EP1103937B1 - Fire detector - Google Patents
Fire detector Download PDFInfo
- Publication number
- EP1103937B1 EP1103937B1 EP99122975A EP99122975A EP1103937B1 EP 1103937 B1 EP1103937 B1 EP 1103937B1 EP 99122975 A EP99122975 A EP 99122975A EP 99122975 A EP99122975 A EP 99122975A EP 1103937 B1 EP1103937 B1 EP 1103937B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fire detector
- fire
- detector according
- light source
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/185—Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
- G08B29/186—Fuzzy logic; neural networks
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
Definitions
- the present invention relates to a fire detector with a light source, a measuring chamber and a light receiver having optical module, a temperature sensor, a additional sensor for at least one fire gas and an evaluation of the linkage the signals of the individual sensors.
- the optics module serves for the detection of smoke and the temperature sensor for detection the heat that occurs when a fire occurs.
- the optics module can either be from Smoke particles scattered or measured by this attenuated light of the light source. In the first case, it is the optical module of a scattered light detector and in the second case that of a point extinction or transmitted light detector. In both cases, the optics module designed so that no disturbing extraneous light and smoke very easily in the measuring chamber can penetrate.
- the temperature sensor serves both to increase the sensitivity as also to improve the false alarm safety of the scattered light detector.
- a scattered light detector with A temperature sensor is known, for example, from EP-A-0 654 770.
- the scattered and transmitted light detectors are extremely sensitive and can cause fires detect with high security.
- the high sensitivity can in certain cases too False alarms lead, which is undesirable for several reasons. Otherwise, that false alarms at least tend to attract the attention of the security personnel concerned reduce, demands in most countries the fire department and / or the police for False alarms caused a compensation, which may be with the number the false alarms progressively increases. For this reason, enjoy the false alarm safety today with fire detectors very high priority.
- the invention is now the false alarm safety of the detector with a simultaneous reduction its response time further improved and it should also a more homogeneous Response of the detector can be achieved.
- Homogeneous response means that the detector should respond to different fires about the same and not on the one type from fire extremely fast and to another extremely slow to not at all.
- a first preferred embodiment of the inventive fire alarm is characterized characterized in that the transmitter has a fuzzy controller for performing the has said link.
- the optical module of the fire detector according to the invention can either be designed in such a way that that in the measuring chamber that of smoke particles scattered or weakened by these Light of the light source is measured.
- it is the detection principle a stray light
- the Detektioskos a transmitted light detector.
- It can the scattered light detector as a forward or backward spreader or as a forward and backward spreader be educated.
- the latter has the advantage that, based on the scatter at different Scattering angle determines which type of smoke is present; see WO-A-84 01,650th
- the inventive multi-sensor Brandmeider contains and in which for Each kind of firing is provided with a special application specific algorithm Possibility, by linking the signals of the sensors in the fuzzy controller the respective Detect the type of fire and select the appropriate algorithm. This will on the one hand the false alarm (robustness) improves the detector, and on the other hand, by appropriate choice of application-specific algorithms a more balanced response be achieved by the detector.
- the fuzzy controller monitors whether certain disturbances still lie below the respective alarm thresholds heaped occur.
- the fuzzy controller can such disturbances to the control center or via a suitable Report communication interface to the operator and in this way indicate potential sources of interference, possibly caused by a wrong application of the detector concerned.
- a second preferred embodiment of the inventive fire alarm is characterized characterized in that in the fuzzy controller, a connection between the smoke concentration, the Concentration of the flue gas to be detected and one of the gradient of the temperature and the gradient of the flue gas formed parameter takes place.
- a third preferred embodiment of the inventive fire alarm is characterized characterized in that said parameter by the quotient of the temperature gradient and the flue gas gradient is formed.
- a fourth preferred embodiment of the inventive fire alarm is characterized characterized in that the additional sensor for a fire gas is a CO sensor.
- a fifth preferred embodiment of the inventive fire alarm is characterized characterized in that the light source of the optical module for emitting radiation in the wavelength range of visible light is formed.
- the wavelength is that of the light source emitted radiation in the range of blue or red light and is preferably 460th nm or 660 nm.
- a further preferred embodiment of the fire detector according to the invention is characterized characterized in that in the beam path between the light source and the light receiver at least a polarizing filter is provided.
- a further preferred embodiment is characterized in that the at least a polarizing filter a so-called active polarizer with electrically adjustable polarization plane is.
- the active polarizer is formed by a liquid crystal display whose polarization plane is adjustable by applying a voltage.
- the fire detector 1 shown in an axial section in Fig. 1 is essentially an additional Sensors for fire characteristics of advanced optical smoke detectors, as shown a scattered light detector. Since such optical detectors are assumed to be known, are they are not described here. In this connection, reference is made to EP-A-0 616 305 and EP-A-0 821 330.
- the optical smoke detector can also by a so-called NOTExtin Needless- or transmitted light detector may be formed, as described for example in EP-A-1 017 034 is described.
- the fire detector 1 shown consists in a known manner from a detector insert 2, the in a preferably mounted on the ceiling of the space to be monitored socket (not shown) can be fastened, and from a placed over the detector insert 2 detector hood 3, in the area of their in the operating state of the detector directed against the space to be monitored Dome with smoke inlet openings 4 is provided.
- the detector insert 2 comprises in essentially a box-like base body, facing to the detector tip Side of an optical module 5 and the detector base side facing an evaluation 6 is arranged.
- the optical module 5 consists essentially of a light source in a scattered light detector 7 and a light receiver 8 containing measuring chamber 9, which by not shown Medium against external light is shielded from the outside.
- the optical axes of an infrared or a red or blue light emitting diode (IRED or LED) formed light source 7 and the Light receiver 8 are kinked to each other, with this course and by blinding prevents light rays on the direct route from the light source 7 to the light receiver 8 can get.
- the light source 7 sends short, intense light pulses in the central part the measuring chamber 9, wherein the light receiver 8, although this central part of the measuring chamber 9, but not the light source 7 "sees".
- the light of the light source 7 is scattered by penetrating into the scattering room smoke, and a Part of this scattered light is incident on the light receiver 8.
- the receiver signal generated thereby is processed by the transmitter 6.
- the receiver signal becomes compared in a known manner with an alarm threshold and at least one pre-alarm threshold, and the transmitter 6 are at the alarm threshold exceeded by the receiver signal at an output 10 from an alarm signal. It is through intelligent signal processing Ensures that the delivery of the alarm signal at the lowest possible smoke values follows, but without unacceptable false alarms.
- a so-called active polarizer 11 which is a polarizer with a rotatable plane of polarization, provided be able to measure the light scattering in the two polarization planes.
