EP0918096A1 - Structural element made of a die-cast aluminium alloy - Google Patents
Structural element made of a die-cast aluminium alloy Download PDFInfo
- Publication number
- EP0918096A1 EP0918096A1 EP97810885A EP97810885A EP0918096A1 EP 0918096 A1 EP0918096 A1 EP 0918096A1 EP 97810885 A EP97810885 A EP 97810885A EP 97810885 A EP97810885 A EP 97810885A EP 0918096 A1 EP0918096 A1 EP 0918096A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- max
- vanadium
- structural component
- notgreater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
Definitions
- the invention relates to a structural component, in particular a safety component in vehicle construction, made from an aluminum alloy by die casting, the aluminum alloy is selected so that it is connected to the component requirements regarding strength and ductility already in the as-cast state, possibly after heat treatment in a temperature range of 200 up to 400 ° C, but without high-temperature annealing.
- the aluminum alloy leads to the achievement of the object according to the invention Contains 0.05 to 0.3 wt .-% vanadium.
- the preferred content range for vanadium is 0.1 to 0.2% by weight.
- Die-casting alloys suitable for producing the structural component according to the invention preferably consist of Max. 1.4 % By weight silicon Max. 0.8 Wt% iron 0.1 to 1.6 Wt% manganese Max. 5.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3 % By weight vanadium and aluminum as the rest with further impurities individually max. 0.02% by weight, total max. 0.2% by weight.
- the alloy in a first alloy system (AlMnFe), preferably consists of 0.1 to 0.8, preferably 0.15 to 0.25 % By weight silicon 0.2 to 0.8, preferably 0.3 to 0.6 Wt% iron 0.5 to 1.8, preferably 0.7 to 0.9 Wt% manganese Max. 1.5 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium and aluminum as the rest with further impurities individually max. 0.02% by weight, total max. 0.2% by weight.
- the alloy in a second preferred alloy system (AlMgMn), preferably consists of 0.05 to 1.0, preferably 0.15 to 0.25 % By weight silicon 0.05 to 0.2, preferably max. 0.1 Wt% iron 0.5 to 1.8, preferably 0.7 to 0.9 Wt% manganese 2.0 to 4.5, preferably 2.5 to 3.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium and aluminum as the rest with further impurities individually max. 0.02% by weight, total max. 0.2% by weight.
- the known ones Naturally hard aluminum die casting alloys are decisive with regard to their ductility improve.
- the alloys are therefore particularly suitable for Manufacture of structural components used as safety components in vehicle construction and especially in automotive engineering, for example as a space frame node or as crash elements.
- the structural components are suitable especially for applications in which a temperature load up to about 180 ° C occurs.
- Alloys 4 and 8 are according to the invention, the other alloys are commercially available comparative alloys.
- Leg. composition Si Fe Cu Mn Mg Zn V Ti Sb Zr Pouring behavior 1 2nd 0.063 ⁇ 0.003 0.67 6.26 0.005 ⁇ 0.01 0.14
- Cracks 3rd 1.26 0.065 ⁇ 0.003 0.87 4.31 ⁇ 0.005 ⁇ 0.01 0.15
- Cracks 7 0.101 0.066 ⁇ 0.01 1.20 3.14 ⁇ 0.01 ⁇ 0.01 0.01 0.144 Cracks 8th 0.104 0.063 ⁇ 0.01 1.21 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Body Structure For Vehicles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Articles (AREA)
- Forging (AREA)
Abstract
Description
Die Erfindung betrifft ein Strukturbauteil, insbesondere ein Sicherheitsbauteil im Fahrzeugbau, hergestellt aus einer Aluminiumlegierung durch Druckgiessen, wobei die Aluminiumlegierung so gewählt ist, dass die an das Bauteil bezüglich Festigkeit und Duktilität gestellten Anforderungen bereits im Gusszustand, ggf. nach einer Wärmebehandlung in einem Temperaturbereich von 200 bis 400°C, jedoch ohne Hochtemperaturglühung, erfüllt sind.The invention relates to a structural component, in particular a safety component in vehicle construction, made from an aluminum alloy by die casting, the aluminum alloy is selected so that it is connected to the component requirements regarding strength and ductility already in the as-cast state, possibly after heat treatment in a temperature range of 200 up to 400 ° C, but without high-temperature annealing.
