EP1032681A1 - Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd - Google Patents

Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd

Info

Publication number
EP1032681A1
EP1032681A1 EP98954565A EP98954565A EP1032681A1 EP 1032681 A1 EP1032681 A1 EP 1032681A1 EP 98954565 A EP98954565 A EP 98954565A EP 98954565 A EP98954565 A EP 98954565A EP 1032681 A1 EP1032681 A1 EP 1032681A1
Authority
EP
European Patent Office
Prior art keywords
chimeric gene
plants
promoter
hppd
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98954565A
Other languages
German (de)
English (en)
Inventor
Luc Reygnier
Alain Sailland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience SA
Original Assignee
Aventis CropScience SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis CropScience SA filed Critical Aventis CropScience SA
Publication of EP1032681A1 publication Critical patent/EP1032681A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance

Definitions

  • the present invention relates to a chimeric gene having a light-dependent promoter operably linked to a gene coding for a HPPD (hydroxy phenyl pyruvate dioxygenase), conferring improved tolerance to herbicides inhibitors of 1 ⁇ PPD to a normally sensitive plant cell and plant .
  • HPPD hydroxy phenyl pyruvate dioxygenase
  • the invention also relates to plant cells and palntes transformed with the chimeric gene according to the invention, a method for transforming plant cells and plants and a method for cultivating transformed plants in which an herbicide inhibitor of HPPD is applied to eliminate weeds.
  • the herbicides targeting HPPD are in particular isoxazoles (EP 418 175, EP 470 856, EP 487 352, EP 527 036, EP 560 482, EP 682 659, US 5 424 276) in particular isoxaflutole, a selective herbicide corn, diketonitriles (EP 496 630, EP 496 631), in particular 2-cyano-3-cyclopropyl-1- (2-S ⁇ 2 CH3-4-CF3 phenyl) propane- 1, 3 -dione and 2- cyano-3-cyclopropyl-l- (2-S ⁇ 2 CH3 ⁇ 4-2.3 CI2 phenyl) propane- 1, 3-dione, triketones (EP 625 505, EP 625 508, US 5,506,195), in particular sulcotrione or again the pyrazolinates.
  • isoxazoles EP 418 175, EP 470 856, EP 487 352, EP 527 036, EP 560 482, EP 682 659, US 5 424 27
  • LD promoter lightly dependent promoter
  • the present invention therefore firstly relates to a chimeric gene comprising at least one elementary chimeric gene containing, in the direction of transcription, 5 'regulatory elements necessary for its transcription in plants, at least one heterologous coding part. comprising a coding sequence coding for an enzyme conferring on plants tolerance to herbicides which inhibit HPPD and at least one terminator or polyadenylation regulatory sequence, the 5 'regulatory elements ensuring the transcription of the elementary chimeric gene at the tissue level chlorophylliens, the said 5 'regulatory elements preferably comprising at least one promoter regulatory sequence of the LD promoter type.
  • LD promoter any gene promoter coding for peptides whose transcription is induced by light which is functional as a promoter in plant cells.
  • LD promoters can be of bacterial, viral or vegetable origin. Such promoters are in particular described by Terzaghi & coll. (Light-regulated transcription, Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995, 46: 445-474) the content of which is incorporated herein by reference.
  • LD promoter useful according to the invention, there will be mentioned more particularly the promoter of a gene for the small subunit of plant ribulose-biscarboxylase (rbcs), of the protein "light-harvesting chlorophyll a / b binding" (LHCP) , plastocyanine (pet E) and phenylalanine ammonia lyase (pal).
  • rbcs ribulose-biscarboxylase
  • LHCP light-harvesting chlorophyll a / b binding
  • plastocyanine plastocyanine
  • pal phenylalanine ammonia lyase
  • a promoter regulatory sequence which promotes the overexpression of the coding sequence in chlorophyllian tissues, such as for example, that comprising at least one functional fragment of the promoter of the small rbcs subunit (SSU) d 'a plant, more particularly isolated from Helianthus annuus as described in US patent 5,559,024.
  • SSU small rbcs subunit
  • the sequence of the SSU promoter of Helianthus annuus comprises the DNA sequence represented by the sequence identifier No. 1 (SEQ ID NO: 1) or a sequence homologous to said sequence . More preferably, the sequence of the SSU promoter consists of the DNA sequence represented by the sequence identifier No. 1.
  • homologous a DNA sequence having one or more sequence modifications with respect to the reference DNA sequence described by the sequence identifier No. 1, and reproducing the function of this sequence. These modifications can be obtained according to the usual mutation techniques, or alternatively by choosing the synthetic oligonucleotides which can be used in the preparation of said sequence by hybridization.
  • the degree of homology will be at least 70% relative to the reference sequence, preferably at least 80%, more preferably at least 90%.
  • plant cell any cell derived from a monocotyledonous plant and which may constitute undifferentiated tissues such as calluses, differentiated tissues such as embryos, parts of monocotyledonous plants, monocotyledonous plants or seeds.
  • plant means any differentiated multicellular organism capable of photosynthesis, more particularly monocotyledonous or dicotyledonous plants, preferably from cultures intended or not intended for animal or human food, such as, for example, wheat, barley, oats, rice, corn, sorghum, sugarcane, soybeans, rapeseed, cotton, tobacco, beetroot or vegetable or flower crops.
  • promoter regulatory sequence of the LD type other regulatory sequences, which are located between the promoter and the coding sequence, such as enhancer trancription activators, as for example the translation activator of the tobacco etch virus (VTE) described in the article by Carrington and Freed, 1990; J. Virol.
  • enhancer trancription activators as for example the translation activator of the tobacco etch virus (VTE) described in the article by Carrington and Freed, 1990; J. Virol.
  • sequences coding for transit peptides either single or double, and in this case optionally separated by an intermediate sequence, that is to say comprising, in the direction of transcription, a sequence coding for a transit peptide of a plant gene coding for an enzyme with plastid location, a sequence part of the mature N terminal part of a plant gene coding for an enzyme with localization plastid, then a sequence coding for a second transit peptide of a plant gene coding for a plastid localized enzyme, consisting of a sequence part of the mature N terminal part of a plant gene coding for a plastid localized enzyme , as described in patent application EP 508 909.
  • HPPD As coding sequence for an enzyme conferring on plants tolerance to herbicides which inhibit HPPD, it is possible in particular to use all those known to confer plant tolerance on certain inhibitors of HPPD such as the sequences coding for a HPPD described in patent application WO 96/38567 and in patent application FR 9714264 filed on November 7, 1997.
  • This HPPD can be of any kind.
  • this sequence can be of bacterial origin, such as in particular the genus Pseudomonas or also of vegetable origin, such as in particular of monocotyledonous or dicotyledone plant, in particular Arabidopsis or umbelliferae such as for example carrot (Daucus carota). It can be native or wild or possibly mutated while fundamentally retaining a herbicidal tolerance property against HPPD inhibitors, such as herbicides of the isoxazole family or that of the triketones or pyrazinolates.
  • HPPD inhibitors such as herbicides of the isoxazole family or that of the triketones or pyrazinolates.
  • any corresponding sequence of bacterial origin such as for example the terminator nos dAgrobacterium tumefaciens, or of plant origin, such as for example a histone terminator as described in the application, can be used.
  • European EP 633,317 As terminating or polyadenylation regulatory sequence, any corresponding sequence of bacterial origin, such as for example the terminator nos dAgrobacterium tumefaciens, or of plant origin, such as for example a histone terminator as described in the application, can be used.
  • European EP 633,317 As terminating or polyadenylation regulatory sequence, any corresponding sequence of bacterial origin, such as for example the terminator nos dAgrobacterium tumefaciens, or of plant origin, such as for example a histone terminator as described in the application.
  • the present invention also relates to a cloning or expression vector for the transformation of a plant cell or a monocotyledonous or dicotyledonous plant.
