EP0857326B1 - Vanne de regulation de debit - Google Patents

Vanne de regulation de debit Download PDF

Info

Publication number
EP0857326B1
EP0857326B1 EP96929320A EP96929320A EP0857326B1 EP 0857326 B1 EP0857326 B1 EP 0857326B1 EP 96929320 A EP96929320 A EP 96929320A EP 96929320 A EP96929320 A EP 96929320A EP 0857326 B1 EP0857326 B1 EP 0857326B1
Authority
EP
European Patent Office
Prior art keywords
flow control
valve
control valve
restrictor orifice
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96929320A
Other languages
German (de)
English (en)
Other versions
EP0857326A1 (fr
Inventor
Jürgen ZÜGNER
Karl Cords
Hans Müller
Michael Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth AG
Original Assignee
Mannesmann Rexroth AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Rexroth AG filed Critical Mannesmann Rexroth AG
Publication of EP0857326A1 publication Critical patent/EP0857326A1/fr
Application granted granted Critical
Publication of EP0857326B1 publication Critical patent/EP0857326B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7771Bi-directional flow valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7784Responsive to change in rate of fluid flow
    • Y10T137/7787Expansible chamber subject to differential pressures
    • Y10T137/7788Pressures across fixed choke

Definitions

  • the invention relates to a flow control valve according to the Preamble of claim 1.
  • Such flow control valves are then preferred used when in a hydraulic system, for example Cylinders and engines with different and fluctuating Load pressures with a preselected, constant volume flow should be supplied. That is, the flow control valve determines the inflow of useful power for the Consumers, for example the hydraulic cylinder or the Hydraulic motor.
  • the flow control valve determines the inflow of useful power for the Consumers, for example the hydraulic cylinder or the Hydraulic motor.
  • the Arrangement in the inlet to the consumer in the Sequence of the consumer (secondary control) or in one Bypass line of the hydraulic pump (bypass control) provided can be.
  • Such a known flow control valve 1 has one Valve housing 2 with an axial bore as a valve bore 4, which opens on the one hand in an input port P and on the other hand closed by a throttle body 6 is, which is axially displaceably mounted in the valve bore is, the setting of the axial position via an adjusting device 8 takes place in the axial direction from the outside is accessible from here.
  • the throttle body 6 has a throttle bolt 10, which protrudes into a throttle bushing 12, so that by the interaction of the throttle pin 10 and Throttle bushing 12 the effective cross section of the orifice plate adjustable by axial displacement of the throttle body 6 is.
  • the throttle bushing 12 is on an end face of the Valve bore 4 supported and in the area of the throttle pin 10 provided with radial bores 14 through which one Connection of the input port P to an output termination A is done.
  • the throttle bushing 12 is supported by a control spring 16, which in turn biases a valve spool 18 which in the valve bore 4 is guided axially and over its end section distant from the spring side the opening cross-section of the output connection A or is controllable.
  • the valve spool 18 has an inner bore, so that the connection P over the inner bore of the valve spool, the throttle bushing (orifice plate) 12, the radial bores 14 are connected to the output connection A. is. With an inflow in the direction of the valve longitudinal axis the liquid flows through the inner bore of the valve spool 18 and through the adjustable annular gap the orifice towards the regulated output.
  • valve spool 18 in the 1 shifted to the left so that this is the volume flow to the regulated output connection A throttled and thus the pressure difference at the orifice is kept constant. Because of this constant pressure drop The regulated output volume flow is also above the orifice regardless of the pressure fluctuations at the inlet connection P kept constant.
  • the valve spool can control the cross-section of the outlet connection Only change when the spring force of the Rule spring 16 is overcome. So that means if the Pressure difference across the orifice plate is greater than the spring force divided by the effective valve spool area.
