EP1033478A2 - Casing for thermal turbomachine - Google Patents

Casing for thermal turbomachine Download PDF

Info

Publication number
EP1033478A2
EP1033478A2 EP00810115A EP00810115A EP1033478A2 EP 1033478 A2 EP1033478 A2 EP 1033478A2 EP 00810115 A EP00810115 A EP 00810115A EP 00810115 A EP00810115 A EP 00810115A EP 1033478 A2 EP1033478 A2 EP 1033478A2
Authority
EP
European Patent Office
Prior art keywords
housing
thermal
welding
parts
turbomachine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00810115A
Other languages
German (de)
French (fr)
Other versions
EP1033478A3 (en
Inventor
Pierre Meylan
Richard Brendon Scarlin
Heinrich Klotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Alstom Power Switzerland Ltd, Alstom Schweiz AG filed Critical ABB Alstom Power Switzerland Ltd
Publication of EP1033478A2 publication Critical patent/EP1033478A2/en
Publication of EP1033478A3 publication Critical patent/EP1033478A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar

Definitions

  • the invention relates to the field of turbine construction. It affects one Housing for a thermal turbo machine, which consists of different Materials.
  • Cast steel housings for thermal turbomachinery are known, especially steam turbines.
  • the housings preferably consist of low-alloyed CrMo or CrMoV cast steel grades.
  • the use of 9 to 13% Cr alloys for turbine housings are also known.
  • the housing or housing halves what high temperatures exposed, cast as a whole, i.e. they consist of one Material. Intended production welding or occasionally required Repair welds are made with the same or a Housing material related material executed by the respective cast manufacturer.
  • Housings are known from turbine construction, the parts of which are made of different materials. These housing parts are screwed together, d. H. there is a non-positive connection. As for example, combined housings made of cast steel and Ductile iron components are called by means of a flange connection are connected.
  • the invention tries to avoid all these disadvantages. You have the task to develop a turbomachine housing that is inexpensive is to be manufactured, in which the material selection corresponds to the respective Operating conditions is adjusted, the thermal differential expansions between the shaft and housing are minimized and in which an ovalization of the Housing parts can be largely avoided during operation.
  • this is the case with a turbomachine housing which consists of at least two housing parts made of different materials exists, achieved in that the at least two housing parts by means of a cohesive joining process are joined together and the type of used material the respective temperature requirements and mechanical loads during operation of the machine is adjusted.
  • the advantages of the invention include that Screw connections between the individual housing parts are eliminated.
  • the joint are mechanically problem-free and tight under all operating conditions.
  • the housing according to the operating requirements is economical to manufacture with optimal materials and thermal Flexibility compared to the state-of-the-art solutions is increased.
  • the housing in the axial direction different materials.
  • the materials for the housing are included matched to the choice of shaft material. This can be advantageous thermal differential expansions between the shaft and the housing are minimized become.
  • the housing has different circumferences Materials with different coefficients of thermal expansion consists. This advantageously leads to a reduction in the signs of ovalization of the housing.
  • FIG. 1 shows in a longitudinal section with a double-shell high-pressure steam turbine a housing according to the invention in a first embodiment of the Invention while FIGS. 2 and 3 cross sections of the high pressure steam turbine represent along lines II-II and III-III in Fig. 1.
  • the steam turbine essentially consists of one, here four Disks 1, 2, 3, 4 composite shaft that carries the blades 51, an inner housing 11, 12, 13 which carries the guide vanes 50 and one Outer housing 41.
  • the inner housing is in a horizontal plane separated into two housing halves by the turbine axis.
  • the discs 1, 2, 3 and 4 each consist of different materials. she are according to the known prior art by means of welding connected to one another, as in FIG. 1 using the wave weld seams 5, 6, 7 is recognizable.
  • the disc 1, which highest temperatures (approx. 620 ° C) is made of a high-alloy 9 to 13% Cr steel, for example.
  • the disc 2 is comparatively lower, but still high Exposed to temperatures (approx. 560 ° C).
  • the discs 3 and 4 only have to can withstand relatively moderate temperatures (approx. 450 ° C) and are therefore from one unalloyed steel.
  • the inner housing like the shaft, is now made of different materials Parts, in the present exemplary embodiment from three parts 11, 12, 13 materially joined together, the housing part 11 with the housing part 12 is welded together to form a circular seam 15, and that Housing part 12 at its other end in turn with the housing part 13 below Formation of a housing weld seam (circular seam) 16 is welded together.
  • Electrode welding by hand MIG
  • MAG by hand or by machine, submerged arc welding, Electron beam welding or laser beam welding for use come.
  • the housing part 11 for maximum temperature application consists, for. B. from a 9th up to 13% Cr steel, the housing part 12 is made for high temperature application e.g. B. from a low-alloy CrMoV steel and the housing part 13 for Low temperature application exists e.g. B. from an unalloyed steel.
  • the inner casing of the high-pressure steam turbine is thus out in the axial direction different materials, the type of material used the respective temperature requirements and mechanical loads in the Operation is adjusted.
  • the housing parts 11, 12, 13 can, depending on the design and requirements be cast or forged, with the parts 12 and 13 especially for Suitable for forging.
  • the housing parts can be in the foundry, in the forge or at one suitable suppliers are welded together.
  • the two housing halves of the inner housing are presented here Embodiment after welding, machining and assembling the Blading held together by shrink rings 21, 22, 23.
  • the Shrink rings 21, 22, 23 are cooled by the exhaust steam flow, so that they do not have to consist of high-alloy expensive materials, but for example from inexpensive forged low-alloy CrMoV steels can exist.
  • the choice of material for the parts 12, 13, 14 of the inner housing is thus on Choice of shaft material, d. H. parts 1 to 4.
  • Fig. 2 the cross section through the vapor, that the wave washer 1 and part 11 of the inner casing of the steam turbine the same Temperature conditions (highest temperature) are subject and therefore off should be made of the same material, e.g. B. a Ni-based alloy.
  • Fig. 3 shows a cross-section in the vicinity of the exhaust steam, from which shows that the wave washer 3 the same temperature conditions (low temperature) is subjected as the inner housing part 13 and therefore the Parts 3 and 13 advantageously made of the same material, e.g. B. a low-alloy CrMoV steel should be made.
  • thermal turbomachines can be built economically at the highest pressures and temperatures.
  • the use of expensive high-alloy materials is to a minimum reduced.
  • the castings are of comparatively modest dimensions, which improves delivery times and has a positive impact on feasibility, Means costs and lead times.
  • many parts can be advantageous be forged.
  • parts that pass through Welding is associated with the highest demands.
  • FIG. 4 and 5 show a second exemplary embodiment of the invention on the basis of a double-shell, double-flow steam turbine, FIG. 4 a longitudinal section the turbine and Fig. 5 shows a detail of the flange connection in the Dividing plane shows.
  • the steam turbine shown can be both high pressure and also be a medium pressure turbine.
  • each of the Turbine essentially from one of several parts 1, 2, 3, 4 composite shaft, which carries the blades 51, an inner housing 11, 12, 13, which carries the guide vanes 50 and an outer housing 41 Shaft parts 1, 2, 3, 4 are each by means of the weld seams 5, 6, 7 put together while the various housing parts of the inner housing 11, 12, 13 by means of the housing weld seams denoted by 15 and 16 are put together.
  • the housing halves not by shrink rings, but by Flange fittings 43 held together.
  • the screw material is in Dependence on the housing material selected. The screw material and that Housing material should have the same coefficient of expansion as possible.
  • the coat must be welded all around. For welding work to save and ensure the necessary flexibility, the Flange parts not welded through, which can be seen well in FIG. 5.
  • FIG. 6 finally shows a third embodiment variant of the invention in a section perpendicular to the turbine axis through a bladed part of a housing.
  • a flange 42 is welded to a housing wall 14 by means of a longitudinal housing seam 17. Depending on requirements, this longitudinal seam 17 can extend over part of the housing length or over the entire length.
  • the thick and thus thermally inert flange parts 42 consist of a material with a higher thermal expansion coefficient than the relatively thin housing wall 14.
  • the separating flange 42 is made of a CrMoV steel with a thermal expansion coefficient of approximately 13x10 -6 K -1 and the housing wall 14 consist of a 9 to 13% Cr steel with a thermal expansion coefficient of about 11x10 -6 K -1 .
  • the invention is not limited to that described Embodiment limited.
  • the different housing parts can For example, instead of using welding, also joined by soldering his. It is also conceivable for such housings also for others Turbomachinery, e.g. B. gas turbines or axial compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Arc Welding In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

