EP0915804B1 - Verfahren sowie vorrichtung zur steuerung eines hydraulischen aufzugs - Google Patents
Verfahren sowie vorrichtung zur steuerung eines hydraulischen aufzugs Download PDFInfo
- Publication number
- EP0915804B1 EP0915804B1 EP98900840A EP98900840A EP0915804B1 EP 0915804 B1 EP0915804 B1 EP 0915804B1 EP 98900840 A EP98900840 A EP 98900840A EP 98900840 A EP98900840 A EP 98900840A EP 0915804 B1 EP0915804 B1 EP 0915804B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- control
- car
- valve
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/046—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member
- F15B11/048—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member with deceleration control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/02—Control systems without regulation, i.e. without retroactive action
- B66B1/04—Control systems without regulation, i.e. without retroactive action hydraulic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B9/00—Kinds or types of lifts in, or associated with, buildings or other structures
- B66B9/04—Kinds or types of lifts in, or associated with, buildings or other structures actuated pneumatically or hydraulically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/042—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/044—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20538—Type of pump constant capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20561—Type of pump reversible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40576—Assemblies of multiple valves
- F15B2211/40584—Assemblies of multiple valves the flow control means arranged in parallel with a check valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/428—Flow control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/46—Control of flow in the return line, i.e. meter-out control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/47—Flow control in one direction only
- F15B2211/473—Flow control in one direction only without restriction in the reverse direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50536—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/515—Pressure control characterised by the connections of the pressure control means in the circuit
- F15B2211/5151—Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/55—Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/615—Filtering means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6309—Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/632—Electronic controllers using input signals representing a flow rate
- F15B2211/6326—Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6336—Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/635—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
- F15B2211/6355—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6652—Control of the pressure source, e.g. control of the swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7052—Single-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/75—Control of speed of the output member
Definitions
- the invention relates to a method for controlling a hydraulic elevator according to the preamble of claim 1 and to a device for performing the Method according to the preamble of claim 5.
- Such controls are suitable, for example, for operating a lift system in which one Cab in an elevator shaft different positions, e.g. different floors one Building.
- the cab is driven by the interaction a reciprocating piston connected to the cabin with a lifting cylinder, which with a pressure oil is filled.
- the lifting cylinder is connected to a pump via a cylinder line is driven by a motor.
- By rotating the motor and the pump in one Direction of pressure oil can be conveyed from an oil tank to the lifting cylinder, causing the cabin to move in Moving upwards.
- pressure oil is pumped from the lifting cylinder into the oil tank, causing the cabin is moved downwards. This is due to the weight of the cabin Pressurized oil in the lifting cylinder and in the cylinder line constantly under a certain pressure.
- a hydraulic elevator system in which a electromagnetic control valve is present.
- the movement of the cabin also begins here only when the pump pressure exceeds the lifting cylinder pressure. Only after this Pressure adjustment, the control valve switches the connection from the pump to the lifting cylinder by.
- a method and a device for control a hydraulic elevator according to the preamble of Claims 1 and 5 are also from the document US-A-5 040 639 known.
- the object of the invention is to provide a solution based on these circumstances Takes into account when operating at very low speeds such as the Transition to a standstill enables a smooth ride.
- the hydraulic Elevator or its control system get along with few sensors and use Allow standard electrical components for motor control.
- the stated object is achieved according to the invention by the features of claims 1 and 5 solved.
- the claim 1 relates to the inventive method, during the Claim 5 identifies a device with which the inventive method can be carried out.
- Advantageous further developments result from the dependent ones Claims.
- FIG. 1 shows an elevator shaft 1 in which a rail-guided car 2 is movable.
- the cabin 2 is connected to a lifting piston of a lifting cylinder 3.
- shaft pulse generator 4 are arranged, which in cooperation with the Cabin 2 attached, not shown in Fig. 1 actuators Enter information about the position changes, for example the approach to Floor from above or from below.
- FIG. 1 also shows an elevator control 5, which has a signal line 6 with external control units 7, which are assigned to the individual floors and of which in FIG. 1 only one is shown, and a cabin control unit 8 is connected.
- Elevator control 5 can be, for example, a commercially available product such as the Act "Liftronic 2000 elevator control” (Findili AG, Kleinandelfingen / Switzerland).
- a control line 9 leads from the elevator control 5 to a control and regulating unit 10. On this control line 9 5 control command signals K from the elevator control the control unit 10 transmits what will be described later.
- the control command signals K pass from the elevator control 5 to a control input 11 of the control and regulating unit 10. From this control input 11, these control command signals K are fed to a setpoint generator 12. 1 shows a flow meter 13 with which the flow of the pressure oil from and to the lifting cylinder 3 and thus clearly also the speed of the cabin 2 are detected.
- This flow meter 13 is connected via a signal line 14 to a further input 15 of the control and regulation unit 10, so that measured values of the volume flow, namely its actual values x i , from the flow meter 13 are available to the control and regulation unit 10.
- the flow meter 13 can advantageously contain a Hall sensor. Such a flow meter is known from EP-B1-0 427 102.
- the setpoint generator 12 uses the control command signals K to generate a setpoint x s for the speed of the cabin 2. Because of the clear relationship between the cabin speed and the volume flow of the pressure oil, measured with the flow meter 13, this setpoint for the cabin speed is at the same time the setpoint x s of the volume flow.
- These two values, actual volume flow value x i and desired volume flow value x s which can therefore also be referred to as actual cabin speed value x i and desired cabin speed value x s , are fed to a controller 18, which in a known manner produces a control deviation ⁇ x and a manipulated variable y is determined from this. This manipulated variable y is available at a first output of the controller 18.
- the setpoint generator 12 also generates directly from the control command signals K. also target values for the units to be controlled by the control unit 10, which will be described later.
- All setpoints and also the control command signals K are sent to a control block 19 fed.
- This control block 19 has three outputs: a first output leads to a first signal converter 22, the output of which is contained in the elevator control 5 Safety relay 23 is guided on a valve drive 24.
- This valve drive 24 can advantageously have a magnetically acting drive, for example one Proportional solenoid.
- a second output of the control block 19 leads to a second Signal converter 27, the output of which is connected to a power supply part 28.
- This Power supply part 28 contains a power controller 29, for example a Frequency converter.
- a third output of the control block 19 is with a third Signal converter 30 connected, the output of which is also connected to the power supply part 28 connected is.
- a control block 33 is also shown, which from a second output of the Controller 18 receives the information about the size of the control deviation ⁇ x.
- This Control block 33 compares the size of the control deviation ⁇ x with a limit value and triggers then, when the size of the control deviation ⁇ x exceeds this limit value, which is fed to the control block 19. So that are all starting from the control block 19 Signals can be set to zero so that the cabin 2 comes to a standstill in an emergency.
- a parameter block 34 is also shown, which has a serial Interface 35 is connected.