  • Such flow control valves can also be reversed Direction, that is from port A to port P flow through, and then act as a check valve, where in the check function the pressure loss from the Setting the orifice plate (throttle pin 10, throttle bush 12) is dependent. That is, in use as a check valve, the control spring 16 acts as a check spring.
  • a flow control valve is disclosed in DE-A1 33 43 960, with a non-return actuator on the outer circumference of the valve spool is mounted to radial bores in the check function open the valve spool so that the orifice plate is circumvented.
  • the invention is based on the object to create a flow control valve that is reversed Flow has an improved function.
  • the spring rate in an optimal manner to the pressure conditions for the reverse flow are adaptable, the functionality of the Flow control valve with a flow in reverse Direction compared to conventional solutions be improved.
  • the spring rate of the return spring can are designed to be lower than the spring rate of Control spring, so that on the one hand the function of the flow control valve in "normal flow direction" by suitable Selection of the control spring and on the other hand the function of the non-return valve with reverse flow can be optimized by suitable selection of the return spring are.
  • Valve slides forming a control orifice are constructed in the form of a bush is so that it flows through its inner bore becomes and coaxial to an orifice sleeve in the Inner bore is guided.
  • this is Non-return actuator formed by a non-return piston, which is guided axially displaceably in the valve slide and the one against the check spring against one on the orifice plate trained seat is biased so that against the preload of the non-return spring of the non-return piston can be lifted off the orifice sleeve and the bypass channel is therefore taxable.
  • the effect of the check actuator in this case is essentially determined by the pressure drop in the area of the seat on the orifice sleeve and the spring rate of the return spring.
  • control spring on an end face remote from the orifice sleeve, preferably a radial shoulder of the check piston is supported.
  • the control spring is preferably on the orifice side End section of the valve spool of the control orifice supported so that installation space can be saved and a control spring can be used with a comparatively large outside diameter is.
  • the support takes place the control spring preferably on an axial collar of the Valve spool, which is via the output connection A extends and which is penetrated by axial bores over which the spring chamber into which the measuring orifice opens is connected to the output terminal A.
  • the Bypass channel through radial holes in the orifice sleeve formed by the valve spool against the bias the check spring can be opened.
  • the valve slide inner bore is supported, that is The control spring is located inside the valve spool.
  • the valve slide acts in this embodiment also as a non-return actuator
  • control spring is advantageously supported on the valve slide by interposing one Support bushing, whose other end section on the valve housing is supported, the support bushing the return spring interspersed advantageously in the axial direction.
  • the output port of the flow control valve and the Orifice plate output can with an expanding cross section formed according to subclaims 13 and 14 become.
  • Fig. 2 shows a longitudinal section through a first embodiment a flow control valve 1, which as a built-in valve is trained.
  • the flow control valve 1 has a valve housing 2 that can be screwed into a valve block via a threaded section is.
  • the right end of the flow control valve in Fig. 2 is formed by an end screw 20, in which a through hole is formed as an input port P. is.
  • An output connection is at an axial distance from the input connection P A formed in the embodiment shown by two radial bore stars arranged in series 21 and 22 is formed, of which the radial bore 21 has a smaller diameter than that Radial bore 22. Between the two radial bores 21, 22 remains a partition, which is connected via a connecting hole 24 is bridged in the valve housing 2, this Connection bore 24 is indicated by dashed lines in FIG. 2.