- This active Polarizer is preferably by an electronic polarizing plate with a liquid crystal formed, which rotates their polarization plane by 90 ° when applying a voltage. The measurement the polarization degree, that is the polarized scattered light in the two polarization planes, can shorten the response time of the detector 1 to certain test fire and thereby to lead to a more homogeneous response.
- the fire detector 1 in addition to the optical module 5 contains two more sensors for fire parameters, namely a CO sensor (in general: fire gas sensor) 12 and a temperature sensor 13.
- a suitable CO sensor is in the EP -B-0 612 408 (see also EP-A-0 803 850), as temperature sensors have NTC thermistors proven (see the smoke detector PolyRex the fire detection system AlgoRex - PolyRex and AlgoRex are registered trademarks of Siemens Building Technologies AG, Cerberus Division, formerly Cerberus AG).
- the table also shows that the parameters CO concentration, quotient Gradient CO is individually diagnosed by gradient T and smoke concentration all six types of fire can be. This means that with the help of these parameters the signature of a fire clearly is recognizable.
- the parameters also allow CO concentration, degree of polarization and smoke concentration a determination of the type of fire, but with the exception of TF6, which can not be recognized by these parameters.
- the measurement of the degree of polarization In addition has the advantage that even in cases where the temperature is not fast Enough is rising, the kind of fire can be detected. This case can be, for example, in high rooms enter.
- the signals of the three sensors, optical module 5 for the smoke concentration and the degree of polarization, CO sensor 12 and temperature sensor 13, a component of the evaluation 6 forming diagnostic stage 14 is supplied, which in essentially contains a fuzzy controller.
- the diagnostic stage 14 the signals of Sen-. sensors are linked and analyzed, and the type of fire is determined from this analysis. After all the appropriate algorithm for the respective type of fire is selected and for the evaluation the sensor signals used.
- the fuzzy controller can also be used for Diagnostic purposes, used to display problems.
- the optical module 5 of the inventive fire detector corresponds functionally one usual scattered light detectors with forward or backward scattering, or a scattered light detector with forward and backward sweep, or a point extinction or transmitted light detector.
- One An essential component of the inventive fire detector is the sensor 12 for the at least a combustion gas, which is preferably a CO sensor.
- Such fire detectors are, for example, the so-called linear smoke detectors or Beam detectors such as the DLO1191 type from Siemens Building Technologies AG, Cerberus Division, and the flame detectors, such as the DF1190 type from Siemens Building Technologies AG, Cerberus Division.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Automation & Control Theory (AREA)
- Analytical Chemistry (AREA)
- Artificial Intelligence (AREA)
- Chemical & Material Sciences (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computer Security & Cryptography (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft einen Brandmelder mit einem eine Lichtquelle, eine Messkammer und einen Lichtempfänger aufweisenden Optikmodul, einem Temperatursensor, einem zusätzlichen Sensor für mindestens ein Brandgas und einer Auswerteelektronik für die Verknüpfung der Signale der einzelnen Sensoren.The present invention relates to a fire detector with a light source, a measuring chamber and a light receiver having optical module, a temperature sensor, a additional sensor for at least one fire gas and an evaluation of the linkage the signals of the individual sensors.
Bei Brandmeldern dieser Art, die als Mehrfach- oder Multisensor-Brandmelder bezeichnet werden, dient das Optikmodul zur Detektion von Rauch und der Temperatursensor zur Detektion der bei Entstehung eines Brandes auftretenden Hitze. Das Optikmodul kann entweder das von Rauchpartikeln gestreute oder das durch diese abgeschwächte Licht der Lichtquelle messen. Im ersten Fall handelt es sich um das Optikmodul eines Streulichtmelders und im zweiten Fall um dasjenige eines Punktextinktions- oder Durchlichtmelders. In beiden Fällen ist das Optikmodul so ausgebildet, dass störendes Fremdlicht nicht und Rauch sehr leicht in die Messkammer eindringen kann. Der Temperatursensor dient sowohl zur Erhöhung der Empfindlichkeit als auch zur Verbesserung der Fehlalarmsicherheit des Streulichtmelders. Ein Streulichtmelder mit einem Temperatursensor ist beispielsweise aus der EP-A-0 654 770 bekannt.For fire alarms of this type, which are referred to as multiple or multi-sensor fire detectors, the optics module serves for the detection of smoke and the temperature sensor for detection the heat that occurs when a fire occurs. The optics module can either be from Smoke particles scattered or measured by this attenuated light of the light source. In the first case, it is the optical module of a scattered light detector and in the second case that of a point extinction or transmitted light detector. In both cases, the optics module designed so that no disturbing extraneous light and smoke very easily in the measuring chamber can penetrate. The temperature sensor serves both to increase the sensitivity as also to improve the false alarm safety of the scattered light detector. A scattered light detector with A temperature sensor is known, for example, from EP-A-0 654 770.
Die Streulicht- und die Durchlichtmelder sind ausserordentlich empfindlich und können Brände mit hoher Sicherheit detektieren. Die hohe Empfindlichkeit kann aber in gewissen Fällen zu Fehlalarmen führen, was aus mehreren Gründen unerwünscht ist. Denn abgesehen davon, dass Fehlalarme die Aufmerksamkeit des betreffenden Sicherheitspersonals zumindest tendenziell reduzieren, verlangt in den meisten Ländern die Feuerwehr und/oder die Polizei für durch Fehlalarme verursachte Einsätze eine Entschädigung, welche unter Umständen mit der Zahl der Fehlalarme progressiv steigt. Aus diesem Grund geniesst heute bei Brandmeldern die Fehlalarmsicherheit sehr hohe Priorität.The scattered and transmitted light detectors are extremely sensitive and can cause fires detect with high security. However, the high sensitivity can in certain cases too False alarms lead, which is undesirable for several reasons. Otherwise, that false alarms at least tend to attract the attention of the security personnel concerned reduce, demands in most countries the fire department and / or the police for False alarms caused a compensation, which may be with the number the false alarms progressively increases. For this reason, enjoy the false alarm safety today with fire detectors very high priority.
Bei einem in der JP-A-06 301 870 beschriebenen Brandmelder der eingangs genannten Art wird die Fehlalarmsicherheit dadurch verbessert, dass die Auswertung der Sensorsignale in einer Fuzzylogik erfolgt.In a fire detector of the type mentioned in JP-A-06 301 870 described the false alarm safety is improved by the fact that the evaluation of the sensor signals in a fuzzy logic takes place.