Mit modernen Giessverfahren können heute hochbelastbare Formteile auch aus Aluminiumlegierungen hergestellt werden. Die eingesetzten Aluminiumwerkstoffe müssen allerdings eine Reihe von Anforderungen erfüllen. Eine wesentliche Voraussetzung für die Eignung eines Werkstoffs ist die Einhaltung bestimmter mechanischer Kennwerte. So bestimmen etwa Mindestwerte von Streckgrenze und Festigkeit die Tragfähigkeit einer Konstruktion. Im Fahrzeugbau kommt die Anforderung hinzu, dass die bei einem Zusammenstoss deformierten Bauteile vor dem Bruch möglichst viel Energie durch plastische Verformung absorbieren sollen, was eine hohe Duktilität des eingesetzten Werkstoffs erfordert. Eine weitere Voraussetzung ist eine kostengünstige Herstellungsmöglichkeit des Formteils. Hier bietet sich der Druckguss an, wobei für höchste Qualitätsansprüche Spezialverfahren zu bevorzugen sind, mit denen eine gute Formfüllung auch bei geringen Wandstärken des Gussteils erreicht und die Bildung von die Duktilität des Bauteils herabsetzenden Gaseinschlüssen vermindert werden kann.With modern casting processes, heavy-duty molded parts can also be used today be made from aluminum alloys. The aluminum materials used however, must meet a number of requirements. An essential one Compliance is a prerequisite for the suitability of a material certain mechanical parameters. For example, minimum values of Yield strength and strength are the load-bearing capacity of a construction. In vehicle construction there is also the requirement that those deformed in a collision Components break as much energy as possible through plastic deformation should absorb what a high ductility of the material used required. Another requirement is an inexpensive manufacturing option of the molded part. Here the die casting lends itself, whereby for highest quality standards Special processes are to be preferred with which achieves good mold filling even with thin wall thicknesses of the casting and the formation of gas inclusions which reduce the ductility of the component can be reduced.
Zur Herstellung von Druckgussteilen aus Aluminiumwerkstoffen werden heute noch zu einem wesentlichen Teil Aluminiumlegierungen mit einem Anteil von 7 bis 10% Silizium eingesetzt. Diese AlSi-Legierungen mit kleinem Magnesium-Zusatz zeichnen sich durch eine ausserordentlich gute Giessbarkeit bei geringer Klebeneigung des Gussteils in der Form auf. Diese Legierungen erfordern jedoch zur Einformung des Eutektikums eine Hochglühung bei Temperaturen von mindestens 480° C. Damit das Bauteil die geforderten Festigkeitswerte aufweist, muss das derart lösungsgeglühte Bauteil abgeschreckt und nachfolgend warm ausgelagert werden; der kleine Magnesium-Zusatz bis zu 0,4% ist dafür verantwortlich.For the production of die-cast parts from aluminum materials today still largely aluminum alloys with a share of 7 up to 10% silicon used. These AlSi alloys with a small magnesium additive are characterized by an extraordinarily good castability at low The casting part has a tendency to stick in the mold. These alloys require however, in order to form the eutectic, a high temperature glow of at least 480 ° C. So that the component has the required strength values the solution-annealed component must be quenched and subsequently be stored warm; the small magnesium additive is up to 0.4% responsible for.
Bauteile mit teilweise geringen Wandstärken, wie sie beispielsweise als Strukturbauteile im Automobilbau eingesetzt werden, verziehen sich beim Abschrecken und müssen daher gerichtet werden. Zudem kann die hohe Glühtemperatur infolge einer Restgasporosität zu Blasenbildung an der Oberfläche der Bauteile führen. Zur Herstellung von Strukturbauteilen der genannten Art durch Druckgiessen wurde deshalb nach Möglichkeiten gesucht, die geforderten Festigkeits- und Dehnungswerte auch mit naturharten Legierungen ohne Durchführung einer Lösungsglühung zu erzielen. Um das Kleben des Gussteils in der Form zu vermindern, wurden unter Inkaufnahme einer Duktilitätseinbusse Legierungen mit bis zu 1% Eisen eingesetzt.Components with sometimes thin walls, such as structural components used in automotive engineering warp when quenched and therefore must be judged. In addition, the high Annealing temperature due to residual gas porosity to form bubbles on the surface of the components. For the production of structural components of the above Art by die casting was therefore searched for opportunities that required strength and elongation values even with naturally hard alloys to achieve without performing solution annealing. To stick the Reduce casting in the mold were at the expense of a loss of ductility Alloys with up to 1% iron are used.