The turbomachine housing is divided into 2 housing halves in a plane parallel to the machine axis, each housing half having at least 2 parts (11,12,13) made of different materials which are welded together, having temperature and mechanical loading characteristics matched to the operation of the machine. The different parts of each housing half are positioned one after the other in the axial direction, the 2 housing halves held together by clamp rings (21,22,23), or via screws fitting through abutting flanges.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf das Gebiet des Turbinenbaus. Sie betrifft ein Gehäuse für eine thermische Turbomaschine, welches aus verschiedenen Werkstoffen besteht.The invention relates to the field of turbine construction. It affects one Housing for a thermal turbo machine, which consists of different Materials.

Stand der TechnikState of the art

Bekannt sind Gehäuse aus Stahlguss für thermische Turbomaschinen, insbesondere Dampfturbinen. Die Gehäuse bestehen bevorzugt aus niedriglegierten CrMo- oder CrMoV-Stahlgusssorten. Der Einsatz von 9 bis 13%ige Cr-Legierungen für Turbinengehäuse ist ebenfalls bekannt. Üblicherweise werden die Gehäuse bzw. Gehäusehälften, welche hohen Temperaturen ausgesetzt sind, als ganzes Teil gegossen, d.h. sie bestehen aus einem einzigen Werkstoff. Vorgesehene Fertigungsschweissungen bzw. gelegentlich erforderliche Reperaturschweissungen werden mit dem gleichen oder einem dem Gehäusematerial verwandten Material vom jeweiligen Gusshersteller ausgeführt.Cast steel housings for thermal turbomachinery are known, especially steam turbines. The housings preferably consist of low-alloyed CrMo or CrMoV cast steel grades. The use of 9 to 13% Cr alloys for turbine housings are also known. Usually are the housing or housing halves, what high temperatures exposed, cast as a whole, i.e. they consist of one Material. Intended production welding or occasionally required Repair welds are made with the same or a Housing material related material executed by the respective cast manufacturer.

Zunehmende Mediumtemperaturen erfordern Werkstoffe mit zunehmenden Legierungsgehalten. Damit steigen einerseits die Kosten für solche Bauteile, andererseits stösst man, je nach gewählter Legierung, auch an Machbarkeitsgrenzen, die durch die Gusstechnik oder durch die Kapazität der Produktionsanlage gegeben sein können. Da in Zukunft beispielsweise im Dampfturbinenbau Temperaturen zwischen 540 °C und 850 °C erwartet werden, kommt der Wahl der richtigen Legierung am richtigen Ort eine besondere Bedeutung zu, vor allem in Hinblick auf Kosten, Machbarkeit und technische Eigenschaften. Letzteres betrifft beispielsweise das relative Dehnungsverhalten zwischen benachbarten Teilen, wie Gehäuse und Läufer.Increasing medium temperatures require materials with increasing Alloy contents. On the one hand, this increases the costs for such components, on the other hand, depending on the alloy selected, you also toast Feasibility limits imposed by the casting technology or by the capacity of the Production facility can be given. Because in the future, for example, Steam turbine construction temperatures between 540 ° C and 850 ° C are expected The choice of the right alloy in the right place is a special one Importance too, especially in terms of cost, feasibility and technical Characteristics. The latter concerns, for example, the relative expansion behavior between adjacent parts, such as housing and rotor.

Bekannt ist, die Läufer von Turbomaschinen aus verschiedenen Scheiben, welche gegebenenfalls aus unterschiedlichem Material bestehen, zusammenzuschweissen. Die Materialwahl hängt dabei von den jeweiligen Anforderungen ab. Dort, wo hohe Temperaturen herrschen, werden hochlegierte Scheiben verwendet, die mit niedriger legierten Scheiben zusammengeschweisst werden, sobald die Temperatur und die Beanspruchungen dies erlauben.It is known, the rotor of turbomachinery from different disks, which may consist of different material, to weld together. The choice of material depends on the respective Requirements. Where high temperatures prevail, high alloys are used Discs used that are welded together with lower alloy discs as soon as the temperature and the loads allow it.

