EP0977909A1 - Thin, fine pored metal layer - Google Patents

Thin, fine pored metal layer

Info

Publication number
EP0977909A1
EP0977909A1 EP98916815A EP98916815A EP0977909A1 EP 0977909 A1 EP0977909 A1 EP 0977909A1 EP 98916815 A EP98916815 A EP 98916815A EP 98916815 A EP98916815 A EP 98916815A EP 0977909 A1 EP0977909 A1 EP 0977909A1
Authority
EP
European Patent Office
Prior art keywords
metal layer
layer
open porosity
suspension
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98916815A
Other languages
German (de)
French (fr)
Other versions
EP0977909B1 (en
Inventor
Hans Peter Buchkremer
Detlev STÖVER
Arno Schirbach
Günther SCHLIEBACH
Werner Mallener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0977909A1 publication Critical patent/EP0977909A1/en
Application granted granted Critical
Publication of EP0977909B1 publication Critical patent/EP0977909B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a metal layer with open porosity.
  • Porous metal layers of the type mentioned at the outset, which are used in particular as filters, are known.
  • a metallic fleece is used, small pore sizes in the micrometer range can be achieved. Then the fleece thickness is at least half a millimeter.
  • the layer thicknesses of the aforementioned nonwovens can also not be manufactured very precisely. Relatively large tolerances have to be accepted.
  • Ceramic fil- ter are also relatively thick, and there is a correspondingly large flow resistance. Ductility is also not guaranteed. The brittleness of the ceramic material is also a disadvantage for many purposes.
  • plastic is used as the filter material, increased operating temperatures are not possible.
  • plastic is not a suitable filter material, since it cannot be sterilized according to the requirements that e.g. B. are required in the medical or in the food sector. The filter cannot be re-used in these cases.
  • the object of the invention is to produce a temperature-resistant, sterilizable, simple and reproducible metal layer with continuous porosity, which is ductile, mechanically stable and elastic and in which - if it is used as a filter - low flow pressure losses occur. Microfiltration tasks should also be performed with the metal layer.
  • the object of the invention is achieved by a metal layer with a maximum thickness of 500 ⁇ m, in other words by a metal foil which has an effective pore diameter which is up to a twelfth, preferably up to a fifteenth, of the layer thickness of the metal layer.
  • the pores here are to be understood as the channels that pass through the layer Create open porosity. Occasional "cavities" due to inhomogeneities are not pores in the sense of the claim.
  • the effective pore diameter is in particular up to a quarter, preferably up to a fifth of the mean particle or powder grain diameter of the powder used.
  • the effective size of the pores, which cause the continuous (open) porosity is up to 500/12 mm, i.e. up to approx. 40 ⁇ m. In other words, substances have to be smaller than approx. 40 ⁇ m in order to be able to pass through the metal layer.
  • the layer thickness should be at least three times as thick as the powder diameter, ie at least 150 ⁇ m, in order to reliably avoid cavity problems due to inhomogeneities in the material.
  • the effective pore diameter of the layer is then regularly up to 50/4 ⁇ m (3 * 50/12 ⁇ m), preferably up to 50/5 ⁇ m (3 * 50/15 ⁇ m).
  • the layer thickness of the metal foil is at most 100 ⁇ m, preferably not more than 50 ⁇ m.
  • the effective pore size in the aforementioned sense is in all cases a maximum of 1/12 of the layer thickness.
  • the metal allows elevated temperatures, behaves ductile, mechanically stable and is elastic.
  • the material can be sterilized without any problems.
  • the layer thickness of the layer or film can be produced within narrow tolerance limits in comparison to a nonwoven or a fabric. The production is also inexpensive, in particular in comparison to a fabric.
  • the layer preferably consists of metals that are sinterable. Metals that have this property within the meaning of the claim form sinter bridges between individual metallic powder grains during a sintering process. Steel, stainless steel, bronze and nickel form sintered bridges in the aforementioned sense. These are easier to sinter than reactive metals such as aluminum and titanium.
  • the demanding metal layer can be produced by the film casting known from the ceramic field.
  • a pouring slurry is first provided, in other words a suspension.
  • the slip has metal powder.
  • the average diameter of the metal powder is to be selected to be less than a third of the layer thickness to be produced.
  • the ratio of metal powder to layer thickness ensures that the layer consists of several layers of powder grains. This avoids “holes” that go through the layer and that are considerably larger than the desired effective pore size. The more layers of powder that are possible, the more reliably no “through holes” occur.
  • a metal layer should therefore preferably be made up of 5 to 10 powder layers.
  • the slip consists of a solvent, dispersant, binder and, if necessary, a substance for adapting the viscosity of the slip to a pouring or spraying device used.
  • the thinner the pouring slot in a pouring device used the thinner the slip must be. If necessary, this adjustment is made by the substance to adjust the viscosity.
  • Isopropanol is particularly suitable as the solvent, but also toluene, water, etc.
  • Bis (2-ethylhexyl phthalate) can be used as the dispersant.
  • polyvinyl butyral is suitable as a binder.
  • Fish oil can be used as a substance for adapting the viscosity to equipment conditions.
