EP1016787B1 - Operating method of a compressor having a downstream user, and system operating according to this method - Google Patents

Operating method of a compressor having a downstream user, and system operating according to this method Download PDF

Info

Publication number
EP1016787B1
EP1016787B1 EP99121245A EP99121245A EP1016787B1 EP 1016787 B1 EP1016787 B1 EP 1016787B1 EP 99121245 A EP99121245 A EP 99121245A EP 99121245 A EP99121245 A EP 99121245A EP 1016787 B1 EP1016787 B1 EP 1016787B1
Authority
EP
European Patent Office
Prior art keywords
compressor
pressure
consumer
gas
intake side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99121245A
Other languages
German (de)
French (fr)
Other versions
EP1016787A3 (en
EP1016787A2 (en
Inventor
Wilfried Dr.-Ing. Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7893065&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1016787(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MAN Turbomaschinen AG filed Critical MAN Turbomaschinen AG
Publication of EP1016787A2 publication Critical patent/EP1016787A2/en
Publication of EP1016787A3 publication Critical patent/EP1016787A3/en
Application granted granted Critical
Publication of EP1016787B1 publication Critical patent/EP1016787B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0284Conjoint control of two or more different functions

Definitions

  • the invention relates to a method for operating a compressor with downstream consumer with variable gas take-off according to the preamble of claim 1.
  • the invention also relates to a system that can be operated according to the method with a compressor and downstream consumer.
  • the Invention is preferably, but not exclusively, applicable in a fuel gas compressor system connected to a pipeline, which is a gas turbine with compressed fuel gas provided.
  • compressor applications require it both the suction pressure (inlet pressure) and the final pressure (outlet pressure) of the compressor to a constant value hold.
  • Control elements for this are a throttle element on the compressor suction side as well as actuators with which the position the guide vanes and / or the speed of the compressor can be changed is.
  • the compressor also delivers the compressed gas an essentially constant final pressure on one Consumer or a gas processing process. This consumer or process usually has own control units for changing or regulating the gas throughput, for example a throttle at the entrance of the Consumer or process.
  • the compressor with at least three control loops.
  • Final pressure regulator usually acts on the guide vanes of the Compressor and / or on a speed adjustment device on.
  • a suction pressure regulator acts on the throttle element on the Kompressorsaugseite.
  • a surge limit controller is also provided, the one on the outlet side with the suction side of the Compressor connecting bypass valve acts to low delivery rate of the compressor by blowing media a minimum flow rate from the pressure side to the suction side through the compressor.
  • control loops are in terms of their working points and their dynamic behavior to a normal value of the flow rate of the compressor and thus the gas flow rate on Compressor output designed. Occurs on the consumer side sudden change in the gas flow required, so the control loops are able to make such changes follow the gas flow to some extent, but with a system-related sluggish behavior in time that is quick Correction of changes or faults on the consumer side Gas consumption is insufficient and can also lead to that the control loops influence each other and in undesirable Interaction.
  • a method according to the preamble of claim 1 is known from DE-A-27 37 677 and AT-B-377 336 known.
  • the throttle element on the suction side is part of a control circuit for Keeping the compressor end pressure constant.
  • a downstream consumer whose Gas flow rate at a given compressor end pressure is changeable in these documents not revealed. On changes in the gas throughput of such a consumer would these known arrangements only with the sluggish timing mentioned above can react.
  • the invention has for its object for a compressor with a downstream Consumers whose gas throughput can be changed at a given compressor end pressure, to specify a method for operating the compressor such that the regulation of the Compressor sufficiently fast to changes in consumer gas consumption can address.
  • throttle element depending on the consumer side Controlled gas take-off preferably such that the throttle is proportional to a reduction of the gas flow through the consumer is that the pressure loss across the suction side throttle body remains constant even with reduced flow. In order to will also have an undesirable interaction with the rest Control loops reduced to a minimum.
  • FIG. 1 An embodiment of the invention is based on the drawing explained in more detail.
  • the drawing schematically shows a flowing and Control scheme of one connected to a gas pipeline Compressor with a downstream gas turbine.
  • the drawing shows a pipeline 1, in which combustible gas, especially natural gas.
  • combustible gas especially natural gas.
  • the suction side of a compressor 3 connected to the gas compacted.
  • the outlet line 5 of the compressor the compressed combustible gas is fed to a gas turbine 7, the driving power by burning the compressed gas generated.
  • Throttle element 9 On the suction side of the compressor 3 is in the pipeline 1 Throttle element 9 is arranged, the opening cross section of which an actuator 11 regulated by a suction pressure regulator 13 which is a control signal from a downstream of the throttle valve 9 arranged pressure sensor 15 receives the Pressure detected on the suction side of the compressor 3. Sensor 15, Regulator 13 and throttle element 9 form a suction pressure control circuit to keep the pressure on the suction side of the Compressor 3.
  • a pressure sensor 17 On the pressure-side outlet line 5 of the compressor 3 a pressure sensor 17 is arranged, the final pressure (outlet pressure) of the compressor 3 is detected and a corresponding one Provides signal to a final pressure regulator 19. This creates an actuating signal for an actuator 21 for adjusting the Guide vanes 23 of the compressor and / or an actuating signal for an actuator 25 for changing the speed of the drive (not shown) of the compressor 3.
  • pressure sensor 17, Regulator 19 and actuator 21 and 25 form a final pressure control loop to keep the pressure on the outlet side constant the compressor 3.
  • the outlet line 5 of the compressor 3 is on the suction side the compressor via a blow-by line 27 with a Umlassventil 29 connected. This is via an actuator 31st controllable by a control signal from a pump limit controller 33 is controlled.
  • the surge limit controller 33 operates as a flow controller with a variable setpoint, the setpoint depending on the current delivery head (enthalpy difference) of the compressor 3 is performed.
  • the surge limit controller 33 receives as input variables signals for the suction side Pressure (from the pressure sensor 15) and the suction side Temperature (from a temperature sensor 14) and the outlet side Pressure (final pressure) from a pressure sensor 18 is detected, which of course with the pressure sensor 17th can be identical. From these input variables, the Pump limit controller 33, the enthalpy difference and those derived therefrom Setpoint. In addition, the surge limit controller receives 33 as the input variable the actual value of the suction-side flow from a flow sensor 16.
  • Gas turbine 7 At the inlet of the one connected to the compressor outlet line Gas turbine 7 is a fuel control valve (Throttle valve) 35, the actuator 37 of a fuel gas regulator 39 is controlled.
  • the fuel gas regulator 39 adjusts the fuel gas valve 35 so that exactly Amount of fuel gas flows into the combustion chamber of the gas turbine 7, those for generating the currently required turbine power is needed.
  • the fuel gas regulator 39 of the gas turbine 7 is primarily a speed controller that controls the speed of the gas turbine regulates to a predetermined setpoint. Often there are additional ones Protective functions integrated in the fuel gas controller, e.g. Protection against overheating, flow instability, underspeed and the same.
  • Control signal taken from the current position of the Fuel gas valve 35 From the fuel gas regulator 39 is via a control line 41 Control signal taken from the current position of the Fuel gas valve 35, and thus the current value of the gas inflow corresponds to the turbine 7. It can be particular act as a control signal that is equal to or proportional to that of the controller 39 and the actuator 37 of the throttle valve 35 supplied control signal. The control signal can also without being generated by the controller 39, directly from the position of the fuel gas valve 35 can be tapped.
  • Control signal is a via the control line 41 Link point 43 fed where it with that of the suction pressure regulator 13 generated control signal for the suction-side throttle element 9 is linked.
  • the type of link can be one simple addition or multiplication, at least is a link with the same effect such that with increasing throttling of the fuel gas supply to the gas turbine 7 also the suction-side throttle element 9 is increasingly throttled.
  • the node 43 can be a be connected upstream non-linear member 45, which a nonlinear computing element and / or a nonlinear amplifying element can be and that over the line 41 the Change control point 43 supplied control signal in this way can compensate for nonlinearities in the system.
  • the system according to the embodiment works as follows.
  • the controllers 13, 19, 33, 39 are based on one design point designed, in which the pressure in the pipeline 1 the desired or the required suction pressure of the compressor 3, the compressor 3 is operated at the nominal speed and the guide vanes are in the nominal position.
  • the Throttle body 9 on the suction side is open in the nominal position.
  • the fuel control valve 37 at the gas turbine inlet 7 is also in the nominal position, which the Nominal power of the gas turbine corresponds. Because pressure fluctuations in pipeline 1 are relatively slow, they are Regulating these fluctuations provided regulators 13 and 19 designed for a relatively slow time constant.
  • the delivery head must of the compressor 3 can be reduced so that the final pressure is constant is held.
  • the final pressure regulator 19 via the actuators 21 or 25 the position of the guide vanes 22 towards a more closed position changed and / or the speed of the compressor 3 lowered.
  • the differential pressure drops across the suction-side throttle element 9, so that this close to the appropriate extent got to.
  • the delivery amount due to physical limits of the compressor 3 cannot be reduced arbitrarily, must also be above a certain pressure in pipeline 1 the suction pressure regulator 13 intervene and the suction side Throttle throttle body 9 so far that the compressor inlet pressure again corresponds to the nominal value.
  • the Link point 43 is assigned by the suction pressure regulator 13 generated control signal for the throttle element 9 (expressed in% of the total closing stroke from the fully open position out) with the control signal generated by the controller 39 for the Throttling the fuel gas control valve 35 (also expressed in% of the total closing stroke from the fully open position out) multiplied.
  • the result of the multiplication is an additional control signal that in node 43 is added to the signal of the suction pressure regulator 13 and one additional throttling of the suction-side throttling element 9 causes.
  • One or more nonlinear elements are to compensate for Nonlinearities of the system are provided.
  • the suction pressure regulator 13 is relative in its actuating behavior set sluggishly and with its parameters to the dynamics adapted to the pipeline 1. Its slowly changing manipulated variable is in the node 43 from the position of Fuel gas control valve 35 derived control command added.
  • the system work as follows. It is assumed that the overall system is close to the nominal operating point. Fuel gas control valve 35 and guide vanes 23 of the compressor are located yourself in the nominal position. The compressor 3 is at rated speed operated. It is also assumed that in the pipeline 1 there is a relatively high pressure, and that is why throttling element 9 throttled by suction pressure regulator 13 by 10% is, i.e. that an opening cross-section 90% of full opening cross section.
  • the fuel gas control valve 35 is e.g. 30% throttled, i.e. after regulating the flow, its opening cross-section is 70% of the full opening cross-section.
  • the corresponding command from the fuel gas regulator 39 for the control valve 35 is the arithmetic circuit 47 fed and there with the signal from the controller 13 multiplied for the 10% throttling of the throttle body 9.
  • the result is an additional control signal for an additional closure of the throttle element 9 by more 3% (10% existing throttle position of the throttle element 9 multiplied by 30% load change of the turbine 7).
  • the throttle body 9 goes immediately from the 90% opening position in the 87% opening position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kompressors mit nachgeschaltetem Verbraucher mit variabler Gasabnahme gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ferner eine nach dem Verfahren betreibbare Anlage mit einem Kompressor und nachgeschaltetem Verbraucher. Die Erfindung ist vorzugsweise, aber nicht ausschließlich anwendbar bei einer an eine Pipeline angeschlossenen Brenngaskompressoranlage, die eine Gasturbine mit komprimiertem Brenngas versorgt.The invention relates to a method for operating a compressor with downstream consumer with variable gas take-off according to the preamble of claim 1. The invention also relates to a system that can be operated according to the method with a compressor and downstream consumer. The Invention is preferably, but not exclusively, applicable in a fuel gas compressor system connected to a pipeline, which is a gas turbine with compressed fuel gas provided.