- a serial interface 35 is connected.
- Service unit can be connected to the control unit 10. That way you can Parameters of the control and regulating unit 10 such as the aforementioned limit of Control deviation ⁇ x can be queried and changed
- Fig. 1 further shows a in the illustrated embodiment as a three-pole line Power line 36 shown, which is connected to the main switch 37 with the Power supply network L1, L2, L3 is connected.
- the Power supply part 28 By means of this power line 36 is the Power supply part 28, the electrical energy required to operate the hydraulic elevator fed.
- the electrical energy is supplied from the power supply part 28 via a Motor contactor 38, which can consist, for example, of two contactors connected in series, fed to a motor 39.
- the Power supply network L1, L2, L3 around a three-phase network and the motor 39 is corresponding a three-phase motor.
- the invention is not so limited.
- the motor 39 can be any electric motor, also a direct current motor.
- the design of the power supply part 28 corresponds in each case to the motor 39 used.
- the engine 39 is rigidly connected to an oil pump 40, with which pressure oil from an oil tank 41 is conveyable in the lifting cylinder 3.
- the motor 39 and the oil pump 40 are immediate arranged in this oil tank 41.
- the pressure oil delivered by the oil pump 40 passes over a pump line 42 to a valve unit 43 and from there via a cylinder line 44 to the lifting cylinder 3.
- the direction of rotation of the motor 39 determines the flow direction of the Pressure oil. In one direction of rotation, pressure oil passes from the tank 41 via the pump line 42, Valve unit 43 and cylinder line 44 to the lifting cylinder 3, provided the speed of the engine 39 the speed that is necessary to compensate for the leakage of the oil pump 40 is greater. As a result, the cabin 2 is moved in the upward direction. Arrived in the other direction Pressure oil from the lifting cylinder 3 via cylinder line 44, valve unit 43 and pump line 42 in the oil tank 41. This moves the cabin 2 in the downward direction
- the power supply part 28 is connected via a line 45 to a status input 46 of the control and regulating unit 10.
- Status signals S St arrive on line 45 from power supply part 28 to control and regulating unit 10.
- the valve unit 43 advantageously consists essentially of a check valve 47 and a down valve 48 that is between the pump line 42 and the cylinder line 44 are arranged parallel to each other.
- the down valve 48 in turn advantageously consists of a control valve 49 and a pilot valve 50 acting thereon, the Pilot valve 50 is advantageously actuated by the valve drive 24 already mentioned.
- valve unit 43 is also contain an emergency drain valve 51, which on the side facing the cylinder line 44 Connection of check valve 47 and down valve 48 is arranged. Is also on the the pump line 42 facing side of the connection of check valve 47 and Down valve 48 a pressure relief valve 52 is arranged. A pressure switch 53 and a Manometers 54 belong to the equipment of such a system in a known manner.
- a braking unit 81 and / or a can be connected to the power supply part 28 Regenerative unit 82, the function of which will also be described below.
- the cabin 2 of such a hydraulic elevator is usually equipped with at least two Nominal speeds operated, namely at a first speed (fast travel) and a second speed (creep speed) and transition phases between them two speeds on the one hand and the second speed (creep speed) and the Standstill, on the other hand, is caused by continuous changes in speed distinguished.
- the second speed (creep speed) can be, for example, 5 to 10% of the first speed.
- the elevator control 5 gives due to a Operating action on an external control unit 7 or on the cabin control unit 8 which results in a driving command signal, a control command signal K to the control and Control unit 10 from. so the cabin 2 is set in motion. As will be described later the movement begins with increasing acceleration until reaching the first speed (high speed).
- the valve unit 43 when driving downwards in the range of low speeds in start-up and Braking phases the cabin speed by acting on the valve unit 43 regulated while acting at higher speeds by acting on the Power supply part 28 and thus regulated to the motor 39 and the oil pump 40, the valve unit 43 being controlled at the same time.
- the Valve unit 43 When going up, the Valve unit 43 is not activated and the cabin speed is regulated in all speed ranges by acting on the power supply part 28 and thus on the engine 39 and the oil pump 40.
- the speed of the cabin 2 is the only controlled variable and if the flow meter 13 whose actual value x i is fed to the control and regulating unit 10 is used as the sensor.
- the regulation of the speed of the cabin 2 takes place in such a way that the target value x s predetermined by the target value generator 12 is compared with the actual value x i supplied by the flow meter 13, which happens within the controller 18.
- the controller 18 outputs the manipulated variable y to the control block 19.
- the control block 19 forwards the manipulated variable y to the signal converter 27 when driving upwards.
- an actuating command Y M is generated from the manipulated variable y.
- the control command Y M is in its nature matched to the element to be controlled, namely the power supply part 28 with the power controller 29.
- the control command Y M must be adapted to the frequency converter used.
- the type G9S-2E with brake chopper BU III 220-2 can be used as the frequency converter.
- the signal converter 27 is then designed such that an actuating command Y M that exactly matches this frequency converter type is generated from the manipulated variable y.
- the control unit 10 When driving upwards, as described, the control unit 10 alone does this Power supply part 28 with the power controller 29, the motor 39 and the oil pump 40 contained effect chain operated. This occurs at all speeds Regulation of the speed by regulating the speed of the motor 39 and thus the Oil pump speed 40.
- the setpoint generator 12 When driving downhill, the speed is regulated in a different way.
- the setpoint generator 12 advantageously generates a further setpoint in addition to the setpoint x s , namely a setpoint x M used to control the motor.
- This setpoint x M is passed on from the control block 19 to the signal converter 27, which is analogous to the upward travel described above the command Y M generated.
- this is not a signal within the control chain, but a pure control variable.
- the motor 39 is initially only controlled, not regulated. Motor 39 and thus oil pump 40 now rotate in the reverse direction.
- valve unit 43 Since the valve unit 43 is not activated and is therefore closed, a negative pressure is created in the pump line 42, which is limited by the automatic opening of the suction valve 67.
- the valve unit 43 namely the down valve 48, is now also activated. This is done in such a way that the valve drive 24 is activated.
- the pilot valve 50 By actuating it, the pilot valve 50 is actuated, which in turn acts on the control valve 49.
- the actuation of the valve drive 24 takes place by means of a control command Y V , it being irrelevant whether the control command Y V is generated at the beginning of the control from a pure control signal or from a signal of a control chain.
- the control command Y V is formed as part of a regulation at least soon after the start of control.
- the setpoint generator 12 specifies a setpoint x s for the speed, which the controller 18 compares with the actual value x i supplied by the flow meter 13 and forms the manipulated variable y as a control signal from the control deviation ⁇ x.
- the control block 19 forwards this manipulated variable y to the signal converter 22, which converts the manipulated variable y into an actuating command Y V.
- the valve drive 24 is actuated with this control command Y V.
