EP0810505A2 - Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit - Google Patents

Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit Download PDF

Info

Publication number
EP0810505A2
EP0810505A2 EP97108343A EP97108343A EP0810505A2 EP 0810505 A2 EP0810505 A2 EP 0810505A2 EP 97108343 A EP97108343 A EP 97108343A EP 97108343 A EP97108343 A EP 97108343A EP 0810505 A2 EP0810505 A2 EP 0810505A2
Authority
EP
European Patent Office
Prior art keywords
circuit
circuit arrangement
temperature coefficient
resistance element
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97108343A
Other languages
German (de)
French (fr)
Other versions
EP0810505B1 (en
EP0810505A3 (en
Inventor
Wilhelm Dr. Wilhelm
Josef Hölzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0810505A2 publication Critical patent/EP0810505A2/en
Publication of EP0810505A3 publication Critical patent/EP0810505A3/en
Application granted granted Critical
Publication of EP0810505B1 publication Critical patent/EP0810505B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the invention relates to a circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient and the use of this circuit arrangement in a current mirror circuit.
  • a temperature compensation circuit with a fixed compensation behavior is known, for example, from Tietze / Schenk, semiconductor circuit technology, Springer-Verlag, 7th edition, chapter 4.6.3.
  • a diode is switched into the input current path of a simple current mirror, which compensates for the temperature effect on the transistor in the output current path.
  • the compensation is determined by the choice of the diode.
  • a large number of electrical and electronic components such as light-emitting diodes, laser diodes, sensors, display elements, controllers, etc., show an undesired temperature dependence with a negative coefficient during operation.
  • correction circuits with positive temperature coefficients are often provided in such components. Since these temperature coefficients should assume different values depending on the component to be compensated, different compensation circuits or compensation elements must be used depending on the respective component. Adaptation to the temperature behavior of the respective component is therefore generally complex.
  • the object of the invention is to provide compensation means with a variable positive temperature coefficient.
  • the circuit arrangement according to the invention preferably has a series circuit comprising a first ohmic resistance element and a diode element, which is connected in parallel with a second ohmic resistance element, the value of the second ohmic resistance element being set in accordance with the desired temperature coefficient.
  • a preferred current mirror circuit has in its input current path a circuit arrangement consisting of a first and a second ohmic resistance element and a diode element.
  • the circuit arrangement is fed by an input current and the voltage drop across it is fed to the base-emitter path of a transistor.
  • An emitter resistance element which has the same value as the first ohmic resistance element of the circuit arrangement, is inserted into the emitter line of the transistor.
  • the output current of the current mirror circuit can be tapped at the collector of the transistor.
  • the circuit arrangement according to the invention consists of an ohmic resistor 1 and a diode 3 connected to it in series in the forward direction.
  • An ohmic resistor 2 is connected in parallel to the series connection of resistor 1 and diode 3, resistor 2 being adjustable.
  • a current I fed into the circuit arrangement according to the invention generates a voltage U across the circuit arrangement.
  • the voltage I which is dependent on the current I and the temperature, can be used, for example, for further actuation, for example of a driver circuit, which in turn supplies a component to be supplied, for example light-emitting diodes, etc.
  • the circuit arrangement according to the invention is used in a current mirror circuit in which the circuit arrangement according to the invention with resistors 1 and 2 and diode 3 forms the input circuit of the current mirror circuit, while a transistor 5 in connection with an emitter resistor 4 represents the output circuit.
  • the base of transistor 5 is connected to the node of the first and second resistor, while the emitter of transistor 5 is connected to the node of diode 3 and resistor 2 with the emitter resistor 4 interposed.
  • the conductivity type of the transistor 5 is chosen according to the polarity of the diode 3.
  • An output current Q can be tapped from its collector, which has a temperature coefficient that can be set by means of the resistor 2 compared to the current I.
  • the node of diode 3, resistor 2 and emitter resistor 4 can be connected to a reference potential M in order to achieve defined potential relationships.
  • the resistance value R of the first resistor 1 and the emitter resistor 4 are chosen to be the same size.
  • the value of resistor 2 can be chosen, for example, between infinite and four times the value of resistor 1.
  • a temperature coefficient of 0.3% / K results for the value infinite, while a temperature coefficient of 1% / K results for the four-fold resistance value of resistor 1.
  • temperature responses can be realized that have a coefficient of greater than 100% / TW, where T stands for the absolute temperature and W for ...
  • the advantages of the circuit arrangement according to the invention lie in a minimal component requirement, an easy adjustability of the temperature coefficient, the high integration capability, minimal aging and large compensation, voltage and temperature ranges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Led Devices (AREA)