  • the vector according to the invention comprises, in addition to the above chimeric gene, at least one origin of replication.
  • This vector can consist of a plasmid, a cosmid, a bacteriophage or a virus, transformed by the introduction of the chimeric gene according to the invention.
  • Such vectors for transforming plant cells and monocotyledonous plants are well known to those skilled in the art and widely described in the literature.
  • the vector for transforming plant cells or plants according to the invention is a plasmid.
  • the subject of the invention is also a process for transforming plant cells by integration of at least one nucleic acid fragment or a chimeric gene as defined above, a transformation which can be obtained by any suitable known means with the vector according to the invention.
  • a series of methods involves bombarding cells or protoplasts with particles to which the DNA sequences are attached. Another series of methods consists in using a chimeric gene as a means of transfer into the plant. inserted into a Ti d grobacterium tumefaciens or Ri plasmid from Agrobacterium rhizogenes. Other methods can be used such as micro-injection or electroporation, or even direct precipitation using PEG.
  • Another subject of the present invention is plant cells or plants, transformed tolerant to herbicides targeting HPPD and containing at least one chimeric gene according to the invention defined above.
  • the present invention also relates to plants containing transformed cells, in particular plants regenerated from transformed cells.
  • the regeneration is obtained by any suitable process which depends on the nature of the species.
  • the present invention also relates to the transformed plants resulting from the culture and / or the crossing of the regenerated plants above, as well as the seeds of transformed plants.
  • the present invention also relates to a method of controlling weeds in a surface of a field comprising seeds or plants transformed with the chimeric gene according to the invention, which method consists in applying in said field surface a toxic dose for the said weeds of a herbicide targeting HPPD, without however substantially affecting the seeds or plants transformed with the said chimeric gene according to the invention.
  • the present invention also relates to a process for cultivating plants transformed according to the invention with a chimeric gene according to the invention, which process consists in planting the seeds of said transformed plants in a surface of a field suitable for the cultivation of said plants, to apply to said surface of said field a toxic dose for weeds of a herbicide targeting HPPD defined above in the presence of weeds, without substantially affecting said seeds or said plants then harvest the cultivated plants when they reach the desired maturity and possibly separate the seeds from the harvested plants.
  • the application of the herbicide targeting HPPD can be carried out according to the invention, both in pre-planting, pre-emergence and post-emergence of the crop.
  • herbicide within the meaning of the present invention is meant a herbicidal active material alone or associated with an additive which modifies its effectiveness such as for example an agent increasing activity (synergist) or limiting activity (in English safener).
  • an agent increasing activity for example an agent increasing activity (synergist) or limiting activity (in English safener).
  • limiting activity in English safener.
  • the above herbicides are associated in a known manner with the adjuvants of formulations usually used in agrochemistry. The various aspects of the invention will be better understood with the aid of the experimental examples below.
  • Example 1 Construction of a chimeric gene with an HPPD sequence and an LD promoter. To confer plant tolerance to herbicides that inhibit HPPD, a chimeric gene called pRPA-RD-2005 is constructed:
  • HPPD HPPD will then be localized in the chloroplast and the gene is mainly expressed in chlorophyll tissues.
  • PRPA-RD-2005 is a binary vector of pRPA-BL-150A ⁇ 2 type (EP 508 909) containing an HPPD expression cassette: promoter of the small subunit of ribulose discarboxylase-OTP-HPPD gene-terminator our
  • pRPA-RD-2004 - pRD-207 is a pBluescript SK (-) (stratagene catalog # 21 2206) containing the gene for nopaline synthase (terminator nos).
  • PRD-207 is used as the basic vector for the construction of pRPA-RD-2004
  • - pRD-208 contains the OTP / HPPD cassette: nos. It is obtained from the plasmid pRPA S, described in WO 96/38567, digested with Xbal / ClaI, treatment with polymerase pfu type. The cassette is introduced into the open pRD-207 by a Sali digestion, klenow treatment.
  • the promoter of the small subunit of the ribulose biscarboxylase from Helianthus annuus comes from the plasmid pRD-127 described in WO 96/38567 digested Ncol / Xbal is introduced into pRD-208. This construction constitutes pRPA-RD-2004
  • Example 2 Processing of PBD6 industrial tobacco.
  • Transformation The vector is introduced into the non-oncogenic strain of Agrobacterium EHA 101 or LBA 4404 (Hood et al, 1987) carrying the cosmid pTVK 291 (Komari et al, 1986). The transformation technique is based on the procedure of Horsh R. et al. (1985) Science, 227, 1229-1231.
  • Regeneration The regeneration of PBD6 tobacco (from SEITA France) from leaf explants is carried out on a Murashige and Skoog (MS) base medium comprising 30g / l of sucrose as well as 350 mg / 1 of cefotaxime and 1 mg / 1 diketonitrile derived from isoxaflutole or 10 mg / 1 l- [4- (trifluoromethyl) -2- (methylsulfonyl) phenyl] -2-cyano- 3- (l-methylcyclopropyl) -propan-1, 3- dione, another HPPD inhibitor.
  • MS Murashige and Skoog
  • the leaf explants are taken from plants in the greenhouse or in vitro and transformed using the leaf disc technique (Science 1985, Vol 227, p.1229-1231) in three successive stages: the first includes the induction of shoots on a medium MS supplemented with 30g / l of sucrose containing 0.05mg / l of naphthylacetic acid (ANA) and 2 mg / 1 of benzylaminopurine (BAP) for 15 days and 1 mg / 1 of isoxaflutole.
  • ANA naphthylacetic acid
  • BAP benzylaminopurine
  • the green shoots formed during this stage are then developed by culture on an MS medium supplemented with 30 g / 1 of sucrose and 1 mg / 1 of isoxaflutole or 10 mg / 1 of 1- [4- (trifluoromethyl) -2 - (methylsulfonyl) phenyl] -2-cyano-3- (1-methylcyclopropyl) -propan 1,3-dione but containing no hormone, for 10 days.
  • the transformed tobacco seedlings were acclimated in the greenhouse (60% relative humidity; temperature: 20 ° C at night and 23 ° C during the day) for three weeks then treated with 4- [4- (trifiuoromethyl) -2- (methylsulfonyl) benzoyl] -5-cyclopropylisoxazole (isoxafutole).
  • the control tobacco, unprocessed and treated with isoxafutole at the doses of 400 g / ha develops in about 72 hours chloroses, which intensify to progress to very pronounced necrosis in a week (covering about 80% of the leaves final).
  • the greenhouse tolerance of 2005 tobacco is compared to that of COI 1 tobacco, transformed with the pRPA-V chimeric gene described in patent application WO 96/38567 and that of unprocessed tobacco. Description of tobacco trials.
  • Example 4 The comparative tolerance tests of Example 4 are reproduced in the field for the same tobacco 2005, COI 1 and PBD6.
  • Young plants from seedlings were transplanted individually in miniballs to be transplanted a second time in the field.
  • the post treatment was carried out one week later at doses of isoxaflutole of 0/100/200/300/400/500/600 g / ha.
  • plants transformed with the pRPA-RD-2005 gene comprising the SSU promoter have better tolerance to HPPD inhibitors than those transformed with the pRPA-V gene comprising the double histone promoter combined with TEV "enhancer" of the state of the art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne un gène chimère comprenant au moins un gène chimère élémentaire comprenant, dans le sens de la transcription, des éléments de régulation en 5' nécessaires à sa transcription dans les plantes, au moins une partie codante hétérologue comprenant une séquence codante codant pour une enzyme conférant aux plantes la tolérance aux herbicides inhibiteurs de l'HPPD et au moins une séquence de régulation terminatrice ou de polyadénylation, dans lequel les éléments de régulation en 5' assurent la transcription du gène chimère élémentaire au niveau des tissus chlorophylliens. La présente invention concerne également la transformation des plantes et les plantes transformées avec ledit gène chimère. Elle concerne aussi un procédé de culture des plantes transformées dans lequel on applique un inhibiteur d'HPPD pour contrôler les mauvaises herbes.