Der Nachteil bei der Verwendung von grossen Gehäusen oder Gehäusehälften, welche aus einem einzigen Werkstoff bestehen, besteht darin, dass man z. B. beim Einsatz von Ni-Basislegierungen an die Grenzen der Machbarkeit stösst. Ausserdem sind die Kosten sehr hoch, weil der teure hoch- bzw. höchsttemperaturfeste Werkstoff auch in den Bereichen eingesetzt wird, in denen dessen Einsatz überhaupt nicht erforderlich ist.The disadvantage of using large housings or housing halves, which consist of a single material consists in that z. B. reaches the limits of feasibility when using Ni-based alloys. In addition, the costs are very high because the expensive high or High temperature resistant material is also used in the areas where whose use is not required at all.

Weiterhin harmonisieren die thermischen Dehnungen eines derartigen Gehäuses nicht mit denen der Welle, mit dem Nachteil, dass die Spiele zwischen feststehenden und rotierenden Teilen im Betrieb grösser werden als unbedingt erforderlich, was sich negativ auf den Wirkungsgrad der Maschine auswirkt.Furthermore, the thermal expansions of such a housing harmonize not with those of the wave, with the disadvantage that the games between fixed and rotating parts become bigger than necessary during operation required, which has a negative impact on the efficiency of the machine.

Aus dem Turbinenbau sind auch Gehäuse bekannt, deren Teile aus verschiedenen Werkstoffen bestehen. Diese Gehäuseteile sind zusammengeschraubt, d. h. es existiert eine kraftschlüssige Verbindung. Als Beispiel sollen hier kombinierte Gehäuse aus Stahlguss- und Sphärogussbauteilen genannt werden, die mittels einer Flanschverbindung verbunden sind.Housings are known from turbine construction, the parts of which are made of different materials. These housing parts are screwed together, d. H. there is a non-positive connection. As For example, combined housings made of cast steel and Ductile iron components are called by means of a flange connection are connected.

Der Nachteil dieser mittels Flanschverbindungen verschraubten Gehäuse besteht darin, dass die Flanschverschraubungen Platz benötigen. Ausserdem sind sie bei Gehäusen, die mit höheren Drücken und Temperaturen belastet sind, kostenintensiv und problematisch abzudichten, vor allem bei Kreuzflanschen.The disadvantage of this housing screwed by means of flange connections is in that the flange fittings need space. They are also at Housings that are exposed to higher pressures and temperatures, costly and problematic to seal, especially with cross flanges.

Schliesslich besteht ein Nachteil der bekannten Gehäuse mit Trennebene und Trennflanschen, welche dicker sind als die Schale, darin, dass die Gehäuse durch die asymmetrische Form bei Erwärmung zum Ovalisieren neigen, was sich ungünstig auf die Spiele zwischen feststehenden und rotierenden Teilen und damit auf den Wirkungsgrad der Maschine auswirkt.Finally, there is a disadvantage of the known housing with parting line and Separating flanges, which are thicker than the shell, in that the housing through the asymmetrical shape when heated tend to ovalize what is unfavorable on the games between fixed and rotating parts and thus affects the efficiency of the machine.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein Turbomaschinengehäuse zu entwickeln, welches kostengünstig herzustellen ist, bei dem die Werkstoffauswahl den jeweiligen Betriebsbedingungen angepasst ist, die thermischen Differenzdehnungen zwischen Welle und Gehäuse minimiert sind und bei dem eine Ovalisation der Gehäuseteile während des Betriebes weitgehend vermieden werden kann.The invention tries to avoid all these disadvantages. You have the task to develop a turbomachine housing that is inexpensive is to be manufactured, in which the material selection corresponds to the respective Operating conditions is adjusted, the thermal differential expansions between the shaft and housing are minimized and in which an ovalization of the Housing parts can be largely avoided during operation.

Erfindungsgemäss wird dies bei einem Turbomaschinengehäuse, welches aus mindestens zwei Gehäuseteilen aus jeweils unterschiedlichen Werkstoffen besteht, dadurch erreicht, dass die mindestens zwei Gehäuseteile mittels eines stoffschlüssigen Fügeverfahrens zusammengefügt sind und die Art des verwendeten Werkstoffes den jeweiligen Temperaturanforderungen und mechanischen Belastungen im Betrieb der Maschine angepasst ist.According to the invention, this is the case with a turbomachine housing which consists of at least two housing parts made of different materials exists, achieved in that the at least two housing parts by means of a cohesive joining process are joined together and the type of used material the respective temperature requirements and mechanical loads during operation of the machine is adjusted.

Die Vorteile der Erfindung bestehen unter anderem darin, dass die Verschraubungen zwischen den einzelnen Gehäuseteilen wegfallen. Die Fugen sind mechanisch problemlos und unter allen Betriebszuständen dicht. Als weiterer Vorteil kommt hinzu, dass das Gehäuse entsprechend den Betriebsanforderungen mit optimalen Werkstoffen wirtschaftlich günstig herstellbar ist und die thermische Flexibilität gegenüber den Lösungen nach dem bekannten Stand der Technik erhöht wird.The advantages of the invention include that Screw connections between the individual housing parts are eliminated. The joint are mechanically problem-free and tight under all operating conditions. As another Another advantage is that the housing according to the operating requirements is economical to manufacture with optimal materials and thermal Flexibility compared to the state-of-the-art solutions is increased.

Es ist besonders zweckmässig, wenn das Gehäuse in axialer Richtung aus verschiedenen Werkstoffen besteht. Die Werkstoffe für das Gehäuse sind dabei auf die Wahl des Wellenmaterials abgestimmt. Damit können vorteilhaft thermische Differenzdehnungen zwischen der Welle und dem Gehäuse minimiert werden.It is particularly useful if the housing in the axial direction different materials. The materials for the housing are included matched to the choice of shaft material. This can be advantageous thermal differential expansions between the shaft and the housing are minimized become.

Ferner ist es vorteilhaft, wenn das Gehäuse über den Umfang aus verschiedenen Werkstoffen mit unterschiedlichen thermischen Ausdehnungskoeffizienten besteht. Dies führt vorteilhaft zu einer Reduktion der Ovalisationserscheinungen des Gehäuses.Furthermore, it is advantageous if the housing has different circumferences Materials with different coefficients of thermal expansion consists. This advantageously leads to a reduction in the signs of ovalization of the housing.