In vielen Kompressoranwendungen ist es erforderlich, sowohl den Saugdruck (Eintrittsdruck) als auch den Enddruck (Austrittsdruck) des Kompressors auf einem konstanten Wert zu halten. Regelorgane hierzu sind ein Drosselorgan an der Kompressorsaugseite sowie Stellorgane, mit denen die Stellung der Leitschaufeln und/oder die Drehzahl des Kompressors veränderbar ist. Der Kompressor liefert das verdichtete Gas mit einem im wesentlichen konstant zu haltenden Enddruck an einen Verbraucher bzw. an einen das Gas verarbeitenden Prozeß. Dieser Verbraucher bzw. dieser Prozeß besitzt in der Regel eigene Regelorgane zum Verändern bzw. Regeln des Gasdurchsatzes, beispielsweise ein Drosselorgan am Eintritt des Verbrauchers bzw. Prozesses.Many compressor applications require it both the suction pressure (inlet pressure) and the final pressure (outlet pressure) of the compressor to a constant value hold. Control elements for this are a throttle element on the compressor suction side as well as actuators with which the position the guide vanes and / or the speed of the compressor can be changed is. The compressor also delivers the compressed gas an essentially constant final pressure on one Consumer or a gas processing process. This consumer or process usually has own control units for changing or regulating the gas throughput, for example a throttle at the entrance of the Consumer or process.