Zur Erzielung der heute an Sicherheitsbauteile im Fahrzeug- und insbesondere im Automobilbau gestellten Anforderungen bezüglich Festigkeit und Duktilität ist ein wesentlicher Fortschritt durch die Einführung von Werkstoffen mit niedrigem Eisengehalt gelungen. Mit dieser Massnahme wird der Volumenanteil spröder intermetallischer Phasen des Eisen mit dem Aluminium verringert. Das bei tiefen Eisengehalten auftretende Kleben des Gussteils an der Formwand wird mit einem höheren Gehalt an Mangan, das eine ähnliche Wirkung wie Eisen zeigt, kompensiert. Mit der Zugabe von Mangan wird allerdings der Anteil intermetallischer Phasen des Typ AlMn(Fe) wiederum vergrössert. Da die Verteilung und Grösse der manganhaltigen intermetallischen Partikel im Vergleich zu den eisenhaltigen Phasen aber weitaus günstiger ist, ergibt sich bei etwa gleichem Festigkeitsniveau eine erhöhte Duktilität. Derartige Werkstoffe mit niedrigem Eisengehalt, d.h. Legierung, bei denen Eisen durch Mangan substituiert ist, sind in letzter Zeit mit Erfolg in der Produktion eingeführt worden. To achieve today's safety components in the vehicle and in particular Requirements regarding strength and ductility in automotive engineering is a major advance through the introduction of low-cost materials Successful iron content. With this measure, the volume fraction brittle intermetallic phases of iron with aluminum are reduced. The if the iron content is low, the casting will stick to the mold wall is having a higher manganese content that has a similar effect as Iron shows, compensates. With the addition of manganese, however, the proportion Intermetallic phases of the type AlMn (Fe) again increased. Because the distribution and size of the manganese-containing intermetallic particles in comparison is much cheaper for the iron-containing phases, however, results in about same ductility level, increased ductility. Such materials with low iron content, i.e. Alloy in which iron is substituted by manganese have been successfully introduced in production recently.
Der Erfindung liegt die Aufgabe zugrunde, für im Druckguss hergestellte Strukturbauteile der eingangs genannten Art geeignete Werkstoffe mit weiter verbesserten mechanischen Eigenschaften bereitzustellen. Insbesondere sollen die für das Druckgiessen bekannten naturharten Legierungen bezüglich ihrer Eigenschaftskombination von Festigkeit und Bruchdehnung weiter verbessert werden. Für Sicherheitsteile im Automobilbau sollten die folgenden Minimalwerte im Gusszustand bzw. nach einer Wärmebehandlung ohne Lösungsglühung erreicht werden:
- Dehngrenze (Rp0.2):
- 120 MPa
- Zugfestigkeit (Rm):
- 180 MPa
- Dehnung (A5):
- 10%.
- Yield strength (Rp0.2):
- 120 MPa
- Tensile strength (Rm):
- 180 MPa
- Elongation (A5):
- 10%.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Aluminiumlegierung 0,05 bis 0,3 Gew.-% Vanadium enthält.The aluminum alloy leads to the achievement of the object according to the invention Contains 0.05 to 0.3 wt .-% vanadium.
Der bevorzugte Gehaltsbereich für Vanadium liegt bei 0,1 bis 0,2 Gew.-%.The preferred content range for vanadium is 0.1 to 0.2% by weight.
Es wird vermutet, dass die beobachtete positive Wirkung von Vanadium hinsichtlich der Duktilität des Gussteils auf eine Kornfeinung im Gussgefüge zurückzuführen ist. Zudem konnte festgestellt werden, dass durch den Vanadiumzusatz auch die Klebeneigung des Gussteils in der Form verringert wird, was erlaubt, den Mangangehalt etwas abzusenken. Darüber hinaus verbessert Vanadium durch Verminderung der Rissneigung die Giessbarkeit und das Gefüge, so dass ingesamt die Duktilität weiter verbessert wird.It is believed that the observed positive effect of vanadium in terms of the ductility of the cast part due to grain refinement in the cast structure is. It was also found that the addition of vanadium also the tendency of the casting to stick in the mold is reduced, which allows the manganese content to be reduced somewhat. It also improved Vanadium by reducing the tendency to crack, the castability and the structure, so that overall the ductility is further improved.