Als Fügeverfahren sind vorteilhaft Schweissverfahren, wie z. B. Elektroden-Schweissen von Hand, MIG (Metall-Inert-Gas)- und MAG (Metall-Aktiv-Gas)-Schweissen von Hand oder mittels Automaten, Unterpulver-Schweissen, Elektronenstrahlschweissen oder Laserstrahlschweissen, aber auch Lötverfahren vorgesehen. Damit sind je nach Beanspruchung und Material stoffschlüssige Verbindungen der Gehäuseteile wirtschaftlich herstellbar. As a joining process are advantageous welding processes such. B. Electrode welding by hand, MIG (metal inert gas) and MAG (metal active gas) welding by hand or by machine, submerged arc welding, Electron beam welding or laser beam welding, but also soldering processes intended. Depending on the load and material, they are cohesive Connections of the housing parts can be produced economically.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind mehrere Ausführungsbeispiele der Erfindung anhand von einwelligen axialdurchströmten Dampfturbinen dargestellt.In the drawing, several embodiments of the invention are based on single-shaft axially flow-through steam turbines shown.

Es zeigen:

Fig. 1
einen Längsschnitt einer doppelschaligen Hochdruckturbine in einer ersten Ausführungsvariante der Erfindung;
Fig. 2
einen Querschnitt durch den Zudampf entlang der Linie II-II gemäss Fig. 1;
Fig. 3
einen Querschnitt in der Nähe des Abdampfes entlang der Linie III-III gemäss Fig. 1;
Fig. 4
einen Längsschnitt einer doppelschaligen doppelflutigen Turbine in einer zweiten Ausführungsvariante der Erfindung;
Fig. 5
ein Detail der Flanschverbindung in der Trennebene;
Fig. 6
einen Schnitt senkrecht zur Turbinenachse durch eine beschaufelte Partie eines Gehäuses in einer dritten Ausführungsvariante der Erfindung.
Show it:
Fig. 1
a longitudinal section of a double-shell high-pressure turbine in a first embodiment of the invention;
Fig. 2
a cross section through the vapor along the line II-II of FIG. 1;
Fig. 3
a cross section near the exhaust steam along the line III-III of FIG. 1;
Fig. 4
a longitudinal section of a double-shell double-flow turbine in a second embodiment of the invention;
Fig. 5
a detail of the flange connection in the parting plane;
Fig. 6
a section perpendicular to the turbine axis through a bladed portion of a housing in a third embodiment of the invention.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Only the elements essential for understanding the invention are shown.

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 6 näher erläutert.The invention is explained below using exemplary embodiments and FIG. 1 to 6 explained in more detail.

Fig. 1 zeigt in einem Längsschnitt eine doppelschalige Hochdruckdampfturbine mit einem erfindungsgemässen Gehäuse in einer ersten Ausführungsvariante der Erfindung, während die Fig. 2 und 3 Querschnitte der Hochdruckdampfturbine entlang der Linien II-II und III-III in Fig. 1 darstellen.Fig. 1 shows in a longitudinal section with a double-shell high-pressure steam turbine a housing according to the invention in a first embodiment of the Invention while FIGS. 2 and 3 cross sections of the high pressure steam turbine represent along lines II-II and III-III in Fig. 1.

Die Dampfturbine besteht im wesentlichen aus einer aus mehreren, hier vier Scheiben 1, 2, 3, 4 zusammengesetzten Welle, die die Laufschaufeln 51 trägt, einem Innengehäuse 11, 12, 13, welches die Leitschaufeln 50 trägt und einem Aussengehäuse 41. Das Innengehäuse ist dabei in einer horizontalen Ebene durch die Turbinenachse in zwei Gehäusehälften getrennt.The steam turbine essentially consists of one, here four Disks 1, 2, 3, 4 composite shaft that carries the blades 51, an inner housing 11, 12, 13 which carries the guide vanes 50 and one Outer housing 41. The inner housing is in a horizontal plane separated into two housing halves by the turbine axis.

Die Scheiben 1, 2, 3 und 4 bestehen jeweils aus verschiedenen Werkstoffen. Sie sind nach bekanntem Stand der Technik mittels Zusammenschweissen miteinander verbunden, wie in Fig. 1 anhand der Wellenschweissnähte 5, 6, 7 zu erkennen ist. Die Scheibe 1, welche höchsten Temperaturen (ca. 620 °C) ausgesetzt ist, besteht beispielsweise aus einem hochlegierten 9 bis 13%igen Cr-Stahl. Die Scheibe 2 ist vergleichsweise niedrigeren, aber immer noch hohen Temperaturen (ca. 560 °C) ausgesetzt, sie ist daher z. B. aus einem niedriglegiertem CrMoV-Stahl hergestellt. Die Scheiben 3 und 4 müssen nur noch relativ moderate Temperaturen (ca. 450 °C) aushalten und sind daher aus einem unlegierten Stahl gefertigt.The discs 1, 2, 3 and 4 each consist of different materials. she are according to the known prior art by means of welding connected to one another, as in FIG. 1 using the wave weld seams 5, 6, 7 is recognizable. The disc 1, which highest temperatures (approx. 620 ° C) is made of a high-alloy 9 to 13% Cr steel, for example. The disc 2 is comparatively lower, but still high Exposed to temperatures (approx. 560 ° C). B. from one made of low-alloy CrMoV steel. The discs 3 and 4 only have to can withstand relatively moderate temperatures (approx. 450 ° C) and are therefore from one unalloyed steel.

Das Innengehäuse ist nun erfindungsgemäss wie die Welle aus verschiedenen Teilen, im vorliegenden Ausführungsbeispiel aus drei Teilen 11, 12, 13 stoffschlüssig zusammengefügt, wobei das Gehäuseteil 11 mit dem Gehäuseteil 12 unter Bildung einer Rundnaht 15 zusammengeschweisst ist, und das Gehäuseteil 12 an seinem anderen Ende wiederum mit dem Gehäuseteil 13 unter Bildung einer Gehäuseschweissnaht (Rundnaht) 16 zusammengeschweisst ist. Als Schweissverfahren können dabei das Elektroden-Schweissen von Hand, MIG und MAG von Hand oder mittels Automaten, Unterpulver-Schweissen, Elektronenstrahlschweissen oder Laserstrahlschweissen zur Anwendung kommen.According to the invention, the inner housing, like the shaft, is now made of different materials Parts, in the present exemplary embodiment from three parts 11, 12, 13 materially joined together, the housing part 11 with the housing part 12 is welded together to form a circular seam 15, and that Housing part 12 at its other end in turn with the housing part 13 below Formation of a housing weld seam (circular seam) 16 is welded together. Electrode welding by hand, MIG, can be used as the welding process and MAG by hand or by machine, submerged arc welding, Electron beam welding or laser beam welding for use come.