  • care must be taken that the subsequent sintering is prevented as little as possible. Carbon, oxygen or nitrogen may therefore not be present in high concentrations in the sintered product. Oxide, carbide and nitride formation should be avoided during sintering.
  • the slip should therefore consist of substances that are easily thermally decomposable in order to comply with the aforementioned requirements.
  • the slip preferably also contains a release agent such as polyethylene glycol. The release agent has the effect that a dried layer produced from the slip can be detached from a carrier in a sufficiently uncomplicated manner.
  • the slip is applied in layers on a carrier.
  • a carrier z. B. a plastic or metal foil.
  • the slip is dried and removed from the carrier, or detached if a self-supporting metal layer is to be produced. This green body is then sintered.
  • the sophisticated, porous metal foil can be produced from the suspension, ie from the slip, by means of the spray process known from DE 41 20 706.
  • the layer can be calibrated by rolling in an advantageous further process step.
  • a film 117 ⁇ m thick was rolled to a thickness of exactly 100 ⁇ m.
  • the thickness of the metal layer can thus be produced in a reproducible manner.
  • the pore size can be reduced in a defined manner by means of rolling.
  • a defined pore size can be produced reproducibly in this way.
  • the flow resistance or the flow rate can consequently be calibrated in the layer produced according to the method.
  • the demanding layer can be used as a filter, for sound insulation purposes or for flame flashbacks.
  • the layer is firmly connected to the inner wall of a tube.
  • the tube is completely porous if it is to be used as a filter.
  • the effective pore size in the tube is then preferably larger than that of the metallic layer in order to achieve low flow resistances.
  • the tube then acts as a carrier. If such a tube has no continuous pores, the metallic layer can e.g. B. serve as a catalyst or to generate a turbulent flow in the tube.
  • a suspension as in DE 41 20 706. This suspension is metered into a rotating tube, which is porous depending on the application. By rotating the pipe the suspension is deposited evenly and in layers on the inner wall. The suspension dries during the rotation process. Once the desired layer thickness has been reached, the supply of the suspension is stopped. As soon as the drying process is finished, the rotation is stopped. The tube is then sintered with the dried suspension, i.e. with the green body.
  • the suspension is fed into the tube with the open porosity by means of a tube.
  • the tube is moved in a defined manner in the tube. This ensures an even distribution of the suspension in the pipe.
  • a spray head is inserted into the tube.
  • the spray head or the pipe rotates.
  • the inner walls of the pipe are sprayed.
  • This method corresponds to the spray method known from DE 41 20 706. It is used especially for pipes with an inner diameter of more than 50 mm.
  • a section of a tube wall 2 with open porosity is shown in cross section, on which, according to the method, a metal layer 1 has been applied as an inner coating.
  • the inner coating has a maximum thickness of 500 ⁇ m in the manner shown in the figure.
  • a slip with the following components is produced for the "Foil casting” production method:
  • the sample is mixed for 2-2.5 hours, for example in a tumble mixer and then poured directly onto a film casting bench to thicknesses of, for example, 60 ⁇ m, 120 ⁇ m or thicker (tested up to 400 ⁇ m).
  • a film casting bench After drying (approx. 3 h) and stripping the layer, the sintering process follows.
  • sintering was carried out at 950 ° C for 1-3 hours in vacuum ( ⁇ 10 "2 mbar), argon or argon + 4 vol.% Hydrogen in a tube furnace.
  • the product is a flexible, porous metal foil with a relative density between 55% and 69%
  • the pore maximum for the powder mentioned is about 5-7 ⁇ m in diameter.
  • the spray suspension is first prepared by mixing binder solution and powder in a ratio of 2: 1 (parts by volume). A 9% (% by weight) shellac-ethanol solution was used as the binder solution and a gas-atomized 316 L stainless steel powder with a grain diameter of ⁇ 16 ⁇ m was used as the metal powder.
  • the suspension can be sprayed directly into a suitable system. This is done by spraying 50 - 200 ⁇ m thick layers on polyethylene foils (PE-HD 0.2 mm).
  • the desired film shape is cut out with a punching or cutting tool: here 0 93 mm with a punching tool.
  • a drying time of 1-2 hours here 2 hours
  • the PE film is removed from the green film.
  • the sintering was carried out at 950 ° C. for 1 hour in vacuo.
  • the product has one relative density of 63% and a pore maximum at approx. 6 ⁇ m.
  • the binder solution is a 9% shellac solution (shellac ethanol).
  • the spray suspension consists of a mixture of powder and binder solution in a ratio of 1: 2.
  • Powder and binder solution are homogenized for 8 hours in a tumble mixer.
  • the tube is inserted into the sintering furnace and sintered at 950 ° C. for 1 hour in a vacuum.
  • Inner coatings with porosities between 30 and 50% were produced in a thickness range between 20 and 300 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a metal layer with open porosity and with a maximum thickness of 500 mu m, whereby the diameter of the through pores is at most a twelfth of the thickness of the layer. In order to produce a metal layer with open porosity, a suspension containing metal powder, dispersant as well as substances for adjusting the viscosity is deposited in layers on a support, dried and then sintered. The thickness of the suspension layer deposited on the support must be such that the thickness of the metal layer after sintering is at least three times the diameter of the metal powder.