Description

Gène chimère ayant un promoteur lumière dépendant conférant la tolérance aux inhibiteurs de 1ΗPPD
La présente invention a pour objet un gène chimère ayant un promoteur lumière dépendant lié de manière fonctionnelle à un gène codant pour une HPPD (hydroxy phényl pyruvate dioxygénase), conférant une tolérance améliorée aux herbicides inhibiteurs de 1ΗPPD à une cellule végétale et une plante normalement sensibles. L'invention concerne également les cellules végétales et palntes transformées avec le gène chimère selon l'invention, un procédé de transformation des cellules végétales et des plantes et un procédé de culture des plantes transformées dans lequel on applique un herbicide inhibiteur de l'HPPD pour éliminer les mauvaises herbes.
Les herbicides ayant pour cible l'HPPD sont notamment les isoxazoles (EP 418 175, EP 470 856, EP 487 352, EP 527 036, EP 560 482, EP 682 659, US 5 424 276) en particulier l'isoxaflutole, herbicide sélectif du maïs, les dicétonitriles (EP 496 630, EP 496 631), en particulier la 2-cyano-3-cyclopropyl-l-(2-Sθ2 CH3-4-CF3 phényl) propane- 1, 3 -dione et la 2-cyano-3-cyclopropyl-l-(2-Sθ2 CH3~4-2,3 CI2 phényl) propane- 1, 3-dione, les tricétones (EP 625 505, EP 625 508, US 5,506,195), en particulier la sulcotrione ou encore les pyrazolinates. Des gènes codant pour une HPPD conférant une tolérance à ces herbicides et les plantes transgéniques contenant ce gène montrent une tolérance significative aux dits herbicides sont décrits dans la demande de brevet WO 96/38567 et dans la demande de brevet FR 97 14264 déposée le 7 novembre 1997, dont le contenu est ici inclus par référence.
Jusqu'à maintenant tous les essais effectués pour conférer une bonne tolérance aux inhibiteurs de l'HPPD l'ont été en utilisant des promoteurs « constitutifs » ou permettant une expression dans toutes sortes de tissus végétaux, tissus racinaires, tissus foliaires, zones en croissance plus ou moins rapides. Pour ce faire des plantes dicotylédones comme le tabac, Arabidopsis thaliana, le colza et le soja ont été transformées soit avec: - le gène chimère pRP T
- le gène chimère pRP V
Ces essais nous ont permis de confirmar que ce type d'expression permet dans les dicotylédones d'obtenir une très bonne tolérance. Des plantes monocotylédones comme le mais ont également été transformées avec le gène chimère pRPA-RD-1004 (demande de brevet PCT/FR97/01256 déposée le 10 juillet 1997): promoteur histone Intron 1 de OTP Région codante de l'HPPD Terminateur nos H3C4 de maïs Adhl
On a maintenant trouvé qu'on pouvait conférer à une cellule végétale et à une plante une tolérance herbicide améliorée par sur-expression de l'HPPD par l'intermédiaire d'un promoteur " lumière dépendant " ( appelé ci-après promoteur LD). L'utilisation de ces promoteurs LD conduit à l'expression du gène chimère dans les tissus chlorophylliens ou " tissus verts " sans aucune expression dans les tissus non chlorophylliens ou une expression très faible dans les tissus non chlorophylliens comme les tissus racinaires, une telle expression étant suffisante pour améliorer la tolérance des plantes transformées aux herbicides inhibiteurs de l'HPPD.
La présente invention a donc d'abord pour objet un gène chimère comprenant au moins un gène chimère élémentaire contenant , dans le sens de la transcription, des éléments de régulation en 5' nécessaires à sa transcription dans les plantes, au moins une partie codante hétérologue comprenant une séquence codante codant pour une enzyme conférant aux plantes la tolérance aux herbicides inhibiteurs de l'HPPD et au moins une séquence de régulation terminatrice ou de polyadenylation, les éléments de régulation en 5' assurant la transcription du gène chimère élémentaire au niveau des tissus chlorophylliens, les dits éléments de régulations en 5' comprenant de préférence au moins une séquence de régulation promotrice de type promoteur LD.
Par « promoteur LD », on entend selon l'invention tout promoteur de gène codant pour des peptides dont la transcription est induite par la lumière qui est fonctionnel comme promoteur dans les cellules végétales. Ces promoteurs LD peuvent être d'origine bactérienne, virale ou végétale. De tels promoteurs sont notamment décrits par Terzaghi & coll. (Light-regulated transcription, Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995, 46:445-474) dont le contenu est incorporé ici par référence. Comme promoteur LD utile selon l'invention, on citera plus particulièrement le promoteur d'un gène de la petite sous unité de ribulose-biscarboxylase (rbcs) de plante, de la protéine « light-harvesting chlrorophyll a/b binding » (LHCP), de la plastocyanine (pet E) et de la phénylalanine ammonia lyase (pal). De préférence on a recours à une séquence de régulation promotrice qui favorise la surexpression de la séquence codante dans les tissus chlorophylliens, telle que par exemple, celle comprenant au moins un fragment fonctionnel du promoteur de la petite sous unité de la rbcs (SSU) d'une plante, plus particulièrement isolé d'Helianthus annuus tel que décrit dans lebrevet US 5,559,024. Parmi les promoteurs S SU, on peut également citer le promoteur S SU de pétunia décrit dans le brevet US 4,962,028.
Par fragment fonctionnel, on entend selon l'invention toute séquence d'ADN issue de la séquence du promoteur SSU reproduisant la fonction de la séquence d'où elle est issue.