Durch die Erfindung soll nun die Fehlalarmsicherheit des Melders bei einer gleichzeitigen Verkürzung von dessen Ansprechzeit weiter verbessert und es soll ausserdem ein homogeneres Ansprechverhalten des Melders erzielt werden. Homogenes Ansprechverhalten bedeutet, dass der Melder auf verschiedene Feuer etwa gleich ansprechen soll und nicht auf den einen Typ von Brand extrem rasch und auf einen anderen extrem langsam bis gar nicht.The invention is now the false alarm safety of the detector with a simultaneous reduction its response time further improved and it should also a more homogeneous Response of the detector can be achieved. Homogeneous response means that the detector should respond to different fires about the same and not on the one type from fire extremely fast and to another extremely slow to not at all.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Auswerteelektronik für die Diagnose der jeweiligen Brandart entsprechend einem der Testfeuer TF1 bis TF6 der europäischen Norm EN-54 ausgebildet ist, und dass aufgrund dieser Diagnose die Auswahl eines speziellen applikationsspezifischen Algorithmus für die Verarbeitung der Sensorsignale erfolgt.This object is achieved by the fact that the transmitter for the Diagnosis of the respective type of fire according to one of the test fires TF1 to TF6 of the European standard EN-54 is formed and that due to this diagnosis the selection a special application-specific algorithm for processing the sensor signals he follows.
Eine erste bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass die Auswerteelektronik einen Fuzzy-Regler für die Durchführung der genannten Verknüpfung aufweist.A first preferred embodiment of the inventive fire alarm is characterized characterized in that the transmitter has a fuzzy controller for performing the has said link.
Es gibt nach der europäischen Norm EN-54 die folgenden sechs verschiedenen Testfeuer (abgekürzt TF):
- TF1: Holzbrand
- TF2: Holzschwelbrand
- TF2: Luntenschwelbrand
- TF4: Schaumstoffbrand
- TF5: Heptanbrand
- TF6: Alkoholbrand.
- TF1: wood fire
- TF2: Wood smoldering fire
- TF2: Lunchtschwelbrand
- TF4: foam firing
- TF5: heptane fire
- TF6: Alcohol burn.
Das Optikmodul des erfindungsgemässen Brandmelders kann entweder so ausgebildet sein, dass in der Messkammer das von Rauchpartikeln gestreute oder das von diesen abgeschwächte Licht der Lichtquelle gemessen wird. Im ersten Fall handelt es sich um das Detektionsprinzip eines Streulicht-, im zweiten Fall um das Detektiosprinzip eines Durchlichtmelders. Dabei kann der Streulichtmelder als Vorwärts- oder Rückwärtsstreuer oder als Vorwärts- und Rückwärtsstreuer ausgebildet sein. Letzteres hat den Vorteil, dass sich anhand der Streuung bei verschiedenen Streuwinkeln feststellen lässt, welche Art von Rauch vorliegt; siehe dazu die WO-A-84 01650.The optical module of the fire detector according to the invention can either be designed in such a way that that in the measuring chamber that of smoke particles scattered or weakened by these Light of the light source is measured. In the first case, it is the detection principle a stray light, in the second case to the Detektiosprinzip a transmitted light detector. It can the scattered light detector as a forward or backward spreader or as a forward and backward spreader be educated. The latter has the advantage that, based on the scatter at different Scattering angle determines which type of smoke is present; see WO-A-84 01,650th
Der erfindungsgemässe Multisensor-Brandmeider, der einen optischen Rauchsensor, einen Temperatursensor, einen Brandgassensor und einen Fuzzy-Regler enthält und in welchem für jede Brandart ein spezieller applikationsspezifischer Algorithmus bereitgestellt ist, eröffnet die Möglichkeit, anhand einer Verknüpfung der Signale der Sensoren im Fuzzy-Regler die jeweilige Brandart zu detektieren und den geeigneten Algorithmus auszuwählen. Dadurch wird einerseits die Fehlalarmsicherheit (Robustheit) des Melders verbessert, und andererseits kann durch geeignete Wahl der applikationspezifischen Algorithmen ein ausgeglicheneres Ansprechverhalten des Melders erzielt werden.The inventive multi-sensor Brandmeider, the an optical smoke sensor, a Temperature sensor, a fire gas sensor and a fuzzy controller contains and in which for Each kind of firing is provided with a special application specific algorithm Possibility, by linking the signals of the sensors in the fuzzy controller the respective Detect the type of fire and select the appropriate algorithm. This will on the one hand the false alarm (robustness) improves the detector, and on the other hand, by appropriate choice of application-specific algorithms a more balanced response be achieved by the detector.
Ausserdem eröffnet sich die Möglichkeit einer Art von Problemdiagnose, indem der Fuzzy-Regler überwacht, ob gewisse noch unterhalb der jeweiligen Alarmschwellen liegende Störungen gehäuft auftreten. Der Fuzzy-Regler kann solche Störungen an die Zentrale oder über eine geeignete Kommunikationsschnittstelle an das Bedienungspersonal melden und auf diese Weise potentielle Störquellen anzeigen, deren Ursache möglicherweise in einer falschen Applikation des betreffenden Melders liegen kann. In addition, there is the possibility of a kind of problem diagnosis by the fuzzy controller monitors whether certain disturbances still lie below the respective alarm thresholds heaped occur. The fuzzy controller can such disturbances to the control center or via a suitable Report communication interface to the operator and in this way indicate potential sources of interference, possibly caused by a wrong application of the detector concerned.
Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass im Fuzzy-Regler eine Verbindung zwischen der Rauchkonzentration, der Konzentration des zu detektierenden Rauchgases und einem aus dem Gradienten der Temperatur und dem Gradienten des Rauchgases gebildeten Parameter erfolgt.A second preferred embodiment of the inventive fire alarm is characterized characterized in that in the fuzzy controller, a connection between the smoke concentration, the Concentration of the flue gas to be detected and one of the gradient of the temperature and the gradient of the flue gas formed parameter takes place.
Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass der genannte Parameter durch den Quotienten aus dem Temperaturgradienten und dem Rauchgasgradienten gebildet ist.A third preferred embodiment of the inventive fire alarm is characterized characterized in that said parameter by the quotient of the temperature gradient and the flue gas gradient is formed.
Eine vierte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass der zusätzliche Sensor für ein Brandgas ein CO-Sensor ist.A fourth preferred embodiment of the inventive fire alarm is characterized characterized in that the additional sensor for a fire gas is a CO sensor.
Eine fünfte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass die Lichtquelle des Optikmoduls zur Aussendung einer Strahlung im Wellenlängenbereich des sichtbaren Lichts ausgebildet ist.A fifth preferred embodiment of the inventive fire alarm is characterized characterized in that the light source of the optical module for emitting radiation in the wavelength range of visible light is formed.