Description

B e s c h r e i b u n g Description
Dünne, feinporige MetallschichtThin, fine-pored metal layer
Die Erfindung betrifft eine Metallschicht mit offener Porosität .The invention relates to a metal layer with open porosity.
Bekannt sind aus Gewebe und Vlies bestehende poröse Metallschichten der eingangs genannten Art, die insbeson- dere als Filter eingesetzt werden.Porous metal layers of the type mentioned at the outset, which are used in particular as filters, are known.
Bei Filtern sind kleine Schichtdicken anzustreben, um unerwünschte Strömungswiderstände zu minimieren. Es gibt ca. 100 μm dünne, aus Gewebe bestehende metallische Filter, die dann allerdings nachteilhaft verhält- nismäßig große Poren aufweisen. Auch müssen zur Herstellung entsprechend dünne und daher teure Drähte verwendet werden. Die hieraus hergestellten Gewebe sind folglich ebenfalls entsprechend teuer.Small layer thicknesses should be aimed at in order to minimize undesirable flow resistance. There are approximately 100 μm thin, metallic filters made of fabric, which however disadvantageously have relatively large pores. Correspondingly thin and therefore expensive wires must also be used for the production. The fabrics made from them are consequently also correspondingly expensive.
Wird ein metallisches Vlies eingesetzt, so können zwar kleine Porengrößen im Mikrometerbereich erzielt werden. Dann beträgt die Vliesdicke jedoch wenigstens einen halben Millimeter. Die Schichtdicken der vorgenannten Vliese können ferner nicht sehr genau gefertigt werden. Verhältnismäßig große Toleranzen müssen hingenommen werden .If a metallic fleece is used, small pore sizes in the micrometer range can be achieved. Then the fleece thickness is at least half a millimeter. The layer thicknesses of the aforementioned nonwovens can also not be manufactured very precisely. Relatively large tolerances have to be accepted.
Alternativ zum Metall werden u. a. Keramiken und Kunststoffe als Filtermaterialien verwendet. Keramische Fil- ter sind jedoch ebenfalls relativ dick, und es tritt ein entsprechend großer Strömungswiderstand auf. Auch ist die Duktilität nicht gewährleistet. Für viele Einsatzzwecke stellt des weiteren die Sprödigkeit des ke- ramischen Werkstoffs einen Nachteil dar.As an alternative to metal, ceramics and plastics are used as filter materials. Ceramic fil- ter are also relatively thick, and there is a correspondingly large flow resistance. Ductility is also not guaranteed. The brittleness of the ceramic material is also a disadvantage for many purposes.
Wird Kunststoff als Filtermaterial eingesetzt, so sind keine erhöhten Betriebstemperaturen möglich. Für einige Anwendungszwecke stellt Kunststoff kein geeignetes Filtermaterial dar, da dieser nicht den Anforderungen ent- sprechend sterilisiert werden kann, die z. B. im medizinischen oder im Lebensmittelbereich erforderlich sind. Die Wiedereinsetzbarkeit des Filters ist in diesen Fällen nicht möglich.If plastic is used as the filter material, increased operating temperatures are not possible. For some applications, plastic is not a suitable filter material, since it cannot be sterilized according to the requirements that e.g. B. are required in the medical or in the food sector. The filter cannot be re-used in these cases.
Aufgabe der Erfindung ist die Herstellung einer tempe- raturbeständigen, sterilisierbaren, einfach und reproduzierbar herzustellenden Metallschicht mit durchgehender Porosität, die duktil, mechanisch stabil und elastisch ist und bei der - sofern sie als Filter eingesetzt wird - geringe Strömungsdruckverluste auftreten. Ferner sollen Mikrofiltrationsaufgaben mit der Metallschicht wahrgenommen werden können.The object of the invention is to produce a temperature-resistant, sterilizable, simple and reproducible metal layer with continuous porosity, which is ductile, mechanically stable and elastic and in which - if it is used as a filter - low flow pressure losses occur. Microfiltration tasks should also be performed with the metal layer.
Die Aufgabe der Erfindung wird durch eine maximal 500 μm dicke Metallschicht, mit anderen Worten durch eine Metallfolie gelöst, die einen effektiven Poren- durchmesser aufweist, der bis zu einem Zwölftel, vorzugsweise bis zu einem Fünfzehntel der Schichtdicke der Metallschicht beträgt. Als Poren sind hier die Kanäle zu verstehen, die die durch die Schicht hindurchgehende offene Porosität erzeugen. Gelegentliche „Hohlräume" aufgrund von Inhomogenitäten stellen keine Poren im Sinne des Anspruchs dar.The object of the invention is achieved by a metal layer with a maximum thickness of 500 μm, in other words by a metal foil which has an effective pore diameter which is up to a twelfth, preferably up to a fifteenth, of the layer thickness of the metal layer. The pores here are to be understood as the channels that pass through the layer Create open porosity. Occasional "cavities" due to inhomogeneities are not pores in the sense of the claim.
Die vorgenannten Hohlräume aufgrund von Inhomogenitäten spielen erfahrungsgemäß keine Rolle, wenn die Schicht - dicke einer erfindungsgemäß aus Partikeln bzw. aus Pulver hergestellten porösen Schicht wenigstens dreimal größer als der mittlere Partikeldurchmesser ist. Wird die anspruchsgemäße Schicht aus Partikeln oder Pulvern erfindungsgemäß hergestellt, so beträgt der effektive Porendurchmesser insbesondere bis zu einem Viertel, vorzugsweise bis zu einem Fünftel des mittleren Partikel- bzw. Pulverkörnerdurchmessers des eingesetzten Pulvers . Liegt beispielsweise eine 500 μm dicken Metallschicht vor, so beträgt die effektive Größe der Poren, die die durchgehende (offene) Porosität bewirken, bis zu 500/12 mm, also bis zu ca. 40 μm. Anders ausgedrückt bedeutet dies, daß Substanzen kleiner als ca. 40 μm sein müssen, um die Metallschicht passieren zu können.Experience has shown that the aforementioned cavities due to inhomogeneities do not play any role if the layer thickness of a porous layer produced according to the invention from particles or from powder is at least three times greater than the mean particle diameter. If the layer according to the invention is produced from particles or powders, the effective pore diameter is in particular up to a quarter, preferably up to a fifth of the mean particle or powder grain diameter of the powder used. For example, if there is a 500 μm thick metal layer, the effective size of the pores, which cause the continuous (open) porosity, is up to 500/12 mm, i.e. up to approx. 40 μm. In other words, substances have to be smaller than approx. 40 μm in order to be able to pass through the metal layer.