Aufgrund der vermuteten Wirkungsweise von Vanadium darf angenommen werden, dass sich der positive Effekt auf die Duktilität bei allen naturharten Aluminium-Druckgusslegierungen auswirkt. Due to the presumed mode of action of vanadium may be accepted be that the positive effect on ductility for all natural hard Aluminum die-casting alloys.
Zur Herstellung des erfindungsgemässen Strukturbauteiles geeignete Druckgusslegierungen
bestehen bevorzugt aus
Innerhalb der vorstehend angegebenen Bereichsgrenzen für die Legierungselemente haben sich zwei Legierungssysteme als besonders vorteilhaft herausgestellt.Within the above range limits for the alloying elements two alloy systems have proven to be particularly advantageous.
Bei einem ersten Legierungssystem (AlMnFe) besteht die Legierung bevorzugt
aus
Bei einem zweiten bevorzugten Legierungssystem (AlMgMn) besteht die Legierung
bevorzugt aus
Die positive Wirkung des Vanadiumzusatzes stellt sich bereits während des eigentlichen Druckgiessvorganges ein. Eine weitere Erhöhung der Bruchdehnung bei schwachem Festigkeitsrückgang kann durch eine nachfolgende Wärmebehandlung in einem Temperaturbereich von 200 bis 400°C erreicht werden. Durch entsprechende Wahl von Temperatur und Zeitdauer der Wärmebehandlung kann ein gewünschtes Optimum zwischen hoher Duktilität und Festigkeit eingestellt werden. Dadurch wird die Einstellung massgeschneiderter mechanischer Eigenschaften an einem Strukturbauteil möglich.The positive effect of the vanadium addition is already evident during the actual die casting process. Another increase in elongation at break in the case of a weak decrease in strength, a subsequent Heat treatment in a temperature range of 200 to 400 ° C reached become. By choosing the appropriate temperature and duration of the heat treatment can be a desired optimum between high ductility and Strength can be adjusted. This makes the setting more tailored mechanical properties possible on a structural component.
Mit dem erfindungsgemässen Zusatz von Vanadium lassen sich die bekannten naturharten Aluminium-Druckgusslegierungen bezüglich ihrer Duktilität entscheidend verbessern. Die Legierungen sind daher besonders geeignet zur Herstellung von Strukturbauteilen, die als Sicherheitsbauteile im Fahrzeugbau und insbesondere im Automobilbau, beispielsweise als Space Frame Knoten oder als Crashelemente, eingesetzt werden. Die Strukturbauteile eignen sich insbesondere für Anwendungen, bei welchen eine Temperaturbelastung bis etwa 180°C auftritt. With the addition of vanadium according to the invention, the known ones Naturally hard aluminum die casting alloys are decisive with regard to their ductility improve. The alloys are therefore particularly suitable for Manufacture of structural components used as safety components in vehicle construction and especially in automotive engineering, for example as a space frame node or as crash elements. The structural components are suitable especially for applications in which a temperature load up to about 180 ° C occurs.
Die vorteilhafte Wirkung eines Zusatzes von Vanadium zu naturharten Aluminium-Druckgusslegierungen ergibt sich aus den nachfolgend zusammengestellten Versuchsergebnissen beispielhafter Legierungen.The beneficial effect of adding vanadium to naturally hard die-cast aluminum alloys results from the following Test results of exemplary alloys.
Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Die Legierungen
4 und 8 sind erfindungsgemäss, die übrigen Legierungen stellen handelsübliche
Vergleichslegierungen dar.
Die Legierungen wurden zur Simulation der Abkühlung beim Druckgiessen im
Kokillengiessverfahren zu Platten von 4 mm Dicke vergossen. Aus den
Gussteilen wurden Probestäbe für Zugversuche herausgearbeitet und an diesen
die mechanischen Eigenschaften im Gusszustand gemessen. Die Ergebnisse
sind in Tabelle 2 zusammengefasst. Hierbei bedeuten Rp 0.2 die Dehngrenze,
Rm die Zugfestigkeit und A5 die Bruchdehnung.