Zum Konstanthalten des Saugdruckes und Enddrucks und zum Verhindern der Strömungsinstabilitäten ist es bekannt, den Kompressor mit mindestens drei Regelkreisen auszurüsten. Ein Enddruckregler wirkt üblicherweise auf die Leitschaufeln des Kompressors und/oder auf eine Drehzahlverstelleinrichtung ein. Ein Saugdruckregler wirkt auf das Drosselorgan an der Kompressorsaugseite. Ferner ist ein Pumpgrenzregler vorgesehen, der auf ein die Austrittsseite mit der Saugseite des Kompressors verbindendes Umblaseventil einwirkt, um bei zu geringer Fördermenge des Kompressors durch Umblasen von Fördermedien von der Druckseite zur Saugseite eine Mindestfördermenge durch den Kompressor sicherzustellen.To keep the suction pressure and final pressure constant and It is known to prevent flow instabilities Equip the compressor with at least three control loops. On Final pressure regulator usually acts on the guide vanes of the Compressor and / or on a speed adjustment device on. A suction pressure regulator acts on the throttle element on the Kompressorsaugseite. A surge limit controller is also provided, the one on the outlet side with the suction side of the Compressor connecting bypass valve acts to low delivery rate of the compressor by blowing media a minimum flow rate from the pressure side to the suction side through the compressor.

Jeder dieser drei Regelkreise beeinflußt den anderen. Nur eine sorgfältige und aufeinander abgestimmte Auslegung der Regelkreise stellt sicher, daß keine Instabilitäten entstehen.Each of these three control loops influences the other. Just a careful and coordinated interpretation of the Control loops ensure that there are no instabilities.

Die Regelkreise sind hinsichtlich ihrer Arbeitspunkte und ihres dynamischen Verhaltens auf einen Normalwert der Fördermenge des Kompressors und damit des Gasdurchsatzes am Kompressorausgang ausgelegt. Tritt verbraucherseitig eine plötzliche Änderung des benötigten Gasdurchsatzes ein, so sind die Regelkreise zwar in der Lage, solchen Änderungen der Gasfördermenge in gewissem Ausmaß zu folgen, jedoch mit einem systembedingten trägen Zeitverhalten, das zum raschen Ausregeln von Änderungen oder Störungen der verbraucherseitigen Gasabnahme nicht ausreicht und auch dazu führen kann, daß sich die Regelkreise gegenseitig beeinflussen und in unerwünschte Wechselwirkung treten. The control loops are in terms of their working points and their dynamic behavior to a normal value of the flow rate of the compressor and thus the gas flow rate on Compressor output designed. Occurs on the consumer side sudden change in the gas flow required, so the control loops are able to make such changes follow the gas flow to some extent, but with a system-related sluggish behavior in time that is quick Correction of changes or faults on the consumer side Gas consumption is insufficient and can also lead to that the control loops influence each other and in undesirable Interaction.

Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus DE-A-27 37 677 und AT-B-377 336 bekannt. In beiden Fällen wird das an der Saugseite des Kompressors angeordnete Drosselorgan in Abhängigkeit vom Enddruck am Kompressorauslaß gesteuert. Dies hat zur Folge, dass das saugseitige Drosselorgan Bestandteil eines Regelkreises zum Konstanthalten des Kompressorenddruckes ist. Ein nachgeschalteter Verbraucher, dessen Gasdurchsatz bei gegebenem Kompressorenddruck veränderbar ist, ist in diesen Dokumenten nicht offenbart. Auf Änderungen des Gasdurchsatzes eines solchen Verbrauchers würden diese bekannten Anordnungen nur mit dem oben erwähnten trägen Zeitverhalten reagieren können.A method according to the preamble of claim 1 is known from DE-A-27 37 677 and AT-B-377 336 known. In both cases, that which is arranged on the suction side of the compressor Throttle device controlled depending on the final pressure at the compressor outlet. The consequence of this is that the throttle element on the suction side is part of a control circuit for Keeping the compressor end pressure constant. A downstream consumer whose Gas flow rate at a given compressor end pressure is changeable in these documents not revealed. On changes in the gas throughput of such a consumer would these known arrangements only with the sluggish timing mentioned above can react.

Der Erfindung liegt die Aufgabe zugrunde, für einen Kompressor mit nachgeschaltetem Verbraucher, dessen Gasdurchsatz bei gegebenem Kompressorenddruck veränderbar ist, ein Verfahren zum Betreiben des Kompressors derart anzugeben, dass die Regelung des Kompressors hinreichend schnell auf Änderungen der verbraucherseitigen Gasabnahme ansprechen kann.The invention has for its object for a compressor with a downstream Consumers whose gas throughput can be changed at a given compressor end pressure, to specify a method for operating the compressor such that the regulation of the Compressor sufficiently fast to changes in consumer gas consumption can address.

Die erfindungsgemäße Lösung der Aufgabe ist im Anspruch 1 angegeben. Die Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung. The achievement of the object is specified in claim 1. The subclaims relate to further advantageous embodiments of the invention.

Erfindungsgemäß wird ein an der Saugseite des Kompressors angeordnetes Drosselorgan in Abhängigkeit von der verbraucherseitigen Gasabnahme gesteuert, und zwar vorzugsweise derart, daß das Drosselorgan proportional zu einer Verringerung des verbraucherseitigen Gasdurchsatzes so verstellt wird, daß der Druckverlust über dem saugseitigen Drosselorgan auch bei verringertem Durchfluß konstant bleibt. Damit wird auch eine unerwünschte Wechselwirkung mit den übrigen Regelkreisen auf ein Minimum reduziert.According to the invention on the suction side of the compressor arranged throttle element depending on the consumer side Controlled gas take-off, preferably such that the throttle is proportional to a reduction of the gas flow through the consumer is that the pressure loss across the suction side throttle body remains constant even with reduced flow. In order to will also have an undesirable interaction with the rest Control loops reduced to a minimum.

Eine Ausführungsform der Erfindung wird anhand der Zeichnung näher erläutert. Die Zeichnung zeigt schematisch ein Fließund Regelschema eines an eine Gaspipeline angeschlossenen Kompressors mit nachgeschalteter Gasturbine.An embodiment of the invention is based on the drawing explained in more detail. The drawing schematically shows a flowing and Control scheme of one connected to a gas pipeline Compressor with a downstream gas turbine.