Bei einer sechsten bevorzugten Ausführungsform liegt die Wellenlänge der von der Lichtquelle ausgesandten Strahlung im Bereich von blauem oder rotem Licht und beträgt vorzugsweise 460 nm beziehungsweise 660 nm.In a sixth preferred embodiment, the wavelength is that of the light source emitted radiation in the range of blue or red light and is preferably 460th nm or 660 nm.
Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass im Strahlengang zwischen der Lichtquelle und dem Lichtempfänger mindestens ein Polarisationsfilter vorgesehen ist.A further preferred embodiment of the fire detector according to the invention is characterized characterized in that in the beam path between the light source and the light receiver at least a polarizing filter is provided.
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass das mindestens eine Polarisationsfilter ein sogenannter aktiver Polarisator mit elektrisch verstellbarer Polarisationsebene ist.A further preferred embodiment is characterized in that the at least a polarizing filter a so-called active polarizer with electrically adjustable polarization plane is.
Vorzugsweise ist der aktive Polarisator durch eine Flüssigkristallanzeige gebildet, deren Polarisationsebene durch Anlegen einer Spannung verstellbar ist.Preferably, the active polarizer is formed by a liquid crystal display whose polarization plane is adjustable by applying a voltage.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen
näher erläutert; es zeigt:
Der in Fig. 1 in einem Axialschnitt dargestellte Brandmelder 1 ist im wesentlichen ein um zusätzliche Sensoren für Brandkenngrössen erweiterter optischer Rauchmelder, darstellungsgemäss ein Streulichtmelder. Da solche optische Melder als bekannt vorausgesetzt werden, sind sie hier nicht näher beschrieben. Es wird in diesem Zusammenhang auf die EP-A-0 616 305 und die EP-A-0 821 330 verwiesen. Der optische Rauchmelder kann auch durch einen sogenannten Punktextinktions- oder Durchlichtmelder gebildet sein, wie er beispielsweise in der EP-A-1 017 034 beschrieben ist. The fire detector 1 shown in an axial section in Fig. 1 is essentially an additional Sensors for fire characteristics of advanced optical smoke detectors, as shown a scattered light detector. Since such optical detectors are assumed to be known, are they are not described here. In this connection, reference is made to EP-A-0 616 305 and EP-A-0 821 330. The optical smoke detector can also by a so-called Punktxtinktions- or transmitted light detector may be formed, as described for example in EP-A-1 017 034 is described.
Der dargestellte Brandmelder 1 besteht in bekannter Weise aus einem Meldereinsatz 2, der in
einem vorzugsweise an der Decke des zu überwachenden Raumes montierten Sockel (nicht
dargestellt) befestigbar ist, und aus einer über den Meldereinsatz 2 gestülpten Melderhaube 3,
die im Bereich ihrer im Betriebszustand des Melders gegen den zu überwachenden Raum gerichteten
Kuppe mit Raucheintrittsöffnungen 4 versehen ist. Der Meldereinsatz 2 umfasst im
wesentlichen einen schachtelartigen Basiskörper, an dessen der Melderkuppe zugewandter
Seite ein Optikmodul 5 und dessen dem Meldersockel zugewandter Seite eine Auswerteelektronik
6 angeordnet ist.The fire detector 1 shown consists in a known manner from a
Das Optikmodul 5 besteht bei einem Streulichtmelder im wesentlichen aus einer eine Lichtquelle
7 und einen Lichtempfänger 8 enthaltenden Messkammer 9, welche durch nicht dargestellte
Mittel gegen Fremdlicht von aussen abgeschirmt ist. Die optischen Achsen der durch eine Infrarot-
oder eine rote oder blaue Leuchtdiode (IRED bzw. LED) gebildeten Lichtquelle 7 und des
Lichtempfängers 8 sind zueinander geknickt, wobei durch diesen Verlauf und durch Blenden
verhindert wird, dass Lichtstrahlen auf direktem Weg von der Lichtquelle 7 zum Lichtempfänger
8 gelangen können. Die Lichtquelle 7 sendet kurze, intensive Lichtpulse in den zentralen Teil
der Messkammer 9, wobei der Lichtempfänger 8 zwar diesen zentralen Teil der Messkammer 9,
nicht aber die Lichtquelle 7 "sieht".The
Das Licht der Lichtquelle 7 wird durch in den Streuraum eindringenden Rauch gestreut, und ein
Teil dieses Streulichts fällt auf den Lichtempfänger 8. Das dadurch erzeugte Empfänger-Signal
wird von der Auswerteelektronik 6 verarbeitet. Bei der Verarbeitung wird das Empfängersignal
in bekannter Weise mit einer Alarmschwelle und mindestens einer Voralarmschwelle verglichen,
und die Auswerteelektronik 6 gibt bei Überschreiten der Alarmschwelle durch das Empfängersignal
an einem Ausgang 10 ein Alarmsignal ab. Dabei ist durch intelligente Signalverarbeitung
gewährleistet, dass die Abgabe des Alarmsignals bei möglichst tiefen Rauchwerten
folgt, ohne dass es dabei jedoch zu unakzeptablen Fehlalarmen kommt.The light of the light source 7 is scattered by penetrating into the scattering room smoke, and a
Part of this scattered light is incident on the
Im Strahlengang zwischen der Lichtquelle 7 und dem Lichtempfänger 8 kann ein sogenannter
aktiver Polarisator 11, das ist ein Polarisator mit drehbarer Polarisationsebene, vorgesehen
sein, um die Lichtstreuung in den beiden Polarisationsebenen messen zu können. Dieser aktive
Polarisator ist vorzugsweise durch eine elektronische Polarisierplatte mit einem Flüssigkristall
gebildet, welche beim Anlegen einer Spannung ihre Polarisationsebene um 90° dreht. Die Messung
des Polarisationsgrads, das ist das polarisierte Streulicht in den beiden Polarisationsebenen,
kann die Ansprechzeit des Melders 1 auf bestimmte Testfeuer verkürzen und dadurch zu
einem homogeneren Ansprechverhalten führen.In the beam path between the light source 7 and the
Wie Fig. 1 weiter zu entnehmen ist, enthält der Brandmelder 1 zusätzlich zum Optikmodul 5
noch zwei weitere Sensoren für Brandkenngrössen, und zwar einen CO-Sensor (allgemein:
Brandgassensor) 12 und einen Temperatursensor 13. Ein geeigneter CO-Sensor ist in der EP-B-0
612 408 beschrieben (siehe auch EP-A-0 803 850), als Temperatursensoren haben sich
NTC-Thermistoren bewährt (siehe dazu den Rauchmelder PolyRex des Brandmeldesystems
AlgoRex - PolyRex und AlgoRex sind eingetragene Warenzeichen der Siemens Building Technologies
AG, Cerberus Division, früher Cerberus AG).1, the fire detector 1 in addition to the
Theoretische Überlegungen und praktische Brandversuche haben die in der folgenden Tabelle
zusammengestellten Korrelationen zwischen den mit den verschiedenen Sensoren Optikmodul
5, CO-Sensor 12 und Temperatursensor 13, gemessenen Brandparametem ergeben. Selbstverständlich
wird als weiterer Brandparameter noch die Rauchmenge oder Rauchkonzentration
gemessen; das ist die bekannte Funktion eines optischen Rauchmelders und damit des Optikmoduls
5.