Selon un mode préférentiel de réalisation de l'invention, la séquence du promoteur SSU d'Helianthus annuus comprend la séquence d'ADN représentée par l'identificateur de séquence n° 1 (SEQ ID NO:l) ou une séquence homologue de ladite séquence. Plus préférentiellement, la séquence du promoteur SSU consiste en la séquence d'ADN représentée par l'identificateur de séquence n° 1.
Par " homologue ", on entend selon l'invention une séquence d'ADN présentant une ou plusieurs modifications de séquence par rapport à la séquence d'ADN de référence décrite par l'identificateur de séquence n° 1, et reproduisant la fonction de cette séquence. Ces modifications peuvent être obtenues selon les techniques usuelles de mutation, ou encore en choisissant les oligonucléotides synthétiques pouvant être employés dans la préparation de ladite séquence par hybridation. De manière avantageuse, le degré d'homologie sera d'au moins 70 % par rapport à la séquence de référence, de préférence d'au moins 80 %, plus préférentiellement d'au moins 90 %.
Par "cellule végétale", on entend selon l'invention toute cellule issue d'une plante monocotyledone et pouvant constituer des tissus indifférenciés tels que des cals, des tissus différenciés tels que des embryons, des parties de plantes monocotyledones, des plantes monocotyledones ou des semences.
On entend par " plante " selon l'invention, tout organisme multicellulaire différencié capable de photosynthèse, plus particulièrement des plantes monocotyledones ou dicotylédones, de préférence de culture destinées ou non à l'alimentation animale ou humaine, comme par exemple le blé, l'orge, l'avoine, le riz, le maïs, le sorgho, la canne à sucre, le soja, le colza, le coton, le tabac, la betterave ou encore desplantes de cultures maraichères ou florales.
Selon l'invention, on peut également utiliser, en association avec la séquence de régulation promotrice de type LD, d'autres séquences de régulation, qui sont situées entre le promoteur et la séquence codante, telles que des activateurs de trancription "enhancer", comme par exemple l'activateur de traduction du virus etch du tabac (TEV) décrit dans l'article de Carrington and Freed, 1990; J. Virol. 64: 1590-1597, ou des séquences codant pour des peptides de transit, soit simples, soit doubles, et dans ce cas éventuellement séparés par une séquence intermédiaire, c'est à dire comprenant, dans le sens de la transcription, une séquence codant pour un peptide de transit d'un gène végétal codant pour une enzyme à localisation plastidiale, une partie de séquence de la partie mature N terminale d'un gène végétal codant pour une enzyme à localisation plastidiale, puis une séquence codant pour un second peptide de transit d'un gène végétal codant pour une enzyme à localisation plastidiale, constituée d'une partie de séquence de la partie mature N terminale d'un gène végétal codant pour une enzyme à localisation plastidiale, tels que décrit dans la demande demande de brevet EP 508 909. Comme séquence codante pour une enzyme conférant aux plantes la tolérance aux herbicides inhibiteurs de l'HPPD, on peut notamment utiliser toutes celles connues pour conférer la tolérance de plantes à certains inhibiteurs de l'HPPD telles que les séquences codant pour une HPPD décrites dans la demande de brevet WO 96/38567 et dans la demande de brevet FR 9714264 déposée le 7 novembre 1997. Cette HPPD peut être de toute nature.
Plus particulièrement cette séquence peut être d'origine bactérienne, telle que notamment le genre Pseudomonas ou encore d'origine végétale, telle que notamment de plante monocotylédone ou dicotyledone, notamment dArabidopsis ou d'ombellifères comme par exemple la carotte (Daucus carota). Elle peut être native ou sauvage ou éventuellement mutée tout en gardant fondamentalement une propriété de tolérance herbicide contre les inhibiteurs de l'HPPD, tels que les herbicides de la famille des isoxazoles ou de celle des tricétones ou des pyrazinolates.
Comme séquence de régulation terminatrice ou de polyadenylation, on peut utiliser toute séquence correspondante d'origine bactérienne, comme par exemple le terminateur nos dAgrobacterium tumefaciens, ou encore d'origine végétale, comme par exemple un terminateur d'histone tel que décrit dans la demande européenne EP 633 317.
La présente invention concerne également un vecteur de clonage ou d'expression pour la transformation d'une cellule végétale ou d'une plante monocotylédone ou dicotyledone. Le vecteur selon l'invention comprend outre le gène chimère ci-dessus, au moins une origine de réplication. Ce vecteur peut être constitué par un plasmide, un cosmide, un bactériophage ou un virus, transformés par l'introduction du gène chimère selon l'invention. De tels vecteurs de transformation de cellules végétales et de plantes monocotyledones sont bien connus de l'homme du métier et largement décrits dans la littérature. De manière préférentielle, le vecteur de transformation des cellules végétales ou des plantes selon l'invention est un plasmide.
L'invention a encore pour objet un procédé de transformation des cellules végétales par intégration d'au moins un fragment d'acide nucléique ou un gène chimère tels que définis ci-dessus, transformation qui peut être obtenue par tout moyen connu approprié avec le vecteur selon l'invention.
Une série de méthodes consiste à bombarder des cellules ou des protoplastes avec des particules auxquelles sont accrochées les séquences d'ADN. Une autre série de méthodes consiste à utiliser comme moyen de transfert dans la plante un gène chimère inséré dans un plasmide Ti d grobacterium tumefaciens ou Ri d'Agrobacterium rhizogenes. D'autres méthodes peuvent être utilisées telles que la micro-injection ou l'électroporation, ou encore la précipitation directe au moyen de PEG.
