EP1062048B1 - Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and nozzle system - Google Patents

Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and nozzle system Download PDF

Info

Publication number
EP1062048B1
EP1062048B1 EP99916822A EP99916822A EP1062048B1 EP 1062048 B1 EP1062048 B1 EP 1062048B1 EP 99916822 A EP99916822 A EP 99916822A EP 99916822 A EP99916822 A EP 99916822A EP 1062048 B1 EP1062048 B1 EP 1062048B1
Authority
EP
European Patent Office
Prior art keywords
swirl chamber
cross
tangential
nozzle
subflows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99916822A
Other languages
German (de)
French (fr)
Other versions
EP1062048A1 (en
Inventor
Günter Slowik
Jürgen Kohlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1062048A1 publication Critical patent/EP1062048A1/en
Application granted granted Critical
Publication of EP1062048B1 publication Critical patent/EP1062048B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3468Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with means for controlling the flow of liquid entering or leaving the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3436Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a plane perpendicular to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber

Definitions

  • the invention relates to a method for changing the swirl movement of a fluid in the swirl chamber of a nozzle and a nozzle system for performing the method.
  • nozzles are used in particular in industrial burners, oil burners and plants used for flue gas washing and spray drying of food.
  • the liquid throughput that is atomized can be kept constant, although the entry speed of the liquid into the swirl chamber can be changed and thus the swirl strength and consequently the drop quality can be adjusted.
  • the disadvantage of this solution is the need to circulate liquid.
  • the control range of the spill-return nozzles is limited. There is a significant change in the beam angle over the desired control range.
  • So-called “duplex nozzles” (DE-PS 893 133 and US-PS 2,628,867) are also known, which are used for atomizing fuels.
  • the nozzles have a swirl chamber into which the fuel is introduced via several tangential feed channels and is set in rotation about an axis.
  • the nozzles can have different cross-sectional areas at the connection point to the swirl chamber and the tangential feed channels are connected to separate feed lines.
  • a valve is integrated into one of the supply lines within the nozzle, which valve is opened as a function of the upstream pressure in the other supply line and enables a larger amount of fuel to be supplied.
  • the disadvantage of the "duplex nozzles" is, above all, that they can only be used to implement a limited regulating or control option depending on the form or throughput.
  • US Pat. No. 4,796,815 describes a shower head for a hand shower, in which the incoming water flow is introduced into a swirl chamber via two tangential and two radial channels, in which there is also a rotatable ball.
  • the water supply in the shower head can be changed by means of an adjustment element that can be operated by hand, either the water entry into the tangential channels or into the radial channels is covered, or the radial and tangential channels are only partially covered. Different spray patterns are obtained through these adjustment options.
  • the disadvantage of this shower head is that the adjusting element is arranged within the swirl chamber in order to produce different spray patterns and through this the entry surfaces of the tangential or radial channels are changed.
  • the application of this shower head is essentially limited to the sanitary area.
  • DE 39 36 080 C2 discloses a method for varying the peripheral speed component of the swirl flow of a fluid at the outlet from a swirl nozzle with a swirl chamber with several tangential feeds.
  • the entire material flow of the fluid is divided by division into at least two partial flows, the size of at least one partial flow being changeable.
  • the partial flows are fed to the longential feed channels of the swirl chamber.
  • the disadvantage is that the control range that can be achieved depends on the number of feed channels, so that the manufacturing effort for the nozzles increases with a high control range. Although a rotational symmetry of the flow is achieved, the control range remains small.
  • the known nozzles for industrial burners have the disadvantage that the burner output must be kept constant, because otherwise undesirable pollutant emissions occur, especially if the throughput is changed. Often you use several nozzles, whereby optimal conditions can only be achieved for one operating case.
  • the invention was based on the object of an improved method for changing the swirl movement of a fluid in the swirl chamber of a nozzle to create the allows to operate a nozzle with a large control range and thereby if possible a comparable drop quality (average drop diameter and Drop distribution), i.e. Ways to create the middle To be able to regulate the drop diameter at a constant volume flow or at Regulation of the volume flow to keep the drop spectrum constant. Furthermore should a suitable nozzle system for performing the method can be created.
  • the term fluid also means mixtures of different fluids with or without solids.
  • the control options for various nozzle applications created by the new procedure lead to improved productivity of the production systems and to a considerable reduction in costs.
  • the cross-sectional areas should differ by more than four times.
  • the liquid throughput is divided into several partial flows which have different cross-sectional areas. The decisive factors are the cross-sectional areas when the liquid enters the swirl chamber (connection point between the feed channel and the swirl chamber), since the peripheral speed at the periphery of the swirl chamber is determined at this point.
  • the partial flow with which the feed channels having the smallest cross-section are applied is to be increased and vice versa.
  • Intermediate values can be set continuously.
  • the simplest way of influencing the throughput of a partial flow is to use a valve.
  • the other aim for which the method can be used is to maintain a certain swirl strength at the exit from the swirl chamber.
  • the ratio of the sum of the cross-sectional areas of the supply channels that are acted upon under full load and the sum of the cross-sectional areas of the supply channels that are acted upon under partial load is to be selected at least as large as the desired ratio of the volume flows under full load and under partial load.
  • the principle of the drain control according to the invention can be used when atomizing liquids in single-substance and two-substance nozzles, in which either the liquid or the gas or both are provided with a peripheral speed in the nozzle.
  • the application is such that the method is applied to both the liquid or the gas or both. It is thus possible to influence the drop quality in two-component nozzles without changing the ratio of liquid throughput / gas throughput. It is irrelevant for what purpose the liquid is atomized. This can be done, for example, for the subsequent drying of a suspension in the drying tower. Oil can also be atomized, which is burned at the nozzle outlet, as is usual with burners.
  • the fluid can also be a gas.
  • the new system makes it possible to adapt it during operation and even regulate it by continuously measuring the product parameters. Changes in product parameters caused by nozzle wear can be compensated for over a certain period of time, thus extending the period of use of the spray tower.
  • the invention in the field of oil combustion, it is possible to drive a wide load range without a return line without changing the jet angle with a practically constant drop size. This affects the effectiveness of the entire heating system and the service life of the boiler, since the burner does not have to be started and shut down frequently when the heat requirements fluctuate.
  • the method according to the invention can also be successfully used in gas and coal dust burners, above all to influence the flame shape of the burner. When the invention is applied to fuel atomization in turbines, a reaction to different operating requirements becomes possible.
  • the nozzle shown in Figure 1 consists of the nozzle body 1 and the cover or nozzle plate 2 arranged on the outlet side of the nozzle.
  • two feed lines 5a and 5b are arranged above the swirl chamber 3, which are spaced apart in the axial direction and whose inlet openings are offset by 90 °.
  • the feed lines 5a and 5b run horizontally spaced from the nozzle plate 2.
  • the openings of the feed lines 5a and 5b are connected via separate lines 8, 9 to a central line 10 for supplying the total fluid flow F G (FIG. 5).
  • a feed pump 11 is integrated in line 10.
  • a valve 7 is integrated in the line 8 branching off from the line 10, which is connected to the supply line 5b, as a control element.
  • the nozzle outlet opening 6 which is located on the central axis of the nozzle and is connected to the swirl chamber 3 located above the cover plate 2, is incorporated (FIGS. 2 and 3).
  • the swirl chamber 3 has a constant height and has a diameter which is five times the diameter of the nozzle outlet opening 6 in the cover plate 2.
  • Four tangential feed channels 4a, 4b, 4c and 4d open into the swirl chamber 3 and each have the same height at the connection point to the swirl chamber 3.
  • the respective opposite channels 4a and 4c or 4b and 4d are connected to the feed lines 5a and 5b via vertically arranged channels 4a ', 4b', 4c 'and 4d'.
  • the feed channels 4a and 4c which have the same cross section at the connection point to the swirl chamber, are connected to the feed line 5a via the vertical channels 4a 'and 4c'.
  • the definition of the "cross-sectional area" is discussed in more detail below.
  • the feed line 5b is connected via the vertical channels 4b 'and 4d' to the tangential feed channels 4b and 4d, which likewise have the same cross section at the connection point to the swirl chamber 3.
  • the feed channels 4a or 4c and 4b or 4d differ in their cross-section at the connection point to the swirl chamber 3, the feed channels 4a and 4c have a smaller width than the feed channels 4b and 4d.
  • the offset radial arrangement of the individual feed channels, with respect to their central axis, by 90 ° in each case, was chosen because of the symmetry of the flow of the fluid into the swirl chamber 3. The method and the device are explained together with regard to reaching the control range. First of all, the case is considered that the droplet quality should remain largely uniform with a variable total throughput. This is a requirement for oil burners, for example.
  • the total liquid throughput F G is divided over all tangential feed channels 4a, 4b, 4c and 4d by forming the tangential partial flows T t1 , T t2 , T t3 and T t4 .
  • This is done by dividing the total fluid flow F G into two partial flows T 1 and T 2 , with which the feed lines 5a and 5b are acted upon.
  • the partial flow T 2 with which the tangential feed channels 4b and 4d are acted upon, that is to say the tangential partial flows T t2 and T t4 (FIG.
  • the valve 7 can be influenced by a control of the valve 7, ie the throughput of the tangential partial flows T t2 and T t4 can thus be controlled.
  • the liquid flow T 1 is divided into the tangential feed channels T t1 and T t3 .
  • the total throughput drops in the partial load case.
  • the partial flow T 2 in the partial line 8 which supplies the tangential supply channels 4b and 4d via the supply line 5b, is throttled by means of the valve 7.
  • a larger throughput T t1 and T t3 thus reaches the tangential feed channels 4a and 4c.
  • the entry speed in these feed channels increases there despite the decreasing total throughput and thus leads to a constant swirl movement at the outlet opening 6 of the nozzle.
  • the lowest limit of constant droplet quality is reached when the total throughput is only passed through the feed channels 4a and 4c and the feed channels 4b and 4d are no longer acted upon. If the total throughput drops even more, an increase in the average drop diameter can be expected.
  • the second case which can be treated with the method according to the invention is the control of the drop size with a constant throughput. The sub-streams are divided in the same way as in the first case. If the droplet size is to be reduced at the same throughput, the partial flow which supplies the feed line 5a is to be increased. The total throughput is to be kept constant by means of an appropriate circuit. If a larger drop size is required, the opposite procedure must be followed. FIG.
  • FIG. 6 shows another variant of a nozzle in an exploded view, with three tangential feed channels.
  • the nozzle is shown in two views, view a as a vertical arrangement of the nozzle and view b as an arrangement inclined around the central axis.
  • the nozzle consists of the base or nozzle body 1, the swirl body 12, the cover or nozzle plate 2 and the cap 13 which is screwed onto the nozzle body 1.
  • the feed lines 5a and 5b are not arranged horizontally but vertically in the nozzle body 1.
  • FIGS. 7 and 8 show two different design variants of the swirl body 12, each as a top view a and a bottom view b.
  • the swirl body 12 according to FIG. 7 is identical to the swirl body shown in FIG. 6.
  • the swirl body 12 according to FIG. 8 is only equipped with two tangential feed channels 4a, 4b.
  • View a shows the top view and view b the bottom view.
  • FIG. 7 shows the variant shown in FIG.
  • the partial fluid flow T 1 flowing through the supply line 5b is divided into two tangential partial flows T t2 and T t4 and the other partial flow T 2 reaches the tangential supply channel 4a without further division.
  • the partial streams T 1 and T 2 are not further divided and fed to the swirl chamber 3 via the respective associated tangential feed channel 4a or 4b.
  • FIG. 9 shows an enlarged top view of a swirl chamber 3, into which two tangential feed channels 4a and 4b open. At the connection point to the swirl chamber 3, the two feed channels 4a and 4b have different cross-sectional areas.
  • the tangential feed channels of a nozzle have the same height at the connection point to the swirl chamber 3 and, if necessary, can have different widths, as illustrated in FIG. 9 by the width dimensions B 1 and B 2 .
  • the respective width dimension is the distance between two on a parallel line lying on the center axis M intersection points S 1 and S 2, wherein the intersection point S 1 is the intersection between the lateral surface of the swirl chamber and adjacent to this wall of the tangential feed channel and the point of intersection S 2 the intersection of the parallel line with the opposite wall of the tangential feed channel.
  • the connection point of the tangential feed channels to the swirl chamber can also be designed as a circular cross-section, in which case different cross-sectional areas can be achieved in an analogous manner at this point through different diameters of the respective bores. It is also clear from FIG. 9 that the tangential feed channels 4a and 4b can be designed differently outside the connection point to the swirl chamber, e.g.
  • a nozzle is designed with a plurality of tangential feed channels, it is expedient if these are distributed uniformly over the circumference or the inner lateral surface of the swirl chamber. It has proven to be advantageous if the swirl chamber and the cross sections of the tangential feed channels at the connection point to the swirl chamber are dimensioned according to a certain ratio, as follows: 2 B D 2 - D 1 ⁇ 0.5 where B is either the width or the diameter of the channel at the point of connection to the swirl chamber and D 1 or D 2 are the diameters of the outlet nozzle or swirl chamber, as explained above. In a manner known per se, the swirl chamber has a smaller dimension than the diameter.
  • 11 to 13 show different circuit arrangements for different design variants of the nozzles.
  • the control intervention in the throughput of the fluid flow outside the nozzle is carried out either via a valve or separate pumps.
  • Control means all intervention options that affect the throughput of the fluid flow, such as throttling by valves, influencing the pump characteristic of a pump by changing the speed of the pump or the like.
  • the further division of the total fluid flow F G into further partial flows T 1 , T 2 etc. can be anticipated either inside or outside the nozzle.
  • the partial flows T t1 to T t4 are always fed into the swirl chamber tangentially. In the embodiment shown in FIG.
  • the total fluid flow F G conveyed by a pump 11 is divided into two partial flows T 1 and T 2 , and each via a tangential feed channel T t1 and T t2 , which differ at the connection point to the swirl chamber 3 of the nozzle 14 Have cross-sectional areas supplied to the swirl chamber.
  • a valve 7 is integrated in the line for the partial flow T 2 , which is connected to the tangential feed channel with the larger cross-sectional area at the connection point to the swirl chamber.
  • This basic variant causes the least effort in terms of production.
  • the case with constant fluid flow is discussed.
  • the liquid is supplied via a line and two sub-streams are formed by branching.
  • the size of one partial flow can be limited by a valve. After the valve, it is fed to the feed channel with the larger cross-sectional area.
  • the two limit cases exist when the valve is fully open or closed. When the valve is fully open, the liquid throughput is distributed over both supply channels.
  • the peripheral speed at the inner surface of the swirl chamber has its lowest value and thus the peripheral speed at the nozzle outlet is also the lowest.
  • the circumferential speed at the nozzle outlet takes on the greatest value when the valve is closed.
  • the ratio of the smallest cross-sectional area to the total cross-sectional area of both feed channels determines the ratio of partial load to full load that can be achieved and at which the atomization properties do not change essentially.
  • the circuit variant shown in FIG. 11 corresponds to the nozzle shown in FIG. 6 with a swirl body 12 according to FIG. 8.
  • the circuit variant shown in FIG. 12 differs from the circuit variant shown in FIG. 11 only in that the partial stream T 2 is not divided into a tangential partial stream but into three tangential partial streams T t2 , T t3 and T t4 , the sum of which consists of the cross-sectional areas of the tangential feed channels at the connection point is larger than the analog cross-sectional area for the tangential partial flow T t1 .
  • the configuration of the nozzle is analogous to that in the embodiment according to FIG. 12.
  • the difference is that there is no branching off of a total fluid flow, but two separate partial flows T 1 and T 2, independently of one another, via lines integrated in the lines Eccentric screw pumps 11, 11 'are influenced by a change in the speed of the pumps.
  • eccentric screw pumps 11, 11 ' are used in each partial flow, the throughput of which is adjusted via a change in speed.
  • the present invention can also be used in cases where it is necessary to keep the jet angle of the fluid emerging from the nozzle constant at different throughputs, that is to say to influence the control of the jet angle.
  • a larger jet angle is achieved with increasing throughput.
  • the beam angle is also increased with increasing total throughput. The following situation arises when using the circuit variant according to FIG. 11.
  • the total throughput can be increased by opening the valve. This increases the beam angle slightly. So if you lower the delivery pressure when the valve is closed, you get a constant jet angle.