Die Zeichnung zeigt eine Pipeline 1, in der brennbares Gas, insbesondere Erdgas, gefördert wird. An die Pipeline 1 ist die Saugseite eines Kompressors 3 angeschlossen, der das Gas verdichtet. Über die Austrittsleitung 5 des Kompressors wird das verdichtete brennbare Gas einer Gasturbine 7 zugeführt, die durch Verbrennen des verdichteten Gases Antriebsleistung erzeugt.The drawing shows a pipeline 1, in which combustible gas, especially natural gas. At the pipeline 1 is the suction side of a compressor 3 connected to the gas compacted. Via the outlet line 5 of the compressor the compressed combustible gas is fed to a gas turbine 7, the driving power by burning the compressed gas generated.

An der Saugseite des Kompressors 3 ist in der Pipeline 1 ein Drosselorgan 9 angeordnet, dessen Öffnungsquerschnitt über ein Stellglied 11 durch einen Saugdruckregler 13 geregelt wird, der ein Regelsignal von einem stromabwärts des Drosselventils 9 angeordneten Drucksensor 15 erhält, der den Druck an der Saugseite des Kompressors 3 erfaßt. Sensor 15, Regler 13 und Drosselorgan 9 bilden einen Saugdruckregelkreis zum Konstanthalten des Drucks an der Saugseite des Kompressors 3.On the suction side of the compressor 3 is in the pipeline 1 Throttle element 9 is arranged, the opening cross section of which an actuator 11 regulated by a suction pressure regulator 13 which is a control signal from a downstream of the throttle valve 9 arranged pressure sensor 15 receives the Pressure detected on the suction side of the compressor 3. Sensor 15, Regulator 13 and throttle element 9 form a suction pressure control circuit to keep the pressure on the suction side of the Compressor 3.

An der druckseitigen Austrittsleitung 5 des Kompressors 3 ist ein Drucksensor 17 angeordnet, der den Enddruck (Austrittsdruck) des Kompressors 3 erfaßt und ein entsprechendes Signal an einen Enddruckregler 19 liefert. Dieser erzeugt ein Stellsignal für ein Stellorgan 21 zum Verstellen der Leitschaufeln 23 des Kompressors und/oder ein Stellsignal für ein Stellorgan 25 zum Verändern der Drehzahl des Antriebes (nicht dargestellt) des Kompressors 3. Drucksensor 17, Regler 19 und Stellorgan 21 bzw. 25 bilden einen Enddruckregelkreis zum Konstanthalten des Drucks an der Austrittsseite des Kompressors 3.On the pressure-side outlet line 5 of the compressor 3 a pressure sensor 17 is arranged, the final pressure (outlet pressure) of the compressor 3 is detected and a corresponding one Provides signal to a final pressure regulator 19. This creates an actuating signal for an actuator 21 for adjusting the Guide vanes 23 of the compressor and / or an actuating signal for an actuator 25 for changing the speed of the drive (not shown) of the compressor 3. pressure sensor 17, Regulator 19 and actuator 21 and 25 form a final pressure control loop to keep the pressure on the outlet side constant the compressor 3.

Die Austrittsleitung 5 des Kompressors 3 ist mit der Saugseite des Kompressors über eine Umblasleitung 27 mit einem Umlasventil 29 verbunden. Dieses ist über ein Stellglied 31 steuerbar, das durch ein Regelsignal von einem Pumpengrenzregler 33 angesteuert wird. Der Pumpgrenzregler 33 arbeitet als Durchflußregler mit variablem Sollwert, wobei der Sollwert in Abhängigkeit von der aktuellen Förderhöhe (Enthalpiedifferenz) des Kompressors 3 geführt wird. Der Pumpgrenzregler 33 empfängt als Eingangsgrößen Signale für den saugseitigen Druck (von dem Drucksensor 15) und die saugseitige Temperatur (von einem Temperatursensor 14) sowie den austrittseitigen Druck (Enddruck), der von einem Drucksensor 18 erfaßt wird, der selbstverständlich mit dem Drucksensor 17 identisch sein kann. Aus diesen Eingangsgrößen bestimmt der Pumpgrenzregler 33 die Enthalpiedifferenz und den davon abgeleiteten Sollwert. Zusätzlich erhält der Pumpgrenzregler 33 als Eingangsgröße den Istwert des saugseitigen Durchflusses von einem Durchflußsensor 16.The outlet line 5 of the compressor 3 is on the suction side the compressor via a blow-by line 27 with a Umlassventil 29 connected. This is via an actuator 31st controllable by a control signal from a pump limit controller 33 is controlled. The surge limit controller 33 operates as a flow controller with a variable setpoint, the setpoint depending on the current delivery head (enthalpy difference) of the compressor 3 is performed. The surge limit controller 33 receives as input variables signals for the suction side Pressure (from the pressure sensor 15) and the suction side Temperature (from a temperature sensor 14) and the outlet side Pressure (final pressure) from a pressure sensor 18 is detected, which of course with the pressure sensor 17th can be identical. From these input variables, the Pump limit controller 33, the enthalpy difference and those derived therefrom Setpoint. In addition, the surge limit controller receives 33 as the input variable the actual value of the suction-side flow from a flow sensor 16.

Am Eintritt der an die Kompressoraustrittsleitung angeschlossenen Gasturbine 7 befindet sich ein Brennstoffregelventil (Drosselventil) 35, das über ein Stellglied 37 von einem Brenngasregler 39 gesteuert wird. Der Brenngasregler 39 verstellt das Brenngasventil 35 derart, daß genau die Brenngasmenge in die Brennkammer der Gasturbine 7 einströmt, die zur Erzeugung der aktuell geforderten Turbinenleistung benötigt wird. Der Brenngasregler 39 der Gasturbine 7 ist primär ein Drehzahlregler, der die Drehzahl der Gasturbine auf einen vorgegebenen Sollwert regelt. Häufig sind zusätzliche Schutzfunktionen in den Brenngasregler integriert, z.B. Schutz vor Überhitzung, Strömungsinstabilität, Unterdrehzahl und dergleichen.At the inlet of the one connected to the compressor outlet line Gas turbine 7 is a fuel control valve (Throttle valve) 35, the actuator 37 of a fuel gas regulator 39 is controlled. The fuel gas regulator 39 adjusts the fuel gas valve 35 so that exactly Amount of fuel gas flows into the combustion chamber of the gas turbine 7, those for generating the currently required turbine power is needed. The fuel gas regulator 39 of the gas turbine 7 is primarily a speed controller that controls the speed of the gas turbine regulates to a predetermined setpoint. Often there are additional ones Protective functions integrated in the fuel gas controller, e.g. Protection against overheating, flow instability, underspeed and the same.

