkjet recording |
EP1132217B1 (en) * | 2000-03-09 | 2003-06-18 | Eastman Kodak Company | Ink-jet recording element containing coated particles |
US6375320B1 (en) * | 2000-03-09 | 2002-04-23 | Eastman Kodak Company | Ink jet printing method |
US6541102B1 (en) * | 2000-05-26 | 2003-04-01 | Eastman Kodak Company | Ink jet recording element |
JP2003170659A (en) * | 2001-07-16 | 2003-06-17 | Oji Paper Co Ltd | Inkjet recording medium and inkjet-recorded matter |
-
2002
- 2002-11-22 EP EP20020079866 patent/EP1318025B1/en not_active Expired - Lifetime
- 2002-11-22 DE DE2002620239 patent/DE60220239T2/en not_active Expired - Lifetime
- 2002-12-03 JP JP2002350894A patent/JP2003205678A/en not_active Withdrawn
-
2008
- 2008-06-03 JP JP2008145603A patent/JP2008260300A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093896A1 (en) * | 2010-01-31 | 2011-08-04 | Hewlett-Packard Development Company, L.P. | Paper with surface treatment |
Also Published As
Publication number | Publication date |
---|---|
EP1318025A2 (en) | 2003-06-11 |
JP2008260300A (en) | 2008-10-30 |
EP1318025A3 (en) | 2004-12-08 |
JP2003205678A (en) | 2003-07-22 |
DE60220239T2 (en) | 2008-01-17 |
DE60220239D1 (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008260300A (en) | Inkjet printing method | |
US20070141277A1 (en) | Inkjet recording element and a method of use | |
EP2190674B1 (en) | Fusible porous polymer particles for inkjet receivers | |
EP1855890B1 (en) | Fusible reactive media comprising crosslinker-containing layer | |
US6777041B2 (en) | Ink jet recording element | |
US6869178B2 (en) | Ink jet printing method | |
US6866384B2 (en) | Ink jet printing method | |
US6789891B2 (en) | Ink jet printing method | |
EP1403089B1 (en) | Ink jet recording element and printing method | |
JP2001199160A (en) | Ink jet type recording element | |
US6695447B1 (en) | Ink jet recording element | |
US6814437B2 (en) | Ink jet printing method | |
US6861114B2 (en) | Ink jet recording element | |
JP2001205799A (en) | Ink jet printing method | |
EP1722983B1 (en) | Inkjet recording element and method | |
EP1418057B1 (en) | Ink jet recording element and printing method | |
US6815019B2 (en) | Ink jet recording element | |
EP1403090B1 (en) | Ink jet recording element and printing method | |
EP1288009B1 (en) | Ink jet recording element and printing method | |
US6659604B2 (en) | Ink jet printing method | |
EP1761394B1 (en) | Fusible reactive media | |
EP1318024B1 (en) | Ink jet recording element and printing method | |
JP2001205930A (en) | Ink jet recording element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20050422 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20051005 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60220239 Country of ref document: DE Date of ref document: 20070705 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60220239 Country of ref document: DE Representative=s name: PATENTANWAELTE VON KREISLER, SELTING, WERNER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 60220239 Country of ref document: DE Representative=s name: WAGNER & GEYER PARTNERSCHAFT PATENT- UND RECHT, DE Ref country code: DE Ref legal event code: R082 Ref document number: 60220239 Country of ref document: DE Representative=s name: WAGNER & GEYER PARTNERSCHAFT MBB PATENT- UND R, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20121113 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121025 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131122 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131122 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141201 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60220239 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 |