Wurde eine Metallschicht aus Pulvern der Größe 50 μm erfindungsgemäß hergestellt, so sollte die Schichtdicke wenigstens dreimal so dick wie der Pulverdurchmesser, also wenigstens 150 μm betragen, um auf Inhomogenitäten des Materials zurückzuführende Hohlraumprobleme zuverlässig zu vermeiden. Der effektive Porendurchmesser der Schicht beträgt dann regelmäßig bis zu 50/4 μm (3*50/12 μm) , vorzugsweise bis zu 50/5 μm (3*50/15 μm) . In einer vorteilhaften Ausgestaltung der Erfindung beträgt die Schichtdicke der Metallfolie maximal 100 μm, vorzugsweise nicht mehr als 50 μm. Die effektive Porengröße im vorgenannten Sinne beträgt in allen Fällen ma- ximal 1/12 der Schichtdicke.If a metal layer was produced from powders with a size of 50 μm according to the invention, the layer thickness should be at least three times as thick as the powder diameter, ie at least 150 μm, in order to reliably avoid cavity problems due to inhomogeneities in the material. The effective pore diameter of the layer is then regularly up to 50/4 μm (3 * 50/12 μm), preferably up to 50/5 μm (3 * 50/15 μm). In an advantageous embodiment of the invention, the layer thickness of the metal foil is at most 100 μm, preferably not more than 50 μm. The effective pore size in the aforementioned sense is in all cases a maximum of 1/12 of the layer thickness.
Das Metall erlaubt erhöhte Temperaturen, verhält sich duktil, mechanisch stabil und ist elastisch. Darüber hinaus ist das Material problemlos sterilisierbar. Die Schichtdicke der Schicht bzw. Folie kann im Vergleich zu einem Vlies oder einem Gewebe in engen Toleranzgrenzen hergestellt werden. Auch ist die Herstellung insbesondere im Vergleich zu einem Gewebe kostengünstig.The metal allows elevated temperatures, behaves ductile, mechanically stable and is elastic. In addition, the material can be sterilized without any problems. The layer thickness of the layer or film can be produced within narrow tolerance limits in comparison to a nonwoven or a fabric. The production is also inexpensive, in particular in comparison to a fabric.
Die Schicht besteht vorzugsweise aus Metallen, die sinterfähig sind. Metalle, die diese Eigenschaft im Sinne des Anspruchs aufweisen, bilden während eines Sinterungsprozesses Sinterbrücken zwischen einzelnen metallischen Pulverkörnern. Stahl, Edelstahl, Bronze und Nickel bilden Sinterbrücken im vorgenannten Sinne. Diese lassen sich besser als Reaktivmetalle wie Alumi- nium und Titan sintern.The layer preferably consists of metals that are sinterable. Metals that have this property within the meaning of the claim form sinter bridges between individual metallic powder grains during a sintering process. Steel, stainless steel, bronze and nickel form sintered bridges in the aforementioned sense. These are easier to sinter than reactive metals such as aluminum and titanium.
Die anspruchsgemäße Metallschicht kann durch das aus dem keramischen Bereich bekannte Foliengießen hergestellt werden. Hierfür wird zunächst ein Gießschlicker, mit anderen Worten eine Suspension bereitgestellt. Der Schlicker weist Metallpulver auf. Der mittlere Durchmesser des Metallpulvers ist kleiner als ein Drittel der herzustellenden Schichtdicke zu wählen. Das genannte Verhältnis von Metallpulver zur Schicht- dicke stellt sicher, daß die Schicht aus mehreren Lagen Pulverkörnern besteht . So werden durch die Schicht hindurchgehende „Löcher" vermieden, die erheblich größer als die gewünschte effektive Porengröße sind. Je mehr Lagen Pulver möglich sind, desto zuverlässiger treten keine „hindurchgehenden Löcher" auf.The demanding metal layer can be produced by the film casting known from the ceramic field. For this purpose, a pouring slurry is first provided, in other words a suspension. The slip has metal powder. The average diameter of the metal powder is to be selected to be less than a third of the layer thickness to be produced. The ratio of metal powder to layer thickness ensures that the layer consists of several layers of powder grains. This avoids “holes” that go through the layer and that are considerably larger than the desired effective pore size. The more layers of powder that are possible, the more reliably no “through holes” occur.
Nachteilhaft nimmt mit der Anzahl der Pulverlagen der Strömungswiderstand zu. Nach derzeitigem Kenntnisstand sollte eine Metallschicht daher bevorzugt aus 5 bis 10 Pulverlagen aufgebaut sein.The flow resistance increases disadvantageously with the number of powder layers. According to the current state of knowledge, a metal layer should therefore preferably be made up of 5 to 10 powder layers.
Der Schlicker besteht neben dem Pulver aus einem Lösungsmittel, Dispergator, Binder und erforderlichenfalls aus einer Substanz zur Anpassung der Viskosität des Schlickers an eine eingesetzte Gieß- oder Sprühvorrichtung .In addition to the powder, the slip consists of a solvent, dispersant, binder and, if necessary, a substance for adapting the viscosity of the slip to a pouring or spraying device used.
Je dünner beispielsweise der Ausgußschlitz bei einer verwendeten Gießvorrichtung ist, desto dünnflüssiger muß der Schlicker sein. Diese Anpassung erfolgt im Be- darfsfall durch die Substanz zur Anpassung der Viskosität.For example, the thinner the pouring slot in a pouring device used, the thinner the slip must be. If necessary, this adjustment is made by the substance to adjust the viscosity.