  • the left end section of the valve bore 4 in FIG. 2 is formed by a reducer 26 which is in a radial extended and provided with a threaded section End portion of the valve bore 4 is screwed.
  • a radial downgrade takes place via the reducer 26 the valve bore 4, wherein an internally threaded portion the reducer 26 is in threaded engagement with one Spindle 28, the actuating sections 30 axially from the Reducer 26 protrudes outwards and thus for the Operator is accessible.
  • a throttle pin in a known manner 10 rotatably mounted so that an adjustment movement the spindle 28 in an axial movement of the throttle pin 10 is implemented.
  • the throttle pin 10 dips with his cantilevered end section in a diaphragm or throttle box 12 a, which on the adjacent end face of the Reducer 26 is supported.
  • the orifice sleeve is at least one throttle opening 32 formed, which in the embodiment shown Has a triangular window shape that extends away from the throttle bolt 10 tapered.
  • the orifice sleeve 12 is between the end face of the reducer 26 and a contact surface of the valve bore 4 clamped with a radial shoulder. At this the control spring 16 is supported so that this the orifice sleeve 12 surrounds.
  • control spring 16 is in contact a valve spool 18 through which the radial bores 21 and 22 and 24 of the output connection A can be opened or closed are.
  • the valve spool is in the basic position shown 18 with its end section removed from the control spring 16 on the end screw 20 so that the connection holes 21 and 22 are controlled.
  • the valve spool 18 is provided with an attachment collar 34 on which the control spring 16 attacks.
  • the outside circumference of the investment association 34 is slightly smaller than that in the valve bore guided part of the valve spool 18 is formed.
  • An annular groove 36 is located at an axial distance from the contact collar 34 formed, which - in the basic position shown in Fig. 2 - Arranged approximately in the region of the radial bores 21, 22 and its width is roughly equal to the total width (Representation according to FIG. 2) of the two end-to-end occupants Radial bores 21, 22 is adapted.
  • Fig. 3 shows a front view of the valve spool 18 seen from the control spring side. As can be seen from it is, there are four in the area of the investment association 34 Axial bores 38 provided on a common Pitch circle, whose diameter is about the diameter corresponds to the valve bore 4.
  • the axial bores 38 extend up to that in FIG Fig. 2 right side wall of the annular groove 36, so that about the annular groove 36 and the axial bores 38 a connection of the spring chamber 40 can be produced with the output connection A. is.
  • Valve slide 18 and output port A thus act as a control orifice via which the pressure drop across the orifice plate 32 (throttle pin 10, orifice plate sleeve 12) adjustable is.
  • the one End section protrudes into the spring chamber 40 and on a valve seat 46 of the orifice sleeve 12 in plant can be brought so that the latter and the check piston 44th are arranged coaxially to each other.
  • the non-return piston 44 is via a return spring 48 in the direction of Valve seat 46 biased.
  • the check spring 48 supports on the one hand on the outer circumference of the non-return piston 44 attached support ring and the other on the End screw 20 from.
  • the hydraulic fluid When used as a flow control valve, that is When flowing from P to A, the hydraulic fluid flows axially into the flow control valve, flows through it in its shown non-return piston 44 and enters the orifice plate. Their more effective Cross section is through an appropriate setting of the Throttle pin 10 specified so that the hydraulic fluid flows through the throttle opening 32 and into the spring chamber 40 entry. This is where the hydraulic fluid comes from Axial bore 38 of the valve spool 18 via the annular groove 36 towards the output connection A.
  • the flow control valve according to the invention corresponds 1 a conventional flow control valve, as in Fig. 1 is shown.
  • valve housing 2 of this embodiment an axially extending valve bore 4 is again formed, whose left end section in FIG. 4 has an internal thread is provided, which is in engagement with the Outer periphery of a spindle 50 on its rear End carries an operating section and over which Valve bore 4 is completed.