Die Versuche zeigen deutlich die positive Wirkung von Vanadium auf das Giessverhalten und die Duktilität der erfindungsgemässen Legierungen 4 und 8 im Gusszustand. Unter Inkaufnahme eines kleinen Festigkeitsverlustes lässt sich die Duktilität der erfindungsgemässen Legierungen durch eine Wärmebehandlung in einem Temperaturbereich von 200 bis 400°C weiter erhöhen.The experiments clearly show the positive effect of vanadium on the Casting behavior and the ductility of alloys 4 and 8 according to the invention in the as-cast state. At the expense of a small loss of strength the ductility of the alloys according to the invention is increased by a heat treatment increase further within a temperature range of 200 to 400 ° C.
Claims (8)
dadurch gekennzeichnet, dass
die Aluminiumlegierung 0,05 bis 0,3 Gew.-% Vanadium enthält.Structural component, in particular safety component in vehicle construction, produced from an aluminum alloy by die casting, the aluminum alloy being selected such that the requirements placed on the component with regard to strength and ductility are already in the as-cast state, if necessary after heat treatment in a temperature range from 200 to 400 ° C. but without high-temperature annealing,
characterized in that
the aluminum alloy contains 0.05 to 0.3% by weight of vanadium.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59709639T DE59709639D1 (en) | 1997-11-20 | 1997-11-20 | Process for the production of a structural component from an aluminum die-casting alloy |
EP97810885A EP0918096B1 (en) | 1997-11-20 | 1997-11-20 | Process of manufacturing a structural element made of a die-cast aluminium alloy |
ES97810885T ES2192258T3 (en) | 1997-11-20 | 1997-11-20 | PROCEDURE FOR THE MANUFACTURE OF A COMPONENT OF STRUCTURES OF A PRESSURE MOLDING ALUMINUM ALLOY. |
PT97810885T PT918096E (en) | 1997-11-20 | 1997-11-20 | METHOD FOR OBTAINING A STRUCTURAL COMPONENT OF ALUMINUM ALLOY ALLOY IN PRESSURE MOLDING |
HU9802625A HU220129B (en) | 1997-11-20 | 1998-11-12 | Aluminium alloy for a structural unit made by pressure die casting |
PL98329758A PL329758A1 (en) | 1997-11-20 | 1998-11-18 | Structural component made of aluminium alloy by die casting |
BR9804708-6A BR9804708A (en) | 1997-11-20 | 1998-11-19 | Structural component of a die-cast aluminum alloy. |
CZ983762A CZ376298A3 (en) | 1997-11-20 | 1998-11-19 | Structural part of aluminium alloy for pressure die casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97810885A EP0918096B1 (en) | 1997-11-20 | 1997-11-20 | Process of manufacturing a structural element made of a die-cast aluminium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0918096A1 true EP0918096A1 (en) | 1999-05-26 |
EP0918096B1 EP0918096B1 (en) | 2003-03-26 |
Family
ID=8230478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810885A Expired - Lifetime EP0918096B1 (en) | 1997-11-20 | 1997-11-20 | Process of manufacturing a structural element made of a die-cast aluminium alloy |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0918096B1 (en) |
BR (1) | BR9804708A (en) |
CZ (1) | CZ376298A3 (en) |
DE (1) | DE59709639D1 (en) |
ES (1) | ES2192258T3 (en) |
HU (1) | HU220129B (en) |
PL (1) | PL329758A1 (en) |
PT (1) | PT918096E (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1111077A1 (en) * | 1999-12-24 | 2001-06-27 | ALUMINIUM RHEINFELDEN GmbH | Aluminium alloy produced from scrap metal and casting alloy so produced |
US6607616B2 (en) | 2000-06-27 | 2003-08-19 | Corus Aluminium Voerde Gmbh | Aluminum casting alloy |
DE10310453A1 (en) * | 2003-03-07 | 2004-09-23 | Drm Druckguss Gmbh | Die-cast component and process for its manufacture |
DE102009032588A1 (en) * | 2009-07-10 | 2011-02-17 | Bayerische Motoren Werke Aktiengesellschaft | Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours |
CN103421992A (en) * | 2013-07-16 | 2013-12-04 | 沈军 | Manufacturing technique of timing sprocket device for ultralight aluminium alloy valve camshaft |