Landscapes

  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Drying Of Solid Materials (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Pipe Accessories (AREA)
  • Special Spraying Apparatus (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Plasma Technology (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

A method for modifying the swirl motion of a liquid in the swirl chamber of a nozzle, and a swirl generator for nozzles. Such nozzles are used in industrial burners, oil burners and installations for cleaning flue gas and spray-drying food. The invention provides a method and nozzle for adjusting the man droplet diameter at a constant volume flow rate on maintaining the droplet spectrum constant in case of adjustment of the volume flow rate. Partial flows are distributed across supply channels which differ in terms of their cross sections at their point of connection with the swirl chamber. When the partial flows are constituted by the sum of cross-sections of the channels branching off the corresponding flow. Thus, the sums of the cross-sections at the connection point with the swirl chamber are different.

Description

Die Erfindung betrifft ein Verfahren zum Verändern der Drallbewegung eines Fluids in der Drallkammer einer Düse und ein Düsensystem zur Durchführung des Verfahrens. Derartige Düsen werden insbesondere in Industriebrennern, Ölbrennern und Anlagen zur Rauchgaswäsche und zur Sprühtrocknung von Lebensmitteln eingesetzt.The invention relates to a method for changing the swirl movement of a fluid in the swirl chamber of a nozzle and a nozzle system for performing the method. Such nozzles are used in particular in industrial burners, oil burners and plants used for flue gas washing and spray drying of food.

Bei der Zerstäubung von Flüssigkeiten mit Hilfe von Dralldüsen ist häufig eine Möglichkeit zur Veränderung der Zerstäubungscharakteristik gewünscht. Mit der Veränderung der Umfangsgeschwindigkeit (Drallbewegung bzw. Drallkomponente) des Fluids in der Drallkammer kann Einfluß auf die Tropfengröße des entstehenden Sprays genommen werden. Wichtig ist dabei, daß die Veränderung der Umfangsgeschwindigkeit unabhängig vom Flüssigkeitsdurchsatz vorgenommen werden kann und auch keine mechanische Veränderung an der Düse vorgenommen werden muß.
Eine Variante stellen sogenannte spill-return Düsen (Baypassdüsen) dar. Bei diesen Düsen wird die Flüssigkeit tangential in die Drallkammer geleitet und sowohl aus der Düsenaustrittsöffnung als auch durch eine Rückströmöffnung auf der Mitte der Achse abgeleitet. Dieser Teil des Flüssigkeitsdurchsatzes wird wieder zurück in den Flüssigkeitsspeicher geführt. Durch Veränderung der Rückführrate kann der Flüssigkeitsdurchsatz, der zerstäubt wird, konstant gehalten werden, obwohl die Eintrittsgeschwindigkeit der Flüssigkeit in die Drallkammer verändert werden und damit auf die Drallstärke und in der Konsequenz die Tropfenqualität eingestellt werden kann. Der Nachteil dieser Lösung besteht in der Notwendigkeit, Flüssigkeit in einem Kreislauf führen zu müssen. Der Regelbereich der spill-return-Düsen ist nach unten begrenzt. Über den gewünschten Regelbereich kommt es zu einer erheblichen Veränderung des Strahlwinkels.
Bekannt sind auch sogenannte "Duplex-Düsen" (DE-PS 893 133 und US-PS 2,628,867), die zur Zerstäubung von Brennstoffen eingesetzt werden. Die Düsen besitzen eine Drallkammer, in die der Brennstoff über mehrere tangentiale Zuführungskanäle eingeleitet und in Rotation um eine Achse versetzt ist. Die Düsen können an der Verbindungsstelle zur Drallkammer unterschiedliche Querschnittsflächen aufweisen und die tangentialen Zuführungskanäle sind mit getrennten Zuführungsleitungen verbunden. In eine der Zuführungsleitungen ist innerhalb der Düse ein Ventil eingebunden, das in Abhängigkeit von dem in der anderen Zuführungsleitung anliegenden Vordruck geöffnet wird und die Zuführung einer größeren Brennstoffmenge ermöglicht. Der Nachteil der "Duplex-Düsen" besteht vor allem darin, daß mit diesen nur eine eingeschränkte, vom anliegenden Vordruck bzw. Durchsatz abhängige, Regel- bzw. Steuermöglichkeit realisierbar ist. In der US-PS 4,796,815 ist ein Duschkopf für eine Handbrause beschrieben, bei dem der ankommende Wasserstrom über zwei tangentiale und zwei radiale Kanäle in eine Drallkammer eingeleitet wird, in der sich zusätzlich noch eine rotierbare Kugel befindet. Mittels eines per Hand betätigbaren Verstellelementes kann die Wasserzuführung im Duschkopf verändert werden, entweder wird der Wassereintritt in die tangentialen Kanäle oder in die radialen Kanäle abgedeckt oder die radialen und tangentialen Kanäle sind nur teilweise abgedeckt. Durch diese Verstellmöglichkeiten werden unterschiedliche Sprühbilder erhalten.
Der Nachteil dieses Duschkopfes besteht darin, daß zur Erzeugung unterschiedlicher Sprühbilder das Verstellelement innerhalb der Drallkammer angeordnet ist und durch dieses die Eintrittsflächen der tangentialen bzw. radialen Kanäle verändert werden. Dieser Duschkopf ist in seiner Anwendung im wesentlichen auf den sanitären Bereich beschränkt.
Aus der DE 39 36 080 C2 ist ein Verfahren zum Variieren der Umfangsgeschwindigkeitskomponente der Drallströmung eines Fluids am Austritt aus einer Dralldüse mit einem Drallraum mit mehreren tangentialen Zuführungen bekannt. Der gesamte Stoffstrom des Fluids wird durch eine Teilung auf mindestens zwei Teilströme aufgeteilt, wobei mindestens ein Teilstrom in seiner Größe veränderbar ist. Die Teilströme werden den langentialen Zuführungskanälen des Drallraumes zugeführt. Nachteilig wirkt sich aus, daß der erreichbare Regelbereich von der Zahl der Zuführungskanäle abhängig ist, so daß der Fertigungsaufwand für die Düsen mit einem hohen Regelbereich steigt. Es wird zwar eine Rotationssymmetrie der Strömung erreicht, der Regelbereich bleibt aber klein. Die bekannten Düsen für Industriebrenner haben den Nachteil, daß die Brennerleistung konstant gehalten werden muß, weil es ansonsten zu unerwünschten Schadstoffemissionen kommt, insbesondere wenn der Durchsatz verändert wird. Man behilft sich oft mit mehreren Düsen, wobei nur für einen Betriebsfall optimale Bedingungen erreichbar sind.
Bei den in der Sprühtrocknung eingesetzten bekannten Düsensystemen wird eine Einfahrzeit des Systems bei Produktumstellung von 2 bis 3 Stunden benötigt. Das während der Einfahrzeit produzierte Pulver kann nicht weiterverwendet werden und muß mit erheblichem Aufwand recycelt werden. Außerdem kann mit den bekannten Düsensystemen während des Produktionsbetriebes kein Einfluß auf Veränderungen der Produktqualität und Produktspezifikation genommen werden. Ursache für diese Nachteile der bekannten Dralldüsen ist deren eingeschränkter bzw. unzureichender Regelbereich.
When atomizing liquids with the help of swirl nozzles, a possibility of changing the atomization characteristics is often desired. By changing the peripheral speed (swirl movement or swirl component) of the fluid in the swirl chamber, the drop size of the spray formed can be influenced. It is important that the change in the peripheral speed can be carried out independently of the liquid throughput and that no mechanical change has to be made to the nozzle.
So-called spill-return nozzles (Baypass nozzles) represent a variant. With these nozzles, the liquid is directed tangentially into the swirl chamber and is discharged both from the nozzle outlet opening and through a backflow opening on the center of the axis. This part of the liquid throughput is fed back into the liquid storage. By changing the recirculation rate, the liquid throughput that is atomized can be kept constant, although the entry speed of the liquid into the swirl chamber can be changed and thus the swirl strength and consequently the drop quality can be adjusted. The disadvantage of this solution is the need to circulate liquid. The control range of the spill-return nozzles is limited. There is a significant change in the beam angle over the desired control range.
So-called "duplex nozzles" (DE-PS 893 133 and US-PS 2,628,867) are also known, which are used for atomizing fuels. The nozzles have a swirl chamber into which the fuel is introduced via several tangential feed channels and is set in rotation about an axis. The nozzles can have different cross-sectional areas at the connection point to the swirl chamber and the tangential feed channels are connected to separate feed lines. A valve is integrated into one of the supply lines within the nozzle, which valve is opened as a function of the upstream pressure in the other supply line and enables a larger amount of fuel to be supplied. The disadvantage of the "duplex nozzles" is, above all, that they can only be used to implement a limited regulating or control option depending on the form or throughput. US Pat. No. 4,796,815 describes a shower head for a hand shower, in which the incoming water flow is introduced into a swirl chamber via two tangential and two radial channels, in which there is also a rotatable ball. The water supply in the shower head can be changed by means of an adjustment element that can be operated by hand, either the water entry into the tangential channels or into the radial channels is covered, or the radial and tangential channels are only partially covered. Different spray patterns are obtained through these adjustment options.
The disadvantage of this shower head is that the adjusting element is arranged within the swirl chamber in order to produce different spray patterns and through this the entry surfaces of the tangential or radial channels are changed. The application of this shower head is essentially limited to the sanitary area.
DE 39 36 080 C2 discloses a method for varying the peripheral speed component of the swirl flow of a fluid at the outlet from a swirl nozzle with a swirl chamber with several tangential feeds. The entire material flow of the fluid is divided by division into at least two partial flows, the size of at least one partial flow being changeable. The partial flows are fed to the longential feed channels of the swirl chamber. The disadvantage is that the control range that can be achieved depends on the number of feed channels, so that the manufacturing effort for the nozzles increases with a high control range. Although a rotational symmetry of the flow is achieved, the control range remains small. The known nozzles for industrial burners have the disadvantage that the burner output must be kept constant, because otherwise undesirable pollutant emissions occur, especially if the throughput is changed. Often you use several nozzles, whereby optimal conditions can only be achieved for one operating case.
With the known nozzle systems used in spray drying, a running-in time of the system with product changeover of 2 to 3 hours is required. The powder produced during the running-in period can no longer be used and has to be recycled with considerable effort. In addition, with the known nozzle systems, no influence can be exerted on changes in product quality and product specification during production. The reason for these disadvantages of the known swirl nozzles is their restricted or inadequate control range.