- the down valve 48 opens in such a way that the valve drive 24 actuates the pilot valve 50 and this actuates the control valve 49.
- the speed is regulated by acting on the downward valve 48.
- the motor 39 is only controlled.
- the control is switched over according to the invention.
- the setpoint generator 12 generates, in addition to the setpoints x s (setpoint for the cabin speed) and x M (control variable for the motor 39), a setpoint x V which is a control variable for the downward valve 48.
- the control variable 19, which represents the signal of the control chain is now switched from the signal converter 22 to the signal converter 27 by the control block 19, while at the same time the signal converter 22 receives the desired value x V.
- the speed of the cabin 2 is no longer controlled by acting on the down valve 48, but by acting on the speed of the engine 39. So that by controlling the speed of the engine 39 the speed of the cabin 2 is completely manageable, the following the above-described switching process of the controlled variable slowly controls the down valve 48 to the "fully open" position, which is caused by a corresponding increase in the setpoint x V.
- the setpoint X V is generated by the setpoint generator 12 and now represents a pure control variable.
- the speed of the cabin 2 is reduced by reducing the setpoint x s .
- the control is carried out in a continuation of the effect described above by reducing the control command Y M.
- the setpoint x V is reduced, which means that the down valve 48 is slowly controlled in the closing direction.
- the controlled variable is switched over again.
- the manipulated variable y that is to say the signal of the control chain, is in turn placed by the control block 19 on the signal converter 22 and the signal converter 27 receives the setpoint x M.
- the speed is again regulated by activating the downward valve 48, while the motor 39 is only controlled according to the specifications by the setpoint x M.
- the speed is now regulated in that the setpoint x S is reduced by the setpoint generator 12, from which it follows that the downward valve 48 is actuated as part of the regulation in the closing direction until it is fully closed.
- the cabin 2 thus stands still.
- the control variable for the motor 39, the setpoint x M is reduced to zero.
- the device according to the invention is in accordance with the aforementioned method characterized in that the control and regulating unit 10 has means by means of which Oil pump 40 and the valve unit 43 can be controlled in such a way that when driving down a speed approximately equal to or less than the second speed (creep speed) the regulation of the speed of the cabin 2 by the control and regulation unit 10 on the basis of the signal from the sensor 13 in such a way that regulating the valve unit 43 is acted upon while driving downwards at a speed approximately equal to or greater the second speed (creep speed) and when driving upwards the regulation of the The speed of the cabin 2 is achieved by regulating the power supply part 28 and thus acts on the motor 39 and the oil pump 40
- the setpoint generator 12 which generates setpoints for the speed of the cabin 2, setpoints x M for the speed of the engine and solenoid values x V for the control of the valve unit 43 as a function of control command signals applied to its input
- the controller 18 which determines a manipulated variable y from the respective setpoint x s for the speed of the cabin 2 and an actual value x i detected by the sensor 13 for the speed of the cabin 2
- the control block 19 which is a function of the drive command signals K from which Actuating variable y and a set command Y V for the valve unit 43 and a set command Y M for the motor 39 from the setpoints x M and x V.
- the control block 19 acts according to the invention in such a way that when driving downwards at a speed approximately equal to or less than the second speed (creep speed), the control command Y V for the valve unit 43 represents the controlled variable of the control circuit, while when driving downwards at a speed approximately greater than the second speed ( Creep speed) and when driving upward, the command Y M for motor 39 represents the controlled variable of the control loop.
- the flow meter 13 is present.
- the one from this Flow meter 13 to the control and regulating unit 10 correlates with the measured variable the speed of the cabin 2, in all circumstances, for example at Changes in the temperature of the pressure oil associated with a change in viscosity, as well as with changing loads on the cabin 2.
- the valve drive 24 can be controlled by the control command Y V.
- the command Y V is a voltage, for example.
- a magnetic field proportional to this voltage is generated in the valve drive 24 and exerts a force on a magnet armature (not shown in FIG. 2).
- This magnet armature is connected to a plunger 68, so that the force exerted on the magnet armature also acts on the plunger 68.
- a spring 69 is also shown, which is supported against a cone 70.
- the plunger 68 engages in this cone 70, so that the force generated by the valve drive 24 is transmitted to this cone 70.
- the cone 70 is thereby movable relative to a pilot sleeve 71.
- the opening cross section that can be released by the stroke of the cone 70 relative to the pilot sleeve 71 determines the effect of the pilot valve 50 (FIG. 1).
- Fig. 2 further shows a cylinder chamber 72, which over the not shown Flow meter 13 communicates with the cylinder line 44. Also shown is a with Slits 73 provided control piston 74 which the cylinder chamber 72 from a Control chamber 75 separates. This control chamber 75 is through a bore 76 with a Pilot chamber 94 connected. Beyond the pilot control sleeve 71 there is one Bore 77 leading to tank 41 (Fig. 1).
- Reference number 78 is a guide cylinder which serves to guide the control piston 74 designated. There are two openings in the guide cylinder 78 and the slots 73 Passage between the cylinder chamber 72 and the control chamber 75.
- the Guide cylinder 78 on its inside and the control piston 74 on its outside like this designed that between them there is a releasable opening cross-section 79, through which Movement of the spool 74 variable size the flow of pressure oil between the Cylinder chamber 72 and a pump chamber 95, which via the pump line 42 with the Oil pump 40 is connected, determined.
- a compensation pin 93 serves as Safety element in the event of overpressure or breakage of the spring 69.
- a piston head 96 shown, which is movable in a bore of the guide cylinder 78 and the precise guidance of the control piston 74 is used.
- FIG. 2 thus essentially shows the control valve 49 (FIG. 1) while to the right of this the pilot valve 50 (FIG. 1) is shown.
- FIG. 2a and 2b show detailed sections of a partial section. Details are shown of the slits 73 in the control piston 74.
- FIG. 2a recognizable that the slots 73 extend axially to one end of the control piston 74.
- the depth of the slots 73 increases to the end of the spool 74 with a slope of for example about 20 degrees linearly.
- the slots 73 act as inlet shutters Control chamber 75 (Fig. 2).
- the slots 73 expose a minimal opening.
- this down valve 48 shows the closed position, which is present when there is no actuating command Y V on the valve drive 24. In this position, the same pressure prevails in the cylinder chamber 72, in the control chamber 75 and in the pilot chamber 94.
- the proportional magnet contained in the valve drive 24 generates, as already mentioned, a magnetic field which exerts a force on the tappet 68 and thus on the cone 70.
- the cone 70 only moves when this force becomes greater than the force exerted by the spring 69.
- An opening is created between the cone 70 and the pilot sleeve, via which pressure oil can flow from the pilot chamber 94 through the bore 77 into the tank 41.
- the down valve 48 is designed so that the piston head 96 of the Control piston 74 has the same diameter as the sealing surface in the area of Opening cross-section 79. None of the pressure in the valve therefore acts on the control piston 74 Pump chamber 95 resulting force. As a result, the control piston 74 is hydraulic balanced, which has a positive effect on the dynamics of the control of the control piston 74.