  • the Input port P is formed at the other end section of the valve housing 2 at the other end section of the valve housing 2 at the other end section of the valve housing 2 .
  • the output port A opens again as radial bore star of the valve housing 2 in the inner bore 4.
  • the throttle pin 10 is rotatable in the spindle 50 set so that by appropriate adjustment the spindle 50 an axial movement of the throttle pin 10 is effected. Its cantilevered end section is immersed in the orifice sleeve 12, which with radial bores 32nd is provided, which can be opened or closed by the throttle bolt is.
  • the orifice sleeve 12 is supported on a support ring, that in the valve bore 4 of the valve housing 2 is attached and also an axial stop for the Spindle 50 forms (see illustration in FIG. 4). In the The basic position shown is that acting as a throttle opening Radial bore 32 of the orifice sleeve 12 shut off or reduced to their smallest cross section.
  • FIG Orifice plate sleeve 12 dips into valve slide 18, which is axially displaceable in the valve bore 4 is.
  • a radial bore star 52 is provided which is shown in FIG Home position from the inner peripheral wall of the valve spool 18 is closed or covered.
  • valve spool 18 which is constructed in the form of a sleeve, is biased into its starting position via the control spring 16, the output port A is completely open is.
  • the left end section of the control spring in FIG. 4 16 is supported on the end face of the orifice sleeve 12, while the other end section on a support bushing 54 attacks, which is axially displaceable in a guide bush 56 is guided, which in turn on the front side of the valve housing 2 is supported in the axial direction is.
  • the in the inner bore 42 of the valve spool 18th immersed end portion of the support bush 54 is with a Radial collar provided that a contact surface for the crizfeder 16 forms and in turn with his of the contact surface of the control spring 16 distal end face can be brought into contact with an inner end face section of the valve slide 18.
  • a contact surface for the crizfeder 16 forms and in turn with his of the contact surface of the control spring 16 distal end face can be brought into contact with an inner end face section of the valve slide 18.
  • On the right in Fig. 4 The end face of the valve slide 18 engages the non-return spring 48, the other end section of the guide bush 56 and thus supported on the valve housing 2.
  • valve arrangement When using this valve arrangement as a flow control valve, that is, when flowing from P to A occurs the hydraulic fluid through the support bush 54, the valve spool 18 and the of the orifice sleeve 12 and the Throttle bolt 10 formed orifice cross section towards Throttle opening 32 and from there to the output connection A.
  • the predetermined limit value When the pressure drop rises above the orifice plate the predetermined limit value is compressed the control spring 16, so that the valve spool 18 in the illustration 4 axially shifted to the left and the output connection A is controlled.
  • This tax movement is the support bush 54 by the valve spool 18th brought along, so that this also along an axial movement the guide bush 56 performs.
  • valve spool 18 Due to the axial movement of the valve spool 18 in turn ensures that the pressure drop across the orifice remains constant.
  • Fig. 4 moves to the right so that there is a relative displacement between the valve slide 18 and the support bush 54 sets that on the end face of the valve housing 2 is supported. Due to the resulting axial movement of the valve spool 18 becomes the radial bore star 52 opened so that a bypass channel opened is that allows a circumvention of the orifice plate, so that the hydraulic fluid directly from the output port A through through the radial bore star 52, through the valve spool 18 and the support bush 54 towards the input connection P can flow.
  • valve spool 18 When the pressure builds up from P to A, the valve spool 18 again moved to the left so that the radial bore star 52 is controlled.
  • the spring rate of the non-return spring can also be used in this variant 48 in a simple way to the operating conditions be adjusted for a reverse flow, without changing the standard spring rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Flow Control (AREA)
  • Safety Valves (AREA)
  • Check Valves (AREA)