CN105215314A (en) * | 2015-09-18 | 2016-01-06 | 霍山县龙鑫金属制品有限公司 | A kind of auto parts machinery pressure casting method |
US10590518B2 (en) | 2014-02-11 | 2020-03-17 | Brunel University London | High strength cast aluminium alloy for high pressure die casting |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113088774B (en) * | 2021-03-08 | 2022-04-26 | 上海交通大学 | High-resistance Al-Mg-Mn-Ti aluminum alloy and preparation process thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938991A (en) * | 1974-07-15 | 1976-02-17 | Swiss Aluminium Limited | Refining recrystallized grain size in aluminum alloys |
JPS5147510A (en) * | 1974-10-23 | 1976-04-23 | Sumitomo Light Metal Ind | SEIKEIYO ARUMINIUM UGOKIN |
US4169728A (en) * | 1978-02-09 | 1979-10-02 | Mitsubishi Kinzoku Kabushiki Kaisha | Corrosion resistant bright aluminum alloy for die-casting |
JPS5687646A (en) * | 1979-12-18 | 1981-07-16 | Mitsubishi Keikinzoku Kogyo Kk | Die casting aluminum alloy |
EP0485068A1 (en) * | 1990-11-08 | 1992-05-13 | Ford Motor Company Limited | Aluminum casting alloy |
JPH0790457A (en) * | 1993-09-20 | 1995-04-04 | Mitsubishi Alum Co Ltd | Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment |
WO1996025528A1 (en) * | 1995-02-16 | 1996-08-22 | Gibbs Die Casting Aluminium Corporation | Aluminum alloys for die casting |
-
1997
- 1997-11-20 EP EP97810885A patent/EP0918096B1/en not_active Expired - Lifetime
- 1997-11-20 DE DE59709639T patent/DE59709639D1/en not_active Expired - Fee Related
- 1997-11-20 ES ES97810885T patent/ES2192258T3/en not_active Expired - Lifetime
- 1997-11-20 PT PT97810885T patent/PT918096E/en unknown
-
1998
- 1998-11-12 HU HU9802625A patent/HU220129B/en not_active IP Right Cessation
- 1998-11-18 PL PL98329758A patent/PL329758A1/en unknown
- 1998-11-19 CZ CZ983762A patent/CZ376298A3/en unknown
- 1998-11-19 BR BR9804708-6A patent/BR9804708A/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938991A (en) * | 1974-07-15 | 1976-02-17 | Swiss Aluminium Limited | Refining recrystallized grain size in aluminum alloys |
JPS5147510A (en) * | 1974-10-23 | 1976-04-23 | Sumitomo Light Metal Ind | SEIKEIYO ARUMINIUM UGOKIN |
US4169728A (en) * | 1978-02-09 | 1979-10-02 | Mitsubishi Kinzoku Kabushiki Kaisha | Corrosion resistant bright aluminum alloy for die-casting |
JPS5687646A (en) * | 1979-12-18 | 1981-07-16 | Mitsubishi Keikinzoku Kogyo Kk | Die casting aluminum alloy |
EP0485068A1 (en) * | 1990-11-08 | 1992-05-13 | Ford Motor Company Limited | Aluminum casting alloy |
JPH0790457A (en) * | 1993-09-20 | 1995-04-04 | Mitsubishi Alum Co Ltd | Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment |
WO1996025528A1 (en) * | 1995-02-16 | 1996-08-22 | Gibbs Die Casting Aluminium Corporation | Aluminum alloys for die casting |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Section Ch Week 7623, Derwent World Patents Index; Class M26, AN 76-42999X, XP002060184 * |
PATENT ABSTRACTS OF JAPAN vol. 005, no. 156 (C - 074) 6 October 1981 (1981-10-06) * |
PATENT ABSTRACTS OF JAPAN vol. 095, no. 007 31 August 1995 (1995-08-31) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1111077A1 (en) * | 1999-12-24 | 2001-06-27 | ALUMINIUM RHEINFELDEN GmbH | Aluminium alloy produced from scrap metal and casting alloy so produced |
US6607616B2 (en) | 2000-06-27 | 2003-08-19 | Corus Aluminium Voerde Gmbh | Aluminum casting alloy |
DE10310453A1 (en) * | 2003-03-07 | 2004-09-23 | Drm Druckguss Gmbh | Die-cast component and process for its manufacture |
DE102009032588A1 (en) * | 2009-07-10 | 2011-02-17 | Bayerische Motoren Werke Aktiengesellschaft | Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours |
CN103421992A (en) * | 2013-07-16 | 2013-12-04 | 沈军 | Manufacturing technique of timing sprocket device for ultralight aluminium alloy valve camshaft |
CN103421992B (en) * | 2013-07-16 | 2015-07-22 | 沈军 | Manufacturing technique of timing sprocket device for ultralight aluminium alloy valve camshaft |