L'homme du métier fera le choix de la méthode appropriée en fonction de la nature de la cellule végétale ou de la plante.
La présente invention a encore pour objet les cellules végétales ou plantes, transformées tolérantes aux herbicides ayant pour cible l'HPPD et contenant au moins un gène chimère selon l'invention défini ci-dessus.
La présente invention a encore pour objet les plantes contenant des cellules transformées, en particulier les plantes régénérées à partir des cellules transformées. La régénération est obtenue par tout procédé approprié qui dépende de la nature de l'espèce.
Pour les procédés de transformation des cellules végétales et de régénération des plantes, on citera notamment les brevets et demandes de brevet suivants: US 4,459,355, US 4,536,475, US 5,464,763, US 5,177,010, US 5,187,073, EP 267,159, EP 604 662, EP 672 752, US 4,945,050, US 5,036,006, US 5,100,792, US 5,371,014, US 5,478,744, US 5,179,022, US 5,565,346, US 5,484,956, US 5,508,468, US 5,538,877, US 5,554,798, US 5,489,520, US 5,510,318, US 5,204,253, US 5,405,765, EP 442 174, EP 486 233, EP 486 234, EP 539 563, EP 674 725, WO 91/02071 et WO 95/06128.
La présente invention concerne également les plantes transformées issues de la culture et/ou du croisement des plantes régénérées ci-dessus, ainsi que les graines de plantes transformées.
La présente invention concerne également un procédé de contrôle des mauvaises herbes dans une surface d'un champ comprenant des graines ou des plantes transformées avec le gène chimère selon l'invention, lequel procédé consiste à appliquer dans la dite surface du champ une dose toxique pour les dites mauvaises herbes d'un herbicide ayant pour cible l'HPPD, sans toutefois affecter de manière substantielle les graines ou plantes transformée avec le dit gène chimère selon l'invention.
La présente invention concerne également un procédé de culture des plantes transformées selon l'invention avec un gène chimère selon l'invention lequel procédé consiste à planter les graines des dites plantes transformées dans une surface d'un champ approprié pour la culture des dites plantes, à appliquer sur la dite surface du dit champ une dose toxique pour les mauvaises herbes d'un herbicide ayant pour cible l'HPPD défini ci-dessus en cas de présence de mauvaises herbes, sans affecter de manière substantielle les dites graines ou les dites plantes transformées, puis à récolter les plantes cultivées lorsquelles arrivent à la maturité souhaitée et éventuellement à séparer les graines des plantes récoltées. Dans les deux procédés ci-dessus, l'application de l'herbicide ayant pour cible l'HPPD peut être faite selon l'invention, tant en présemis, en prélevée qu'en postlevée de la culture.
Par herbicide au sens de la présente invention on entend une matière active herbicide seule ou associée à un additif qui modifie son efficacité comme par exemple un agent augmentant l'activité (synergiste) ou limitant l'activité (en anglais safener). Bien entendu, pour leur application pratique, les herbicides ci-dessus sont associée de manière en soi connue aux adjuvants de formulations utilisés habituellement en agrochimie Les différents aspects de l'invention seront mieux compris à l'aide des exemples expérimentaux ci-dessous.
Exemple 1: Construction d'un gène chimère avec une séquence HPPD et un promoteur LD. Pour conférer la tolérance de plantes aux herbicides inhibant l'HPPD, on construit un gène chimère appelé pRPA-RD-2005 :
Il consiste à mettre la partie codante du gène de l'HPPD de P. fluorescens A32 sous le contrôle du promoteur de la petite sous unité de la RuBisCO isolé d'Helianthus annuus (US 5,559,024), du peptide de transit optimisé (OTP) (EP 508 909), lui même suivi de la région codante de l'HPPD de Pseudomonas fluorescens (WO 96/38567) à son tour suivie du terminateur nos dAgrobacterium tumefaciens. L'HPPD sera alors localisée dans le chloroplaste et le gène s'exprime essentiellement dans les tissus chlorophylliens.
Le pRPA-RD-2005 est un vecteur binaire de type pRPA-BL-150Aα2 (EP 508 909) contenant une cassette d'expression de l'HPPD: promoteur de la petite sous unité de la ribulose discarboxylase-OTP-gène HPPD-terminateur nos
-Pour le construire, on a utilisé le pRPA-RD 2004 qui contient la cassette d'expression de l'HPPD
Construction du pRPA-RD-2004 - pRD-207 est un pBluescript SK(-) (stratagène catalog#21 2206) contenant le gène de la nopaline synthase (terminateur nos). Le pRD-207 est utilisé comme vecteur de base pour la construction du pRPA-RD-2004
- pRD-208 contient la cassette OTP/HPPD:nos. Il est obtenu à partir du plasmide pRPA S, décrit dans WO 96/38567, digéré par Xbal/Clal, traitement à la polymérase type pfu. La cassette est introduite dans le pRD-207 ouvert par une digestion Sali, traitement klenow.
- Le promoteur de la petite sous unité de la ribulose biscarboxylase d'Helianthus annuus (SSU HA; SEQ ID NO:l) provient du plasmide pRD-127 décrit dans WO 96/38567 digéré Ncol/Xbal est introduit dans le pRD-208. Cette construction constitue le pRPA-RD-2004
Construction du pRD-2005 - Pour construire le pRPA-RD-2005, on ouvre le vecteur pRPA-BL-150Aα2 par les enzymes de restriction Xbal/HindIII auquel on insert la cassette d'expression de l'HPPD du pRPA-RD-2004 (décrit ci-dessus)par les même enzymes Il a donc comme structure:
Exemple 2: Transformation du tabac industriel PBD6.