Claims (14)

  1. Vanne de régulation de débit comprenant un boisseau (32) intercalé entre un raccord d'admission (P) et un raccord de sortie (A) de la vanne de régulation de débit (1), et un obturateur (18) qui commande l'ouverture ou la fermeture d'une section transversale d'ouverture (22) conduisant au raccord de sortie (A) en fonction de la chute de pression au niveau du boisseau (32) et qui est mis en précontrainte dans sa direction d'ouverture par l'intermédiaire d'un ressort de réglage (16), et un organe de réglage antiretour (44) qui est mis en précontrainte en position de fermeture par un ressort antiretour (48), l'ouverture d'un canal de dérivation contournant le boisseau (32) pouvant être commandée dans le cas d'une traversée inverse de la vanne de régulation de débit (1), caractérisée en ce que le boisseau (32) est prévu sur une douille (12) de boisseau à section d'ouverture variable (32) calée dans l'un des alésages (4) de la vanne et séparée de l'obturateur (18) et en ce que l'ouverture d'un orifice de dérivation du canal de dérivation peut être commandée par un déplacement de l'organe de réglage antiretour (44) par rapport à la douille (12) du boisseau.
  2. Vanne de régulation de débit selon la revendication 1, caractérisée en ce qu'un piston antiretour (44) pouvant être traversé par le fluide est guidé dans un alésage interne (42) de l'obturateur (18), pour servir d'organe de réglage antiretour, et est mis en précontrainte contre un siège (46) à l'entrée du boisseau, par le ressort antiretour (48), de sorte que dans le cas d'un écoulement inversé, l'ouverture du canal de dérivation peut être commandée par le soulèvement du piston antiretour (44) du siège (46).
  3. Vanne de régulation de débit selon la revendication 2, caractérisée en ce que le ressort de réglage (16) est en appui sur une face frontale de l'obturateur (18) située du côté du boisseau.
  4. Vanne de régulation de débit selon la revendication 2 ou 3, caractérisée en ce que l'obturateur (18) présente un collet de butée (34) pour le ressort de réglage (16) s'étendant au-delà du raccord de sortie (A), collet qui est traversé par au moins un percement axial (38) mettant le raccord de sortie (A) en communication avec une chambre de ressort (40) de l'obturateur (18).
  5. Vanne de régulation de débit selon l'une des revendications 2 à 4, caractérisé en ce que le siège (46) est prévu sur la douille (12) du boisseau.
  6. Vanne de régulation de débit selon l'une des revendications 2 à 5, caractérisée en ce que le ressort antiretour (48) est en appui d'une part sur une portion de surface frontale du piston antiretour (44) écartée du boisseau et d'autre part sur une vis de fermeture (20) formant le raccord d'admission (P).
  7. Vanne de régulation de débit comprenant un boisseau (32) intercalé entre un raccord d'admission (P) et un raccord de sortie (A) de la vanne de régulation de débit (1), et un obturateur (18) qui commande l'ouverture ou la fermeture d'une section d'ouverture conduisant au raccord de sortie (A) en fonction de la chute de pression au niveau du boisseau (32) et qui est mis en précontrainte dans la direction de son ouverture par un ressort de réglage (16), l'ouverture d'un canal de dérivation contournant le boisseau (32) étant commandable dans le cas d'une traversée inverse de la vanne de régulation de débit (1), caractérisée en ce que l'obturateur assume en plus la fonction d'un organe de réglage antiretour ce pour quoi un ressort antiretour (48) met l'obturateur en précontrainte dans la direction de fermeture de l'orifice du canal de dérivation, en ce que le boisseau (32) est prévu sur une douille (12) de boisseau (32) à section d'ouverture variable calée dans un des alésages (4) de la vanne et séparée de l'obturateur (18), et en ce que l'orifice du canal de dérivation est prévu sur la douille (12) du boisseau, orifice dont l'ouverture est commandable par un déplacement de l'obturateur (18) par rapport à la douille (12) du boisseau.
  8. Vanne de régulation de débit selon la revendication 7, caractérisé en ce que le ressort antiretour (48) intervient sur une face frontale de l'obturateur (18) située du côté du raccord de sortie, en en ce que le ressort de réglage (16) prend appui d'une part sur un épaulement radial de l'alésage interne (42) de l'obturateur (18) et d'autre part sur une surface frontale de la douille (12) du boisseau qui s'engage, par une portion d'extrémité, dans l'alésage interne (42).
  9. Vanne de régulation de débit selon la revendication 7 ou 8, caractérisée en ce que la portion d'extrémité de la douille (12) du boisseau est pourvue d'au moins un percement radial (52) dont l'ouverture est commandable par un déplacement de l'obturateur, pour servir de canal de dérivation.
  10. Vanne de régulation de débit selon l'une des revendications 7 à 9, caractérisée en ce que le ressort de réglage (16) est en appui sur la surface frontale de l'obturateur (18), par l'intermédiaire d'une douille de soutien (54), dont une portion d'extrémité est en appui sur le corps (2) de la vanne et dont l'autre portion d'extrémité s'engage dans l'alésage interne (42) et est pourvue d'un épaulement radial qui est mis en précontrainte contre un épaulement interne de l'obturateur (18), via le ressort de réglage (16).
  11. Vanne de régulation de débit selon l'une des revendications 7 à 10, caractérisée en ce que le ressort antiretour (48) est agencé coaxialement à la douille de soutien (54).
  12. Vanne de régulation de débit selon l'une des revendications qui précèdent, caractérisée en ce que le raccord de sortie (A) est réalisé avec une surface de section transversale évasée, de préférence formé par deux percements radiaux en étoile écartés l'un de l'autre.
  13. Vanne de régulation de débit selon l'une des revendications qui précèdent, caractérisée en ce qu'un orifice d'étranglement (32) du boisseau est réalisé sous forme de fenêtre triangulaire.
  14. Vanne de régulation de débit selon l'une des revendications 2 à 13, caractérisée en ce que le raccord d'admission (P) est en communication avec le boisseau via l'alésage interne (42) et en ce que l'obturateur (18) est guidé coaxialement à une douille (12) du boisseau.
EP96929320A 1995-10-24 1996-08-23 Vanne de regulation de debit Expired - Lifetime EP0857326B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19539521 1995-10-24
DE1995139521 DE19539521C2 (de) 1995-10-24 1995-10-24 Stromregelventil
PCT/EP1996/003735 WO1997015875A1 (fr) 1995-10-24 1996-08-23 Vanne de regulation de debit