- 3 to 6 are explained in more detail below, which represent the movement of the cabin 2 on the basis of selected signals.
- 3 shows three diagrams.
- the upper diagram shows in a voltage-time representation the course of the setpoint x s for the speed of the cabin 2 (FIG. 1).
- This is only to be understood as an example in the case of an analog control and regulation unit 10 (FIG. 1), in which the setpoint x s is represented by a voltage.
- the time course of the setpoint x s is represented by a variable. This also applies in the same way to the following FIGS. 4 to 6.
- the course of a journey of the cabin 2 (FIG. 1) from one stop to the next stops is shown.
- the middle diagram of FIG. 3 shows the course of the actual value x i of the actual driving speed of the cabin 2 measured by the flow meter 13 (FIG. 1).
- a voltage-time representation is shown, which represents the voltage signal emitted by the flow meter 13.
- this would also be representable as a variable which is output by an analog-digital converter to the control and regulating unit 10 (FIG. 1). If the speed of the cabin 2 (FIG. 1) is properly controlled by the control and regulating unit 10 (FIG. 1), the courses of x i and x s are almost congruent.
- FIG. 3 the time course of the command Y M is shown.
- This control command Y M is represented by a voltage curve.
- two control command signals K generated by the elevator control 5 (FIG. 1) are shown, namely a first control signal command K1, which is set during an upward movement and triggered by the approach to the destination is reset by a Schachl pulse generator 4 (FIG. 1), and a second control signal command K2, which is also set when driving upwards, but which is only reset when the cabin 2 (FIG. 1) engages a second shaft pulse generator 4 (Fig. 1), which is placed closer to the intended destination, approaches.
- the lower diagram in FIG. 3 shows that by setting the control command signals K1 and K2, the control command Y M is set from zero to a value which corresponds to an offset value U ofs .
- the motor 39 (FIG. 1) and consequently the oil pump 40 thus start up.
- the inertia the leakage of the oil pump 40 and the compressibility of the pressure oil, this jump in signal does not cause a jerk in the cabin 2.
- a pressure must first be built up in the pump line 42. As soon as this pressure exceeds the pressure in the cylinder line 44, the check valve 47 opens automatically.
- the offset value U ofs should therefore advantageously be just large enough that the speed of the motor 39 is just large enough to build up a pressure in the pump line 42. which corresponds approximately to the pressure in the cylinder line 44.
- the size of the offset value U ofs can belong to those parameters which are stored in the parameter block 34 and can be changed via the serial interface 35.
- a threshold value U 0 is shown in the middle diagram of FIG. 3.
- This threshold value U 0, which is preferably also adjustable as a parameter, is, for example, approximately 0.5 to 2% of the maximum value of the desired value x S or of the actual value x i .
- the control is ended according to the ramp function U R and thus the regulation of the speed of the cabin 2 is started.
- This method of initially controlling the speed with a transition to regulating the speed is particularly advantageous because the transition from the control to the regulation takes place at the moment when a certain speed has been reached in the context of the control. This means that no jump functions or control vibrations occur during the transition from control to regulation.
- the further course of the control command Y M over time is thus solely the result of the control of the motor 39 by the controller 18 on the basis of the setpoint x s, the speed of the cabin and the actual value x i .
- the curve for the setpoint x s (upper diagram) then rises to a maximum that corresponds to the first speed (fast travel) already mentioned.
- the course of the actual value x i and the course of the control command Y M now result as a result of the control.
- a delay phase P delays (upper diagram in FIG. 3).
- the setpoint x s is now reduced by the setpoint generator 12 (FIG. 1) according to the representation of the curve.
- the course of the actual value x i and the course of the control command Y M again result from the regulation.
- the end of the deceleration phase P verz is characterized by the stepless transition to a speed that corresponds to the second speed mentioned (creep speed). If the control signal command K2 drops due to the approach of the cabin 2 (FIG. 1) to the second shaft pulse generator 4 (FIG. 1), the setpoint x s is generated by the setpoint generator 12 in accordance with a softstop setpoint curve K ss (upper diagram in FIG.
- FIG. 4 largely corresponds to FIG. 3 and only the differences from FIG. 3 are described below.
- the offset U ofs and the ramp function U R for the control command Y M are dispensed with. Instead, the function for the setpoint x s of the speed of the cabin 2 is started with an offset x ofs . This means that a regulation is started from the beginning.
- 5 shows a first method for the downward travel on the basis of selected signals.
- 5 shows four diagrams.
- the upper diagram shows in a voltage-time representation the course of the setpoint x s for the speed of the cabin 2 (FIG. 1) in the same way as in FIGS. 3 and 4.
- the curve of the actual value x i of the speed of the cabin 2 represented by the measured value of the flow meter 13 (FIG. 1), is shown in the second diagram from above.
- the third diagram shows the course of the control signal Y V over time, which is output by the control and regulating unit 10 to the valve drive 24 for controlling the downward valve 48.
- the lower diagram again shows, analogously to FIGS. 3 and 4, the time course of the control command Y M.
- two control command signals K generated by the elevator control 5 (FIG. 1) are shown, namely a third control signal command K3, which is set during a downward movement and is reset by the approach to the destination, triggered by a shaft pulse generator 4 (FIG. 1) , and a second control signal command K4, which is also set when driving downwards. but this is only reset when the cabin 2 (FIG. 1) approaches a second shaft pulse generator 4 (FIG. 1), which is placed closer to the intended destination.
- the setpoint generator 12 (FIG. 1) of the control and regulating unit 10 at the time t 0 (third diagram from above, this time axis applies to all four diagrams) first of all an offset value U ofsM (lower diagram) for generates the command Y M and supplied from the control block 19 to the power supply section 28.
- Motor 39 and pump 40 thus rotate at a corresponding predetermined speed. Only the absolute value is shown here, but it can already be seen from the aforementioned that the direction of rotation of motor 39 and pump 40 is reversed with respect to the upward travel. This creates a negative pressure in the pump line 42. In order to limit this vacuum so that cavitation of the pump 40 is avoided, the suction valve 67 now opens.
- the setpoint generator 12 (FIG. 1) of the control and regulating unit 10 first generates an offset value U ofsV (third diagram from above) for the control command Y V and supplies it from the control block 19 to the valve drive 24 for actuating the downward valve 48 ,
- the size of the offset value U ofsV is such that the force exerted by the magnet armature on the tappet 68 (FIG. 2) is even smaller than the pretension of the spring 69, so that the cone 70 does not yet lift off from the pilot sleeve 71. The cone 70 does not yet make a stroke, so that the pilot valve 50 (FIG. 1) remains closed.
- a first setpoint ramp U R1 for the control command Y V is also started.