Als Lösungsmittel eignet sich insbesondere Isopropanol, aber auch Toluol, Wasser etc.. Als Dispergator kann Phtalsäurebis- (2 ethylhexylester) eingesetzt werden. Als Binder eignet sich beispielsweise Polyvinylbutyral . Als Substanz zur Anpassung der Viskosität an apparative Gegebenheiten kann Fischöl verwendet werden. Bei der Auswahl des Schlickers ist darauf zu achten, daß die nachfolgende Sinterung möglichst wenig behindert wird. Kohlenstoff, Sauerstoff oder Stickstoff dürfen im Sinterprodukt daher in nicht zu hohen Konzentra- tionen auftreten. Oxid-, Carbid- , Nitridbildungen sind während der Sinterung zu vermeiden. Der Schlicker sollte also aus Substanzen bestehen, die zwecks Einhaltung der vorgenannten Anforderungen thermisch leicht zersetzbar sind. Soll eine freitragende Schicht hergestellt werden, so enthält der Schlicker vorzugsweise noch ein Trennmittel wie Polyethylenglykol . Das Trennmittel bewirkt, daß eine getrocknete, aus dem Schlicker hergestellte Schicht von einem Träger ausreichend komplikationslos gelöst werden kann.Isopropanol is particularly suitable as the solvent, but also toluene, water, etc. Bis (2-ethylhexyl phthalate) can be used as the dispersant. For example, polyvinyl butyral is suitable as a binder. Fish oil can be used as a substance for adapting the viscosity to equipment conditions. When selecting the slip, care must be taken that the subsequent sintering is prevented as little as possible. Carbon, oxygen or nitrogen may therefore not be present in high concentrations in the sintered product. Oxide, carbide and nitride formation should be avoided during sintering. The slip should therefore consist of substances that are easily thermally decomposable in order to comply with the aforementioned requirements. If a self-supporting layer is to be produced, the slip preferably also contains a release agent such as polyethylene glycol. The release agent has the effect that a dried layer produced from the slip can be detached from a carrier in a sufficiently uncomplicated manner.
Der Schlicker wird auf einen Träger schichtförmig aufgetragen. Als Träger eignet sich z. B. eine Kunststoff- oder Metallfolie.The slip is applied in layers on a carrier. As a carrier z. B. a plastic or metal foil.
Der Schlicker wird getrocknet und vom Träger abgezogen, bzw. abgelöst, falls eine freitragende Metallschicht hergestellt werden soll. Anschließend wird dieser Grünling gesintert.The slip is dried and removed from the carrier, or detached if a self-supporting metal layer is to be produced. This green body is then sintered.
Alternativ kann die anspruchsgemäße , poröse Metallfolie mittels des aus DE 41 20 706 bekannten Spray-Verfahrens aus der Suspension, also aus dem Schlicker hergestellt werden.Alternatively, the sophisticated, porous metal foil can be produced from the suspension, ie from the slip, by means of the spray process known from DE 41 20 706.
Die Schicht kann in einem vorteilhaften weiteren Verfahrensschritt durch Walzen kalibriert werden. Auf diese Weise wurde beispielsweise eine 117 μm dicke Folie auf exakt 100 μm Dicke gewalzt. Die Metallschicht kann so hinsichtlich ihrer Dicke reproduzierbar hergestellt werden. Alternativ läßt sich mittels Walzens die Porengröße definiert verkleinern. Es kann so eine definierte Porengröße reproduzierbar hergestellt werden. Der Strömungswiderstand bzw. die Durchflußrate ist folglich bei der verfahrensgemäß hergestellten Schicht kalibrierbar. Die anspruchsgemäße Schicht kann als Filter, zu Schallschutzzwecken oder bei Flammenrückschlagsperren eingesetzt werden.The layer can be calibrated by rolling in an advantageous further process step. On in this way, for example, a film 117 μm thick was rolled to a thickness of exactly 100 μm. The thickness of the metal layer can thus be produced in a reproducible manner. Alternatively, the pore size can be reduced in a defined manner by means of rolling. A defined pore size can be produced reproducibly in this way. The flow resistance or the flow rate can consequently be calibrated in the layer produced according to the method. The demanding layer can be used as a filter, for sound insulation purposes or for flame flashbacks.
In einer weiteren Ausgestaltung der Erfindung ist die Schicht fest mit der Innenwand eines Rohres verbunden. Das Rohr ist durchgehend porös, wenn es als Filter eingesetzt werden soll. Die effektive Porengröße im Rohr ist dann vorzugsweise größer als die der metallischen Schicht, um zu geringen Strömungswiderständen zu gelangen. Das Rohr fungiert dann also als Träger. Weist ein solches Rohr keine durchgehenden Poren auf, so kann die metallische Schicht z. B. als Katalysator oder zur Erzeugung einer turbulenten Strömung im Rohr dienen.In a further embodiment of the invention, the layer is firmly connected to the inner wall of a tube. The tube is completely porous if it is to be used as a filter. The effective pore size in the tube is then preferably larger than that of the metallic layer in order to achieve low flow resistances. The tube then acts as a carrier. If such a tube has no continuous pores, the metallic layer can e.g. B. serve as a catalyst or to generate a turbulent flow in the tube.
Zur Herstellung eines solchen Rohres mit poröser Innen- schicht wird z. B. zunächst eine Suspension (Schlicker) wie in DE 41 20 706 hergestellt. Diese Suspension wird dosiert in ein rotierendes, je nach Anwendungszweck poröses Rohr eingespeist. Durch Rotation des Rohres wird die Suspension gleichmäßig und schichtförmig auf der Innenwand abgeschieden. Während des Rotationsvorgangs trocknet die Suspension. Ist die gewünschte Schicht- dicke erreicht, so wird die Zufuhr der Suspension ge- stoppt. Sobald der Trocknungsvorgang beendet ist, wird die Rotation beendet. Anschließend wird das Rohr mit der getrockneten Suspension, also mit dem Grünling gesintert .To produce such a tube with a porous inner layer, for. B. first a suspension (slip) as in DE 41 20 706. This suspension is metered into a rotating tube, which is porous depending on the application. By rotating the pipe the suspension is deposited evenly and in layers on the inner wall. The suspension dries during the rotation process. Once the desired layer thickness has been reached, the supply of the suspension is stopped. As soon as the drying process is finished, the rotation is stopped. The tube is then sintered with the dried suspension, i.e. with the green body.