Das Gehäuseteil 11 für Höchsttemperaturanwendung besteht z. B. aus einem 9 bis 13%igen Cr-Stahl, das Gehäuseteil 12 für Hochtemperaturanwendung besteht z. B. aus einem niedriglegierten CrMoV-Stahl und das Gehäuseteil 13 für Niedrigtemperaturanwendung besteht z. B. aus einem unlegierten Stahl. Das Innengehäuse der Hochdruckdampfturbine ist somit in axialer Richtung aus verschiedenen Werkstoffen gefertigt, wobei die Art des verwendeten Werkstoffes den jeweiligen Temperaturanforderungen und mechanischen Belastungen im Betrieb angepasst ist.The housing part 11 for maximum temperature application consists, for. B. from a 9th up to 13% Cr steel, the housing part 12 is made for high temperature application e.g. B. from a low-alloy CrMoV steel and the housing part 13 for Low temperature application exists e.g. B. from an unalloyed steel. The The inner casing of the high-pressure steam turbine is thus out in the axial direction different materials, the type of material used the respective temperature requirements and mechanical loads in the Operation is adjusted.

Die Gehäuseteile 11, 12, 13 können je nach Gestaltung und Anforderungen gegossen oder geschmiedet sein, wobei sich die Teile 12 und 13 besonders zum Schmieden eignen.The housing parts 11, 12, 13 can, depending on the design and requirements be cast or forged, with the parts 12 and 13 especially for Suitable for forging.

Die Gehäuseteile können in der Giesserei, in der Schmiede oder bei einem geeigneten Lieferanten zusammengeschweisst werden.The housing parts can be in the foundry, in the forge or at one suitable suppliers are welded together.

Die beiden Gehäusehälften des Innengehäuses werden im vorliegenden Ausführungsbeispiel nach dem Schweissen, Bearbeiten und der Montage der Beschaufelung mittels Schrumpfringen 21, 22, 23 zusammengehalten. Die Schrumpfringe 21, 22, 23 werden durch den Abdampfstrom gekühlt, so dass sie nicht aus hochlegierten teuren Materialien bestehen müssen, sondern beispielsweise aus kostengünstigen geschmiedeten niedriglegierten CrMoV-Stählen bestehen können.The two housing halves of the inner housing are presented here Embodiment after welding, machining and assembling the Blading held together by shrink rings 21, 22, 23. The Shrink rings 21, 22, 23 are cooled by the exhaust steam flow, so that they do not have to consist of high-alloy expensive materials, but for example from inexpensive forged low-alloy CrMoV steels can exist.

Bei Erhöhung der Dampftemperaturen auf z. B. 850 °C können die einzelnen Teile 1, 2, 3, 4 der Welle und die Teile 12, 13, 14 des Innengehäuse vorteilhaft aus folgenden Werkstoffen bestehen, wobei zwischen den einzelnen Teilen jeweils eine Fertigungsschweissung vorgesehen ist:

  • im Höchsttemperturbereich  (ca. 620...850 °C)   Ni- Basislegierung
  • im Hochtemperaturbereich  (ca. 560...620 °C)   9 bis 13%iger Cr-Stahl
  • im Niedertemperaturbereich  (ca. 450...560 °C)   CrMoV-Stahl.
When increasing the steam temperatures to z. B. 850 ° C, the individual parts 1, 2, 3, 4 of the shaft and the parts 12, 13, 14 of the inner housing advantageously consist of the following materials, wherein a manufacturing weld is provided between the individual parts:
  • in the maximum temperature range (approx. 620 ... 850 ° C) Ni base alloy
  • in the high temperature range (approx. 560 ... 620 ° C) 9 to 13% Cr steel
  • in the low temperature range (approx. 450 ... 560 ° C) CrMoV steel.

Die Werkstoffwahl für die Teile 12, 13, 14 des Innengehäuses ist somit auf die Wahl des Wellenmaterial, d. h. der Teile 1 bis 4, abgestimmt. Beispielsweise geht aus Fig. 2, dem Querschnitt durch den Zudampf, hervor, dass die Wellenscheibe 1 und Teil 11 des Innengehäuses der Dampfturbine den gleichen Temperaturbedingungen (höchste Temperatur) unterworfen sind und daher aus dem gleichen Material gefertigt werden sollten, z. B. einer Ni-Basislegierung. Fig. 3 zeigt dagegen einen Querschnitt in der Nähe des Abdampfes, aus welchem hervorgeht, dass die Wellenscheibe 3 den gleichen Temperaturbedingungen (niedrige Temperatur) unterworfen ist wie das Innengehäuseteil 13 und daher die Teile 3 und 13 vorteilhaft aus dem gleichen Material, z. B. einem niedriglegierten CrMoV-Stahl gefertigt werden sollten.The choice of material for the parts 12, 13, 14 of the inner housing is thus on Choice of shaft material, d. H. parts 1 to 4. For example, goes from Fig. 2, the cross section through the vapor, that the wave washer 1 and part 11 of the inner casing of the steam turbine the same Temperature conditions (highest temperature) are subject and therefore off should be made of the same material, e.g. B. a Ni-based alloy. Fig. 3 shows a cross-section in the vicinity of the exhaust steam, from which shows that the wave washer 3 the same temperature conditions (low temperature) is subjected as the inner housing part 13 and therefore the Parts 3 and 13 advantageously made of the same material, e.g. B. a low-alloy CrMoV steel should be made.

Die Vorteile der Erfindung bestehen darin, dass thermische Turbomaschinen bis zu höchsten Drücken und Temperaturen wirtschaftlich gebaut werden können. Der Einsatz von teuren hochlegierten Werkstoffen ist auf ein Mindestmass reduziert. Die Gussteile sind von vergleichsweise bescheidenen Abmessungen, was die Lieferzeiten verbessert und einen günstigen Einfluss auf Machbarkeit, Kosten und Durchlaufzeiten bedeutet. Ausserdem können vorteilhaft viele Teile geschmiedet werden. Technisch gesehen erfüllen Teile, welche durch Schweissen verbunden sind, die höchsten Anforderungen.The advantages of the invention are that thermal turbomachines can be built economically at the highest pressures and temperatures. The use of expensive high-alloy materials is to a minimum reduced. The castings are of comparatively modest dimensions, which improves delivery times and has a positive impact on feasibility, Means costs and lead times. In addition, many parts can be advantageous be forged. Technically speaking, parts that pass through Welding is associated with the highest demands.