Publications (2)

Publication Number Publication Date
EP0857326A1 EP0857326A1 (fr) 1998-08-12
EP0857326B1 true EP0857326B1 (fr) 2000-06-21

Family

ID=7775609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96929320A Expired - Lifetime EP0857326B1 (fr) 1995-10-24 1996-08-23 Vanne de regulation de debit

Country Status (5)

Country Link
US (1) US5996615A (fr)
EP (1) EP0857326B1 (fr)
JP (1) JPH11515076A (fr)
DE (2) DE19539521C2 (fr)
WO (1) WO1997015875A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6116263A (en) * 1998-07-23 2000-09-12 Hydraforce, Inc. Proportional priority flow regulator with reverse flow control
US6110427A (en) * 1998-08-14 2000-08-29 Becton, Dickinson And Company Flow regulator to maintain controllable volumetric flow rate
DE19927392A1 (de) * 1999-06-16 2000-12-21 Bosch Gmbh Robert Stromregelventil
DE10051492A1 (de) * 2000-10-17 2002-04-18 Aws Appbau Arnold Gmbh Coaxialventil als Mengenregelventil
US6688319B2 (en) 2002-04-10 2004-02-10 Flow Design, Inc. Flow regulating control valve and method for regulating fluid flow
US6932107B2 (en) * 2003-06-24 2005-08-23 Flow Control Industries, Inc. Flow control valves
DE10333236B4 (de) * 2003-07-21 2013-06-27 Volkswagen Ag Steuerventil zur Steuerung eines Volumenstromes, insbesondere zur Steuerung eines Kühlmittelstromes zur Kühlung der Kupplung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges
DE102004019748A1 (de) * 2004-04-20 2005-11-17 Bosch Rexroth Ag Stromregelventil
GB2415029B (en) * 2004-06-12 2008-02-27 Demag Delaval Ind Turbomachine A hydraulic restrictor
DE102006014446A1 (de) * 2006-03-29 2007-10-04 Schaeffler Kg Stromregelventil
US7770595B2 (en) 2006-04-27 2010-08-10 Sko Flo Industries, Inc. Flow control valve
WO2007127986A2 (fr) 2006-04-28 2007-11-08 Sko Flo Industries, Inc. Appareil de mesure d'écoulement
BRPI0906855A2 (pt) * 2008-01-16 2015-10-06 Welltec As válvula sequencial e trator de perfuração.
CN109185249A (zh) * 2018-09-28 2019-01-11 广东机电职业技术学院 一种汽车液压转向系统流量自动控制阀