In einer vorteilhaften Ausführungsform des vorgenannten Herstellungsverfahrens wird im Falle eines porösen Rohres dieses von außen abgedichtet. So wird verhindert, daß Suspension im Übermaß in die Poren des Rohres eindringen kann, wenn diese größer als der Pulverdurchmesser sind. In einer weiteren vorteilhaften Ausführungsform desIn an advantageous embodiment of the aforementioned production method, in the case of a porous tube, it is sealed from the outside. This prevents excess suspension from penetrating into the pores of the tube if they are larger than the powder diameter. In a further advantageous embodiment of the
Verfahrens wird die Suspension mittels eines Röhrchens in das Rohr mit der offenen Porosität eingespeist. Das Röhrchen wird definiert in dem Rohr bewegt . Auf diese Weise wird eine gleichmäßige Verteilung der Suspension im Rohr sichergestellt.In the process, the suspension is fed into the tube with the open porosity by means of a tube. The tube is moved in a defined manner in the tube. This ensures an even distribution of the suspension in the pipe.
In einer alternativen Ausführungsform des Verfahrens wird ein Sprühkopf in das Rohr eingeführt . Der Sprühkopf oder das Rohr rotiert . Auf diese Weise werden die Innenwände des Rohrs besprüht. Dieses Verfahren ent- spricht dem aus DE 41 20 706 bekannten Spray-Verfahren. Es wird insbesondere bei Rohren mit einem Innendurchmesser von mehr als 50 mm eingesetzt. In der Figur wird ausschnittsweise ein Rohrwand 2 mit offener Porosität im Querschnitt gezeigt, auf der verfahrensgemäß eine Metallschicht 1 als Innenbeschichtung aufgebracht worden ist . Die Innenbeschichtung ist in der aus der Figur ersichtlichen Weise maximal 500 μm dick.In an alternative embodiment of the method, a spray head is inserted into the tube. The spray head or the pipe rotates. In this way the inner walls of the pipe are sprayed. This method corresponds to the spray method known from DE 41 20 706. It is used especially for pipes with an inner diameter of more than 50 mm. In the figure, a section of a tube wall 2 with open porosity is shown in cross section, on which, according to the method, a metal layer 1 has been applied as an inner coating. The inner coating has a maximum thickness of 500 μm in the manner shown in the figure.
Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert .The invention is illustrated by the following examples.
Für die Herstellungsart „Foliengießen" wird ein Schlik- ker mit folgenden Bestandteilen hergestellt :A slip with the following components is produced for the "Foil casting" production method:
Einwaage von 100 g Edelstahlpulver, mittlerer Pulverdurchmesser < 16 μmWeigh in 100 g of stainless steel powder, average powder diameter <16 μm
14,4 g Toluol 26 Gew.-% Isopropanol 3 Gew.-14.4 g toluene 26% by weight isopropanol 3% by weight
Methylethylketon 1 Gew.Methyl ethyl ketone 1 wt.
0,56 g Polyvinylbutyral - 98 1,0 g Polyethylenglykol - 4000.56 g polyvinyl butyral - 98 1.0 g polyethylene glycol - 400
1,0 g Phtalsäurebis - (2 ethylhexylester)1.0 g phthalic acid bis - (2 ethylhexyl ester)
Die Einwaage wird 2-2,5 h gemischt, z.B. im Taumelmischer und dann unmittelbar auf einer Foliengießbank ausgegossen auf Dicken von z.B. 60 μm, 120 μm oder dik- ker (erprobt bis 400 μm) . Nach dem Trocknen (ca. 3 h) und Abziehen der Schicht folgt der Sinterprozeß. Hier wurden Sinterungen bei 950° C für 1-3 Stunden in Vakuum (< 10"2 mbar) , Argon oder Argon + 4 Vol.-% Wasserstoff in einem Rohrofen durchgeführt. Das Produkt ist eine flexible, poröse Metallfolie mit einer relativen Dichte zwischen 55 % und 69 %. Das Porenmaximum liegt bei dem genannten Pulver bei einem Durchmesser von ca. 5-7 μm.The sample is mixed for 2-2.5 hours, for example in a tumble mixer and then poured directly onto a film casting bench to thicknesses of, for example, 60 μm, 120 μm or thicker (tested up to 400 μm). After drying (approx. 3 h) and stripping the layer, the sintering process follows. Here sintering was carried out at 950 ° C for 1-3 hours in vacuum (<10 "2 mbar), argon or argon + 4 vol.% Hydrogen in a tube furnace. The product is a flexible, porous metal foil with a relative density between 55% and 69% The pore maximum for the powder mentioned is about 5-7 μm in diameter.
Für eine Herstellung mittels des aus DE 41 20 706 be- kannten Spray-Verfahrens wird zunächst die Spritzsuspension durch Mischung von Binderlösung und Pulver im Verhältnis 2 : 1 (Vol. Anteile) hergestellt. Als Binderlösung wurde eine 9%ige (Gew.-%) Schellack-Ethanol- lösung verwendet und als Metallpulver ein gasverdüstes Edelstahlpulver 316 L mit einem Korndurchmesser < 16 μm.For production by means of the spray process known from DE 41 20 706, the spray suspension is first prepared by mixing binder solution and powder in a ratio of 2: 1 (parts by volume). A 9% (% by weight) shellac-ethanol solution was used as the binder solution and a gas-atomized 316 L stainless steel powder with a grain diameter of <16 μm was used as the metal powder.
Nach ca. 8 h Homogenisierung im Taumelmischer kann die Suspension unmittelbar in einer geeigneten Anlage verspritzt werden. Das geschieht durch Aufspritzen von 50 - 200 μm dicken Schichten auf Polyethylen-Folien (PE-HD 0,2 mm).After approximately 8 hours of homogenization in the tumble mixer, the suspension can be sprayed directly into a suitable system. This is done by spraying 50 - 200 μm thick layers on polyethylene foils (PE-HD 0.2 mm).
Nach Antrocknen (5-10 min) wird die gewünschte Folienform mit einem Stanz- oder Schneidewerkzeug ausgeschnitten: hier 0 93 mm mit Stanzwerkzeug. Nach 1-2 Stunden Trockenzeit (hier 2 h) wird die PE-Folie von der Grünfolie abgezogen. Die Sinterung wurde bei 950 °C, 1 Stunde im Vakuum durchgeführt . Das Produkt hat eine relative Dichte von 63% und ein Porenmaximum bei ca. 6 μm.After drying (5-10 min) the desired film shape is cut out with a punching or cutting tool: here 0 93 mm with a punching tool. After a drying time of 1-2 hours (here 2 hours), the PE film is removed from the green film. The sintering was carried out at 950 ° C. for 1 hour in vacuo. The product has one relative density of 63% and a pore maximum at approx. 6 μm.