Fig. 4 und Fig. 5 zeigen ein zweites Ausführungsbeispiel der Erfindung anhand einer doppelschaligen zweiflutigen Dampfturbine, wobei Fig. 4 einen Längsschnitt der Turbine darstellt und Fig. 5 ein Detail der Flanschverbindung in der Trennebene zeigt. Die dargestellte Dampfturbine kann sowohl eine Hochdruckals auch eine Mitteldruckturbine sein.4 and 5 show a second exemplary embodiment of the invention on the basis of a double-shell, double-flow steam turbine, FIG. 4 a longitudinal section the turbine and Fig. 5 shows a detail of the flange connection in the Dividing plane shows. The steam turbine shown can be both high pressure and also be a medium pressure turbine.

Wie beim ersten oben beschriebenen Ausführungsbeispiel besteht jede der Turbinen im wesentlichen aus einer aus mehreren Teilen 1, 2, 3, 4 zusammengesetzten Welle, die die Laufschaufeln 51 trägt, einem Innengehäuse 11, 12, 13, welches die Leitschaufeln 50 trägt und einem Aussengehäuse 41. Die Wellenteile 1, 2, 3, 4 sind jeweils mittels der Schweissnähte 5, 6, 7 zusammengefügt, während die verschiedenen Gehäuseteile des Innengehäuses 11, 12, 13 mittels der mit 15 und 16 bezeichneten Gehäuseschweissnähte zusammengefügt sind. Im Unterschied zum ersten Ausführungsbeispiel werden die Gehäusehälften nicht durch Schrumpfringe, sondern durch Flanschverschraubungen 43 zusammengehalten. Das Schraubenmaterial wird in Abhängigkeit vom Gehäusematerial gewählt. Das Schraubenmaterial und das Gehäusematerial sollten möglichst gleiche Ausdehnungkoeffizienten aufweisen.As with the first embodiment described above, each of the Turbines essentially from one of several parts 1, 2, 3, 4 composite shaft, which carries the blades 51, an inner housing 11, 12, 13, which carries the guide vanes 50 and an outer housing 41 Shaft parts 1, 2, 3, 4 are each by means of the weld seams 5, 6, 7 put together while the various housing parts of the inner housing 11, 12, 13 by means of the housing weld seams denoted by 15 and 16 are put together. In contrast to the first embodiment the housing halves not by shrink rings, but by Flange fittings 43 held together. The screw material is in Dependence on the housing material selected. The screw material and that Housing material should have the same coefficient of expansion as possible.

Der Mantel muss ringsum zusammengeschweisst werden. Um Schweissarbeiten zu sparen und die erforderliche Flexibilität zu gewährleisten, werden die Flanschpartien nicht durchgeschweisst, was gut in Fig. 5 zu sehen ist.The coat must be welded all around. For welding work to save and ensure the necessary flexibility, the Flange parts not welded through, which can be seen well in FIG. 5.

Fig. 6 zeigt schliesslich in einem Schnitt senkrecht zur Turbinenachse durch eine beschaufelte Partie eines Gehäuses eine dritten Ausführungsvariante der Erfindung. An einer Gehäusewand 14 ist ein Flansch 42 mittels einer Gehäuselängsnaht 17 angeschweisst. Diese Längsnaht 17 kann sich je nach Anforderung auf einen Teil der Gehäuselänge oder gesamte Länge erstrecken. Die dicken und somit thermisch trägen Flanschpartien 42 bestehen aus einem Werkstoff mit einem höheren thermischen Ausdehnungskoeffizienten als die relativ dünne Gehäusewand 14. Als ein mögliches Beispiel sei hier genannt, dass der Trennflansch 42 aus einem CrMoV-Stahl mit einem Wärmeausdehnungskoeffizienten von etwa 13x10-6 K-1 und die Gehäusewand 14 aus einem 9 bis 13%igem Cr-Stahl mit einem Wärmeausdehnungskoeffizienten von etwa 11x10-6 K-1 bestehen. Durch Verwendung von Werkstoffen mit unterschiedlichen thermischen Ausdehnungskoeffizienten über den Umfang des Gehäuses werden die Ovalisationseffekte mindestens teilweise ausgeglichen und eine ungewollte Vergrösserung des Spiels zwischen rotierenden und stehenden Teilen der Maschine verhindert.6 finally shows a third embodiment variant of the invention in a section perpendicular to the turbine axis through a bladed part of a housing. A flange 42 is welded to a housing wall 14 by means of a longitudinal housing seam 17. Depending on requirements, this longitudinal seam 17 can extend over part of the housing length or over the entire length. The thick and thus thermally inert flange parts 42 consist of a material with a higher thermal expansion coefficient than the relatively thin housing wall 14. As a possible example, it should be mentioned here that the separating flange 42 is made of a CrMoV steel with a thermal expansion coefficient of approximately 13x10 -6 K -1 and the housing wall 14 consist of a 9 to 13% Cr steel with a thermal expansion coefficient of about 11x10 -6 K -1 . By using materials with different coefficients of thermal expansion over the circumference of the housing, the ovalization effects are at least partially compensated for and an undesired increase in the play between rotating and stationary parts of the machine is prevented.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiel beschränkt. Die unterschiedlichen Gehäuseteile können beispielsweise anstelle mittels Schweissen auch mittels Löten zusammengefügt sein. Ebenso ist es denkbar, derartige Gehäuse auch bei anderen Turbomaschinen, z. B. Gasturbinen oder Axialverdichter, einzusetzen. Of course, the invention is not limited to that described Embodiment limited. The different housing parts can For example, instead of using welding, also joined by soldering his. It is also conceivable for such housings also for others Turbomachinery, e.g. B. gas turbines or axial compressors.