- the force generated by the valve drive 24 and exerted on the tappet 68 (FIG. 2) thus increases.
- the cone 70 lifts off the pilot sleeve 71. Consequently, the pilot valve 50 and subsequently also the control valve 49 open.
- pressure oil can escape from the cylinder line 44 in the direction of the tank 41 and the movement of the cabin 2 (FIG. 1) begins. This is expressed directly by the fact that the actual value x i becomes different from zero, as the second diagram shows.
- the first setpoint ramp U R1 for the actuating command Y V is terminated. This corresponds to time t 1 .
- a second, somewhat flatter setpoint ramp U R2 for the command Y V is started.
- the increase in speed of the movement of the cabin 2 is limited, so that a jerk does not occur.
- the second setpoint ramp U R2 for the actuating command Y V is terminated. This corresponds to time t 2 .
- the function for the setpoint x s of the speed of the cabin 2 is now started with an offset value x ofs .
- the offset value x ofs is chosen to be the same size as the second threshold value x 2 . But even if this were not the case, the transition from control to regulation would still be smooth due to the inertia and the compressibility of the pressure oil.
- the speed of cabin 2 (FIG. 1) is regulated by comparing actual value x i and setpoint x s from controller 18 and generating an actuating command Y V via actuating signal y and control block 19 and sending it to Valve drive 24 is sent, which is a real control variable.
- the speed of the cabin 2 is now regulated by influencing the downward valve 48.
- control command Y V and the actual value x i also increase .
- the control is switched over.
- the control block 19 no longer generates the control command Y V for the downward valve 48 from the control signal y, but rather the control command Y M for the power supply part 28, and thus for the motor 39.
- control block 19 continues to generate the control command Y V , but now no longer on the basis of the manipulated variable y, but on the basis of the specification of set values x V (FIG. 1) which the set value generator 12 generates.
- the setpoint x V then rises relatively quickly, which is expressed in the rising control command Y V (FIG. 5, third diagram from above).
- the downward valve 48 is thus controlled in the "fully open” direction and thus increasingly and ultimately completely loses an effect on the speed of the cabin 2.
- the setpoint x s now rises to a maximum and the control and regulating unit 10 accordingly ensures that the control command Y M increases accordingly. As a result, the actual value x i also increases .
- a delay phase is initiated when the control signal command K3 drops.
- the setpoint x S is reduced accordingly, from which it follows within the scope of the control that the control command Y M and subsequently the actual value x i also fall.
- the setpoint x V is reduced in accordance with the specifications by the setpoint generator 12, which manifests itself in the reduction in the actuating command Y V (FIG. 5, third diagram).
- the down valve 48 With the actuation of the down valve 48 in the closing direction, caused by the reduction of the control command Y V , the down valve 48 increasingly gains influence on the flow of the pressure oil from the cylinder 3 (FIG. 1) back into the tank 41. This increasing influence is however automatically caused by a corresponding one Adjustment of the control command Y M compensated. At almost any point in time within the delay phase P verz , the control can again be switched from the control command Y M to the control command Y V.
- control signal Y V still has a finite value when the cabin 2 is at a standstill has to do with the fact that the pilot valve 50 already closes due to the effect of the bias of the spring 69 when a control signal Y V of finite size at the valve drive 24 is still present is applied.
- FIG. 6 shows a second variant of the descent. This variant differs differs from the variant shown in FIG. 5 in the same way as this when driving upwards the case according to FIG. 4 in comparison to the upward travel according to FIG. 3: the ramp functions this variant does not apply and regulation is started from the beginning.
- opening the downward valve 48 causes the pressure exerted by the cabin 2 in the cylinder line 44 and pump line 42 to act on the oil pump 40 in such a way that the oil pump 40 is driven by the pressure oil.
- the motor 39 coupled to the oil pump 40 therefore does not require any energy, but now acts as a generator.
- the speed of the motor 39 is regulated with the aid of the control signal Y M.
- the electrical energy generated by the motor 39 is either converted into heat in the brake unit 81 or converted into reusable electrical energy by means of the regenerative unit 82 and fed back into the power supply network L1, L2, L3. It is therefore necessary for one of these units 81, 82 to be present.
- the third signal converter 30 mentioned at the beginning receives information from the control block 19 the operating status.
- the signal converter 30 gives the power supply part 28 Information about the direction of travel, i.e. upward or downward travel, so that the Power supply part 28 including power controller 29 accordingly between the drive and Brake control can switch.
- the mentioned status signals S St serve to inform the setpoint generator 12 and subsequently also the control block 19 about the actual operating state of the power supply part 28. This makes it possible, for example, to detect a malfunction in the power supply part 28 and to let the control block 19 take the safety-relevant measures.
- the control and regulating unit 10 is advantageously designed as a microprocessor control.
- the Details shown in Fig. 1 with setpoint generator 12 and control block 19 and their Functionality is then realized by program code.
- the inputs and outputs of the control and Control unit 10 are then used by analog-digital converters or digital-analog converters educated.
- Valve unit 43 can also be used analogously when driving upwards at low speed.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Elevator Control (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Types And Forms Of Lifts (AREA)
Abstract
Description
- Fig. 1
- ein Schema einer hydraulischen Aufzugsanlage mit einer ihrer Steuerung dienenden Vorrichtung,
- Fig. 2
- einen Teilschnitt eines Steuerventils,
- Fig. 2a und 2b
- Details eines Schnittes und
- Fig. 3 bis 6
- Signaldiagramine zur Erläuterung der Funktion.