Von dem Brenngasregler 39 wird über eine Regelleitung 41 ein Stellsignal entnommen, welches der momentanen Stellung des Brenngasventils 35, und damit dem momentanen Wert des Gaszuflusses zur Turbine 7 entspricht. Es kann sich insbesondere um ein Stellsignal handeln, das gleich oder proportional zu dem vom Regler 39 dem Stellglied 37 des Drosselventils 35 zugeführten Stellsignal ist. Das Stellsignal kann aber auch, ohne vom Regler 39 erzeugt zu werden, direkt von der Stellung des Brenngasventils 35 abgegriffen werden.From the fuel gas regulator 39 is via a control line 41 Control signal taken from the current position of the Fuel gas valve 35, and thus the current value of the gas inflow corresponds to the turbine 7. It can be particular act as a control signal that is equal to or proportional to that of the controller 39 and the actuator 37 of the throttle valve 35 supplied control signal. The control signal can also without being generated by the controller 39, directly from the position of the fuel gas valve 35 can be tapped.

Dieses, dem momentanen Gasdurchsatz durch die Turbine 7 entsprechende Stellsignal wird über die Regelleitung 41 einem Verknüpfungspunkt 43 zugeführt, wo es mit dem vom Saugdruckregler 13 erzeugten Stellsignal für das saugseitige Drosselorgan 9 verknüpft wird. Die Art der Verknüpfung kann eine einfache Addition oder auch eine Multiplikation sein, jedenfalls handelt es sich um eine gleichsinnig wirkende Verknüpfung derart, daß mit zunehmender Drosselung der Brenngaszufuhr zur Gasturbine 7 auch das saugseitige Drosselorgan 9 zunehmend gedrosselt wird. Dem Verknüpfungspunkt 43 kann ein nichtlineares Glied 45 vorgeschaltet sein, welches ein nichtlineares Rechenglied und/oder ein nichtlineares Verstärkungsglied sein kann und das über die Leitung 41 dem Verknüpfungspunkt 43 zugeführte Stellsignal so verändern kann, daß Nichtlinearitäten des Systems ausgeglichen werden.This corresponds to the current gas throughput through the turbine 7 Control signal is a via the control line 41 Link point 43 fed where it with that of the suction pressure regulator 13 generated control signal for the suction-side throttle element 9 is linked. The type of link can be one simple addition or multiplication, at least is a link with the same effect such that with increasing throttling of the fuel gas supply to the gas turbine 7 also the suction-side throttle element 9 is increasingly throttled. The node 43 can be a be connected upstream non-linear member 45, which a nonlinear computing element and / or a nonlinear amplifying element can be and that over the line 41 the Change control point 43 supplied control signal in this way can compensate for nonlinearities in the system.

Das System gemäß dem Ausführungsbeispiel arbeitet wie folgt. The system according to the embodiment works as follows.

Die Regler 13, 19, 33, 39 sind auf einen Auslegungspunkt hin ausgelegt, bei dem der Druck in der Pipeline 1 dem gewünschten bzw. erforderlichen Saugdruck des Kompressors 3 entspricht, der Kompressor 3 mit Nenndrehzahl betrieben wird und die Leitschaufeln sich in der Nennstellung befinden. Das saugseitige Drosselorgan 9 ist hierbei in Nennstellung geöffnet. Das Brennstoffregelventil 37 am Eintritt der Gasturbine 7 befindet sich ebenfalls in der Nennstellung, die der Nennleistung der Gasturbine entspricht. Da Druckschwankungen in der Pipeline 1 relativ langsam ablaufen, sind die zum Ausregeln dieser Schwankungen vorgesehenen Regler 13 und 19 auf eine relativ langsame Zeitkonstante ausgelegt.The controllers 13, 19, 33, 39 are based on one design point designed, in which the pressure in the pipeline 1 the desired or the required suction pressure of the compressor 3, the compressor 3 is operated at the nominal speed and the guide vanes are in the nominal position. The Throttle body 9 on the suction side is open in the nominal position. The fuel control valve 37 at the gas turbine inlet 7 is also in the nominal position, which the Nominal power of the gas turbine corresponds. Because pressure fluctuations in pipeline 1 are relatively slow, they are Regulating these fluctuations provided regulators 13 and 19 designed for a relatively slow time constant.

Steigt der Druck in der Pipeline an, so muß die Förderhöhe des Kompressors 3 reduziert werden, damit der Enddruck konstant gehalten wird. Hierzu wird durch den Enddruckregler 19 über die Stellglieder 21 oder 25 die Stellung der Leitschaufeln 22 in Richtung auf eine geschlossenere Stellung hin verändert und/oder die Drehzahl des Kompressors 3 abgesenkt. Wegen des dadurch reduzierten Durchflusses durch den Kompressor fällt der Differenzdruck über dem saugseitigen Drosselorgan 9, so daß dieses in entsprechendem Maße schließen muß. Da ferner die Förderhöhe aufgrund physikalischer Grenzen des Kompressors 3 nicht beliebig reduziert werden kann, muß oberhalb eines gewissen Drucks in der Pipeline 1 zusätzlich der Saugdruckregler 13 eingreifen und das saugseitige Drosselorgan 9 soweit drosseln, daß der Kompressoreintrittsdruck wieder dem Nennwert entspricht.If the pressure in the pipeline rises, the delivery head must of the compressor 3 can be reduced so that the final pressure is constant is held. For this purpose, the final pressure regulator 19 via the actuators 21 or 25 the position of the guide vanes 22 towards a more closed position changed and / or the speed of the compressor 3 lowered. Because of the reduced flow through the compressor the differential pressure drops across the suction-side throttle element 9, so that this close to the appropriate extent got to. Furthermore, the delivery amount due to physical limits of the compressor 3 cannot be reduced arbitrarily, must also be above a certain pressure in pipeline 1 the suction pressure regulator 13 intervene and the suction side Throttle throttle body 9 so far that the compressor inlet pressure again corresponds to the nominal value.