Aus der Tabelle sind die folgenden Resultate ersichtlich:
- Die CO-Konzentration eignet sich besser als alle anderen Parameter zur frühen Detektion von TF3 und korreliert hier mit der Rauchkonzentration.
- Der Quotient Gradient CO durch Gradient Temperatur eignet sich sehr gut zur frühen Detektion von TF5 und TF6 und korreliert hier mit dem Temperaturanstieg.
- Der Temperaturanstieg eignet sich sehr gut zur frühen Detektion von TF1, TF5 und TF6 und korreliert mit Ausnahme von TF6 (kein Rauch) mit dem Polarisationsgrad. Man kann dieses Ergebnis so interpretieren, dass Brände, die viel Hitze generieren, ziemlich kleine Aerosolteilchen erzeugen. Die Korrelation zwischen Temperaturanstieg und Polarisationsgrad kann als Alarmbestätigung und somit für die Erhöhung der Robustheit des Melders benutzt werden.
- The CO concentration is better than any other parameter for the early detection of TF3 and correlates with the smoke concentration.
- The gradient gradient CO gradient temperature is very suitable for the early detection of TF5 and TF6 and correlates with the temperature rise.
- The temperature rise is very well suited for the early detection of TF1, TF5 and TF6 and correlates with the degree of polarization except TF6 (no smoke). One can interpret this result in such a way that fires that generate a lot of heat generate rather small aerosol particles. The correlation between temperature rise and degree of polarization can be used as alarm confirmation and thus for increasing the robustness of the detector.
Die Tabelle zeigt ausserdem, dass anhand der Parameter CO-Konzentration, Quotient Gradient CO durch Gradient T sowie Rauchkonzentration alle sechs Brandarten einzeln diagnostiziert werden können. Das bedeutet, dass mit Hilfe dieser Parameter die Signatur eines Brandes eindeutig erkennbar ist. Andererseits erlauben auch die Parameter CO-Konzentration, Polarisationsgrad und Rauchkonzentration eine Bestimmung der Brandart, allerdings mit Ausnahme von TF6, welches anhand dieser Parameter nicht erkannt werden kann. Die Messung des Polarisationsgrades hat zusätzlich den Vorteil, dass auch in den Fällen, wo die Temperatur nicht rasch genug steigt, die Brandart erkannt werden kann. Dieser Fall kann beispielsweise in hohen Räumen eintreten.The table also shows that the parameters CO concentration, quotient Gradient CO is individually diagnosed by gradient T and smoke concentration all six types of fire can be. This means that with the help of these parameters the signature of a fire clearly is recognizable. On the other hand, the parameters also allow CO concentration, degree of polarization and smoke concentration a determination of the type of fire, but with the exception of TF6, which can not be recognized by these parameters. The measurement of the degree of polarization In addition has the advantage that even in cases where the temperature is not fast Enough is rising, the kind of fire can be detected. This case can be, for example, in high rooms enter.
Wie in Fig. 2 schematisch dargestellt ist, sind die Signale der drei Sensoren, Optikmodul 5 für
die Rauchkonzentration und den Polarisationsgrad, CO-Sensor 12 und Temperatursensor 13,
einer Bestandteil der Auswerteelektronik 6 bildenden Diagnosestufe 14 zugeführt, welche im
wesentlichen einen Fuzzy-Regler enthält. In der Diagnosestufe 14 werden die Signale der Sen- .
soren verknüpft und analysiert und es wird aus dieser Analyse die Brandart bestimmt. Schliesslich
wird der für die jeweilige Brandart geeignete Algorithmus ausgewählt und für die Auswertung
der Sensorsignale verwendet. Wie schon erwähnt wurde, kann der Fuzzy-Regler auch für
Diagnosezwecke, zur Anzeige von Problemen, verwendet werden.As shown schematically in FIG. 2, the signals of the three sensors,
Das Optikmodul 5 des erfindungsgemässen Brandmelders entspricht funktionsmässig einem
üblichen Streulichtmelder mit Vorwärts- oder Rückwärtsstreuung, oder einem Streulichtmelder
mit Vorwärts- und Rückwärtsstreung, oder einem Punktextinktions- oder Durchlichtmelder. Ein
wesentlicher Bestandteil des erfindungsgemässen Brandmelders ist der Sensor 12 für das mindestens
eine Brandgas, welcher vorzugsweise ein CO-Sensor ist.The
Es sei noch darauf hingewiesen, dass es durchaus vorteilhaft sein kann, andere Typen von Brandmeldem zusätzlich mit einem Brandgassensor, insbesondere einem CO-Sensor, auszurüsten. Derartige Brandmelder sind beispielsweise die sogenannten linearen Rauchmelder oder Beammelder wie der Typ DLO1191 der Siemens Building Technologies AG, Cerberus Division, und die Flammenmelder, wie der Typ DF1190 der Siemens Building Technologies AG, Cerberus Division.It should be noted that it can be quite advantageous to use other types of Brandmeldem additionally equipped with a fire gas sensor, in particular a CO sensor. Such fire detectors are, for example, the so-called linear smoke detectors or Beam detectors such as the DLO1191 type from Siemens Building Technologies AG, Cerberus Division, and the flame detectors, such as the DF1190 type from Siemens Building Technologies AG, Cerberus Division.
Claims (11)
- Fire detector having an optical module (5) comprising a light source (7), a measuring chamber (9) and an opto-receiver (8), having a temperature sensor (13), an additional sensor (12) for at least one combustion gas and evaluation electronics (6) for logically combining the signals from the individual sensors (5, 12, 13), characterized in that the evaluation electronics (6) are designed to diagnose the respective fire type in line with one of the test fires TF1 to TF6 from the European standard EN-54, and in that this diagnosis is taken as a basis for selecting a special application-specific algorithm for processing the sensor signals.