Der Erfindung lag die Aufgabe zugrunde, ein verbessertes Verfahren zum Verändern der Drallbewegung eines Fluids in der Drallkammer einer Düse zu schaffen, das ermöglicht, eine Düse mit einem großen Regelbereich betreiben zu können und dabei möglichst eine vergleichbare Tropfenqualität (mittlerer Tropfendurchmesser und Tropfenverteilung) zu erreichen, d.h. Möglichkeiten zu schaffen, den mittleren Tropfendurchmesser bei konstantem Volumenstrom regeln zu können oder bei Regelung des Volumenstromes das Tropfenspektrum konstant zu halten. Ferner soll ein geeignetes Düsensystem zur Durchführung des Verfahrens geschaffen werden.The invention was based on the object of an improved method for changing the swirl movement of a fluid in the swirl chamber of a nozzle to create the allows to operate a nozzle with a large control range and thereby if possible a comparable drop quality (average drop diameter and Drop distribution), i.e. Ways to create the middle To be able to regulate the drop diameter at a constant volume flow or at Regulation of the volume flow to keep the drop spectrum constant. Furthermore should a suitable nozzle system for performing the method can be created.

Erfindungsgemäß wird die Aufgabe durch die in den Ansprüchen 1 und 18 angegebenen Merkmale gelöst. Entsprechende Ausgestaltungsvarianten der vorgeschlagenen Verfahrensweise sind in den Ansprüchen 2 bis 17 angegeben. Vorteilhafte Ausgestaltungen des Düsensystems sind Gegenstand der Ansprüche 19 bis 32.According to the invention the object is achieved by the in claims 1 and 18 specified features solved. Corresponding design variants of the proposed procedure are given in claims 2 to 17. Advantageous embodiments of the nozzle system are the subject of claims 19 to 32.

Die vorgeschlagene Verfahrensweise, die Teilströme auf tangentiale Zuführungskanäle aufzuteilen, die sich in ihren Querschnittsflächen an der Verbindungsstelle zur Drallkammer unterscheiden, wobei bei einer Aufteilung der Teilströme auf mehr als zwei tangentiale Zuführungskanäle die Querschnittsflächen aus der Summe der Querschnittsflächen der Zuführungskanäle die von dem jeweiligen Teilstrom abzweigen, gebildet werden, und sich demzufolge die Summen der Querschnittsflächen an der Verbindungsstelle zur Drallkammer der jeweiligen Teilströme unterscheiden, führt zu einer wesentlichen Erweiterung des Regelbereiches beim Betrieb der Düsensysteme. Von besonderem Vorteil beim praktischen Einsatz der Düsen ist die Möglichkeit der Steuerung des Tropfenspektrums bei konstantem Volumenstrom oder bei Veränderung des Volumenstromes das Tropfenspektrum konstant zu halten.
Unter dem Begriff Fluid sind im Rahmen der vorliegenden Erfindung auch Gemische von verschiedenen Fluiden mit oder ohne Feststoffen zu verstehen.
Die durch die neue Verfahrensweise geschaffenen Steuerungsmöglichkeiten für verschiedene Düsenapplikationen führen zu einer verbesserten Produktivität der Produktionsanlagen und zu einer beträchtlichen Reduzierung der Kosten.
Um einen hohen Regelbereich zu sichern, sollten die Querschnittsflächen sich um mehr als das Vierfache unterschieden. Der Flüssigkeitsdurchsatz wird erfindungsgemäß auf mehrere Teilströme aufgeteilt, die unterschiedliche Querschnittsflächen aufweisen. Maßgebend sind die Querschnittsflächen beim Eintritt der Flüssigkeit in die Drallkammer (Verbindungsstelle von Zuführungskanal und Drallkammer), da an dieser Stelle die Umfangsgeschwindigkeit an der Peripherie der Drallkammer festgelegt wird. Wird eine hohe Drallstärke für ein feines Tropfenspektrum angestrebt, so ist der Teilstrom zu vergrößern, mit dem die Zuführungskanäle beaufschlagt werden, die den geringsten Querschnitt aufweisen und umgekehrt. Zwischenwerte lassen sich stufenlos einstellen. Die einfachste Einflußnahme auf den Durchsatz eines Teilstromes ist die Verwendung eines Ventils. Die andere Zielrichtung, für die sich das Verfahren anwenden läßt, ist die Aufrechterhaltung einer bestimmten Drallstärke am Austritt aus der Drallkammer. Dabei ist Verhältnis der Summe der Querschnittsflächen der Zuführungskanäle, die im Vollastfall beaufschlagt werden, und der Summe der Querschnittsflächen der Zuführungskanäle, die im Teillastfall beaufschlagt werden, mindestens so groß zu wählen, wie das gewünschte Verhältnis der Volumenströme im Vollast und im Teillastfall.
Das erfindungsgemäße Prinzip der Drailsteuerung läßt sich beim Zerstäuben von Flüssigkeiten in Einstoff- und Zweistoffdüsen anwenden, bei denen entweder die Flüssigkeit oder das Gas oder beides mit einer Umfangsgeschwindigkeit in der Düse versehen werden. Die Anwendung geschieht derart, daß das Verfahren sowohl auf die Flüssigkeit oder das Gas oder beides angewandt wird. Es ist damit möglich, bei Zweistoffdüsen auf die Tropfenqualität Einfluß zu nehmen, ohne das Verhältnis Flüssigkeitsdurchsatz/Gasdurchsatz zu ändern. Es ist dabei unerheblich, zu welchem Zweck die Flüssigkeit zerstäubt wird. Dies kann z.B. für das nachfolgende Trocknen einer Suspension im Trockenturm geschehen. Es kann aber auch Öl zerstäubt werden, das wie bei Brennern üblich, am Düsenaustritt verbrannt wird. Das Fluid kann aber auch ein Gas sein. Dieser Fall ist bei Mehrstoffdüsen möglich, wo das Gas mit einer Drallkomponente versehen wird, um Flüssigkeit zu zerstäuben. Das Gas kann aber auch ohne Gegenwart von Flüssigkeit mit einer Drallkomponente versehen werden, wie bei Gasbrennern, die mit einer Rezirkulation in der Nähe des Düsenaustritts arbeiten. Schließlich ist die Kombination des erfindungsgemäßen Prinzips mit dem spill-return-Verfahren möglich, um noch eine Erweiterung des Regelbereiches zu gestatten. Bei den meisten Sprühtrocknungsanlagen verbietet sich aus ganz unterschiedlichen Gründen der Einsatz von Rückströmdüsen. Bei diesen Anlagen war man bisher gezwungen, mit einer vorgegebenen Düsengeometrie zu operieren. Die häufigen Änderungen des Produktes zwangen daher zu neuer Auswahl des Düsensystems und wegen des erforderlichen Düsenwechsels zum An- und Abfahren der Anlage. Durch das neue System ist eine Anpassung im laufenden Betrieb möglich und durch eine ständige Messung der Produktparameter ist sogar eine Regelung möglich. Veränderungen der Produktparameter, die durch Verschleiß der Düse entstehen, können über eine gewisse Zeit ausgeglichen werden, und somit der Nutzungszeitraum des Sprühturms verlängert werden. Bei der Nutzung der Erfindung auf dem Gebiet der Ölverbrennung gelingt es ohne Rückführleitung einen weiten Lastbereich ohne Veränderung des Strahlwinkels bei praktisch gleichbleibender Tropfengröße zu fahren. Das wirkt sich auf die Effektivität der gesamten Heizanlage und die Lebensdauer des Kessels aus, da bei schwankenden Wärmeanforderungen nicht ein häufiges An- und Abfahren des Brenners realisiert werden muß.
Auch bei Gas- und Kohlenstaubbrennem kann das erfindungsgemäße Verfahren erfolgreich angewendet werden, vor allem zur Beeinflussung der Flammenform des Brenners.
Bei der Anwendung der Erfindung auf die Treibstoffzerstäubung in Turbinen wird eine Reaktion auf unterschiedliche Betriebsanforderungen möglich. In Flugzeugturbinen ist die Anpassung der Treibstoffzerstäubung wegen unterschiedlichen Lastanforderungen (Startphase, Normalflug) oder wegen unterschiedlichen Verbrennungsbedingungen (Luftdichte und -zusammensetzung ändern sich in Abhängigkeit von der Höhe) nötig. Dies ist nun bei Anwendung des erfindungsgemäßen Verfahrens möglich. Weitere detaillierte Ausführungen zu der Verfahrensweise und der Ausbildung der Düsen erfolgen im Rahmen der nachfolgenden Ausführungsbeispiele.
The proposed method of dividing the partial streams into tangential feed channels which differ in their cross-sectional areas at the connection point to the swirl chamber, the cross-sectional areas from the sum of the cross-sectional areas of the feed channels branching off from the respective partial stream when the partial streams are divided into more than two tangential feed channels , are formed, and consequently the sums of the cross-sectional areas at the connection point to the swirl chamber of the respective partial flows differ, which leads to a substantial expansion of the control range in the operation of the nozzle systems. Of particular advantage when the nozzles are used in practice is the possibility of controlling the drop spectrum with a constant volume flow or when changing the volume flow to keep the drop spectrum constant.
In the context of the present invention, the term fluid also means mixtures of different fluids with or without solids.
The control options for various nozzle applications created by the new procedure lead to improved productivity of the production systems and to a considerable reduction in costs.
In order to ensure a high control range, the cross-sectional areas should differ by more than four times. According to the invention, the liquid throughput is divided into several partial flows which have different cross-sectional areas. The decisive factors are the cross-sectional areas when the liquid enters the swirl chamber (connection point between the feed channel and the swirl chamber), since the peripheral speed at the periphery of the swirl chamber is determined at this point. If a high swirl strength is desired for a fine droplet spectrum, the partial flow with which the feed channels having the smallest cross-section are applied is to be increased and vice versa. Intermediate values can be set continuously. The simplest way of influencing the throughput of a partial flow is to use a valve. The other aim for which the method can be used is to maintain a certain swirl strength at the exit from the swirl chamber. The ratio of the sum of the cross-sectional areas of the supply channels that are acted upon under full load and the sum of the cross-sectional areas of the supply channels that are acted upon under partial load is to be selected at least as large as the desired ratio of the volume flows under full load and under partial load.
The principle of the drain control according to the invention can be used when atomizing liquids in single-substance and two-substance nozzles, in which either the liquid or the gas or both are provided with a peripheral speed in the nozzle. The application is such that the method is applied to both the liquid or the gas or both. It is thus possible to influence the drop quality in two-component nozzles without changing the ratio of liquid throughput / gas throughput. It is irrelevant for what purpose the liquid is atomized. This can be done, for example, for the subsequent drying of a suspension in the drying tower. Oil can also be atomized, which is burned at the nozzle outlet, as is usual with burners. The fluid can also be a gas. This is possible with multi-component nozzles, where the gas is provided with a swirl component in order to atomize liquid. However, the gas can also be provided with a swirl component without the presence of liquid, as in the case of gas burners which work with recirculation in the vicinity of the nozzle outlet. Finally, the combination of the principle according to the invention with the spill-return method is possible in order to allow an expansion of the control range. Most spray drying systems prohibit the use of backflow nozzles for a variety of reasons. Previously, these systems had to operate with a given nozzle geometry. The frequent changes to the product therefore forced a new selection of the nozzle system and the need to change the nozzle to start and stop the system. The new system makes it possible to adapt it during operation and even regulate it by continuously measuring the product parameters. Changes in product parameters caused by nozzle wear can be compensated for over a certain period of time, thus extending the period of use of the spray tower. When using the invention in the field of oil combustion, it is possible to drive a wide load range without a return line without changing the jet angle with a practically constant drop size. This affects the effectiveness of the entire heating system and the service life of the boiler, since the burner does not have to be started and shut down frequently when the heat requirements fluctuate.
The method according to the invention can also be successfully used in gas and coal dust burners, above all to influence the flame shape of the burner.
When the invention is applied to fuel atomization in turbines, a reaction to different operating requirements becomes possible. In aircraft turbines, the adjustment of the fuel atomization is necessary due to different load requirements (take-off phase, normal flight) or due to different combustion conditions (air density and composition change depending on the altitude). This is now possible when using the method according to the invention. Further detailed explanations of the procedure and the design of the nozzles are given in the following exemplary embodiments.