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015341A (en) * 1958-01-10 1962-01-02 William Waterman Flow regulators
US3145730A (en) * 1963-03-07 1964-08-25 Frank G Presnell Control valve
US3424196A (en) * 1966-06-01 1969-01-28 Deltrol Corp Flow regulating valve
US4237922A (en) * 1978-09-25 1980-12-09 Snap-Tite, Inc. In-line flow control valve
US4234013A (en) * 1979-06-01 1980-11-18 Sotokazu Rikuta Control valve for keeping the rate of flow at a fixed value
DE3013084A1 (de) * 1980-04-03 1981-10-08 Robert Bosch Gmbh, 7000 Stuttgart Stromregelventil
DE3343960A1 (de) * 1982-12-08 1984-06-20 Beringer-Hydraulik GmbH, 6345 Neuheim, Zug Strombegrenzungsventil
US4655245A (en) * 1986-06-13 1987-04-07 Dowty Decoto, Inc. Hydraulic fuse
DE4136991C2 (de) * 1991-11-11 2000-11-02 Bosch Gmbh Robert Hydraulisches Wegeventil

Also Published As

Publication number Publication date
EP0857326A1 (fr) 1998-08-12
JPH11515076A (ja) 1999-12-21
DE59605471D1 (de) 2000-07-27
WO1997015875A1 (fr) 1997-05-01
DE19539521A1 (de) 1997-04-30
DE19539521C2 (de) 1999-01-07
US5996615A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
EP0857326B1 (fr) Vanne de regulation de debit
DE102008042624A1 (de) Schieberventil zur hydraulischen Steuerung in einem Kraftfahrzeug-Automatikgetriebe
DE102014017801A1 (de) Druckbegrenzungsventil
DE10247665B4 (de) Regelvorrichtung und Ventilblock für eine Regelvorrichtung
DE10316532B4 (de) Hydraulisches Verstärkersystem für Bremsanlage
DE10015971A1 (de) Steuerventil für eine Ölpumpe
DE102006006228A1 (de) Hydraulische Steueranordnung
DE4237932A1 (de) Volumenstromsteuerung für Kraftfahrzeughydraulik, insbesondere für Lenkeinrichtungen von Kraftfahrzeugen
DE3919175C2 (fr)
DE10342478B3 (de) Ventilanordnung zur Steuerung von Hydraulikflüssigkeit in einer Axialkolbenmaschine
EP0717817B1 (fr) Bloc a soupapes hydrauliques de commande
EP0935716B1 (fr) Systeme de valve anti-retour
DE10129822A1 (de) Druckbegrenzungsventil für Kraftstoff-Einspritzeinrichtungen
EP1003972B1 (fr) Commande a soupapes de freinage et de commande pour dispositif de rotation
DE3135098A1 (de) Ventilaufbau, umfassend ein pumpensteuer- bzw. -regelventil und eine entlastungsanordnung
DE3520745C2 (de) Vorrichtung zur Schaltzeiteinstellung eines Ventilgliedes
DE2316504C2 (de) Hydraulisches Stromregelventil
EP0743460A1 (fr) Module de levage électrohydraulique
EP1452744B1 (fr) Dispositif de contrôle hydraulique
DE3840328A1 (de) Vorgesteuertes wegeventil
DE3211545A1 (de) Hydraulikventil zur druckmittelversorgung eines verbrauchers, insbesondere mengenregelventil
EP0306632B1 (fr) Valve de commutation
DE4219552C2 (de) Vorgesteuertes Zwei-Wegeventil mit einstellbarer, druckunabhängiger Schließzeit
EP0582859B1 (fr) Dispositif de commande hydraulique
DE19714587C1 (de) Ventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANN REXROTH AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990922

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000627

REF Corresponds to:

Ref document number: 59605471

Country of ref document: DE

Date of ref document: 20000727

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020323

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110824

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131025

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605471

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59605471

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303