- Fire detector according to Claim 1, characterized in that the evaluation electronics (6) have a fuzzy controller for performing said logic combination.
- Fire detector according to Claim 2, characterized in that the fuzzy controller logically combines the smoke concentration with the combustion gas concentration and with a parameter formed from the gradient of the temperature and from the gradient of the flue gas.
- Fire detector according to Claim 3, characterized in that said parameter is formed by the quotient of the temperature gradient and the flue-gas gradient.
- Fire detector according to one of Claims 1 to 4, characterized in that the additional sensor (12) for a combustion gas is a CO sensor.
- Fire detector according to one of Claims 1 to 5, characterized in that the light source (7) in the optical module (5) is designed to transmit radiation in the wavelength range of visible light.
- Fire detector according to Claim 6, characterized in that the wavelength of the radiation transmitted by the light source (7) is in the range of blue or red light and is preferably 460 nm or 660 nm.
- Fire detector according to Claim 6, characterized in that the beam path between the light source (7) and the opto-receiver (8) contains at least one polarization filter (11).
- Fire detector according to Claim 8, characterized in that the at least one polarization filter (11) is an "active polarizer" with an electrically adjustable polarization plane.
- Fire detector according to Claim 9, characterized in that the active polarizer is formed by a liquid crystal display whose polarization plane can be adjusted by applying a voltage.
- Fire detector according to Claims 3 and 10, characterized in that measuring the smoke concentration involves the optical module (5) determining the degree of polarization of the radiation scattered in the measuring chamber (9) from the light source (7).
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59912047T DE59912047D1 (en) | 1999-11-19 | 1999-11-19 | fire alarm |
ES99122975T ES2243027T3 (en) | 1999-11-19 | 1999-11-19 | FIRE DETECTOR. |
AT99122975T ATE295595T1 (en) | 1999-11-19 | 1999-11-19 | FIRE ALARM |
PT99122975T PT1103937E (en) | 1999-11-19 | 1999-11-19 | FIRE DETECTOR |
EP99122975A EP1103937B1 (en) | 1999-11-19 | 1999-11-19 | Fire detector |
AU65464/00A AU777015B2 (en) | 1999-11-19 | 2000-10-12 | Fire alarm |
KR1020000066616A KR20010051578A (en) | 1999-11-19 | 2000-11-10 | Fire alarm |
JP2000344033A JP4767404B2 (en) | 1999-11-19 | 2000-11-10 | Fire alarm equipment |
HU0004474A HU224676B1 (en) | 1999-11-19 | 2000-11-13 | Fire alarm |
CN00132370A CN1297213A (en) | 1999-11-19 | 2000-11-13 | Fire alarm device |
US09/711,818 US6788197B1 (en) | 1999-11-19 | 2000-11-13 | Fire alarm |
NO20005717A NO20005717L (en) | 1999-11-19 | 2000-11-13 | fire alarms |
CZ20004287A CZ301163B6 (en) | 1999-11-19 | 2000-11-16 | Fire alarm system |
PL00343954A PL343954A1 (en) | 1999-11-19 | 2000-11-17 | Fire detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99122975A EP1103937B1 (en) | 1999-11-19 | 1999-11-19 | Fire detector |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1103937A1 EP1103937A1 (en) | 2001-05-30 |
EP1103937B1 true EP1103937B1 (en) | 2005-05-11 |
Family
ID=8239423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99122975A Expired - Lifetime EP1103937B1 (en) | 1999-11-19 | 1999-11-19 | Fire detector |
Country Status (14)
Country | Link |
---|---|
US (1) | US6788197B1 (en) |
EP (1) | EP1103937B1 (en) |
JP (1) | JP4767404B2 (en) |
KR (1) | KR20010051578A (en) |
CN (1) | CN1297213A (en) |
AT (1) | ATE295595T1 (en) |
AU (1) | AU777015B2 (en) |
CZ (1) | CZ301163B6 (en) |
DE (1) | DE59912047D1 (en) |
ES (1) | ES2243027T3 (en) |
HU (1) | HU224676B1 (en) |
NO (1) | NO20005717L (en) |
PL (1) | PL343954A1 (en) |
PT (1) | PT1103937E (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958689B2 (en) | 2001-09-21 | 2005-10-25 | Rosemount Aerospace Inc. | Multi-sensor fire detector with reduced false alarm performance |
US7333129B2 (en) | 2001-09-21 | 2008-02-19 | Rosemount Aerospace Inc. | Fire detection system |
ATE318000T1 (en) | 2002-06-20 | 2006-03-15 | Siemens Schweiz Ag | FIRE ALARM |
US7564365B2 (en) * | 2002-08-23 | 2009-07-21 | Ge Security, Inc. | Smoke detector and method of detecting smoke |
US6975223B1 (en) * | 2002-08-26 | 2005-12-13 | Petar Mladen | Premises protection safety system |
US7068177B2 (en) * | 2002-09-19 | 2006-06-27 | Honeywell International, Inc. | Multi-sensor device and methods for fire detection |
US6967582B2 (en) * | 2002-09-19 | 2005-11-22 | Honeywell International Inc. | Detector with ambient photon sensor and other sensors |
US7715482B2 (en) * | 2003-08-14 | 2010-05-11 | Broadcom Corporation | System and method for generating pseudo MPEG information from digital video information |
KR100671045B1 (en) | 2005-07-22 | 2007-01-17 | 주식회사 금륜방재산업 | Flame detector to detect hydrocarbon fire and non hydrocarbon fire |
DE502005004043D1 (en) * | 2005-11-04 | 2008-06-19 | Siemens Ag | Combined stray light and extinction fire detector |
US7642924B2 (en) * | 2007-03-02 | 2010-01-05 | Walter Kidde Portable Equipment, Inc. | Alarm with CO and smoke sensors |
US7786880B2 (en) * | 2007-06-01 | 2010-08-31 | Honeywell International Inc. | Smoke detector |
EP2091029B2 (en) * | 2008-02-15 | 2020-11-18 | Siemens Schweiz AG | Hazard recognition utilising a temperature measurement device integrated in a microcontroller |
ES2368358T3 (en) * | 2008-02-19 | 2011-11-16 | Siemens Aktiengesellschaft | SMOKE DETECTOR WITH EVALUATION IN THE TIME OF A REPRODUCTION SIGNAL, TEST METHOD FOR THE FUNCTIONING CAPACITY OF A SMOKE DETECTOR. |
CN102257385B (en) * | 2008-12-19 | 2013-12-25 | 西门子公司 | Gas sensor assembly containing GASFET sensor and filter element for degrading ozone |
US8232884B2 (en) * | 2009-04-24 | 2012-07-31 | Gentex Corporation | Carbon monoxide and smoke detectors having distinct alarm indications and a test button that indicates improper operation |
US8836532B2 (en) | 2009-07-16 | 2014-09-16 | Gentex Corporation | Notification appliance and method thereof |
US8659435B2 (en) * | 2010-04-02 | 2014-02-25 | George Anthony McKinney | Waterproof optically-sensing fiberless-optically-communicating vitality monitoring and alarming system, particularly for swimmers and infants |
GB201006682D0 (en) | 2010-04-21 | 2010-06-09 | Fireangel Ltd | Co-9x optical alarm |