In der zugehörigen Zeichnung zeigen

Fig. 1
eine erfindungsgemäße Düse in räumlicher schematischer Darstellung,
Fig. 2
einen Längsschnitt gemäß der Linie A-A in Fig. 1,
Fig. 3
einen Längsschnitt gemäß der Linie B-B in Fig. 1,
Fig. 4
eine Unteransicht der Düse gemäß Fig. 1 ohne Abdeckplatte,
Fig. 5
ein Schaltbild zur Aufteilung des Fluidstromes für die in Figur 1 dargestellte Düse,
Fig. 6
eine weitere Ausführungsvariante einer Düse als Explosionsdarstellung in zwei verschiedenen Ansichten,
Fig. 7
den Drallkörper der Düse gemäß Figur 6,
Fig. 8
einen weiteren Drallkörper für eine Düse gemäß Figur 6,
Fig. 9
die Draufsicht auf einen Drallkörper in vergrößerter Darstellung,
Fig. 10
einen Schnitt gemäß der Linie A-A ind Figur 9 um 90° gedreht dargestellt,
Fig. 11
ein Schaltbild für eine Düse mit zwei tangentialen Zuführungskanälen,
Fig. 12
ein Schaltbild für eine Düse mit vier tangentialen Zuführungskanälen und
Fig. 13
ein Schaltbild für eine weitere Ausführungsvariante für eine Düse mit vier tangentialen Zuführungskanälen.
Show in the accompanying drawing
Fig. 1
a nozzle according to the invention in a spatial schematic representation,
Fig. 2
2 shows a longitudinal section along the line AA in FIG. 1,
Fig. 3
2 shows a longitudinal section along the line BB in FIG. 1,
Fig. 4
2 shows a bottom view of the nozzle according to FIG. 1 without a cover plate,
Fig. 5
2 shows a circuit diagram for dividing the fluid flow for the nozzle shown in FIG. 1,
Fig. 6
another embodiment of a nozzle as an exploded view in two different views,
Fig. 7
the swirl body of the nozzle according to Figure 6,
Fig. 8
another swirl body for a nozzle according to FIG. 6,
Fig. 9
the top view of a swirl body in an enlarged view,
Fig. 10
9 shows a section along the line AA in FIG. 9 rotated through 90 °,
Fig. 11
a circuit diagram for a nozzle with two tangential feed channels,
Fig. 12
a circuit diagram for a nozzle with four tangential feed channels and
Fig. 13
a circuit diagram for a further embodiment for a nozzle with four tangential feed channels.