BezugszeichenlisteReference list

11
Wellenteil für HöchsttemperaturanwendungShaft part for maximum temperature application
22nd
Wellenteil für HochtemperaturanwendungShaft part for high temperature application
33rd
Wellenteil für NiedrigtemperaturanwendungShaft part for low temperature application
44th
Wellenteil für NiedrigtemperaturanwendungShaft part for low temperature application
55
WellenschweissnahtCorrugated weld
66
WellenschweissnahtCorrugated weld
77
WellenschweissnahtCorrugated weld
1111
Gehäuseteil für HöchsttemperaturanwendungHousing part for maximum temperature application
1212th
Gehäuseteil für HochtemperaturanwendungHousing part for high temperature application
1313
Gehäuseteil für NiedrigtemperaturanwendungHousing part for low temperature application
1414
GehäusewandHousing wall
1515
Gehäuseschweissnaht (Rundnaht)Housing weld seam (circular seam)
1616
Gehäuseschweissnaht (Rundnaht)Housing weld seam (circular seam)
1717th
Gehäuseschweissnaht (Längsnaht)Housing weld seam (longitudinal seam)
2121
SchrumpfringShrink ring
2222
SchrumpfringShrink ring
2323
SchrumpfringShrink ring
4141
AussengehäuseOuter housing
4242
Horizontaler TrennflanschHorizontal separating flange
4343
Schraubescrew
5050
LeitbeschaufelungGuide blading
5151
LaufbeschaufelungBarrel blading

Claims (8)

Gehäuse für eine thermische Turbomaschine, welches in einer Ebene annähernd parallel zur Maschinenachse in zwei Gehäusehälften getrennt ist, wobei jede Gehäusehälfte aus jeweils mindestens zwei Gehäuseteilen (11, 12, 13, 14, 42) aus jeweils unterschiedlichen Werkstoffen besteht, dadurch gekennzeichnet, dass die mindestens zwei Gehäuseteile (11, 12, 13, 14, 42) mittels eines stoffschlüssigen Fügeverfahrens zusammengefügt sind und die Art des verwendeten Werkstoffes den jeweiligen Temperaturanforderungen und mechanischen Belastungen im Betrieb angepasst ist.Housing for a thermal turbo machine, which in one plane separated into two housing halves approximately parallel to the machine axis is, each housing half of at least two housing parts (11, 12, 13, 14, 42) consists of different materials, characterized in that the at least two housing parts (11, 12, 13, 14, 42) joined together by means of an integral joining process are and the type of material used each Temperature requirements and mechanical loads during operation is adjusted. Gehäuse für eine thermische Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (11, 12, 13) in axialer Richtung aus verschiedenen Werkstoffen besteht.Housing for a thermal turbomachine according to claim 1, characterized characterized in that the housing (11, 12, 13) in the axial direction different materials. Gehäuse für eine thermische Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (14, 42) über den Umfang aus verschiedenen Werkstoffen mit jeweils unterschiedlichen thermischen Ausdehnungskoeffizienten besteht.Housing for a thermal turbomachine according to claim 1, characterized characterized in that the housing (14, 42) over the circumference different materials, each with different thermal Expansion coefficient exists. Gehäuse für eine thermische Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Fügeverfahren ein Schweissverfahren ist. Housing for a thermal turbomachine according to claim 1, characterized characterized that the joining process is a welding process. Gehäuse für eine thermische Turbomaschine nach Anspruch 1 dadurch gekennzeichnet, dass das Fügeverfahren ein Lötverfahren ist.Housing for a thermal turbomachine according to claim 1 thereby characterized that the joining process is a soldering process. Gehäuse für eine thermische Turbomaschine nach Anspruch 4, dadurch gekennzeichnet, dass als Schweissverfahren Elektroden-Schweissen von Hand, MIG und MAG von Hand oder mittels Automaten, Unterpulver-Schweissen, Elektronenstrahlschweissen oder Laserstrahlschweissen vorgesehen sind.Housing for a thermal turbomachine according to claim 4, characterized characterized that as the welding process electrode welding by Manual, MIG and MAG by hand or by means of automatic machines, submerged arc welding, Electron beam welding or laser beam welding are provided. Gehäuse für eine thermische Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Gehäusehälften mit Hilfe von Schrumpfringen (21, 22, 23) zusammengehalten sind.Housing for a thermal turbomachine according to claim 1, characterized characterized that the housing halves with the help of shrink rings (21, 22, 23) are held together. Gehäuse für thermische Turbomaschinen nach Anspruch 1, dadurch gekennzeichnet, dass die Gehäusehälften mittels Flanschverschraubungen (43) zusammengehalten sind.Housing for thermal turbomachinery according to claim 1, characterized characterized that the housing halves by means of flange fittings (43) are held together.
EP00810115A 1999-03-02 2000-02-10 Casing for thermal turbomachine Withdrawn EP1033478A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19909056 1999-03-02
DE19909056A DE19909056A1 (en) 1999-03-02 1999-03-02 Housing for a thermal turbomachine

Publications (2)

Publication Number Publication Date
EP1033478A2 true EP1033478A2 (en) 2000-09-06
EP1033478A3 EP1033478A3 (en) 2002-04-17

Family

ID=7899408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810115A Withdrawn EP1033478A3 (en) 1999-03-02 2000-02-10 Casing for thermal turbomachine

Country Status (4)

Country Link
EP (1) EP1033478A3 (en)
JP (1) JP2000257404A (en)
CN (1) CN1266143A (en)
DE (1) DE19909056A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101044A1 (en) * 2008-03-13 2009-09-16 Siemens Aktiengesellschaft Steam turbine with partitioned interior casing
EP2119878A1 (en) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Steam turbine with partitioned inner casing
CH699864A1 (en) * 2008-10-31 2010-05-14 Alstom Technology Ltd Steam turbine.
EP2196628A1 (en) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Lead rotor holder
EP2211022A1 (en) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Inlet volute of a steam turbine and steam turbine
EP2336506A1 (en) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Steam turbine in triple shell design
CN102581538A (en) * 2012-03-16 2012-07-18 哈尔滨汽轮机厂有限责任公司 Clamping welding and tempering device for horizontal flanges of variable stator blade cartridge receivers of gas turbines
EP2479380A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
EP2479378A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
EP2479379A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
EP3561242A1 (en) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Welded turbine housing segment and turbine housing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50208002D1 (en) 2002-07-01 2006-10-12 Alstom Technology Ltd Rotor for a rotary thermal machine and method for producing such a rotor
JP2005113721A (en) * 2003-10-06 2005-04-28 Hitachi Ltd Steam turbine
DE10348424A1 (en) * 2003-10-14 2005-05-19 Alstom Technology Ltd Welded rotor for a thermal machine and method for producing such a rotor
CH698879B1 (en) * 2006-06-30 2009-11-30 Alstom Technology Ltd Turbomachine.
DE102008000284A1 (en) * 2007-03-02 2008-09-04 Alstom Technology Ltd. Power station steam turbine has inner housing of welded construction end forged or rolled steel blade roots
WO2009056489A2 (en) * 2007-11-02 2009-05-07 Alstom Technology Ltd Method for determining the remaining service life of a rotor of a thermally loaded turbo engine
DE102010012940A1 (en) * 2010-03-26 2011-09-29 Siemens Aktiengesellschaft Producing firmly bonded connection between two components of a fluid-flow machine such as a steam turbine, which reaches in an operation of an operating temperature, comprises providing a solder connection of the firmly bonded compound
EP2412473A1 (en) * 2010-07-27 2012-02-01 Siemens Aktiengesellschaft Method for welding half shells
CN101905384B (en) * 2010-07-29 2012-07-25 长沙赛尔机泵有限公司 Welding and assembling method of compressor shell
CN103769541B (en) * 2014-01-23 2017-02-01 中国人民解放军总参谋部第六十研究所 Volute center mold-splitting forming method and forming tooling
EP3072624A1 (en) * 2015-03-23 2016-09-28 Siemens Aktiengesellschaft Shaft-element, method of producing a shaft-element made of two different materials and corresponding flow engine
JP6614503B2 (en) * 2016-10-21 2019-12-04 三菱重工業株式会社 Steam turbine and control method of steam turbine
CN114542212A (en) * 2022-03-09 2022-05-27 中国船舶重工集团公司第七0三研究所 Novel marine steam turbine cylinder of backing a car