Claims (11)
- Verfahren zur Steuerung eines hydraulischen Aufzugs mit einer Kabine (2), die längs eines Aufzugsschachtes (1) auf- und abwärts bewegbar ist, einem mit der Kabine (2) verbundenen Hubkolben, einem Hubzylinder (3) zum Antrieb des Hubkolbens, einer Ölpumpe (40) zum Antrieb der Kabine (2) durch Drucköl, einem durch ein steuerbares Stromversorgungsteil (28) gespeisten Motor (39) zum Antrieb der Ölpumpe (40), einer Ventileinheit (43), die zwischen einer Pumpenleitung (42) und einer Zylinderleitung (44) eingebaut ist, einem Sensor (13) für die Geschwindigkeit der Kabine (2) und einer Steuer- und Regeleinheit (10), mit der die Bewegung der Kabine (2) beeinflußbar ist, wobei die Kabine (2) mit mindestens zwei Nenn-Geschwindigkeiten betrieben wird, nämlich mit einer ersten Geschwindigkeit (Schnellfahrt) und einer zweiten Geschwindigkeit (Schleichfahrt) und Übergangsphasen zwischen diesen beiden Geschwindigkeiten einerseits und der zweiten Geschwindigkeit (Schleichfahrt) und dem Stillstand andererseits, welche Übergangsphasen sich durch kontinuierliche Änderung der Geschwindigkeit auszeichnen,
dadurch gekennzeichnet, daß
bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder kleiner der zweiten Geschwindigkeit (Schleichfahrt) die Regelung der Geschwindigkeit der Kabine (2) durch die Steuer- und Regeleinheit (10) aufgrund des Signals des Sensors (13) in der Weise erfolgt, daß regelnd auf die Ventileinheit (43) eingewirkt wird, während bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder größer als der zweiten Geschwindigkeit (Schleichfahrt) und bei Aufwärtsfahrt die Regelung der Geschwindigkeit der Kabine (2) in der Weise erfolgt, daß regelnd auf das Stromversorgungsteil (28) und damit auf den Motor (39) und die Ölpumpe (40) eingewirkt wird. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder kleiner der zweiten Geschwindigkeit (Schleichfahrt) die Drehzahl der Ölpumpe (40) durch vorgegebene Werte bestimmt ist.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Geschwindigkeit der Kabine (2) die einzige Regelgröße ist und daß als Sensor ein Durchflußmesser (13) verwendet wird, dessen Istwert xi der Steuer- und Regeleinheit (10) zugeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß beim Starten der Bewegung der Kabine (2) vor dem Beginn der Regelung der Geschwindigkeit der Kabine (2) eine Phase mit einer Steuerung der Geschwindigkeit der Kabine (2) mit vorgegebenen Werten für die Geschwindigkeit vorgeschaltet ist, die dann beendet wird, wenn die Geschwindigkeit einen vorgegebenen Wert (U1, x1) erreicht.
- Vorrichtung zur Steuerung eines hydraulischen Aufzugs, mit einer Kabine (2), die längs eines Aufzugsschachtes (1) auf- und abwärts bewegbar ist. einem mit der Kabine (2) verbunderen Hubkolben, einem Hubzylinder (3) zum Antrieb des Hubkolbens, einer Ölpumpe (40) zum Antrieb der Kabine (2) durch Drucköl, einem durch ein steuerbares Stromversorgungsteil (28) gespeisten Motor (39) zum Antrieb der Ölpumpe (40), einer Ventileinheit (43), die zwischen einer Pumpenleitung (42) und einer Zylinderleitung (44) eingebaut ist, einem Sensor (13) für die Geschwindigkeit der Kabine (2) und einer Steuer- und Regeleinheit (10), mit der die Bewegung der Kabine (2) beeinflußbar ist, wobei die Kabine (2) mit mindestens zwei Nenn-Geschwindigkeiten betrieben wird, nämlich mit einer ersten Geschwindigkeit (Schnellfahrt) und einer zweiten Geschwindigkeit (Schleichfahrt) und Übergangsphasen zwischen diesen beiden Geschwindigkeiten einerseits und der zweiten Geschwindigkeit (Schleichfahrt) und dem Stillstand andererseits, welche Übergangsphasen sich durch kontinuierliche Änderung der Geschwindigkeit auszeichnen,
dadurch gekennzeichnet, daß die Steuer- und Regeleinheit (10) Mittel (12, 18, 19, 22, 27) aufweist, mit deren Hilfe die Ölpumpe (40) und die Ventileinheit (43) in der Weise ansteuerbar sind, daß bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder kleiner als der zweiten Geschwindigkeit (Schleichfahrt) die Regelung der Geschwindigkeit der Kabine (2) durch die Steuer- und Regeleinheit (10) aufgrund des Signals des Sensors (13) in der Weise erfolgt, daß regelnd auf die Ventileinheit (43) eingewirkt wird, während bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder größer der zweiten Geschwindigkeit (Schleichfahrt) und bei Aufwärtsfahrt die Regelung der Geschwindigkeit der Kabine (2) dadurch erfolgt, daß regelnd auf das Stromversorgungsteil (28) und damit auf den Motor (39) und die Ölpumpe (40) eingewirkt wird. - Vorrichtung nach Anspruch 5, dadurch gekennzeichnet,daß die Steuer- und Regeleinheit (10) einen Sollwertgenerator (12) aufweist, der in Abhängigkeit von an einem Eingang anliegenden Steuerkommandosignalen K Sollwerte für die Geschwindigkeit der Kabine (2), Sollwerte xM für die Drehzahl des Motors und Sollwerte xV für die Ansteuerung der Ventileinheit (43) erzeugt,daß ein Regler (18) vorhanden ist, der aus dem jeweiligen Sollwert xs für die Geschwindigkeit der Kabine (2) und einem vom Sensor (13) erfaßten Istwert xi für die Geschwindigkeit der Kabine (2) eine Stellgröße y ermittelt,daß ein Steuerblock (19) vorhanden ist, der in Abhängigkeit von den Fahrkommandosignalen K, von der Stellgröße y und von den Sollwerten xM und xV einen Stellbefehl YV für die Ventileinheit (43) und einen Stellbefehl YM für den Motor (39) erzeugt,und daß bei Abwärtsfahrt mit einer Geschwindigkeit etwa gleich oder kleiner der zweiten Geschwindigkeit (Schleichfahrt) der Stellbefehl YV für die Ventileinheit (43) die Regelgröße des Regelkreises darstellt, während bei Abwärtsfahrt mit einer Geschwindigkeit etwa größer der zweiten Geschwindigkeit (Schleichfahrt) sowie bei Aufwärtsfahrt der Stellbefehl YM für den Motor (39) die Regelgröße des Regelkreises darstellt.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Sensor für die Geschwindigkeit der Kabine (2) ein Durchflußmesser (13) ist, dessen Istwert xi in allen Geschwindigkeitsbereichen für die Regelung der Geschwindigkeit der Kabine (2) bestimmend ist.
- Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Ventileinheit (43) aus einem Rückschlagventil (47) und einem dazu parallel angeordneten Abwärtsventil (48) besteht, wobei das Rückschlagventil (47) dann öffnet, wenn der Druck in der Pumpenleitung (42) größer ist als der Druck in der Zylinderleitung (44), und daß das Abwärtsventil (48) von der Steuer- und Regeleinheit (10) ansteuerbar ist.
- Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das Abwärtsventil (48) aus einem Vorsteuerventil (50) und einem von diesem Vorsteuerventil (50) betätigtem Steuerventil (49) besteht.
- Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das Vorsteuerventil (50) elektrisch ansteuerbar ist.
- Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der elektrisch ansteuerbare Antrieb des Vorsteuerventils (50) einen Ventilantrieb (24) aufweist, der eine Veränderung eines Öffnungsquerschnitts des Vorsteuerventils (50) bewirkt.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH260/97 | 1997-02-06 | ||
CH26097 | 1997-02-06 | ||
CH26097 | 1997-02-06 | ||
CH693/97 | 1997-03-22 | ||
CH69397 | 1997-03-22 | ||
CH69397 | 1997-03-22 | ||
PCT/CH1998/000040 WO1998034868A1 (de) | 1997-02-06 | 1998-02-04 | Verfahren sowie vorrichtung zur steuerung eines hydraulischen aufzugs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0915804A1 EP0915804A1 (de) | 1999-05-19 |
EP0915804B1 true EP0915804B1 (de) | 2003-05-21 |
Family
ID=25684063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98900840A Expired - Lifetime EP0915804B1 (de) | 1997-02-06 | 1998-02-04 | Verfahren sowie vorrichtung zur steuerung eines hydraulischen aufzugs |
Country Status (9)
Country | Link |
---|---|
US (1) | US6142259A (de) |
EP (1) | EP0915804B1 (de) |
JP (1) | JP2000508614A (de) |
KR (1) | KR100510204B1 (de) |
CN (1) | CN1105074C (de) |
CA (1) | CA2251107C (de) |
DE (1) | DE59808428D1 (de) |
TW (1) | TW346475B (de) |
WO (1) | WO1998034868A1 (de) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19842337A1 (de) | 1998-09-16 | 2000-03-23 | Mannesmann Vdo Ag | Betätigungseinrichtung für ein Verdeck eines Cabrios |
DE50007477D1 (de) | 1999-02-05 | 2004-09-23 | Wittur Ag | Verfahren und vorrichtung zur steuerung eines hydraulischen aufzugs |
ATE244191T1 (de) * | 1999-08-25 | 2003-07-15 | Bucher Hydraulics Ag | Hydraulischer aufzug mit einem als gegengewicht wirkenden druckspeicher und verfahren zum steuern und regeln eines solchen aufzugs |
DE50111267D1 (de) * | 2000-07-03 | 2006-11-30 | Wittur Ag | Steuerventileinheit für einen hydraulischen aufzug |
US6957721B2 (en) * | 2000-08-18 | 2005-10-25 | Bucher Hydraulics Ag | Hydraulic elevator with an accumulator |
DE10150463A1 (de) * | 2001-10-16 | 2003-04-17 | Hcs Hydraulic Control Systems | Elektronische Einrichtung zur Regelung von Funktionen von hydraulischen und elektrischen Aufzügen |
DE50101794D1 (de) | 2001-11-16 | 2004-04-29 | Bucher Hydraulics Ag Neuheim | Hydraulischer Aufzug mit einem Druckspeicher sowie Verfahren zur Steuerung und Regelung eines solchen Aufzugs |
ATE294128T1 (de) | 2001-11-23 | 2005-05-15 | Bucher Hydraulics Ag | Hydraulischer aufzug mit einem druckspeicher sowie verfahren zur steuerung und regelung eines solchen aufzugs |
EP1470072B1 (de) * | 2002-02-02 | 2008-11-26 | Bucher Hydraulics AG | Vorrichtung zur ermittlung der position einer aufzugskabine |
CN100482561C (zh) * | 2002-02-11 | 2009-04-29 | 布奇尔液压公司 | 用于一液压升降机的控制装置 |
AU2003201609A1 (en) * | 2002-02-12 | 2003-09-04 | Bucher Hydraulics Ag | Device for controlling and/or regulating a lift |
EP1474350B1 (de) * | 2002-02-15 | 2007-04-04 | Bucher Hydraulics AG | Steuervorrichtung für einen hydraulischen aufzug |
ITBO20050640A1 (it) * | 2005-10-24 | 2007-04-25 | Hinowa S P A | Apparecchiatura per la regolazione ed il controllo della velocita' di movimentazione di elementi appartenenti ad una piattaforma aerea |
CN100427771C (zh) * | 2006-12-14 | 2008-10-22 | 浙江大学 | 一种液压配重可变的节能液压升降系统 |
CN100586831C (zh) * | 2007-09-25 | 2010-02-03 | 上海三菱电梯有限公司 | 变频液压电梯系统 |
EP2505722B1 (de) * | 2010-03-15 | 2014-05-14 | Komatsu, Ltd. | Steuervorrichtung für eine arbeitsmaschine auf einem baufahrzeug und steuerverfahren dafür |
CN102408053B (zh) * | 2011-08-17 | 2014-09-03 | 邓锦诚 | 多层升降机 |
CN102320510A (zh) * | 2011-09-08 | 2012-01-18 | 宁波市胜源技术转移有限公司 | 一种液压电梯 |
ITMO20110330A1 (it) * | 2011-12-22 | 2013-06-23 | Brevini Fluid Power S P A | Dispositivo di comando |
ES2665246T3 (es) * | 2012-02-21 | 2018-04-25 | Yaskawa Europe Gmbh | Dispositivo y método para controlar un sistema hidráulico, especialmente de un elevador |
DE102012101949A1 (de) * | 2012-03-08 | 2013-09-12 | Linde Material Handling Gmbh | Hubvorrichtung eines Flurförderzeugs |
US20150059327A1 (en) * | 2013-04-17 | 2015-03-05 | Arthur M. Rabert | Dual channel pulsed variable pressure hydraulic test apparatus |
US20150375966A1 (en) * | 2014-06-30 | 2015-12-31 | Thyssenkrupp Elevator Corporation | Noise Abatement for Elevator Submersible Power Units |
DE102015119108A1 (de) | 2015-11-06 | 2017-05-11 | Pleiger Maschinenbau Gmbh & Co. Kg | Verfahren und Vorrichtung zum Ansteuern einer hydraulisch betätigten Antriebseinheit einer Armatur |
CN105858537B (zh) * | 2016-05-13 | 2018-02-02 | 马宏 | 气压式速递装置 |
CN106315356A (zh) * | 2016-09-19 | 2017-01-11 | 中都国脉电梯有限公司 | 一种液压驱动的底层垂直电梯 |
CN107738967A (zh) * | 2016-11-25 | 2018-02-27 | 重庆键英液压机电有限公司 | 基于多级液压缸的升降装置及其控制方法 |
US10611600B2 (en) * | 2017-06-26 | 2020-04-07 | Otis Elevator Company | Hydraulic elevator system with position or speed based valve control |
CN109058036B (zh) * | 2018-07-03 | 2020-05-26 | 中国长江电力股份有限公司 | 水电机组接力器锁定装置的s形投退控制方法 |
US11198585B2 (en) * | 2019-02-18 | 2021-12-14 | Tk Elevator Corporation | Systems and methods for controlling working fluid in hydraulic elevators |
CN113530926B (zh) * | 2021-06-12 | 2022-11-22 | 中国煤炭科工集团太原研究院有限公司 | 一种防爆车辆工作机构操纵闭锁装置及安全控制系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1138425B (it) * | 1981-06-16 | 1986-09-17 | Stigler Otis S P A | Complesso elettro-fluidodinamico per l'azionamento di una cabina di un impianto ascensore |
US4593792A (en) * | 1983-08-30 | 1986-06-10 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for controlling a hydraulic elevator |
US4637495A (en) * | 1985-10-09 | 1987-01-20 | Blain Roy W | Pressure/viscosity compensated up travel for a hydraulic elevator |
JPS62126087A (ja) * | 1985-11-25 | 1987-06-08 | 株式会社日立製作所 | 流体圧エレベ−タ |