Die in Figur 1 dargestellte Düse besteht aus dem Düsenkörper 1 und der an der Austrittsseite der Düse angeordneten Abdeck- bzw. Düsenplatte 2. In dem Düsenkörper 1 sind oberhalb der Drallkammer 3 zwei Zuführungsleitungen 5a und 5b angeordnet, die in axialer Richtung zueinander beabstandet sind und deren Eintrittsöffnungen um 90° versetzt sind. Die Zuführungsleitungen 5a und 5b verlaufen waagerecht beabstandet zur Düsenplatte 2. Die Öffnungen der Zuführungsleitungen 5a und 5b sind über separate Leitungen 8, 9 mit einer zentralen Leitung 10 für die Zuführung des Gesamtfluidstromes FG verbunden (Fig. 5). In die Leitung 10 ist eine Förderpumpe 11 eingebunden. In der von der Leitung 10 abzweigenden Leitung 8, die mit der Zuführungsleitung 5b verbunden ist, ist als Steuerorgan ein Ventil 7 eingebunden. In der vorliegenden Zeichnung wurde auf die Darstellung von Einzelheiten der Befestigung der Leitungen und der Verbindung von Düsenkörper 1 und Abdeckplatte 2 verzichtet, da es sich hierbei um dem Fachmann geläufige Verbindungstechniken handelt.
In der Abdeckplatte 2 ist die auf der Mittelachse der Düse liegende Düsenaustrittsöffnung 6 eingearbeitet, die mit der oberhalb der Abdeckplatte 2 befindlichen Drallkammer 3 in Verbindung steht (Figur 2 und 3). Die Drallkammer 3 hat eine konstante Höhe und besitzt einen Durchmesser, der das Fünffache des Durchmessers der Düsenaustrittsöffnung 6 in der Abdeckplatte 2 beträgt. In die Drallkammer 3 münden vier tangentiale Zuführungskanäle 4a, 4b, 4c und 4d, die an der Verbindungsstelle zur Drallkammer 3 jeweils die gleiche Höhe aufweisen. Die jeweils gegenüberliegenden Kanäle 4a und 4c bzw. 4b und 4d sind über vertikal angeordnete Kanäle 4a', 4b', 4c' und 4d' mit den Zuführungsleitungen 5a bzw. 5b verbunden. Die Zuführungskanäle 4a und 4c, die an der Verbindungsstelle zur Drallkammer den gleichen Querschnitt aufweisen, sind über die vertikalen Kanäle 4a' und 4c' mit der Zuführungsleitung 5a verbunden. Auf die Definition der "Querschnittfläche" wird im nachfolgenden noch näher eingegangen. Die Zuführungsleitung 5b ist über die vertikalen Kanäle 4b' und 4d' mit den tangentialen Zuführungskanälen 4b und 4d verbunden, die an der Verbindungsstelle zur Drallkammer 3 ebenfalls den gleichen Querschnitt aufweisen. Die Zuführungskanäle 4a bzw. 4c und 4b bzw. 4d unterscheiden sich an der Verbindungsstelle zur Drallkammer 3 in ihrem Querschnitt, die Zuführungskanäle 4a und 4c weisen eine geringere Breite als die Zuführungskanäle 4b und 4d auf. Die versetzte radiale Anordnung der einzelnen Zuführungskanäle, bezogen auf ihre Mittelachse, um jeweils 90°, wurde wegen der Einhaltung der Symmetrie der Strömung des Fluids in die Drallkammer 3 so gewählt.
Verfahren und Vorrichtung werden bezüglich des Erreichen des Regelbereiches gemeinsam erklärt. Betrachtet wird zunächst der Fall, daß bei veränderlichem Gesamtdurchsatz die Tropfenqualität weitgehend gleichmäßig bleiben soll. Dies ist beispielsweise bei Ölbrennem eine Forderung.
Im Vollastfall wird der Gesamtflüssigkeitsdurchsatz FG auf alle tangentialen Zuführungskanäle 4a, 4b, 4c und 4d aufgeteilt durch Bildung der tangentialen Teilströme Tt1, Tt2, Tt3 und Tt4. Dies geschieht dadurch, daß der Gesamtfluidstrom FG auf zwei Teilströme T1 und T2 aufgeteilt wird, mit denen jeweils die Speiseleitungen 5a und 5b beaufschlagt werden. Der Teilstrom T2, mit dem die tangentialen Zuführungskanäle 4b und 4d beaufschlagt werden, also die tangentialen Teilströme Tt2 und Tt4 (Figur 5), kann durch eine Steuerung des Ventils 7 beeinflußt werden, d.h. der Durchsatz der tangentialen Teilströme Tt2 und Tt4 kann somit gesteuert werden.
Der Flüssigkeitsstrom T1 teilt sich auf die tangentialen Zuführungskanäle Tt1 und Tt3 auf. Im Teillastfall sinkt der Gesamtdurchsatz. Als Gegenmaßnahme wird der Teilstrom T2 in der Teilleitung 8, der über die Zuführungsleitung 5b die tangentialen Zuführungskanäle 4b und 4d versorgt, mittels des Ventils 7 gedrosselt. Damit gelangt ein größerer Durchsatz Tt1 und Tt3 in die tangentialen Zuführungskanäle 4a und 4c. Die Eintrittsgeschwindigkeit in diesen Zuführungskanälen steigt dort trotz sinkendem Gesamtdurchsatz und führt somit zu einer gleichbleibenden Drallbewegung an der Austrittsöffnung 6 der Düse. Die unterste Grenze gleichbleibender Tropfenqualität ist erreicht, wenn der Gesamtdurchsatz nur noch durch die Zuführungskanäle 4a und 4c geleitet wird und die Zuführungskanäle 4b und 4d nicht mehr beaufschlagt werden. Sinkt der Gesamtdurchsatz noch stärker, so ist mit einer Vergrößerung des mittleren Tropfendurchmessers zu rechnen.
Der zweite Fall, der mit dem erfindungsgemäßen Verfahren behandelt werden kann, ist die Steuerung der Tropfengröße bei konstant bleibendem Durchsatz. Die Aufteilung der Teilströme erfolgt analog zum ersten Fall. Soll bei gleichem Durchsatz die Tropfengröße verringert werden, so ist der Teilstrom zu erhöhen, der die Speiseleitung 5a versorgt. Durch eine entsprechende Schaltung ist der Gesamtdurchsatz konstant zu halten. Bei gewünschter größerer Tropfengröße ist entgegengesetzt zu verfahren.
In der Figur 6 ist eine weitere Ausführungsvariante einer Düse in Explosionsdarstellung gezeigt, mit drei tangentialen Zuführungskanälen. Zum besseren Verständnis ist die Düse in zwei Ansichten gezeigt, die Ansicht a als senkrechte Anordnung der Düse und die Ansicht b als eine um die Mittelachse geneigte Anordnung. Die Düse besteht aus dem Grund- bzw. Düsenkörper 1, dem Drallkörper 12, der Abdeck- bzw. Düsenplatte 2 und der Kappe 13, die auf den Düsenkörper 1 aufgeschraubt wird. Im Vergleich zu der in den Figuren 1 bis 4 dargestellten Düse sind die Zuführungsleitungen 5a und 5b nicht waagerecht sondern senkrecht im Düsenkörper 1 angeordnet. Die Aufteilung der Zuführungsleitungen 5a und 5b auf die vertikalen Kanäle 4a', 4b' und 4d' sowie die tangentialen Zuführungskanäle 4a, 4b und 4d, die in die Drallkammer 3 münden, erfolgt in dem Drallkörper 12, der als austauschbarer Einsatz ausgebildet ist. An der Unterseite des Drallkörpers ist eine entsprechende Ausnehmung für die Düsenplatte 2 angeordnet, in der sich die Düsenaustrittsöffnung 6 befindet. Die Leitungszweige 8 und 9, die mit den Zuführungsleitungen 5a und 5b verbunden sind sowie die Leitung 10 für den Gesamtfluidstrom mit der Pumpe 11 und die Anordnung des Steuerventils 7, das in der Leitung 8 eingebunden ist, die mit der Leitung 5b verbunden ist, sind in dieser Figur nicht nochmals dargestellt.
Die Zuführungsleitung 5a geht im Drallkörper 12 in den vertikalen Kanal 4a' über, der in den tangentialen Zuführungskanal 4a mündet. Die Zuführungsleitung 5b geht in dem Drallkörper 12 in zwei vertikale Kanäle 4b' und 4d' über, die jeweils mit einem tangentialen Zuführungskanal 4b bzw. 4d verbunden sind (Figur 7).
In den Figuren 7 und 8 sind zwei verschiedene Ausführungsvarianten des Drallkörpers 12 dargestellt, jeweils als Draufsicht a bzw. Unteransicht b.
Der Drallkörper 12 gemäß der Figur 7 ist mit dem in Figur 6 gezeigten Drallkörper identisch. Im Unterschied zu diesem ist der Drallkörper 12 gemäß der Figur 8 nur mit zwei tangentialen Zuführungskanälen 4a, 4b ausgerüstet. Die Ansicht a zeigt jeweils die Draufsicht und die Ansicht b die Unteransicht. Bei der in Figur 7 gezeigten Variante wird der durch die Zuführungsleitung 5b strömende Fluidteilstrom T1 auf zwei tangentiale Teilströme Tt2 und Tt4 aufgeteilt und der andere Teilstrom T2 gelangt ohne weitere Aufteilung in den tangentialen Zuführungskanal 4a.
Bei der in Figur 8 gezeigten Variante werden die Teilströme T1 und T2 nicht weiter aufgeteilt und über den jeweiligen zugehörigen tangentialen Zuführungskanal 4a bzw. 4b der Drallkammer 3 zugeführt.
The nozzle shown in Figure 1 consists of the nozzle body 1 and the cover or nozzle plate 2 arranged on the outlet side of the nozzle. In the nozzle body 1, two feed lines 5a and 5b are arranged above the swirl chamber 3, which are spaced apart in the axial direction and whose inlet openings are offset by 90 °. The feed lines 5a and 5b run horizontally spaced from the nozzle plate 2. The openings of the feed lines 5a and 5b are connected via separate lines 8, 9 to a central line 10 for supplying the total fluid flow F G (FIG. 5). A feed pump 11 is integrated in line 10. A valve 7 is integrated in the line 8 branching off from the line 10, which is connected to the supply line 5b, as a control element. In the present drawing, details of the fastening of the lines and the connection of the nozzle body 1 and cover plate 2 have been omitted, since these are connection techniques familiar to the person skilled in the art.
In the cover plate 2, the nozzle outlet opening 6, which is located on the central axis of the nozzle and is connected to the swirl chamber 3 located above the cover plate 2, is incorporated (FIGS. 2 and 3). The swirl chamber 3 has a constant height and has a diameter which is five times the diameter of the nozzle outlet opening 6 in the cover plate 2. Four tangential feed channels 4a, 4b, 4c and 4d open into the swirl chamber 3 and each have the same height at the connection point to the swirl chamber 3. The respective opposite channels 4a and 4c or 4b and 4d are connected to the feed lines 5a and 5b via vertically arranged channels 4a ', 4b', 4c 'and 4d'. The feed channels 4a and 4c, which have the same cross section at the connection point to the swirl chamber, are connected to the feed line 5a via the vertical channels 4a 'and 4c'. The definition of the "cross-sectional area" is discussed in more detail below. The feed line 5b is connected via the vertical channels 4b 'and 4d' to the tangential feed channels 4b and 4d, which likewise have the same cross section at the connection point to the swirl chamber 3. The feed channels 4a or 4c and 4b or 4d differ in their cross-section at the connection point to the swirl chamber 3, the feed channels 4a and 4c have a smaller width than the feed channels 4b and 4d. The offset radial arrangement of the individual feed channels, with respect to their central axis, by 90 ° in each case, was chosen because of the symmetry of the flow of the fluid into the swirl chamber 3.
The method and the device are explained together with regard to reaching the control range. First of all, the case is considered that the droplet quality should remain largely uniform with a variable total throughput. This is a requirement for oil burners, for example.
In the case of full load, the total liquid throughput F G is divided over all tangential feed channels 4a, 4b, 4c and 4d by forming the tangential partial flows T t1 , T t2 , T t3 and T t4 . This is done by dividing the total fluid flow F G into two partial flows T 1 and T 2 , with which the feed lines 5a and 5b are acted upon. The partial flow T 2 , with which the tangential feed channels 4b and 4d are acted upon, that is to say the tangential partial flows T t2 and T t4 (FIG. 5), can be influenced by a control of the valve 7, ie the throughput of the tangential partial flows T t2 and T t4 can thus be controlled.
The liquid flow T 1 is divided into the tangential feed channels T t1 and T t3 . The total throughput drops in the partial load case. As a countermeasure, the partial flow T 2 in the partial line 8, which supplies the tangential supply channels 4b and 4d via the supply line 5b, is throttled by means of the valve 7. A larger throughput T t1 and T t3 thus reaches the tangential feed channels 4a and 4c. The entry speed in these feed channels increases there despite the decreasing total throughput and thus leads to a constant swirl movement at the outlet opening 6 of the nozzle. The lowest limit of constant droplet quality is reached when the total throughput is only passed through the feed channels 4a and 4c and the feed channels 4b and 4d are no longer acted upon. If the total throughput drops even more, an increase in the average drop diameter can be expected.
The second case which can be treated with the method according to the invention is the control of the drop size with a constant throughput. The sub-streams are divided in the same way as in the first case. If the droplet size is to be reduced at the same throughput, the partial flow which supplies the feed line 5a is to be increased. The total throughput is to be kept constant by means of an appropriate circuit. If a larger drop size is required, the opposite procedure must be followed.
FIG. 6 shows another variant of a nozzle in an exploded view, with three tangential feed channels. For better understanding, the nozzle is shown in two views, view a as a vertical arrangement of the nozzle and view b as an arrangement inclined around the central axis. The nozzle consists of the base or nozzle body 1, the swirl body 12, the cover or nozzle plate 2 and the cap 13 which is screwed onto the nozzle body 1. In comparison to the nozzle shown in FIGS. 1 to 4, the feed lines 5a and 5b are not arranged horizontally but vertically in the nozzle body 1. The distribution of the feed lines 5a and 5b to the vertical channels 4a ', 4b' and 4d 'and the tangential feed channels 4a, 4b and 4d, which open into the swirl chamber 3, takes place in the swirl body 12, which is designed as an exchangeable insert. A corresponding recess for the nozzle plate 2, in which the nozzle outlet opening 6 is located, is arranged on the underside of the swirl body. The line branches 8 and 9, which are connected to the supply lines 5a and 5b, the line 10 for the total fluid flow with the pump 11 and the arrangement of the control valve 7, which is integrated in the line 8, which is connected to the line 5b not shown again in this figure.
The feed line 5a merges in the swirl body 12 into the vertical channel 4a ', which opens into the tangential feed channel 4a. The feed line 5b merges in the swirl body 12 into two vertical channels 4b 'and 4d', each of which is connected to a tangential feed channel 4b or 4d (FIG. 7).
FIGS. 7 and 8 show two different design variants of the swirl body 12, each as a top view a and a bottom view b.
The swirl body 12 according to FIG. 7 is identical to the swirl body shown in FIG. 6. In contrast to this, the swirl body 12 according to FIG. 8 is only equipped with two tangential feed channels 4a, 4b. View a shows the top view and view b the bottom view. In the variant shown in FIG. 7, the partial fluid flow T 1 flowing through the supply line 5b is divided into two tangential partial flows T t2 and T t4 and the other partial flow T 2 reaches the tangential supply channel 4a without further division.
In the variant shown in FIG. 8, the partial streams T 1 and T 2 are not further divided and fed to the swirl chamber 3 via the respective associated tangential feed channel 4a or 4b.