Wird nun an der Gasturbine 7 eine kleinere Leistung als die Nennleistung benötigt, so wird durch teilweises Schließen des Brenngasregelventils 35 der Gasdurchsatz durch die Gasturbine 7 gedrosselt und die Gasturbine dadurch auf einen Teillastpunkt gefahren. Erfindungsgemäß wird nun in diesem Fall auch das Drosselorgan 9 an der Saugseite des Kompressors 3 entsprechend weiter geschlossen, um trotz des reduzierten Brenngasdurchsatzes durch die Turbine 7 den Druckabfall am saugseitigen Drosselorgan 9 konstant zu halten. Die Laständerungen der Gasturbine 7 erfolgen naturgemäß sehr viel schneller als Schwankungen des Drucks in der Pipeline 1. Das Regelsystem ist deshalb so ausgelegt, daß es in der Lage ist, Störungen, die ihre Ursache in der Gasturbine 7 haben, sehr viel schneller auszuregeln als Störungen aufgrund von Druckschwankungen in der Pipeline 1.Is now a smaller power than that on the gas turbine 7 Rated power is required by partial closing of the fuel gas control valve 35, the gas throughput through the gas turbine 7 throttled and the gas turbine on one Part load point driven. According to the invention is now in this Case also the throttle element 9 on the suction side of the compressor 3 accordingly further closed to despite the reduced Fuel gas throughput through the turbine 7 the pressure drop to keep constant on the suction-side throttle element 9. The Load changes of the gas turbine 7 naturally occur very much much faster than fluctuations in pressure in the pipeline 1. The control system is therefore designed so that it in the Able to troubles that are their cause in the gas turbine 7 have to settle much faster than disturbances due to of pressure fluctuations in the pipeline 1.

Gemäß dem beschriebenen bevorzugten Ausführungsform der Erfindung wird hierzu in einer Rechenschaltung 47, die dem Verknüpfungspunkt 43 zugeordnet ist, das vom Saugdruckregler 13 erzeugte Stellsignal für das Drosselorgan 9 (ausgedrückt in % des gesamten Schließhubes aus der ganz geöffneten Lage heraus) mit dem vom Regler 39 erzeugten Stellsignal für das Drosseln des Brenngasregelventils 35 (ebenfalls ausgedrückt in % des gesamten Schließhubes aus der ganz geöffneten Lage heraus) multipliziert. Das Resultat der Multiplikation ist ein zusätzliches Stellsignal, das im Verknüpfungspunkt 43 dem Signal des Saugdruckreglers 13 hinzuaddiert wird und eine zusätzliche Drosselung des saugseitigen Drosselorgans 9 bewirkt. Ein oder mehrere nichtlineare Elemente (Rechenelemente oder Verstärkungsglieder) sind zum Ausgleich von Nichtlinearitäten des Systems vorgesehen. Hiermit kann insbesondere in dem Fall, daß das Brenngasregelventil 35 und das saugseitige Drosselorgan 9 unterschiedliche Kennlinien oder unterschiedliche Stellcharakteristiken haben, eine Linearisierung erreicht werden.According to the described preferred embodiment of the invention is in a computing circuit 47 that the Link point 43 is assigned by the suction pressure regulator 13 generated control signal for the throttle element 9 (expressed in% of the total closing stroke from the fully open position out) with the control signal generated by the controller 39 for the Throttling the fuel gas control valve 35 (also expressed in% of the total closing stroke from the fully open position out) multiplied. The result of the multiplication is an additional control signal that in node 43 is added to the signal of the suction pressure regulator 13 and one additional throttling of the suction-side throttling element 9 causes. One or more nonlinear elements (computing elements or reinforcing members) are to compensate for Nonlinearities of the system are provided. Hereby in particular in the event that the fuel gas control valve 35 and the suction-side throttle element 9 different Characteristic curves or different positioning characteristics have a linearization can be achieved.

Der Saugdruckregler 13 ist in seinem Stellverhalten relativ träge eingestellt und mit seinen Parametern an die Dynamik der Pipeline 1 angepaßt. Seine sich langsam ändernde Stellgröße wird im Verknüpfungspunkt 43 dem aus der Stellung des Brenngasregelventils 35 hergeleiteten Stellbefehl hinzuaddiert.The suction pressure regulator 13 is relative in its actuating behavior set sluggishly and with its parameters to the dynamics adapted to the pipeline 1. Its slowly changing manipulated variable is in the node 43 from the position of Fuel gas control valve 35 derived control command added.

Gemäß einem konkreten Ausführungsbeispiel kann das System folgendermaßen arbeiten. Es sei angenommen, daß das Gesamtsystem sich nahe dem Nennbetriebspunkt befindet. Brenngasregelventil 35 und Leitschaufeln 23 des Kompressors befinden sich in der Nennstellung. Der Kompressor 3 wird mit Nenndrehzahl betrieben. Es sei ferner angenommen, daß in der Pipeline 1 ein relativ hoher Druck herrscht, und daß deshalb das Drosselorgan 9 durch den Saugdruckregler 13 um 10 % angedrosselt ist, d.h. daß ein Öffnungsquerschnitt 90 % des vollen Öffnungsquerschnitts beträgt.According to a specific embodiment, the system work as follows. It is assumed that the overall system is close to the nominal operating point. Fuel gas control valve 35 and guide vanes 23 of the compressor are located yourself in the nominal position. The compressor 3 is at rated speed operated. It is also assumed that in the pipeline 1 there is a relatively high pressure, and that is why throttling element 9 throttled by suction pressure regulator 13 by 10% is, i.e. that an opening cross-section 90% of full opening cross section.

Die Gasturbine 7 soll nun in einen Teillastpunkt gefahren werden. Dazu wird das Brenngasregelventil 35 um z.B. 30% gedrosselt, d.h. nach Ausregeln der Strömung beträgt sein Öffnungsquerschnitt 70% des vollen Öffnungsquerschnitts. Der entsprechende Stellbefehl vom Brenngasregler 39 für das Regelventil 35 (oder auch ein direkt von der Stellung des Brenngasregelventils 35 abgegriffenes Signal) wird der Rechenschaltung 47 zugeführt und dort mit dem Signal vom Regler 13 für die 10 %-ige Drosselung des Drosselorgans 9 multipliziert. Das Ergebnis ist ein zusätzliches Stellsignal für eine zusätzliche Schließung des Drosselorgans 9 um weitere 3 % (10% vorhandene Drosselstellung des Drosselorgans 9 multipliziert mit 30% Laständerung der Turbine 7). Das Drosselorgan 9 geht dadurch sofort von der 90 %-Öffnungsstellung in die 87%-Öffnungsstellung über.The gas turbine 7 is now to be driven to a partial load point become. For this purpose, the fuel gas control valve 35 is e.g. 30% throttled, i.e. after regulating the flow, its opening cross-section is 70% of the full opening cross-section. The corresponding command from the fuel gas regulator 39 for the control valve 35 (or one directly from the position of the Fuel gas control valve 35 tapped signal) is the arithmetic circuit 47 fed and there with the signal from the controller 13 multiplied for the 10% throttling of the throttle body 9. The result is an additional control signal for an additional closure of the throttle element 9 by more 3% (10% existing throttle position of the throttle element 9 multiplied by 30% load change of the turbine 7). The throttle body 9 goes immediately from the 90% opening position in the 87% opening position.