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219661A1 (en) * 1972-04-21 1973-10-31 Siemens Ag METHOD OF MANUFACTURING HOUSINGS FOR STEAM TURBINES
US4551065A (en) * 1982-12-13 1985-11-05 Becker John H Composite horizontally or vertically split casing with variable casing ends
CH666937A5 (en) * 1985-01-31 1988-08-31 Bbc Brown Boveri & Cie High pressure steam turbine.
DE4311675C2 (en) * 1993-04-08 1999-05-20 Abb Patent Gmbh Assembly package for a turbine or a turbocompressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101044A1 (en) * 2008-03-13 2009-09-16 Siemens Aktiengesellschaft Steam turbine with partitioned interior casing
WO2009112299A1 (en) * 2008-03-13 2009-09-17 Siemens Aktiengesellschaft Steam turbine having divided inside housing
EP2119878A1 (en) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Steam turbine with partitioned inner casing
CH699864A1 (en) * 2008-10-31 2010-05-14 Alstom Technology Ltd Steam turbine.
EP2196628A1 (en) * 2008-12-10 2010-06-16 Siemens Aktiengesellschaft Lead rotor holder
EP2211022A1 (en) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Inlet volute of a steam turbine and steam turbine
CN102803661A (en) * 2009-12-15 2012-11-28 西门子公司 Steam turbine in three-shelled design
WO2011082984A1 (en) * 2009-12-15 2011-07-14 Siemens Aktiengesellschaft Steam turbine in three-shelled design
EP2336506A1 (en) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Steam turbine in triple shell design
CN102803661B (en) * 2009-12-15 2015-06-17 西门子公司 Steam turbine in three-shelled design
US9222370B2 (en) 2009-12-15 2015-12-29 Siemens Aktiengesellschaft Steam turbine in a three-shelled design
EP2479380A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
EP2479378A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
EP2479379A1 (en) * 2011-01-21 2012-07-25 General Electric Company A welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
US8944761B2 (en) 2011-01-21 2015-02-03 General Electric Company Welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
CN102581538A (en) * 2012-03-16 2012-07-18 哈尔滨汽轮机厂有限责任公司 Clamping welding and tempering device for horizontal flanges of variable stator blade cartridge receivers of gas turbines
CN102581538B (en) * 2012-03-16 2014-08-13 哈尔滨汽轮机厂有限责任公司 Clamping welding and tempering device for horizontal flanges of variable stator blade cartridge receivers of gas turbines
EP3561242A1 (en) * 2018-04-24 2019-10-30 Siemens Aktiengesellschaft Welded turbine housing segment and turbine housing

Also Published As

Publication number Publication date
DE19909056A1 (en) 2000-09-07
JP2000257404A (en) 2000-09-19
CN1266143A (en) 2000-09-13
EP1033478A3 (en) 2002-04-17

Similar Documents

Publication Publication Date Title
EP1033478A2 (en) Casing for thermal turbomachine
DE68910000T2 (en) Welding parts separated by a gap using a laser beam.
DE3100335C2 (en) Composite turbine wheel
DE69410195T2 (en) Guide vane with reinforced solder connection
DE60036253T2 (en) Steam turbine blade for a steam power plant
EP1243754B1 (en) Turbomachine rotor and method of manufacture therefor
EP3409897B1 (en) Seal assembly for a turbomachine, method for producing a seal assembly and turbomachine
DE102005037031A1 (en) Turbocharger with titanium component
DE4239710A1 (en) Rotor for steam turbine and current generation - comprises a welded assembly of largely pre-processed components belonging to a modular construction system standardising the rotor parts
DE2830358A1 (en) COMPRESSOR IMPELLER, ESPECIALLY RADIAL COMPRESSOR IMPELLER FOR FLOWING MACHINES
EP3026229B1 (en) Turbine housing for a turbocharger
EP1359292A1 (en) Lightweight valve
WO2009100749A1 (en) Connection of a shaft to a rotating component
DE1628376A1 (en) Axial compressor
DE102008014680A1 (en) Leitgitteranordnung an exhaust gas turbocharger, exhaust gas turbocharger and method for producing a Leitgitteranordnung
DE102014204468A1 (en) Gas turbine combustor and method for its production
DE102008038007A1 (en) turbocharger
DE19617539A1 (en) Rotor for thermal turbo engine
CH694257A5 (en) Steam turbine.
EP0999349B1 (en) Axial turbine
DE102006008836A1 (en) Method for producing and / or repairing an integrally bladed rotor
EP1002935A1 (en) TiAl-rotor of a turbomachine and method of manufacturing
EP2346639B1 (en) Bonding method
DE1957614A1 (en) Method for producing the connection of cooled or uncooled rotor blades with the blade ring of an associated wheel disk
EP2762684A1 (en) Seal mount made from from titanium aluminide for a flow machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 01D 25/24 A, 7F 01D 11/18 B

17P Request for examination filed

Effective date: 20020911

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20030612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030926