Für eine Innenbeschichtung von porösen Trägerrohren wurde als Pulverwerkstoff Edelstahl 316 L, 0Puierkörner < 5 μm eingesetzt. Die Binderlösung ist eine 9%ige Schellacklösung (Schellack-Ethanol) . Die Spritzsuspension besteht aus einer Mischung aus Pulver und Binderlösung im Verhältnis 1 : 2.For an inner coating of porous support tubes 0 Pu was used as powder material stainless steel 316 L, used microns erkörner i was <5. The binder solution is a 9% shellac solution (shellac ethanol). The spray suspension consists of a mixture of powder and binder solution in a ratio of 1: 2.
Pulver und Binderlösung werden 8 Stunden im Taumelmi- scher homogenisiert. Zur Innenbeschichtung wird das zu beschichtende Rohr (hier 0_ = 15 mm, Länge = 400 mm) in Rotation versetzt (hier ca. 60 Umdrehungen/min) und über einen mit konstanter Geschwindigkeit verfahrbaren Dosierkopf (0 3 mm) Suspension in das Rohr eindosiert. Nach ca. 5 minütiger Trockenzeit wird das Rohr in den Sinterofen eingesetzt und bei 950° C, 1 Stunde lang im Vakuum gesintert. Innenbeschichtungen mit Porositäten zwischen 30 und 50% wurden so in einem Dickebereich zwischen 20 und 300 μm hergestellt. Powder and binder solution are homogenized for 8 hours in a tumble mixer. For the internal coating, the pipe to be coated (here 0_ = 15 mm, length = 400 mm) is set in rotation (here approx. 60 revolutions / min) and suspension is metered into the pipe via a metering head (0 3 mm) that can be moved at constant speed. After a drying time of approx. 5 minutes, the tube is inserted into the sintering furnace and sintered at 950 ° C. for 1 hour in a vacuum. Inner coatings with porosities between 30 and 50% were produced in a thickness range between 20 and 300 μm.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Metallschicht mit offener Porosität, mit einer Schichtdicke von maximal 500 μm, wobei der effektive Durchmesser der durchgehenden Poren maximal ein Zwölftel der Schichtdicke beträgt.1. Metal layer with open porosity, with a layer thickness of at most 500 μm, the effective diameter of the continuous pores being at most one twelfth of the layer thickness.
2. Metallschicht nach vorhergehendem Anspruch, bestehend aus einem sinterfähigen Metall und zwar insbesondere aus Stahl, Edelstahl, Bronze oder Nickel.2. Metal layer according to the preceding claim, consisting of a sinterable metal, in particular made of steel, stainless steel, bronze or nickel.
3. Metallschicht nach einem der vorhergehenden Ansprüche, die als Innenwand eines Rohres mit einer oder ohne eine offene Porosität ausgestaltet ist.3. Metal layer according to one of the preceding claims, which is designed as the inner wall of a tube with or without an open porosity.
4. Verfahren zur Herstellung einer Metallschicht mit offener Porosität, indem eine Suspension, die Metallpulver, Dispergator sowie Substanzen zur Anpassung der Viskosität aufweist, auf einen Träger schichtförmig aufgebracht, hierauf getrocknet und anschließend gesintert wird, wobei die Schichtdicke der auf den Träger aufgebrachten Suspension so gewählt worden ist, daß die Schichtdicke der Metallschicht nach der Sinterung wenigstens dreimal so dick wie der mittlere Pulverdurchmesser des Metallpulvers ist. 4. A process for producing a metal layer with open porosity, in that a suspension which has metal powder, dispersant and substances for adjusting the viscosity is applied in layers to a support, dried thereon and then sintered, the layer thickness of the suspension applied to the support thus it has been chosen that the layer thickness of the metal layer after sintering is at least three times as thick as the mean powder diameter of the metal powder.
5. Verfahren zur Herstellung einer Metallschicht mit offener Porosität nach vorhergehendem Verfahrensanspruch, bei dem die getrocknete metallische Schicht vor der Sinterung vom Träger abgezogen wird.5. A method for producing a metal layer with open porosity according to the preceding method claim, in which the dried metallic layer is removed from the carrier before sintering.
6. Verfahren zur Herstellung einer Metallschicht mit offener Porosität nach einem der vorhergehenden Verfahrensansprüche, bei dem die gesinterte Metallschicht gewalzt wird.6. A method for producing a metal layer with open porosity according to one of the preceding method claims, in which the sintered metal layer is rolled.
7. Verfahren zur Herstellung einer Metallschicht mit offener Porosität nach einem der vorhergehenden Ansprüche, bei dem als Träger die Innenwand eines Rohres mit offener Porosität eingesetzt wird.7. A method for producing a metal layer with open porosity according to one of the preceding claims, in which the inner wall of a tube with open porosity is used as the carrier.
8. Verfahren zur Herstellung einer Metallschicht mit offener Porosität nach vorhergehendem Anspruch, bei dem das Rohr während der Auftragung und Trocknung der Suspension rotiert.8. A process for producing a metal layer with open porosity according to the preceding claim, in which the tube rotates during the application and drying of the suspension.
9. Verfahren zur Herstellung einer Metallschicht mit offener Porosität nach einem der beiden vorhergehenden Ansprüche, bei dem die Außenwand des porösen Rohres durch ein Dichtmittel bis zur Trocknung der Suspension abgedichtet ist. 9. A method for producing a metal layer with open porosity according to one of the two preceding claims, in which the outer wall of the porous tube is sealed by a sealant until the suspension dries.
EP98916815A 1997-04-21 1998-02-27 Thin, fine pored metal layer Expired - Lifetime EP0977909B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19716595 1997-04-21
DE19716595A DE19716595C1 (en) 1997-04-21 1997-04-21 Thin metal inner layer with fine porosity for a pipe
PCT/DE1998/000594 WO1998048077A1 (en) 1997-04-21 1998-02-27 Thin, fine pored metal layer