US4932502A (en) * | 1989-02-15 | 1990-06-12 | Inventio Ag | Hydraulic elevator system |
US5082091A (en) * | 1990-01-19 | 1992-01-21 | Otis Elevator Company | Hydraulic elevator control |
US5040639A (en) * | 1990-01-31 | 1991-08-20 | Kawasaki Jukogyo Kabushiki Kaisha | Elevator valve apparatus |
JP2533683B2 (ja) * | 1990-10-16 | 1996-09-11 | 三菱電機株式会社 | 油圧エレベ―タの制御装置 |
US5212951A (en) * | 1991-05-16 | 1993-05-25 | Otis Elevator Company | Hydraulic elevator control valve |
ES2093289T5 (es) * | 1992-03-04 | 2001-04-01 | Inventio Ag | Procedimiento y dispositivo para ahorrar energia electrica en el accionamiento de un ascensor hidraulico. |
ES2129480T3 (es) * | 1993-10-18 | 1999-06-16 | Inventio Ag | Dispositivo de seguridad por frenado para cabinas de ascensor. |
-
1998
- 1998-02-04 CA CA002251107A patent/CA2251107C/en not_active Expired - Fee Related
- 1998-02-04 JP JP10533480A patent/JP2000508614A/ja not_active Ceased
- 1998-02-04 CN CN98800390A patent/CN1105074C/zh not_active Expired - Fee Related
- 1998-02-04 EP EP98900840A patent/EP0915804B1/de not_active Expired - Lifetime
- 1998-02-04 TW TW087101365A patent/TW346475B/zh not_active IP Right Cessation
- 1998-02-04 DE DE59808428T patent/DE59808428D1/de not_active Expired - Lifetime
- 1998-02-04 US US09/155,790 patent/US6142259A/en not_active Expired - Lifetime
- 1998-02-04 KR KR10-1998-0707906A patent/KR100510204B1/ko not_active IP Right Cessation
- 1998-02-04 WO PCT/CH1998/000040 patent/WO1998034868A1/de active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TW346475B (en) | 1998-12-01 |
KR100510204B1 (ko) | 2005-11-16 |
CN1220644A (zh) | 1999-06-23 |
US6142259A (en) | 2000-11-07 |
EP0915804A1 (de) | 1999-05-19 |
CA2251107C (en) | 2006-11-14 |
CN1105074C (zh) | 2003-04-09 |
WO1998034868A1 (de) | 1998-08-13 |
KR20000064850A (ko) | 2000-11-06 |
JP2000508614A (ja) | 2000-07-11 |
DE59808428D1 (de) | 2003-06-26 |
CA2251107A1 (en) | 1998-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0915804B1 (de) | Verfahren sowie vorrichtung zur steuerung eines hydraulischen aufzugs | |
EP1067319B1 (de) | Einrichtung zum Steuern einer Stelleinrichtung für ein Getriebe | |
EP2328747B1 (de) | Druckspeicherlose hydraulische antriebsanordnung für und mit einem verbraucher, insbesondere für hydraulische pressen, sowie verfahren zum druckspeicherlosen hydraulischen antreiben eines verbrauchers | |
CH659861A5 (de) | Vorrichtung zur fluidflusssteuerung zwischen einer pumpe, einem tank und einem zylinder sowie hebewerk mit derselben. | |
EP1840068A1 (de) | Aufzugsanlage mit einer Aufzugskabinenbremseinrichtung und Verfahren zum Bremsen einer Aufzugskabine | |
DE19962648C2 (de) | Steuerverfahren für eine hydraulisch angetriebene Winde für eine gesteuerte Drehung einer Wickeltrommel, die durch einen hydraulischen Motor angetrieben wird, und auf ein Gerät für diese | |
EP1208057B1 (de) | Hydraulischer aufzug mit einem als gegengewicht wirkenden druckspeicher und verfahren zum steuern und regeln eines solchen aufzugs | |
DE3685810T2 (de) | Hydraulischer aufzug mit dynamisch programmiertem motorisiertem ventil. | |
DE3434014A1 (de) | Hydraulische steuerung | |
EP2477926B1 (de) | Aufzugskabine | |
EP1312572A1 (de) | Hydraulischer Aufzug mit einem Druckspeicher sowie Verfahren zur Steuerung und Regelung eines solchen Aufzugs | |
EP1156977B1 (de) | Verfahren und vorrichtung zur steuerung eines hydraulischen aufzugs | |
WO2002002974A2 (de) | Steuerventileinheit für einen hydraulischen aufzug | |
DE2108202C3 (de) | Hubfahrsteuereinrichtung für einen hydraulischen Aufzug | |
EP0643006B1 (de) | Verfahren und Einrichtung zur Steuerung eines hydraulischen Aufzuges | |
DE3801374A1 (de) | Steuervorrichtung fuer einen hydraulischen aufzug | |
WO2020115304A1 (de) | Druckmittelbetätigte kabinenbremse und ventilanordnung zur ansteuerung der notbremsfunktion der druckmittelbetätigten kabinenbremse eines aufzugssystems | |
DE2509228C3 (de) | Elektro-hydraulischer Antrieb für Hebezeuge | |
EP1857703B1 (de) | Verfahren der Ansteuerung eines elektrischen Antriebsmotors einer hydrostatischen Pumpe in einem hydraulischen System | |
DE69606860T2 (de) | Aufzugssteuerungssystem | |
EP1474349B1 (de) | Steuervorrichtung für einen hydraulischen aufzug | |
DE19601724A1 (de) | Hydraulischer Aufzug mit einem Arbeitszylinder | |
EP1474350B1 (de) | Steuervorrichtung für einen hydraulischen aufzug | |
DE2456107A1 (de) | Steuereinrichtung, insbesondere zur fernsteuerung von hydrostatisch betaetigten foerder- oder hubeinrichtungen | |
WO2003068653A2 (de) | Vorrichtung zur steuerung und/oder regelung eines aufzugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980925 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010525 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BUCHER HYDRAULICS AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030521 |
|
REF | Corresponds to: |
Ref document number: 59808428 Country of ref document: DE Date of ref document: 20030626 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: GERHARD H. ULRICH PATENTANWALT |
|
26N | No opposition filed |
Effective date: 20040224 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: BUCHER HYDRAULICS AG;INDUSTRIESTRASSE 15;6345 NEUHEIM (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120227 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20130219 Year of fee payment: 16 Ref country code: FR Payment date: 20130301 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150218 Year of fee payment: 18 Ref country code: DE Payment date: 20150219 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150218 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59808428 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160901 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160204 |