US10590518B2 (en) | 2014-02-11 | 2020-03-17 | Brunel University London | High strength cast aluminium alloy for high pressure die casting |
CN105215314A (en) * | 2015-09-18 | 2016-01-06 | 霍山县龙鑫金属制品有限公司 | A kind of auto parts machinery pressure casting method |
Also Published As
Publication number | Publication date |
---|---|
BR9804708A (en) | 1999-11-09 |
PT918096E (en) | 2003-06-30 |
HU9802625D0 (en) | 1999-01-28 |
ES2192258T3 (en) | 2003-10-01 |
HU220129B (en) | 2001-11-28 |
EP0918096B1 (en) | 2003-03-26 |
PL329758A1 (en) | 1999-05-24 |
DE59709639D1 (en) | 2003-04-30 |
HUP9802625A1 (en) | 1999-09-28 |
CZ376298A3 (en) | 1999-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0918095B1 (en) | Process of manufacturing a structural element made of a die-cast aluminium alloy | |
DE112004000995B4 (en) | Highly damage tolerant aluminum alloy product, especially for aerospace applications | |
AT502310B1 (en) | AN AL-ZN-MG-CU ALLOY | |
DE69326838T2 (en) | TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM | |
DE60120987T2 (en) | HIGH-ALUMINUM BASE ALLOY AND A PRODUCT MANUFACTURED THEREOF | |
DE2052000C3 (en) | Use of a high-strength aluminum alloy | |
DE69131071T2 (en) | DUCTILE ULTRA-HIGH-STRENGTH ALUMINUM ALLOY COMPONENTS | |
DE69325804T2 (en) | HIGH-STRENGTH AL-LI ALLOY WITH LOW DENSITY AND HIGH TENSITY AT HIGH TEMPERATURES | |
DE4103934A1 (en) | SUITABLE ALUMINUM ALLOY FOR PISTON | |
DE2921222C2 (en) | ||
DE69825414T3 (en) | Aluminum alloy and process for its preparation | |
DE69614788T2 (en) | Aluminum-copper-magnesium alloy with high creep resistance | |
EP1718778B1 (en) | Material based on an aluminum alloy, method for the production thereof and its use | |
EP1118685A1 (en) | Aluminium cast alloy | |
EP1518000A1 (en) | Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product | |
DE2500084C3 (en) | Process for the production of aluminum semi-finished products | |
DE2235168C2 (en) | Process for the production of aluminum alloys and their use | |
DE112017007033B4 (en) | Chassis component for a motor vehicle made of an aluminium alloy and method for increasing the ductility and strength of an aluminium alloy | |
EP0997550B1 (en) | Method for fabricating a component from an aluminium alloy by pressure die-casting | |
EP0918096B1 (en) | Process of manufacturing a structural element made of a die-cast aluminium alloy | |
DE1483228B2 (en) | ALUMINUM ALLOY WITH HIGH PERFORMANCE | |
EP0394818A1 (en) | Rolled aluminium product and process for its production | |
DE3486352T2 (en) | Aluminum-lithium alloy. | |
EP0982410A1 (en) | Aluminium alloy with good machinability | |
EP1234893B1 (en) | Cast alloy of the type AlMgSi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991126 |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG |
|
17Q | First examination report despatched |
Effective date: 20011102 |
|
RTI1 | Title (correction) |
Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RTI1 | Title (correction) |
Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE ES FR GB IT LI PT |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE ES FR GB IT LI PT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59709639 Country of ref document: DE Date of ref document: 20030430 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030507 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20030509 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2192258 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031121 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 0918096E Country of ref document: IE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031130 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040602 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031120 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040730 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20040531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20031121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051120 |