Sollte sich unabhängig hiervon der Druck in der Pipeline 1 ändern, so stellt dies der Saugdruckregler 13 über den Drucksensor 15 fest und verstellt mit seinem langsamen Zeitverhalten das saugseitige Drosselorgan 9 zusätzlich. Da diese Änderung langsam erfolgt, kann sie die schnelle Verstellung als Folge der Aufschaltung der Stellung des Brenngasregelventils 35 entsprechenden Stellbefehls über die Leitung 41 nicht beeinflussen.If the pressure in the pipeline 1 change, so the suction pressure regulator 13 over the Pressure sensor 15 fixed and adjusted with its slow time behavior the suction-side throttle element 9 additionally. This one Change is slow, it can be quick adjustment as a result of the intrusion of the position of the fuel gas control valve 35 corresponding control command via the line 41 do not influence.

Claims (11)

  1. A method of operating a compressor (3) having a downstream consumer (7), wherein the final pressure of the compressor is regulated and a throttle member (9) disposed on the intake side of the compressor (3) is controlled so as to influence the intake pressure of the compressor, characterised in that the instantaneous gas throughput of the consumer (7) at a given final pressure of the compressor (3) is variable, and in that the throttle member (9) on the intake side is controlled as a function of the instantaneous gas throughput of the consumer (7) and its cross-section is reduced with decreasing gas throughput.
  2. A method according to Claim 1, characterised in that the.throttle member (9) is controlled additionally as a function of the gas pressure on the intake side of the compressor (3) .
  3. A method according to Claim 2, characterised in that the throttle member (9) on the intake side is controlled by an intake pressure regulator (13) in such a way that the pressure on the intake side is maintained substantially constant at the compressor inlet, and in that a signal representing the magnitude of the gas consumption at the consumer additionally acts on the intake pressure regulator (13).
  4. A method according to Claim 2 or 3, characterised in that the throttle member (9) on the intake side is controlled by an actuating signal which is formed by combining a signal corresponding to the compressor intake - pressure with the the signal representing the gas consumption at the consumer.
  5. A method according to Claim 4, characterised in that the combination takes place additively and/or multiplicatively.
  6. A method according to Claim 3,4 or 5, characterised in that the signal representing the gas consumption is varied by a non-linear component (45).
  7. A method according to any one of Claims 1 to 6, characterised in that the final pressure at the compressor outlet is maintained substantially constant by a final-pressure regulator (19) which acts on the position of the guide vane and/or on the speed of rotation of the compressor drive.
  8. A method according to any one of Claims 1 to 7, characterised in that a blow-back section (27) connecting the compressor outlet to the intake side of the compressor (3) is so controlled by a surge-limit regulator (33) that the delivery rate of the compressor (3) does not fall below a minimum value.
  9. A method according to any one of Claims 2 to 8, characterised in that the time constants of the regulator (13) controlling the throttle member (9) on the intake side are so chosen that the throttle member (9) reacts more quickly to changes in the gas consumption on the consumer side than to changes in the pressure on the intake side of the compressor.
  10. A method according to any one of Claims 1 to 9, characterised in that the intake side of the compressor (3) is connected (3) to a gas pipeline (1) and the consumer is a gas turbine (7) which burns the gas compressed by the compressor (3).
  11. An installation with a compressor (3) having a downstream consumer (7), a throttle member (9) on the intake side of the compressor (3) and a regulator (13) for controlling the throttle member (9), characterised in that an actuating member (35,37) for varying the gas throughput through the consumer (7) is associated with the consumer (97), and in that the regulator (13) controls the throttle member (9) on the intake side as a function of the gas throughput of the consumer (7) controlled by the actuating member (35,37).
EP99121245A 1998-12-29 1999-10-25 Operating method of a compressor having a downstream user, and system operating according to this method Expired - Lifetime EP1016787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19860639 1998-12-29
DE19860639A DE19860639A1 (en) 1998-12-29 1998-12-29 Method for operating a compressor with a downstream consumer, and system operating according to the method

Publications (3)

Publication Number Publication Date
EP1016787A2 EP1016787A2 (en) 2000-07-05
EP1016787A3 EP1016787A3 (en) 2001-02-21
EP1016787B1 true EP1016787B1 (en) 2003-12-10

Family

ID=7893065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99121245A Expired - Lifetime EP1016787B1 (en) 1998-12-29 1999-10-25 Operating method of a compressor having a downstream user, and system operating according to this method

Country Status (3)