JP5484219B2 (en) * | 2010-06-30 | 2014-05-07 | ニッタン株式会社 | Combined thermal smoke sensor |
US9881491B2 (en) * | 2011-11-10 | 2018-01-30 | Honeywell International Inc. | Fire detector comprising a MOS gas sensor and a photoelectric detector |
US9140646B2 (en) | 2012-04-29 | 2015-09-22 | Valor Fire Safety, Llc | Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction |
US8952821B2 (en) | 2012-04-29 | 2015-02-10 | Valor Fire Safety, Llc | Smoke detector utilizing ambient-light sensor, external sampling volume, and internally reflected light |
US8907802B2 (en) | 2012-04-29 | 2014-12-09 | Valor Fire Safety, Llc | Smoke detector with external sampling volume and ambient light rejection |
CN102938183A (en) * | 2012-10-23 | 2013-02-20 | 向武 | Distributed goaf beam tube fire monitoring system |
CN103077578B (en) * | 2012-12-29 | 2015-01-28 | 浙江工业大学 | Two-stage spontaneous combustion danger judging and early warning method in engine compartment of bus |
EP3063747B1 (en) | 2013-10-30 | 2019-07-24 | Valor Fire Safety, LLC | Smoke detector with external sampling volume and ambient light rejection |
DE102014108713B3 (en) * | 2014-06-23 | 2015-07-16 | Sick Ag | Smoke and fire detectors |
WO2016136434A1 (en) * | 2015-02-25 | 2016-09-01 | ホーチキ株式会社 | System |
DE102015206611A1 (en) * | 2015-04-14 | 2016-10-20 | Siemens Schweiz Ag | Flame detector for monitoring an area adjacent to waters and taking into account a level of polarization present in the receiving light during fire alarm |
EP3128493A1 (en) * | 2015-08-06 | 2017-02-08 | Siemens Schweiz AG | Scattered light smoke detector with optical measurement chamber in detector housing and with a mirror surface on the inside of a detector hood as part of the detector housing |
CN106781194A (en) * | 2015-11-24 | 2017-05-31 | 衡阳市维达胜电气自动化设备有限公司 | A kind of self-action smoke alarm |
EP3225977B1 (en) * | 2016-03-31 | 2019-03-13 | ams AG | Method and sensor system for detecting particles |
US20180108234A1 (en) * | 2016-10-19 | 2018-04-19 | MindDust labs LLC | Mobile smoke and fire detection system and method |
EP3319057B1 (en) | 2016-11-02 | 2019-06-26 | ams AG | Integrated smoke detection device |
US10989368B2 (en) | 2017-04-13 | 2021-04-27 | Carrier Corporation | Notification device for a surface of a building interior |
CN107449864B (en) * | 2017-08-10 | 2023-04-07 | 国网安徽省电力公司电力科学研究院 | Multi-scene cable fire smoke parameter evaluation platform and evaluation method |
JP7142235B2 (en) * | 2018-03-26 | 2022-09-27 | パナソニックIpマネジメント株式会社 | Smoke detection system, smoke detection method, and program |
KR101911371B1 (en) | 2018-04-20 | 2018-10-25 | 윈텍정보(주) | Function Extension Type Fire Detector |
KR102237270B1 (en) | 2019-05-28 | 2021-04-07 | 주식회사 씨엔 이지에스 | Wireless Fire Detector System |
RU193876U1 (en) * | 2019-07-01 | 2019-11-19 | Общество с ограниченной ответственностью "РУБЕТЕК РУС" | RADIO CHANNEL EXPANDER |
GB201917883D0 (en) * | 2019-12-06 | 2020-01-22 | Project Fire Global Holdings Ltd | A detector for a fire alarm system |
CN111672043A (en) * | 2020-04-29 | 2020-09-18 | 广东电网有限责任公司东莞供电局 | Automatic identification fire extinguisher |
US11373490B2 (en) | 2020-07-02 | 2022-06-28 | Cisco Technology, Inc. | Temperature indicator for optical module |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
EP4160564A1 (en) * | 2021-09-29 | 2023-04-05 | Carrier Corporation | Device for detecting a combustible gas |
US11972676B2 (en) * | 2021-10-25 | 2024-04-30 | Honeywell International Inc. | Initiating a fire response at a self-testing fire sensing device |
US20230230468A1 (en) * | 2022-01-19 | 2023-07-20 | Johnson Controls Tyco IP Holdings LLP | Smoke detector self-test |
CN115019465B (en) * | 2022-06-10 | 2023-08-25 | 北京南瑞怡和环保科技有限公司 | Early warning system for energy storage of transformer substation |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05303690A (en) * | 1991-04-17 | 1993-11-16 | Shiyoubouchiyou Chokan | Fire properties grasping system |
CH683464A5 (en) * | 1991-09-06 | 1994-03-15 | Cerberus Ag | Optical smoke detector with active surveillance. |
JP3071902B2 (en) * | 1991-10-31 | 2000-07-31 | ホーチキ株式会社 | Fire alarm |
GB2259763B (en) * | 1991-09-20 | 1995-05-31 | Hochiki Co | Fire alarm system |
JP2608512B2 (en) * | 1992-09-04 | 1997-05-07 | 株式会社ジャパンエナジー | Fire detection method |
JP3151470B2 (en) * | 1993-04-13 | 2001-04-03 | 消防庁長官 | Fire property monitoring system |
JP3251763B2 (en) * | 1993-04-30 | 2002-01-28 | ホーチキ株式会社 | Fire alarm device and fire detection method |
US5486811A (en) * | 1994-02-09 | 1996-01-23 | The United States Of America As Represented By The Secretary Of The Navy | Fire detection and extinguishment system |
JPH07254096A (en) * | 1994-03-15 | 1995-10-03 | Matsushita Electric Works Ltd | Disaster prevention system |
US5726633A (en) * | 1995-09-29 | 1998-03-10 | Pittway Corporation | Apparatus and method for discrimination of fire types |
GB9721861D0 (en) * | 1997-10-15 | 1997-12-17 | Kidde Fire Protection Ltd | High sensitivity particle detection |
EP0926646B8 (en) * | 1997-12-24 | 2004-09-22 | Siemens Building Technologies AG | Optical smoke detector |
-
1999
- 1999-11-19 ES ES99122975T patent/ES2243027T3/en not_active Expired - Lifetime
- 1999-11-19 EP EP99122975A patent/EP1103937B1/en not_active Expired - Lifetime
- 1999-11-19 AT AT99122975T patent/ATE295595T1/en active
- 1999-11-19 PT PT99122975T patent/PT1103937E/en unknown
- 1999-11-19 DE DE59912047T patent/DE59912047D1/en not_active Expired - Lifetime
-
2000
- 2000-10-12 AU AU65464/00A patent/AU777015B2/en not_active Ceased
- 2000-11-10 JP JP2000344033A patent/JP4767404B2/en not_active Expired - Fee Related
- 2000-11-10 KR KR1020000066616A patent/KR20010051578A/en not_active Application Discontinuation
- 2000-11-13 HU HU0004474A patent/HU224676B1/en not_active IP Right Cessation
- 2000-11-13 US US09/711,818 patent/US6788197B1/en not_active Expired - Lifetime
- 2000-11-13 NO NO20005717A patent/NO20005717L/en not_active Application Discontinuation
- 2000-11-13 CN CN00132370A patent/CN1297213A/en active Pending
- 2000-11-16 CZ CZ20004287A patent/CZ301163B6/en not_active IP Right Cessation
- 2000-11-17 PL PL00343954A patent/PL343954A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
US6788197B1 (en) | 2004-09-07 |
HUP0004474A3 (en) | 2004-08-30 |
DE59912047D1 (en) | 2005-06-16 |
HUP0004474A2 (en) | 2001-06-28 |