Der Vorteil der in der Figur 6 gezeigten Düse besteht vor allem darin, daß durch einen Austausch des Drallkörpers unterschiedliche Verfahrensvarianten realisiert werden können, ohne daß es einen Austausch der gesamten Düse bedarf. Die jeweiligen Düsen können in ihren Details konstruktiv unterschiedlich gestaltet werden. Dies ist insbesondere auch vom jeweiligen Einsatz- bzw. Anwendungsfall der Düsen abhängig. In der Figur 9 ist die Draufsicht auf eine Drallkammer 3 vergrößert dargestellt, in die zwei tangentiale Zuführungskanäle 4a und 4b münden. An der Verbindungsstelle zur Drallkammer 3 weisen die beiden Zuführungskanäle 4a und 4b unterschiedliche Querschnittsflächen auf. Die tangentialen Zuführungskanäle einer Düse besitzen an der Verbindungsstelle zur Drallkammer 3 die gleiche Höhe und können erforderlichenfalls in ihrer Breite unterschiedlich sein, wie in Figur 9 durch die Breitenmaße B1 und B2 verdeutlicht. Das jeweilige Breitenmaß ist der Abstand zwischen zwei auf einer parallelen Linie zur Mittelachse M liegenden Schnittpunkten S1 und S2, wobei der Schnittpunkt S1 der Schnittpunkt zwischen der Mantelfläche der Drallkammer und der zu dieser benachbarten Wandung des tangentialen Zuführungskanals ist und der Schnittpunkt S2 der Schnittpunkt der parallelen Linie mit der gegenüberliegenden Wandung des tangentialen Zuführungskanals. Die Verbindungsstelle der tangentialen Zuführungskanäle zur Drallkammer kann auch als kreisrunder Querschnitt ausgebildet sein, wobei dann verschiedene Querschnittsflächen durch unterschiedliche Durchmesser der jeweiligen Bohrungen an dieser Stelle in analoger Weise erzielt werden. Aus der Figur 9 geht auch deutlich hervor, daß die tangentialen Zuführungskanäle 4a und 4b außerhalb der Verbindungsstelle zur Drallkammer unterschiedlich ausgeführt sein können, z.B. einen konstanten Kanalquerschnitt aufweisen oder der Kanalquerschnitt sich in Richtung zur Drallkammer verjüngt Bei zwei tangentialen Zuführungskanälen einer Düse, wie in den Figuren 9 und 10 dargestellt, ist es unbedingt notwendig, daß diese Kanäle an den Verbindungsstellen zur Drallkammer unterschiedliche Querschnittsflächen aufweisen. Bei mehr als zwei tangentialen Zuführungskanälen können diese die gleiche Querschnittsfläche an der Verbindungsstelle zur Drallkammer aufweisen, wesentlich ist dann nur, daß sich die Summen der betreffenden Querschnittsflächen, die den jeweiligen Teilströmen T1 und T2 oder den dazugehörigen Kanälen zugeordnet sind, unterscheiden.
Ein weiteres wesentliches konstruktives Merkmal ist das Verhältnis des Durchmesser D1 der Düsenaustrittsöffnung zum Durchmesser D2 der Drallkammer, wobei das Verhältnis D2: D1 in einem Bereich von 2 bis 12 liegen sollte. Bei einer Ausführung einer Düse mit mehreren tangentialen Zuführungskanälen ist es zweckmäßig, wenn diese gleichmäßig über den Umfang bzw. die innere Mantelfläche der Drallkammer verteilt werden. Es hat sich als vorteilhaft erwiesen, wenn die Drallkammer und die Querschitte der tangentialen Zuführungskanäle an der Verbindungsstelle zur Drallkammer nach einem bestimmten Verhältnis dimensioniert werden, und zwar wie folgt: 2 BD2 - D1 < 0,5 wobei B entweder die Breite oder der Durchmesser des Kanals an der Verbindungsstelle zur Drallkammer bedeuten und D1 bzw. D2 die Durchmesser der Austrittsdüse bzw. der Drallkammer sind, wie vorstehend erläutert. Die Drallkammer weist in an sich bekannter Weise in ihrer Höhe ein geringeres Maß auf als der Durchmesser.
Je größer das Verhältnis von Drallkammerdurchmesser zu Düsenaustrittsdurchmesser (D2: D1) ist, desto besser kann sich ein Potentialwirbel bilden und sich am Düsentaustritt eine hohe Umfangsgeschwindigkeit einstellen, die die Voraussetzung für eine gute Zerstäubung des Fluids ist Bei einem großen Drallkammerdurchmesser können die Geschwindigkeiten am inneren Drallkammermantel auch geringer sein als bei kleineren Drallkammerdurchmessern, da sich wegen des größeren radialen Abstandes bis zur Düsenaustrittsöffnung höhere Umfangsgeschwindigkeiten bilden. Daher können bei größeren Drallkammerdurchmessern die Querschnittsflächen der Zuführungskanäle größer ausgeführt werden. Die Fertigung der tangentialen Zuführungskanäle wird dadurch einfacher und die Verstopfungsgefahr sinkt. Bei zu großem Verhältnis von Drallkammerdurchmesser zu Düsenaustrittsdurchmesser kommt es jedoch wegen der Wandreibung zu einer Abnahme der Umfangsgeschwindigkeit.
In den Figuren 11 bis 13 sind verschiedene Schaltungsanordnungen für unterschiedliche Ausführungsvarianten der Düsen dargestellt. Für alle gezeigten Schaltungsvarianten, auch die gemäß Figur 5, gilt, daß der Stelleingriff in den Durchsatz des Fluidstromes außerhalb der Düse entweder über ein Ventil oder separate Pumpen vorgenommen wird. Als Steuerung bzw. Steuerorgan werden alle Eingriffsmöglichkeiten verstanden, die sich auf den Durchsatz des Fluidstromes auswirken, wie z.B. Drosselung durch Ventile, Beeinflussung der Pumpenkennlinie einer Pumpe durch Drehzahländerung der Pumpe oder dgl.. Die weitere Aufteilung des Gesamtfluidstromes FG auf weitere Teilströme T1, T2 usw. kann entweder innerhalb oder außerhalb der Düse vorweggenommen werden. Die Zuführung der Teilströme Tt1 bis Tt4 in die Drallkammer erfolgt stets tangential.
Bei der in Figur 11 gezeigten Ausführung wird der von einer Pumpe 11 geförderte Gesamtfluidstrom FG in zwei Teilströme T1 und T2 aufgeteilt, und über je einen tangentialen Zuführungskanal Tt1 und Tt2, die an der Verbindungsstelle zur Drallkammer 3 der Düse 14 unterschiedliche Querschnittsflächen aufweisen, der Drallkammer zugeführt. In die Leitung für den Teilstrom T2, der mit dem tangentialen Zuführungskanal mit der größeren Querschnittsfläche an der Verbindungsstelle zur Drall kammer verbunden ist, ist ein Ventil 7 eingebunden. Durch eine entsprechende Drosselung des Teilstromes T2 wird gleichzeitig der tangentiale Teilstrom Tt2 verändert und somit die Umfangsgeschwindigkeit des Fluides in der Drallkammer und dadurch das Tropfenspektrum beim Austritt des Fluids aus der Düse beeinflußt.
Diese Basisvariante verursacht herstellungstechnisch den geringsten Aufwand. Es wird der Fall mit konstantem Flüssigkeitsdurchsatz diskutiert. Die Flüssigkeit wird über eine Leitung zugeführt und durch eine Verzweigung werden zwei Teilströme gebildet. Der eine Teilstrom ist in seiner Größe durch ein Ventil begrenzbar. Er wird nach dem Ventil dem Zuführungskanal mit der größeren Querschnittsfläche zugeführt. Die beiden Grenzfälle sind gegeben, wenn das Ventil voll geöffnet bzw. geschlossen ist. Bei voll geöffnetem Ventil verteilt sich der Flüssigkeitsdurchsatz auf beide Zuführungskanäle. Die Umfangsgeschwindigkeit an der inneren Mantelfläche der Drallkammer hat ihren geringsten Wert und damit ist auch die Umfangsgeschwindigkeit am Düsenaustritt am geringsten. Den größten Wert nimmt die Umfangsgeschwindigkeit am Düsenaustritt an, wenn das Ventil geschlossen ist. Das Verhältnis der kleinsten Querschnittsfläche zur gesamten Querschnittsfläche beider Zuführungskanäle bestimmt das Verhältnis von Teillast zu Vollast, das erreichbar ist und bei dem sich die Zerstäubungseigenschaften im wesentlichen nicht ändern.
Die in Figur 11 gezeigte Schaltungsvariante entspricht der in Figur 6 gezeigten Düse mit einem Drallkörper 12 gemäß der Figur 8.
Die in Figur 12 dargestellte Schaltungsvariante unterscheidet sich von der in Figur 11 gezeigten Schaltungsvariante lediglich dadurch, daß der Teilstrom T2 nicht auf einen tangentialen Teilstrom sondern auf drei tangentiale Teilströme Tt2, Tt3 und Tt4 aufgeteilt wird, deren Summe aus den Querschnittsflächen der tangentialen Zuführungskanäle an der Verbindungsstelle größer ist als die analoge Querschnittsfläche für den tangentialen Teilstrom Tt1.
Wird bei einer Schaltungsvariante gemäß der Figur 11 die größere Querschnittsfläche sehr groß im Verhältnis zu der kleineren Querschnittsfläche ausgeführt, so besteht die Gefahr, daß es zu Unsymmetrien der Strömung des Fluides in der Drallkammer kommen kann. Zur Vermeidung dieses Nachteils wird die in Figur 12 dargestellte Variante vorgeschlagen. Diese ermöglicht Zuführungskanäle anzusteuern, die über die innere Mantelfläche der Drallkammer angeordnet sind und so zu einer symmetrischen Strömung führen. Die Summe der Querschnittsflächen dieser tangentialen Zuführungskanäle ist an der Verbindungsstelle größer als die des verbleibenden Zuführungskanals, der von dem Teilstrom gespeist wird, der nicht über das Ventil direkt beeinflußt wird.
The advantage of the nozzle shown in FIG. 6 is, above all, that different process variants can be implemented by exchanging the swirl body, without the need to replace the entire nozzle. The details of the respective nozzles can be designed differently. This is particularly dependent on the particular application of the nozzles. FIG. 9 shows an enlarged top view of a swirl chamber 3, into which two tangential feed channels 4a and 4b open. At the connection point to the swirl chamber 3, the two feed channels 4a and 4b have different cross-sectional areas. The tangential feed channels of a nozzle have the same height at the connection point to the swirl chamber 3 and, if necessary, can have different widths, as illustrated in FIG. 9 by the width dimensions B 1 and B 2 . The respective width dimension is the distance between two on a parallel line lying on the center axis M intersection points S 1 and S 2, wherein the intersection point S 1 is the intersection between the lateral surface of the swirl chamber and adjacent to this wall of the tangential feed channel and the point of intersection S 2 the intersection of the parallel line with the opposite wall of the tangential feed channel. The connection point of the tangential feed channels to the swirl chamber can also be designed as a circular cross-section, in which case different cross-sectional areas can be achieved in an analogous manner at this point through different diameters of the respective bores. It is also clear from FIG. 9 that the tangential feed channels 4a and 4b can be designed differently outside the connection point to the swirl chamber, e.g. they have a constant channel cross section or the channel cross section tapers in the direction of the swirl chamber. With two tangential feed channels of a nozzle, as in FIGS Figures 9 and 10 shown, it is imperative that these channels have different cross-sectional areas at the junctions to the swirl chamber. If there are more than two tangential feed channels, these can have the same cross-sectional area at the connection point to the swirl chamber, it is then only important that the sums of the relevant cross-sectional areas, which are assigned to the respective partial streams T 1 and T 2 or the associated channels, differ.
Another important design feature is the ratio of the diameter D 1 of the nozzle outlet opening to the diameter D 2 of the swirl chamber, the ratio D 2 : D 1 should be in a range from 2 to 12. If a nozzle is designed with a plurality of tangential feed channels, it is expedient if these are distributed uniformly over the circumference or the inner lateral surface of the swirl chamber. It has proven to be advantageous if the swirl chamber and the cross sections of the tangential feed channels at the connection point to the swirl chamber are dimensioned according to a certain ratio, as follows: 2 B D 2 - D 1 <0.5 where B is either the width or the diameter of the channel at the point of connection to the swirl chamber and D 1 or D 2 are the diameters of the outlet nozzle or swirl chamber, as explained above. In a manner known per se, the swirl chamber has a smaller dimension than the diameter.
The larger the ratio of the swirl chamber diameter to the nozzle outlet diameter (D 2 : D 1 ), the better a potential vortex can form and a high peripheral speed can be set at the nozzle outlet, which is the prerequisite for good atomization of the fluid on the inner swirl chamber jacket also be smaller than in the case of smaller swirl chamber diameters, since higher circumferential speeds are formed due to the greater radial distance from the nozzle outlet opening. Therefore, with larger swirl chamber diameters, the cross-sectional areas of the feed channels can be made larger. This makes the manufacture of the tangential feed channels easier and reduces the risk of clogging. If the ratio of the swirl chamber diameter to the nozzle outlet diameter is too large, however, the peripheral speed decreases due to the wall friction.
FIGS. 11 to 13 show different circuit arrangements for different design variants of the nozzles. For all the circuit variants shown, including the one according to FIG. 5, it applies that the control intervention in the throughput of the fluid flow outside the nozzle is carried out either via a valve or separate pumps. Control means all intervention options that affect the throughput of the fluid flow, such as throttling by valves, influencing the pump characteristic of a pump by changing the speed of the pump or the like. The further division of the total fluid flow F G into further partial flows T 1 , T 2 etc. can be anticipated either inside or outside the nozzle. The partial flows T t1 to T t4 are always fed into the swirl chamber tangentially.
In the embodiment shown in FIG. 11, the total fluid flow F G conveyed by a pump 11 is divided into two partial flows T 1 and T 2 , and each via a tangential feed channel T t1 and T t2 , which differ at the connection point to the swirl chamber 3 of the nozzle 14 Have cross-sectional areas supplied to the swirl chamber. In the line for the partial flow T 2 , which is connected to the tangential feed channel with the larger cross-sectional area at the connection point to the swirl chamber, a valve 7 is integrated. By a corresponding throttling of the partial flow T 2 , the tangential partial flow T t2 is simultaneously changed and thus the peripheral speed of the fluid in the swirl chamber and thereby the drop spectrum when the fluid exits the nozzle is influenced.
This basic variant causes the least effort in terms of production. The case with constant fluid flow is discussed. The liquid is supplied via a line and two sub-streams are formed by branching. The size of one partial flow can be limited by a valve. After the valve, it is fed to the feed channel with the larger cross-sectional area. The two limit cases exist when the valve is fully open or closed. When the valve is fully open, the liquid throughput is distributed over both supply channels. The peripheral speed at the inner surface of the swirl chamber has its lowest value and thus the peripheral speed at the nozzle outlet is also the lowest. The circumferential speed at the nozzle outlet takes on the greatest value when the valve is closed. The ratio of the smallest cross-sectional area to the total cross-sectional area of both feed channels determines the ratio of partial load to full load that can be achieved and at which the atomization properties do not change essentially.
The circuit variant shown in FIG. 11 corresponds to the nozzle shown in FIG. 6 with a swirl body 12 according to FIG. 8.
The circuit variant shown in FIG. 12 differs from the circuit variant shown in FIG. 11 only in that the partial stream T 2 is not divided into a tangential partial stream but into three tangential partial streams T t2 , T t3 and T t4 , the sum of which consists of the cross-sectional areas of the tangential feed channels at the connection point is larger than the analog cross-sectional area for the tangential partial flow T t1 .
If the larger cross-sectional area is made very large in relation to the smaller cross-sectional area in a circuit variant according to FIG. 11, there is a risk that asymmetries in the flow of the fluid in the swirl chamber may occur. To avoid this disadvantage, the variant shown in FIG. 12 is proposed. This enables control of feed channels which are arranged over the inner surface of the swirl chamber and thus lead to a symmetrical flow. The sum of the cross-sectional areas of these tangential feed channels at the connection point is greater than that of the remaining feed channel, which is fed by the partial flow which is not directly influenced by the valve.