Afin de déterminer l'efficacité du ce gène chimère de l'exemple 1, il a été transféré dans du tabac industriel PBD6 selon les procédures de transformation et de régénération déjà décrites dans la demande de brevet EP 508 909.
1) Transformation: Le vecteur est introduit dans la souche non oncogène dAgrobacterium EHA 101 ou LBA 4404 (Hood et al, 1987) porteuse du cosmide pTVK 291(Komari et al, 1986). La technique de transformation est basée sur la procédure de Horsh R. et al. (1985) Science, 227, 1229-1231.
2) Régénération: La régénération du tabac PBD6 (provenance SEITA France) à partir d'expiants foliaires est réalisée sur un milieu de base Murashige et Skoog (MS) comprenant 30g/l de saccharose ainsi que 350 mg/1 de cefotaxime et 1 mg/1 du dicétonitrile dérivant de l'isoxaflutole ou 10 mg/1 de l-[4-(trifluorométhyl)-2-(méthylsulfonyl)phényl]-2-cyano- 3-(l-méthylcyclopropyl)-propan-l,3-dione, autre inhibiteur de l'HPPD. Les explants foliaires sont prélevés sur des plants en serre ou in vitro et transformés selon la technique des disques foliaires (Science 1985,Vol 227,p.1229- 1231) en trois étapes successives: la première comprend l'induction des pousses sur un milieu MS additionné de 30g/l de saccharose contenant 0.05mg/l d'acide naphtylacétique (ANA) et 2 mg/1 de benzylaminopurine (BAP) pendant 15 jours et 1 mg/1 d'isoxaflutole. Les pousses vertes formées au cours de cette étape sont ensuite développées par culture sur un milieu MS additionné de 30 g/1 de saccharose et 1 mg/1 d'isoxaflutole ou 10 mg/1 de l-[4- (trifluorométhyl)-2-(méthylsulfonyl)phényl]-2-cyano-3-(l-méthylcyclopropyl)-propan- 1,3-dione mais ne contenant pas d'hormone, pendant 10 jours. Puis on prélève des pousses développées et on les cultive sur un milieu d'enracinement MS à teneur moitié en sels, vitamines et sucres et 1 mg/1 d'isoxaflutole ou 10 mg/1 de l-[4-(trifluorométhyl)- 2-(méthylsulfonyl)phényl]-2-cyano-3-(l-méthylcyclopropyl)-propan-l ,3-dione et ne contenant pas d'hormone. Au bout d'environ 15 jours, les pousses enracinées sont passées en terre.
Exemple 3: Tolérance du tabac transformé avec le gène chimère pRPA-RD-2005
Au sortir de l'étape in-vitro de l'exemple 2, les plantules de tabac transformées ont été acclimatées à la serre (60% d'humidité relative; température: 20°C la nuit et 23 °C la jour) pendant trois semaines puis traitées au 4-[4-(trifiuorométhyl)-2- (méthylsulfonyl)benzoyl]-5-cyclopropylisoxazole (isoxafutole). Le tabac témoin, non transformé et traité à l'isoxafutole à la doses de 400 g/ha, développe en environ 72 heures des chloroses, qui s'intensifient pour évoluer vers des nécroses très prononcées en une semaine (couvrant environ 80% des feuilles terminales).
Le tabac transformé correspondant, ci-après tabac 2005, qui surexprime l'HPPD de R. fluorescens, est très bien protégé contre un traitement à l'isoxafutole à la dose de 400 g/ha.
Exemple 4; Tolérance en serre du tabac 2005
Dans cet exemple on compare la tolérance en serre du tabac 2005 à celle du tabac COI 1, transformé avec le gène chimère pRPA-V décrit dans la demande de brevet WO 96/38567 et à celle du tabac non transformé. Description des essais tabac.
Des graines de chacun de ces types de tabac sont semées en terrine et le jour même un traitement à des doses d'isoxaflutole de 0/30/200/400 g/ha appliqué donc en pré-emergence sont effectués. Constructions testées : Coll: Double histone~TEV~OTP~HPPD Pseudomonas -Nos 2005: SSU-OTP-HPPD Pseudomonas -Nos PBD6: non transformé. Bilan
Pour le tabac PBD6, la germination se fait normalement à 0 g /ha et aucune germination n'a lieu dès la dose de 30 g/ ha. Si par hasard une plantule arrive à levée elle est blanche et meurt très rapidement.
Pour des graines issues d'un tabac COI 1, la levée est normale et sans symptômes de phytotoxicité pour les doses allant de 0 à 200 g/ ha. A 400 g/ha, les graines germent, la levée a lieu normalement mais il y a un retard de croissance ou " stunting ", assez net par rapport aux plantes non traitées. Pour des graines issues d'un tabac 2005, la levée est normale et sans symptômes de phytotoxicité pour les doses allant de 0 à 400 g/ ha. A aucune des trois doses d'isoxaflutole, en serre, ne provoque de symptôme de phytotoxicité ou de " stunting ".
Exemple 5: Tolérance au champ du tabac du tabac 2005
Les essais comparatifs de tolérance de l'exemple 4 sont reproduits au champ pour les même tabacs 2005, COI 1 et PBD6.
Description des essais tabac.
Des jeunes plantes issues de semis ont été repiquées individuellement en minimottes pour être une deuxième fois repiquées au champ. Le traitement de post a été réalisé une semaine après à des doses d'isoxaflutole de 0/100/200/300/400/500/600 g/ha.
Bilan
Le diagramme ci-dessous comparant les tabacs de type COU et 2005, montre clairement que le promoteur SSU confère une meilleure tolérance que le double histone associé au TEV " enhancer ".
2005 COU [J Wild type
Ainsi, 13 jours après traitement à 400g/ha, on observe 15 % de phytotoxicité sur les tabacs COI 1 alors que les tabacs 2005 ne présentent pas ou peu de phytotoxicité.
De même, 20 jours après un traitement à 400g/ha, on observe plus de 20 % de phytotoxicité sur les tabacs COI 1 alors que les tabacs 2005 présentent moins de 10% de phytotoxicité.
Dans les conditions de culture en champs, les plantes transformées avec le gène pRPA-RD-2005 comprenant le promoteur SSU ont une meilleure tolérance aux inhibiteurs de l'HPPD que celles transformées avec le gène pRPA-V comprenant le promoteur double histone combiné au TEV " enhancer " de l'état de la technique.