PT1103937E (en) | 2005-09-30 |
CZ301163B6 (en) | 2009-11-25 |
PL343954A1 (en) | 2001-05-21 |
HU224676B1 (en) | 2005-12-28 |
ATE295595T1 (en) | 2005-05-15 |
AU6546400A (en) | 2001-05-17 |
ES2243027T3 (en) | 2005-11-16 |
HU0004474D0 (en) | 2001-01-29 |
NO20005717L (en) | 2001-05-21 |
KR20010051578A (en) | 2001-06-25 |
CZ20004287A3 (en) | 2001-07-11 |
JP2001175963A (en) | 2001-06-29 |
CN1297213A (en) | 2001-05-30 |
NO20005717D0 (en) | 2000-11-13 |
AU777015B2 (en) | 2004-09-30 |
EP1103937A1 (en) | 2001-05-30 |
JP4767404B2 (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1103937B1 (en) | Fire detector | |
DE69737459T2 (en) | FIRE AND SMOKE DETECTION AND CONTROL SYSTEM | |
EP1022700B1 (en) | Light scattering fire detector | |
EP0530723A1 (en) | Optical smoke detector with active monitoring | |
EP1389331B1 (en) | Self-aspirating fire detection system | |
EP2407949B1 (en) | Ring shaped auxiliary light source | |
EP0345798B1 (en) | Fire alarm system | |
WO2005069242A1 (en) | Fire detector with several analysis volumes | |
EP1062647B1 (en) | Fire alarm box | |
WO2001067415A1 (en) | Imaging fire detector | |
DE4231088A1 (en) | FIRE ALARM SYSTEM | |
DE4200946A1 (en) | FIRE DETECTING METHOD | |
EP0338218A1 (en) | Early fire detection method | |
DE3050124T1 (en) | SELF-CHECKING PHOTOELECTRIC SMOKE DETECTOR | |
DE112020002849T5 (en) | Optical particle sensor | |
EP3857207A1 (en) | Scattered light smoke detector having a two-color led, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color led, and suitable use of such a polarizer | |
EP0660282B1 (en) | System for the early detection of fires | |
EP1087352A1 (en) | Optical smoke detector | |
EP3096130B1 (en) | Device for identification of aerosols | |
DE602004010421T2 (en) | VEHICLE TEST DETECTOR AND METHOD FOR REDUCING FALLEN ALARMS | |
DE2310127A1 (en) | INTEGRATED HAZARD REPORTING SYSTEM | |
EP0880118B1 (en) | Optical smoke detector | |
EP1124210B1 (en) | Fire detection system and fire detector therefor | |
WO2003102889A1 (en) | Fire detector and fire detection system | |
CH674274A5 (en) | Early warning fire alarm system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20011120 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040225 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB LI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050511 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59912047 Country of ref document: DE Date of ref document: 20050616 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050811 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050811 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050728 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Effective date: 20050809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2243027 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20060214 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Effective date: 20080829 Ref country code: PT Ref legal event code: PC4A Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20080829 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS AKTIENGESELLSCHAFT Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, INTELLECTUAL PROPERTY |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090514 AND 20090520 |
|
BECA | Be: change of holder's address |
Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE Effective date: 20100423 |
|
BECH | Be: change of holder |
Owner name: SIEMENS A.G. Effective date: 20100423 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: SD Effective date: 20110318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20111229 Year of fee payment: 13 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20141226 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20141103 Year of fee payment: 16 Ref country code: PT Payment date: 20141029 Year of fee payment: 16 Ref country code: AT Payment date: 20141009 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20150220 AND 20150225 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150209 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59912047 Country of ref document: DE Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Effective date: 20150407 Ref country code: DE Ref legal event code: R081 Ref document number: 59912047 Country of ref document: DE Owner name: SIEMENS SCHWEIZ AG, CH Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Effective date: 20150407 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 295595 Country of ref document: AT Kind code of ref document: T Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20150330 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20151009 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: SIEMENS SCHWEIZ AG, CH Effective date: 20160202 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160419 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59912047 Country of ref document: DE Representative=s name: MAIER, DANIEL, DIPL.-ING. UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59912047 Country of ref document: DE Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Free format text: FORMER OWNER: SIEMENS SCHWEIZ AG, ZUERICH, CH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20160519 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 295595 Country of ref document: AT Kind code of ref document: T Effective date: 20151119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20151120 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: SIEMENS AKTIENGESELLSCHAFT, DE Effective date: 20160624 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151119 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170907 AND 20170913 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171120 Year of fee payment: 19 Ref country code: FI Payment date: 20171121 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171113 Year of fee payment: 19 Ref country code: IT Payment date: 20171128 Year of fee payment: 19 Ref country code: SE Payment date: 20171113 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180119 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59912047 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181119 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190601 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181119 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181119 |