Bei der in Figur 13 gezeigten Schaltungsvariante ist die Ausgestaltung der Düse analog wie bei der Ausführung gemäß Figur 12. Der Unterschied besteht darin, daß keine Abzweigung von einem Gesamtfluidstrom erfolgt, sondern zwei separate Teilströme T1 und T2 unabhängig voneinander über in die Leitungen eingebundene Exzenterschneckenpumpen 11, 11' beeinflußt werden, und zwar durch eine Drehzahländerung der Pumpen. Bei der Förderung von Suspensionen ist gelegentlich die Versperrung durch Leitungsquerschnitte, wie bei Ventilen oder Hähnen üblich, zu vermeiden, da es sonst zu Verstopfungen kommen kann. Es muß daher eine Variante zur Anwendung kommen, bei der die Beeinflussung von Teilströmen auf eine andere Art vorgenommen werden kann. Dies kann durch Verdrängerpumpen geschehen, die in ihrer Fördercharakteristik verändert werden. Gemäß dieser Variante werden in jedem Teilstrom Exzenterschneckenpumpen 11, 11' verwendet, deren Durchsatz über eine Drehzahländerung angepaßt wird. Die vorliegende Erfindung kann auch in solchen Fällen angewendet werden, wo es erforderlich ist, bei unterschiedlichen Durchsätzen den Strahlwinkel des aus der Düse austretenden Fluides konstant zu halten, also Einfluß auf die Steuerung des Strahlwinkels zu nehmen. Bei herkömmlichen Dralldüsen wird mit steigendem Durchsatz ein größerer Strahlwinkel erreicht.
Beim erfindungsgemäßen Verfahren ist bei konstantem Verhältnis der Teilströme ebenfalls eine Vergrößerung des Strahlwinkels mit steigendem Gesamtdurchsatz zu verzeichnen. Bei Verwendung der Schaltungsvariante gemäß Figur 11 ergibt sich folgende Situation. Bei vorgegebenen Förderdruck kann man den Gesamtdurchsatz vergrößern, indem das Ventil geöffnet wird. Der Strahlwinkel steigt dadurch leicht an. Senkt man also den Förderdruck ab, wenn das Ventil geschlossen ist, so erreicht man einen konstanten Strahlwinkel.
In the circuit variant shown in FIG. 13, the configuration of the nozzle is analogous to that in the embodiment according to FIG. 12. The difference is that there is no branching off of a total fluid flow, but two separate partial flows T 1 and T 2, independently of one another, via lines integrated in the lines Eccentric screw pumps 11, 11 'are influenced by a change in the speed of the pumps. When pumping suspensions, blockage through line cross-sections, as is customary with valves or taps, must occasionally be avoided, as otherwise blockages can occur. A variant must therefore be used in which the partial flows can be influenced in a different way. This can be done by positive displacement pumps, which are changed in their delivery characteristics. According to this variant, eccentric screw pumps 11, 11 'are used in each partial flow, the throughput of which is adjusted via a change in speed. The present invention can also be used in cases where it is necessary to keep the jet angle of the fluid emerging from the nozzle constant at different throughputs, that is to say to influence the control of the jet angle. With conventional swirl nozzles, a larger jet angle is achieved with increasing throughput.
In the method according to the invention, with a constant ratio of the partial streams, the beam angle is also increased with increasing total throughput. The following situation arises when using the circuit variant according to FIG. 11. For a given delivery pressure, the total throughput can be increased by opening the valve. This increases the beam angle slightly. So if you lower the delivery pressure when the valve is closed, you get a constant jet angle.

Claims (32)

  1. A method for varying the swirling movement of a fluid in the swirl chamber (3) of a nozzle, the swirling movement not being coupled to the overall throughput of the fluid flow, and the total fluid flow (FG) being subdivided into a plurality of subflows (T1, T2) which are led to the swirl chamber (3) via tangential feed conduits (4a, 4b, 4c, 4d) of the swirl chamber (3), characterized in that the subflows (T1, T2) are subdivided over feed conduits (4a, 4b, 4c, 4d) which differ in their cross-sectional surfaces at the connecting point to the swirl chamber (3), it being the case that upon subdivision of the subflows (T1, T2) over more than two tangential feed conduits(4a, 4b, 4c, 4d), the cross-sectional surfaces are formed from the sum of the cross-sectional surfaces of the feed conduits (4a, 4c or 4b, 4d) which branch off from the respective subflow (T1, T2), and the sums of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3) of the respective subflows (T1, T2) therefore differ, and the subdivision of the individual tangential subflows (Tt1, Tt2, Tt3, Tt4) passing into the swirl chamber (3) is undertaken for the purpose of implementing different control possibilities during the operating state independently of throughput.
  2. The method as claimed in claim 1, characterized in that in the case of more than two feed conduits (4a, 4b, 4c, 4d) the tangential subflows (Tt1, Tt2, Tt3, Tt4) are introduced into the swirl chamber (3) through cross-sectional surfaces at the connecting point to the swirl chamber (3) which are identical and/or different in size.
  3. The method as claimed in either of claims 1 or 2, characterized in that the subdivision of the subflows (T1, T2) over the tangential feed conduits (4a, 4b, 4c, 4d) is undertaken in such a way that in the case of a required higher swirl intensity at the outlet from the swirl chamber (3) the larger subflow (T2) or the total fluid flow (FG) is applied to the tangential feed conduits with the smaller cross-sectional surface or sum of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3), and vice versa.
  4. The method as claimed in one of claims 1 to 3, characterized in that in the case of a change in the total fluid flow (FG) in the sense of a full load/part load operating mode and with the aim of maintaining the swirl intensity at the outlet from the swirl chamber (3) for a desired ratio of full load/part load of the fluid flow, the subdivision of the tangential subflows (Tt1, Tt2, Tt3, Tt4) is undertaken in such a way that the ratio of the sum of the cross-sectional surfaces of the affected feed conduits at full load to the sum of the cross-sectional surfaces of the affected tangential feed conduits at part load corresponds at least to the volumetric flow ratio of full load to part load.
  5. The method as claimed in one of claims 1 to 4, characterized in that the total fluid flow (FG) is subdivided into two subflows (T1, T2) which are introduced tangentially into the swirl chamber (3) via one feed conduit (4a, 4b) each, the subflow which is connected to the larger cross-sectional surface at the connecting point (S1, S2) to the swirl chamber (3) being controlled by a control member (7).
  6. The method as claimed in one of claims 1 to 4, characterized in that the total fluid flow (FG) is subdivided into more than two subflows (Tt1, Tt2, Tt3, Tt4) introduced tangentially into the swirl chamber (3), at least two tangential subflows (Tt2, Tt3, Tt4) being branched off from one subflow (T2), and the subflow (T2) whose tangential feed conduits (4b, 4c, 4d) at the connecting point (S1, S2) to the swirl chamber (3) yield the highest value in the sum of the cross-sectional surfaces is controlled by means of a control member (7, 11, 11').
  7. The method as claimed in one of claims 1 to 6, characterized in that a pump (11, 11') and/or a valve (7) are used as control members.
  8. The method as claimed in one of claims 1 to 7, characterized in that the subflows (T1, T2) are controlled independently of one another by changing the delivery rate of the respective pump (11, 11').
  9. The method as claimed in one of claims 1 to 8, characterized in that two separate subflows (T1, T2) form the total fluid flow (FG), each of these subflows (T1, T2) being controlled by a pump (11, 11'), and at least one subflow (T2) being subdivided over a plurality of tangential feed conduits (4b, 4c, 4d) to form the corresponding subflows (Tt2, Tt3, Tt4).
  10. The method as claimed in one of claims 1 to 9, characterized in that influence is exercised in a stepless fashion on the division ratio of the subflows (T1, T2) by the different control of at least one of the subflows (T1, T2) and the subdivision of the subflows (T1, T2) over the tangential feed conduits (4a, 4b, 4c, 4d) in such a way that the swirling movement in the swirl chamber (3) is controlled, and thereby the drop size of the fluid emerging from the nozzle outlet opening (6) is increased or decreased, or is held constant in the case of variations in the material parameters of the fluid.
  11. The method as claimed in one of claims 1 to 10, characterized in that the tangential subflows (Tt1, Tt2, Tt3, Tt4) are fed to the swirl chamber (3) so that they lie on the same axial coordinate.
  12. The method as claimed in one of claims 1 to 11, characterized in that the tangential subflows (Tt1, Tt2, Tt3, Tt4) are introduced into the swirl chamber (3) so that they are distributed uniformly over the interior lateral surface thereof.
  13. The method as claimed in one of claims 1 to 12, characterized in that the influence on the throughput of the subflows (T1, T2) is undertaken outside the nozzle (14).
  14. The method as claimed in one of claims 1 to 13, characterized in that the subdivision of the subflows (T1 T2) for forming the tangential subflows (Tt1, Tt2, Tt3, Tt4) is undertaken inside or outside the nozzle (14).
  15. The method as claimed in one of claims 1 to 14, characterized in that in the case of an increasing overall throughput the jet angle of the atomized fluid is maintained by virtue of the fact that the total fluid pressure is reduced and the subflow (T2) it is subdivided over the tangential feed conduits (4a, 4b, 4c, 4d) with the largest cross-sectional surface or sum of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3) is increased with respect to the other subflow (T1).
  16. The method as claimed in one of claims 1 to 15, characterized in that in the case of a constant overall throughput the jet angle of the atomized fluid is increased by virtue of the fact that the total fluid pressure is increased and the subflow (T2) which is subdivided over the tangential feed conduits (4a, 4b, 4c, 4d) with the largest cross-sectional surface or sum of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3) is reduced with respect to the other subflow (T1).
  17. The method as claimed in one of claims 1 to 16, characterized in that said method is used to atomize liquids with the aid of gases, the liquid or the gas or both, either individually or as a mixture, being subjected to a variable swirling movement before emerging from the nozzle.
  18. A nozzle system for carrying out the method as claimed in at least one of the preceding claims, having a swirl generator in which fluids are set rotating about an axis, the swirl generator comprising a swirl chamber (3) with a plurality of tangential feed conduits (4a, 4b, 4c, 4d) on the periphery of the swirl chamber (3) as well as an outlet opening (6), characterized in that
    a) in the case of an arrangement of two feed conduits (4a, 4c) the latter have a different cross-sectional surface at the connecting point (S1, S2) to the swirl chamber (3), and
    b) in the case of an arrangement of more than two tangential feed conduits (4a, 4b, 4c, 4d) the latter have different and/or the same cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3), and individual tangential feed conduits (4a, 4c, 4b, 4d) are connected to separate feed lines (8, 9), the sum of the cross-sectional surfaces of the tangential feed conduits (4a, 4b, 4c, 4d) at the connecting point (S1, S2) to the swirl chamber (3), which are connected to different feed lines (8 or 9), being different, and
    c) a control member (7, 11, 11') operating independently of throughput is incorporated into at least one of the feed conduits (4a', 4b', 4c', 4d', 5a, 5b, 8, 9, 10) outside the swirl generator.
  19. The nozzle system as claimed in claim 18, characterized in that the tangential feed conduits (4a, 4b, 4c, 4d) at the connecting point (S1, S2) to the swirl chamber (3) have the same height and the same or a different width (B1, B2).
  20. The nozzle system as claimed in either of claims 18 or 19, characterized in that the different cross-sectional surfaces or the formed sums of the cross-sectional surfaces differ by more than a factor of 4.
  21. The nozzle system as claimed in one of claims 18 to 20, characterized in that the tangential feed conduits (4a, 4b, 4c, 4d) with the same cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3) are connected to a common feed line (8 or 9).
  22. The nozzle system as claimed in one of claims 18 to 21, characterized in that a steplessly settable control member (7, 11, 11') is incorporated into at least one of the feed lines (8 or 9).
  23. The nozzle system as claimed in claim 22, characterized in that the control member is a pump (11, 11') or a valve (7).
  24. The nozzle system as claimed in one of claims 18 to 23, characterized in that the valve (7) is incorporated into the feed line (8 or 9) which is connected to the tangential feed conduits (4a, 4b, 4c, 4d) with the largest cross-sectional surface or sum of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3).
  25. The nozzle system as claimed in one of claims 18 to 24, characterized in that the central axes of the cross-sectional surfaces of the tangential feed conduits (4a, 4b, 4c, 4d) at the connecting point to the swirl chamber (3) lie in a plane, and the cross-sectional surfaces are arranged distributed uniformly.
  26. The nozzle system as claimed in one of claims 18 to 25, characterized in that the tangential feed conduits (4a, 4b, 4c, 4d) are arranged lying on the same axial coordinate.
  27. The nozzle system as claimed in one of claims 18 to 26, characterized in that a pump (11) is incorporated into the feed line (10) for the total fluid flow (FG) and the feed line (10) is subdivided into two subflow lines (8, 9) which are connected to separate conduits (5a, 5b, 4a', 4b', 4c', 4d'), located in the nozzle (14), which are connected to one tangential feed conduit (4a, 4b, 4c, 4d) each which have different cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3), and the valve (7) is incorporated into the feed line (8) which is connected to the tangential feed conduit (4a) with the larger cross-sectional surface at the connecting point (S1, S2) to the swirl chamber (3).
  28. The nozzle system as claimed in one of claims 18 to 26, characterized in that a pump (7) is incorporated into the feed line (10) for the total fluid flow (FG) and the feed line (10) is subdivided into two subflow lines (8, 9) which are connected to separate conduits (5a, 5b, 4a', 4b', 4c', 4d'), located in the nozzle (14), one conduit (5a) being connected to one tangential feed conduit (4a), and the other conduit (5b) being connected to a plurality of tangential feed conduits (4b, 4c, 4d), and the valve being incorporated into the subflow line (8) which is connected to a plurality of tangential feed conduits.
  29. The nozzle system as claimed in one of claims 18 to 26, characterized in that the nozzle (14) is connected to two separate feed lines (8, 9) into which in each case one pump (11, 11') is incorporated, one feed line (9) being connected to one tangential feed duct (4a), and the other feed line (8) being connected to a plurality of tangential feed conduits (4b, 4c, 4d).
  30. The nozzle system as claimed in one of claims 18 to 29, characterized in that the quotient of the diameter (D2) of the swirl chamber (3) and the diameter (D1) of the nozzle outlet opening (6) of the swirl chamber (3) is in a range from 2 to 12.
  31. The nozzle system as claimed in one of claims 18 to 31, characterized in that the ratio of double the width or double the diameter of the inlet opening of the respective tangential feed conduit (4a, 4b, 4c, 4d) at the connecting point (S1, S2) to the swirl chamber (3) divided by the difference between the swirl chamber diameter (D2) and the nozzle outlet diameter (D1) is smaller than 0.5.
  32. The nozzle system as claimed in one of claims 18 to 31, characterized in that the feed lines (8, 9, 5a, 5b) have different connecting cross sections in such a way that the feed lines which are connected to the tangential feed conduits whose cross-sectional surface or sum of the cross-sectional surfaces at the connecting point (S1, S2) to the swirl chamber (3) is largest have the larger connecting cross section.
EP99916822A 1998-03-18 1999-03-17 Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and nozzle system Expired - Lifetime EP1062048B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19811736 1998-03-18
DE19811736A DE19811736A1 (en) 1998-03-18 1998-03-18 Vortex creator for jets
PCT/EP1999/001726 WO1999047270A1 (en) 1998-03-18 1999-03-17 Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and swirl generator for nozzles