Claims

Revendications
1. Gène chimère comprenant au moins un gène chimère élémentaire conprenant, dans le sens de la transcription, des éléments de régulation en 5' nécessaires à sa transcription dans les plantes, au moins une partie codante hétérologue comprenant une séquence codante codant pour une enzyme conférant aux plantes la tolérance aux herbicides inhibiteurs de l'HPPD et au moins une séquence de régulation terminatrice ou de polyadenylation, caractérisé en ce que les éléments de régulation en 5' assurent la transcription du gène chimère élémentaire au niveau des tissus chlorophylliens.
2. Gène chimère selon la revendication 1, caractérisé en ce que les dits éléments de régulations en 5' comprenent au moins une séquence de régulation promotrice de type promoteur LD.
3. Gène chimère selon la revendication 2, caractérisé en ce que le promoteur LD est d'origine bactérienne, virale ou végétale.
4. Gène chimère selon la revendication 3, caractérisé en ce que le promoteur LD est choisi parmi une séquence fonctionnelle du promoteur d'un gène de la petite sous unité de la RuBisCO de plante, de la light-harvesting chlrorophyll a/b binding protéine (LHCP), de la plastocyanine (pet E) et de la phénylalanine ammonia lyase (pal).
5. Gène chimère selon la revendication 4, caractérisé en ce que le promoteur LD comprend un fragment fonctionnel du promoteur de la petite sous unité de la RuBisCO d'une plante.
6. Gène chimère selon la revendication 5, caractérisé en ce que le promoteur LD comprend un fragment fonctionnel fonctionnel du promoteur de la petite sous unité de la RuBisCO d'Helianthus annuus .
1. Gène chimère selon la revendication 6, caractérisé en ce que le promoteur LD comprend la séquence d'ADN représentée par l'identificateur de séquence n° 1 (SEQ ID NO:l) ou une séquence homologue de ladite séquence.
8. Gène chimère selon l'une des revendications 1 à 7, caractérisé en ce que le gène chimère élémentaire comprend en association avec les éléments de régulation en
5' au moins une séquence de régulation, située entre le promoteur et la séquence codante, choisie parmi les activateurs de trancription et/ou les séquences codant pour des peptides de transit.
9. Gène chimère selon l'une des revendications 1 à 8, caractérisé en ce que la séquence codant pour une enzyme conférant aux plantes la tolérance aux herbicides inhibiteurs de l'HPPD est choisie parmi les séquences codant pour une HPPD d'origine bactérienne ou d'origine végétale.
10. Vecteur de clonage ou d'expression pour la transformation d'une cellule végétale ou d'une plante monocotylédone ou dicotyledone, caractérisé en ce qu'il comprend outre le gène chimère selon l'une des revendications 1 à 9, au moins une origine de réplication.
11. Vecteur selon la revendication 10, carctérisé en ce qu'il est un plasmide.
12. Procédé de transformation des cellules végétales, caractérisé en ce que l'on intègre dans ladite cellule végétale au moins un gène chimère selon l'une des revendications 1 à 9.
13. Cellule végétale transformée tolérante aux herbicides ayant pour cible l'HPPD, caratérisée en ce qu'elle comprend au moins un gène chimère selon l'une des revendications 1 à 9.
14. Plante transformée tolérante aux herbicides ayant pour cible l'HPPD, caractérisée en ce qu'elle comprend des cellules transformées selon la revendication 13.
15. Plante transformée selon la revendication 14, caractérisée en ce qu'elle est régénérée régénérée à partir des cellules transforméesselon la revendication 14.
16. Plante transformée tolérante aux herbicides ayant pour cible l'HPPD, caractérisée en ce qu'elle est issue de la culture et/ou du croisement des plantes régénérées selon la revendication 15.
17. Graines de plantes transformées selon l'une des revendications 14 à 16.
18. Procédé de contrôle des mauvaises herbes dans une surface d'un champ comprenant des graines ou des plantes transformées selon l'une des revendications 14 à 17, caractérisé en ce que l'on applique sur la dite surface du champ une dose toxique pour les dites mauvaises herbes d'un herbicide ayant pour cible l'HPPD, sans toutefois affecter de manière substantielle les dites graines ou plantes transformées.
19. Procédé de culture des plantes transformées selon l'une des revendications 14 à 16, caractérisé en ce qu'il consiste à planter les graines selon la revendication 17 dans une surface d'un champ approprié pour la culture des dites plantes transformées, à appliquer sur la dite surface du dit champ une dose toxique pour les mauvaises herbes d'un herbicide ayant pour cible l'HPPD en cas de présence de mauvaises herbes, sans affecter de manière substantielle les dites graines ou les dites plantes transformées, puis à récolter les plantes transformées cultivées lorsquelles arrivent à la maturité souhaitée et éventuellement à séparer les graines des plantes transformées récoltées.
20. Procédé selon l'une des revendications 18 ou 19, caractérisé en ce que l'on applique l'herbicide ayant pour cible l'HPPD en présemis et/ou en prélevée et/ou en postlevée de la culture.
EP98954565A 1997-11-17 1998-11-13 Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd Withdrawn EP1032681A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9714591 1997-11-17
FR9714591A FR2771104B1 (fr) 1997-11-17 1997-11-17 Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs del'hppd
PCT/FR1998/002414 WO1999025842A1 (fr) 1997-11-17 1998-11-13 Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd

Publications (1)

Publication Number Publication Date
EP1032681A1 true EP1032681A1 (fr) 2000-09-06

Family

ID=9513607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954565A Withdrawn EP1032681A1 (fr) 1997-11-17 1998-11-13 Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd

Country Status (11)