Country Link
US (1) US6293766B1 (en)
EP (1) EP1016787B1 (en)
DE (2) DE19860639A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012380A1 (en) 2000-03-14 2001-09-20 Man Turbomasch Ag Ghh Borsig Process for protecting a turbo compressor from operation in an unstable work area
US6622489B1 (en) * 2000-10-25 2003-09-23 Hybrid Power Generation Systems, Llc Integrated gas booster modulation control method
JP3854556B2 (en) * 2002-09-11 2006-12-06 三菱重工業株式会社 Gas turbine plant control mechanism
EP1635066B1 (en) 2004-09-09 2015-06-03 Alstom Technology Ltd Gas supply apparatus and associated method of operation for a gas turbine
JP2012504723A (en) * 2008-07-29 2012-02-23 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Compressor control method and apparatus, and hydrocarbon stream cooling method
BE1019299A3 (en) * 2010-04-20 2012-05-08 Atlas Copco Airpower Nv METHOD FOR DRIVING A COMPRESSOR.
EP2530329A1 (en) * 2011-05-30 2012-12-05 Siemens Aktiengesellschaft System for gathering gas from a gas field comprising a high pressure compressor
RU2504693C1 (en) * 2012-06-04 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" Electrically driven pumping station on offshore platform
DE102013102879B4 (en) * 2013-03-21 2019-02-07 Gpi Gesellschaft Für Prüfstanduntersuchungen Und Ingenieurdienstleistungen Mbh Compressor with adjustment of the gas inlet temperature and method for operating this compressor
KR102488575B1 (en) * 2016-03-11 2023-01-16 한화파워시스템 주식회사 Control system for compressor and method of controlling the compressor
RU178571U1 (en) * 2016-09-22 2018-04-11 Открытое акционерное общество "Севернефтегазпром" DEVICE FOR INSTALLING A REPLACEMENT FLOWING PART OF THE COVER OF THE COMPRESSOR OF THE GAS PUMPING UNIT
BE1026036B1 (en) * 2018-02-23 2019-09-20 Atlas Copco Airpower Nv Method for controlling a compressor device and compressor device
CN110195715B (en) * 2019-04-19 2020-07-28 中国神华能源股份有限公司 Control method and device for adjustable guide vane of mechanical equipment and mechanical equipment
JP6623318B1 (en) * 2019-05-13 2019-12-18 三菱日立パワーシステムズ株式会社 Fuel gas supply apparatus and method
CN115618652B (en) 2022-11-28 2023-03-10 成都秦川物联网科技股份有限公司 Intelligent gas compressor operation optimization method, internet of things system, device and medium
IT202200025341A1 (en) * 2022-12-12 2024-06-12 Nuovo Pignone Tecnologie Srl COMPRESSION SYSTEM AND COMPRESSION SYSTEM CONTROL METHODS
CN116221191B (en) * 2023-05-06 2023-08-01 西门子能源有限公司 Method of controlling a fluid compression system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH397135A (en) * 1960-01-27 1965-08-15 Gutehoffnungshuette Sterkrade Device for controlling centrifugal compressors
DE1503568A1 (en) * 1966-03-15 1971-01-21 Kloeckner Humboldt Deutz Ag Gas turbine power plant
DE1648501C2 (en) * 1968-02-09 1982-05-13 Gutehoffnungshütte Sterkrade GmbH, 4200 Oberhausen Compressor with an absolute pressure measuring device
US3860363A (en) * 1973-05-10 1975-01-14 Chicago Pneumatic Tool Co Rotary compressor having improved control system
GB1551048A (en) * 1975-09-16 1979-08-22 Lucas Industries Ltd Fuel control system for a gas turbine engine
SU623996A1 (en) * 1977-03-29 1978-09-15 Предприятие П/Я М-5539 Surge control device for of axial turboexhauster set
DE2737677C2 (en) * 1977-08-20 1984-05-10 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Device for regulating the flow rate of compressors
US4273514A (en) * 1978-10-06 1981-06-16 Ferakarn Limited Waste gas recovery systems
DE3032002C2 (en) * 1980-08-25 1986-01-16 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Device for regulating the flow rate of a single or multi-stage compressor arrangement, in particular for screw compressors
US4392347A (en) * 1981-07-27 1983-07-12 General Motors Corporation Gas turbine engine fuel system
AT377336B (en) * 1982-01-21 1985-03-11 Hoerbiger Ventilwerke Ag ARRANGEMENT FOR START-UP CONTROL OF SCREW COMPRESSORS
US4576054A (en) * 1983-07-12 1986-03-18 Lalin Hill S Dual mode gas sampler and pneumatic flow control system
US4531359A (en) * 1983-11-04 1985-07-30 General Motors Corporation Gas turbine engine fuel system
EP0243527B1 (en) * 1986-05-02 1991-08-14 Leybold Aktiengesellschaft Method for regulating and/or controlling the pressure in a vessel
CH674243A5 (en) * 1987-07-08 1990-05-15 Dereco Dieselmotoren Forschung
GB2230817B (en) * 1989-04-27 1993-12-22 Fuji Heavy Ind Ltd A supercharger air pump control system.
US5199853A (en) * 1991-02-26 1993-04-06 Padden Harvey F Pneumatic flow control system
US5851293A (en) * 1996-03-29 1998-12-22 Atmi Ecosys Corporation Flow-stabilized wet scrubber system for treatment of process gases from semiconductor manufacturing operations
WO1998055566A1 (en) * 1997-06-06 1998-12-10 Texaco Development Corporation Oxygen flow control for gasification

Also Published As

Publication number Publication date
DE19860639A1 (en) 2000-07-06
EP1016787A3 (en) 2001-02-21
US6293766B1 (en) 2001-09-25
DE59908016D1 (en) 2004-01-22
EP1016787A2 (en) 2000-07-05

Similar Documents

Publication Publication Date Title
EP1016787B1 (en) Operating method of a compressor having a downstream user, and system operating according to this method
EP1134422B1 (en) Turbo compressor surge control method
EP2033057B1 (en) Device and method for performing a functional test on a control element of a turbo engine
DE3023550C2 (en)
DE3133504C2 (en) Control arrangement for a steam turbine with diversion stations
EP1069314A1 (en) Control of a compressor unit
DE10313503B4 (en) Method and device for exhaust gas recirculation control in internal combustion engines
CH653744A5 (en) CONTROL ARRANGEMENT FOR A STEAM TURBINE SUPPLIED FROM A STEAM BOILER OPERATED WITH CONSTANT OR SLIDING PRESSURE.
DE3040139A1 (en) CONTROL SYSTEM FOR A GAS TURBINE
DE19828368A1 (en) Method for operating turbo compressors with several mutually influencing regulators
EP1635066B1 (en) Gas supply apparatus and associated method of operation for a gas turbine
EP0335105B1 (en) Method to prevent surge of a centrifugal compressor by vent control
CH621855A5 (en) Method for regulating turbo-compressors
DE60207940T2 (en) Fuel control system
EP0757180B1 (en) Method and device for operating turbomachines with controllers having a high proportional gain
DE19621824C2 (en) Process for regulating gas pressures when using gas expansion turbines
EP2037099B1 (en) Combustion machines and motor regulating device
DE4316202C2 (en) Process for monitoring the surge line of a turbocompressor with a pre-guide and a post-guide
EP2006514B1 (en) Stationary combustion engine
EP3167196B1 (en) Method for regulating the rotational speed of cryogenic compressors which are connected in series
DE69219140T2 (en) AIR CONTROL IN A FLUID FILTER PRESSURE FIRING
EP0822332B1 (en) Hydraulic power station
DE19627759C2 (en) Fuel regulator for turbo jet engines
EP1146214B1 (en) Method for controlling fuel supply
DE859697C (en) Method for regulating gas turbine systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010503

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20021010

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59908016

Country of ref document: DE

Date of ref document: 20040122

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040316

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ATLAS COPCO ENERGAS GMBH

Effective date: 20040910

Opponent name: ALSTOM (SCHWEIZ) AG INTELLECTUAL PROPERTY (CHSP)

Effective date: 20040910

NLR1 Nl: opposition has been filed with the epo

Opponent name: ATLAS COPCO ENERGAS GMBH

Opponent name: ALSTOM (SCHWEIZ) AG INTELLECTUAL PROPERTY (CHSP)

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN TURBO AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MAN TURBO AG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: MAN TURBO AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20060420

NLR2 Nl: decision of opposition

Effective date: 20060420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091022

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908016

Country of ref document: DE

Owner name: MAN DIESEL & TURBO SE, DE

Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE

Effective date: 20110325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151028

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151023

Year of fee payment: 17

Ref country code: NL

Payment date: 20151021

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59908016

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN DIESEL & TURBO SE, 86153 AUGSBURG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59908016

Country of ref document: DE