Publications (2)

Publication Number Publication Date
EP1062048A1 EP1062048A1 (en) 2000-12-27
EP1062048B1 true EP1062048B1 (en) 2001-06-27

Family

ID=7861312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99916822A Expired - Lifetime EP1062048B1 (en) 1998-03-18 1999-03-17 Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and nozzle system

Country Status (16)

Country Link
US (1) US6517012B1 (en)
EP (1) EP1062048B1 (en)
JP (1) JP2002506723A (en)
AT (1) ATE202502T1 (en)
AU (1) AU753492B2 (en)
BR (1) BR9908844A (en)
CA (1) CA2322565A1 (en)
DE (2) DE19811736A1 (en)
DK (1) DK1062048T3 (en)
ES (1) ES2161095T4 (en)
NO (1) NO20004507L (en)
NZ (1) NZ506355A (en)
PL (1) PL342812A1 (en)
PT (1) PT1062048E (en)
TR (1) TR200002408T2 (en)
WO (1) WO1999047270A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008389A1 (en) * 2000-02-23 2001-08-30 Guenter Slowik Influencing drop spectrum of suspensions comprises adjusting splitting ratio of partial streams divided by nozzles, and adjusting average diameter of drops using valve or pump
DE10008158A1 (en) * 2000-02-23 2001-08-30 Guenter Slowik Method and line system for supplying fluid substances to one or more nozzles
DE10025740A1 (en) * 2000-05-25 2001-12-06 Generis Gmbh Device for producing spray has centrifugal chamber with output nozzle at one end, feed channels opening tangentially into chamber connected to liquid reservoir via high pressure pump
JP2005506855A (en) * 2001-05-10 2005-03-10 ベクトゥラ デリバリー デバイシーズ リミテッド Inhaler
DE10138622C2 (en) * 2001-08-13 2003-06-18 Alfons Kenter Atomizer for atomizing a liquid
CH695546A5 (en) * 2001-08-20 2006-06-30 Axenergy Ag Swirl pressure nozzle.
DE20300883U1 (en) * 2002-09-24 2003-03-13 Voest Alpine Bergtechnik Device for generating a gas-liquid mixture in the area of cutting tools
DE10249747A1 (en) * 2002-10-25 2004-05-06 Clariant Gmbh Method and device for carrying out chemical and physical processes
KR200326335Y1 (en) * 2003-06-12 2003-09-13 유홍선 Assembly structure of swirl nozzle having filter
US20070029408A1 (en) * 2005-08-02 2007-02-08 Aerojet-General Corporation Throttleable swirling injector for combustion chambers
US8500044B2 (en) * 2007-05-04 2013-08-06 S.C. Johnson & Son, Inc. Multiple nozzle differential fluid delivery head
US8820664B2 (en) 2007-05-16 2014-09-02 S.C. Johnson & Son, Inc. Multiple nozzle differential fluid delivery head
US9242256B2 (en) * 2007-07-17 2016-01-26 S.C. Johnson & Son, Inc. Aerosol dispenser assembly having VOC-free propellant and dispensing mechanism therefor
DE102011078857A1 (en) * 2011-07-08 2013-01-10 Lechler Gmbh Spray nozzle and method for producing at least one rotating spray jet
CN104540598A (en) * 2012-05-25 2015-04-22 精密阀门有限公司 Vortex spray generation systems
ES2755187T3 (en) 2013-03-15 2020-04-21 Neomend Inc Centrifugal Mix Spray Nozzle
KR200480168Y1 (en) * 2016-02-03 2016-04-29 이주환 For pesticide spraying device
DE202016105326U1 (en) * 2016-09-23 2018-01-09 SWEDEX GmbH Industrieprodukte Swirl body and conical nozzle with such a swirl body
US11492192B2 (en) * 2020-11-12 2022-11-08 Precision Valve Corporation Spray delivery system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1822047A (en) * 1928-07-21 1931-09-08 Peabody Engineering Corp Oil burning system
DE893133C (en) * 1944-06-14 1953-10-12 Verwertungsgesellschaft Dr Ing Method and nozzle for the continuous injection of fuel of various sizes, especially for jet engines
US2628867A (en) * 1948-01-07 1953-02-17 Gen Motors Corp Duplex nozzle
US2544417A (en) * 1949-03-03 1951-03-06 Lucas Ltd Joseph Liquid fuel burner nozzle
GB858948A (en) * 1957-09-17 1961-01-18 Dowty Fuel Syst Ltd Improvements in liquid spray nozzles
GB878785A (en) * 1959-08-05 1961-10-04 Parsons & Marine Eng Turbine Improvements in and relating to oil burners
DE2407856C3 (en) * 1974-02-19 1978-09-14 Ulrich Dipl.-Ing. 5160 Dueren Rohs Injection nozzle for liquid media, especially fuel
US4087050A (en) * 1975-09-18 1978-05-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Swirl type pressure fuel atomizer
US4260110A (en) * 1977-02-18 1981-04-07 Winfried Werding Spray nozzle, devices containing the same and apparatus for making such devices
DE2733102A1 (en) * 1977-07-22 1979-02-01 Bayer Ag METHOD AND DEVICE FOR ATOMIZING LIQUIDS
IL82096A0 (en) 1987-04-03 1987-10-30 Greenberg Ilan Variable-spray shower head
DE3936080C2 (en) * 1989-10-30 1998-07-02 Guenter Dr Ing Slowik Method for varying the peripheral speed component of the swirl flow of a fluid
ATE173416T1 (en) * 1993-05-25 1998-12-15 Verbena Corp N V SPRAY NOZZLE FOR REGULATION OF FLOW QUANTITY PER UNIT OF TIME
DE19608349A1 (en) 1996-03-05 1997-09-11 Abb Research Ltd Pressure atomizer nozzle

Also Published As

Publication number Publication date
WO1999047270A1 (en) 1999-09-23
NO20004507L (en) 2000-11-14
AU753492B2 (en) 2002-10-17
NO20004507D0 (en) 2000-09-08
PL342812A1 (en) 2001-07-02
TR200002408T2 (en) 2001-01-22
NZ506355A (en) 2002-06-28
EP1062048A1 (en) 2000-12-27
CA2322565A1 (en) 1999-09-23
DE59900139D1 (en) 2001-08-02
AU3517599A (en) 1999-10-11
US6517012B1 (en) 2003-02-11
ES2161095T3 (en) 2001-11-16
JP2002506723A (en) 2002-03-05
ES2161095T4 (en) 2002-05-16
DE19811736A1 (en) 1999-09-23
BR9908844A (en) 2000-11-28
DK1062048T3 (en) 2001-09-24
PT1062048E (en) 2001-12-28
ATE202502T1 (en) 2001-07-15

Similar Documents

Publication Publication Date Title
EP1062048B1 (en) Method for modifying the swirl motion of a liquid in a swirl chamber of a nozzle and nozzle system
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
DE69029521T2 (en) STEAM TREATMENT VALVE
DE3116660C2 (en) Multi-component atomizer nozzle
DE10304386B4 (en) Double fluid swirl nozzle with self-cleaning spigot
EP1243343B1 (en) Dual fluid spray nozzle
EP0268702B1 (en) Compressed-air atomizer nozzle
DE1923234A1 (en) Method and spray nozzle for generating a fan jet
DE3525161A1 (en) METHOD AND DEVICE FOR LOW-WEAR SPRAYING OF LIQUID, HIGH-VISCOSITY AND / OR SUSPENSIVE FUELS FOR COMBUSTION OR GASIFICATION IN BURNER FLAMES
EP1915219B1 (en) Two-material atomizing device
EP2100659B1 (en) Device for creating and spraying an aerosol
DE3609350C2 (en)
DE19752245A1 (en) Twin substance nozzle for atomized spray
DE1906772C3 (en) Spray can
CH629394A5 (en) RING SPLIT NOZZLE.
DE102020213179A1 (en) Nozzle for spraying substances and method for controlling or regulating the nozzle
DE3936080A1 (en) Swirl generator for an atomiser nozzle - has inlets in the form of tangentially aligned ducts
EP1084755B1 (en) Liquid dispensing device, in particular a handheld spray gun with jet nozzle and shower head for house and garden use
DE10254144A1 (en) Fluid and perfume spray for treating air is mushroom-shaped with compressed air admission channels underneath leading to annular chamber with tapering channels leading to inlets for spray fluid
DE19617686C2 (en) Kegelstrahldrallmischdüse
DE69516081T2 (en) Oil burner with compressed air atomizer
DE4415863A1 (en) Oil burner nozzle with body in fuel supply pipe
DE3724234A1 (en) Air-assisted fuel nozzle, especially a nozzle of this kind in gas turbines for steady-state constant-pressure combustion
DE19526404A1 (en) Atomiser for media flowing through central bore
EP1045943B1 (en) Method and device for reducing the flow-through quantity of liquids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD FOR MODIFYING THE SWIRL MOTION OF A LIQUID IN A SWIRL CHAMBER OF A NOZZLE AND NOZZLE SYSTEM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010220

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010627

REF Corresponds to:

Ref document number: 202502

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59900139

Country of ref document: DE

Date of ref document: 20010802

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010928

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161095

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20010927

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020226

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020325

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030324

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030325

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040318

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

BERE Be: lapsed

Owner name: *KOHLMANN JURGEN

Effective date: 20090331

Owner name: *SLOWIK GUNTER

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20150325

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150324

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59900139

Country of ref document: DE

Representative=s name: WEIDNER STERN JESCHKE PATENTANWAELTE PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160621

Year of fee payment: 18

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160922

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160928

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170330

Year of fee payment: 19

Ref country code: FR

Payment date: 20170330

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59900139

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170317

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331