Country Link
EP (1) EP1032681A1 (fr)
AR (1) AR017630A1 (fr)
AU (1) AU747634B2 (fr)
BR (1) BR9815628A (fr)
CA (1) CA2309880A1 (fr)
CO (1) CO4950591A1 (fr)
FR (1) FR2771104B1 (fr)
ID (1) ID21668A (fr)
MA (1) MA24818A1 (fr)
WO (1) WO1999025842A1 (fr)
ZA (1) ZA9810498B (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815969B1 (fr) 2000-10-30 2004-12-10 Aventis Cropscience Sa Plantes tolerantes aux herbicides par contournement de voie metabolique
AR080105A1 (es) 2010-02-02 2012-03-14 Bayer Cropscience Ag Transformacion de soja usando inhibidores de hidrofenil piruvato dioxigenasa (hppd) como agentes de seleccion
CN103981149A (zh) 2011-08-22 2014-08-13 拜尔作物科学公司 修饰植物基因组的方法和手段
US20150376637A1 (en) 2013-01-29 2015-12-31 The University Court Of The University Of Glasgow Methods and means for increasing stress tolerance and biomass in plants
WO2016014720A2 (fr) 2014-07-22 2016-01-28 Nmc, Inc. Systèmes améliorés de fixation du carbone chez les plantes et les algues
WO2016050512A1 (fr) 2014-10-03 2016-04-07 Bayer Cropscience Nv Procédés et moyens pour augmenter la tolérance au stress et la biomasse chez des plantes
WO2017158126A1 (fr) 2016-03-16 2017-09-21 Bayer Cropscience Nv Plantes comprenant des gènes restaurateurs de la stérilité mâle cytoplasmique de type g du blé, marqueurs moléculaires et leurs utilisations
CA3017998A1 (fr) 2016-03-16 2017-09-21 Antje ROHDE Plantes comprenant des genes de restauration de la sterilite male cytoplasmique de type g du ble, marqueurs moleculaires et leurs utilisations
EP3429334A1 (fr) 2016-03-16 2019-01-23 Basf Se Plantes comprenant des gènes restaurateurs de la stérilité mâle cytoplasmique de type g du blé, marqueurs moléculaires et leurs utilisations
EA201990247A1 (ru) 2016-07-18 2019-07-31 Басф Се Растения, содержащие востановительные гены от цитоплазматической мужской стерильности g-типа пшеницы, молекулярные маркеры и их применение
CA3031141A1 (fr) 2016-07-18 2018-01-25 Basf Se Plantes comprenant des genes de restauration de la sterilite male cytoplasmique de type g du ble, marqueurs moleculaires et leurs utilisations
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
AU2019207409B2 (en) 2018-01-12 2023-02-23 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
WO2019224355A1 (fr) 2018-05-25 2019-11-28 Basf Se Plantes comprenant des gènes de restauration de la stérilité mâle cytoplasmique de type g du blé, et leurs utilisations
WO2019224359A1 (fr) 2018-05-25 2019-11-28 Basf Se Plantes comprenant des gènes de restauration de la stérilité mâle cytoplasmique de type g du blé, et leurs utilisations
EA202092647A1 (ru) 2018-05-25 2021-07-08 Басф Се Растения, содержащие гены-восстановители для цитоплазматической мужской стерильности g-типа пшеницы, и их применение
WO2019234231A1 (fr) 2018-06-08 2019-12-12 Basf Se Plantes comprenant des gènes de restauration de la stérilité mâle cytoplasmique de type g du blé et leurs utilisations
EP4453219A1 (fr) 2021-12-22 2024-10-30 Basf Se Molécules d'acide nucléique régulatrices permettant de modifier l'expression génique de plantes céréalières

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629098B1 (fr) * 1988-03-23 1990-08-10 Rhone Poulenc Agrochimie Gene chimerique de resistance herbicide
FR2734842B1 (fr) * 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US6087563A (en) * 1996-01-29 2000-07-11 Arizona Board Of Regents On Behalf Of The University Of Arizona Cloned arabidopsis p-hydroxyphenyl pyruvic acid dioxygenase DNA
FR2751347B1 (fr) * 1996-07-16 2001-12-07 Rhone Poulenc Agrochimie Gene chimere a plusieurs genes de tolerance herbicide, cellule vegetale et plante tolerantes a plusieurs herbicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9925842A1 *

Also Published As

Publication number Publication date
AR017630A1 (es) 2001-09-12
FR2771104A1 (fr) 1999-05-21
AU1162899A (en) 1999-06-07
ID21668A (id) 1999-07-08
AU747634B2 (en) 2002-05-16
WO1999025842A1 (fr) 1999-05-27
CO4950591A1 (es) 2000-09-01
MA24818A1 (fr) 1999-12-31
CA2309880A1 (fr) 1999-05-27
FR2771104B1 (fr) 2000-12-08
BR9815628A (pt) 2000-10-24
ZA9810498B (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP0633317B1 (fr) Séquence d'ADN isolée pouvant servir de zone terminatrice dans un gène chimère utilisable pour la transformation des plantes
CA2261094C (fr) Gene chimere a plusieurs genes de tolerance herbicide, cellule vegetale et plante tolerantes a plusieurs herbicides
AU2016399292B2 (en) Herbicide tolerant protein, encoding gene and use thereof
EP1032681A1 (fr) Gene chimere ayant un promoteur lumiere dependant conferant la tolerance aux inhibiteurs de l'hppd
EP0828837A2 (fr) Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
CA2315677C (fr) Promoteur h3c4 de mais associe au premier intron de l'actine de riz, gene chimere le comprenant et plante transformee
AU2019466501B2 (en) Mutant hydroxyphenylpyruvate dioxygenase polypeptide, encoding gene thereof and use thereof
EP3110832B1 (fr) Plantes a rendement accru et methode d'obtention de telles plantes
WO2023206126A1 (fr) Utilisation de la protoporphyrinogène oxydase
EP4339290A1 (fr) Utilisation de la protoporphyrinogène oxydase
EP4450617A1 (fr) Polypeptide muté de l'hydroxyphénylpyruvate dioxygénase, gène codant et son utilisation
KR100480479B1 (ko) 프로토포르피리노겐 옥시다아제의 엽록체 및 미토콘드리아동시발현을 이용한 작물의 제초제 저항성 증대 방법 및 이유전자를 제초제 저항성 선발 마커로 사용하는 형질전환세포주 선발 방법
FR2796954A1 (fr) Hydroxy-phenyl pyruvate dioxygenase fusionnee a un peptide signal, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO2002020741A1 (fr) Hydroxy-phenyl pyruvate dioxygenase fusionnee a un peptide signal, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
FR2796394A1 (fr) Nouveau gene sgs3 de plante et son utilisation
WO2001055407A1 (fr) Nouveau gene sgs2 de plante et son utilisation
FR2796395A1 (fr) Nouveau gene sgs3 de plante et son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER CROPSCIENCE S.A.

17Q First examination report despatched

Effective date: 20030624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050813