Publications (2)

Publication Number Publication Date
EP0977909A1 true EP0977909A1 (en) 2000-02-09
EP0977909B1 EP0977909B1 (en) 2002-06-12

Family

ID=7827146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916815A Expired - Lifetime EP0977909B1 (en) 1997-04-21 1998-02-27 Thin, fine pored metal layer

Country Status (4)

Country Link
EP (1) EP0977909B1 (en)
AT (1) ATE219166T1 (en)
DE (3) DE19716595C1 (en)
WO (1) WO1998048077A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963698A1 (en) 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Thin porous layer with open porosity and process for its production
DE10041992A1 (en) * 2000-08-26 2002-03-14 Gkn Sinter Metals Gmbh Module for use as a filter, catalyst or heater and process for its manufacture
DE10123199B4 (en) * 2001-05-12 2005-02-24 Gkn Sinter Metals Gmbh Process for producing at least partially internally coated tubular bodies with a coating of a sinterable material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL219239A (en) * 1956-07-25
FR2031787A5 (en) * 1969-02-07 1970-11-20 Onera (Off Nat Aerospatiale)
CA962806A (en) * 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
DE2323878A1 (en) * 1973-05-11 1974-11-21 Union Carbide Corp METHOD AND DEVICE FOR COATING METAL SUBSTRATES
JPS5788967A (en) * 1980-11-21 1982-06-03 Showa Alum Corp Formation of porous layer on metallic surface
IT1206312B (en) * 1982-01-22 1989-04-14 Thermo Electron Corp METHOD TO FORM A WICK FOR A HEAT TUBE.
DE4000302C1 (en) * 1990-01-08 1991-07-25 Degussa Ag, 6000 Frankfurt, De
DE4120706C2 (en) * 1991-06-22 1994-10-13 Forschungszentrum Juelich Gmbh Process for the production of porous or dense sintered workpieces
FR2701719B1 (en) * 1993-02-19 1995-04-14 Maubeuge Fer Methods and installations for continuously producing several coatings based on metallic alloy on a steel strip.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9848077A1 *

Also Published As

Publication number Publication date
DE59804429D1 (en) 2002-07-18
ATE219166T1 (en) 2002-06-15
WO1998048077A1 (en) 1998-10-29
DE19716595C1 (en) 1998-09-03
DE19758454A1 (en) 1998-10-22
EP0977909B1 (en) 2002-06-12

Similar Documents

Publication Publication Date Title
EP1073778B1 (en) Method for producing an openly porous sintered metal film
EP1251987B1 (en) Method for the production of a thin porous layer with open porosity
DE602004000465T2 (en) OPENPORISH FORM BODY, METHOD FOR THE PRODUCTION AND USE THEREOF OF THE BODY
EP0243995B1 (en) Process for manufacturing a target for cathodic sputtering
DE69620699T2 (en) Method and device for producing porous metal plates
DE10015614A1 (en) Sintered molded body with a porous layer on the surface and process for its production
WO2014044429A1 (en) Production of a refractory metal component
DE69927475T2 (en) PROCESS FOR PRODUCING SINTERED BODY
EP0977909B1 (en) Thin, fine pored metal layer
DE102014209519B4 (en) PROCESS FOR PRODUCING CERAMIC AND / OR METALLIC COMPONENTS
DE69706795T2 (en) Catalyst carrier made of silicon carbide foam with reinforced outer skin and corresponding catalytic systems
DE69130237T2 (en) Process for the production of composite material
WO2014044433A1 (en) Production of a refractory metal component
EP0316978B1 (en) Moulding device with variable porosity for making foundry sand moulds, and method for its manufacture
EP3541552A1 (en) Method for producing a porous moulded body and porous moulded body
DE10114774A1 (en) Process for producing a metal / ceramic composite and process for producing a porous ceramic body
DE3840137C1 (en)
DE3808123A1 (en) Process for producing sintered parts of finely particulate metal or ceramic powders
EP1771236A1 (en) Method for producing an area of a filter structure, especially for a particle filter in the exhaust gas system of an internal combustion engine
DE2458682A1 (en) METHOD OF MANUFACTURING A MOLDED BODY FROM SILICON NITRIDE
DE102012217188A1 (en) Producing a refractory metal component
DE19701806C2 (en) Use of a wire mesh
WO2022238399A1 (en) Process for producing a porous metallic or ceramic component and a component produced with the process
DE10022157C1 (en) Process for forming a thermal insulation structure and its use
DE102009057257A1 (en) Rotating body of a sintered material, useful as filtering body for filtering solids or liquids from gases, a packing or a packing bed in a column and a catalytic carrier, comprises an inner cavity and a macropore in a wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20000509

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 219166

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

REF Corresponds to:

Ref document number: 59804429

Country of ref document: DE

Date of ref document: 20020718

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020911

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150115

Year of fee payment: 18

Ref country code: CH

Payment date: 20150223

Year of fee payment: 18

Ref country code: IT

Payment date: 20150223

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150223

Year of fee payment: 18

Ref country code: SE

Payment date: 20150223

Year of fee payment: 18

Ref country code: AT

Payment date: 20150218

Year of fee payment: 18

Ref country code: FR

Payment date: 20150217

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804429

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 219166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160227

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229