Abstract

The circuit uses an ohmic resistor (1) in series with a diode element (3), with a second ohmic resistor (2) connected in parallel with the series circuit, having a resistance value corresponding to the required positive temp coefficient. Pref. the circuit is connected across the base-emitter path of a current mirror transistor (5) having an emitter resistance (4) of equal value to the first ohmic resistor.

Description

Die Erfindung betrifft eine Schaltungsanordnung zum Erzeugen eines Widerstandsverhaltens mit einstellbarem positiven Temperaturkoeffizienten sowie die Verwendung dieser Schaltungsanordnung in einer Stromspiegelschaltung.The invention relates to a circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient and the use of this circuit arrangement in a current mirror circuit.

Eine Temperaturkompensationsschaltung mit festem Kompensationsverhalten ist beispielsweise aus Tietze/Schenk, Halbleiter-Schaltungstechnik, Springer-Verlag, 7. Auflage, Kapitel 4.6.3 bekannt. Dabei wird in den Eingangsstrompfad eines einfachen Stromspiegels eine Diode geschaltet, die den Temperatureffekt beim Transistor im Ausgangsstrompfad kompensiert. Die Kompensation ist jedoch durch die Wahl der Diode festgelegt.A temperature compensation circuit with a fixed compensation behavior is known, for example, from Tietze / Schenk, semiconductor circuit technology, Springer-Verlag, 7th edition, chapter 4.6.3. In this case, a diode is switched into the input current path of a simple current mirror, which compensates for the temperature effect on the transistor in the output current path. However, the compensation is determined by the choice of the diode.

Eine Vielzahl von elektrischen und elektronischen Bauelementen wie beispielsweise Leuchtdioden, Laserdioden, Sensoren, Anzeigeelemente, Regler etc. zeigt im Betrieb eine unterwünschte Temperaturabhängigkeit mit negativem Koeffizienten. Zur Erzielung eines gleichbleibenden Verhaltens über einen großen Temperaturbereich werden bei derartigen Bauelementen häufig Korrekturschaltungen mit positiven Temperaturkoeffizienten vorgesehen. Da diese Temperaturkoeffizienten je nach zu kompensierendem Bauelement unterschiedliche Werte annehmen sollen, müssen abhängig vom jeweiligen Bauelement unterschiedliche Kompensationsschaltungen oder Kompensationselemente verwendet werden. Eine Anpassung an das Temperaturverhalten des jeweiligen Bauelementes gestaltet sich daher in der Regel aufwendig.A large number of electrical and electronic components, such as light-emitting diodes, laser diodes, sensors, display elements, controllers, etc., show an undesired temperature dependence with a negative coefficient during operation. In order to achieve constant behavior over a large temperature range, correction circuits with positive temperature coefficients are often provided in such components. Since these temperature coefficients should assume different values depending on the component to be compensated, different compensation circuits or compensation elements must be used depending on the respective component. Adaptation to the temperature behavior of the respective component is therefore generally complex.

Aufgabe der Erfindung ist es, Kompensationsmittel mit veränderbarem positiven Temperaturkoeffizienten anzugeben.The object of the invention is to provide compensation means with a variable positive temperature coefficient.

Die Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen von Patentanspruch 1 gelöst. Eine Stromspiegelschaltung, bei der eine erfindungsgemäße Schaltung eingesetzt wird, ist in Patentanspruch 2 angegeben.The object is achieved by a circuit arrangement with the features of claim 1. A current mirror circuit in which a circuit according to the invention is used is specified in claim 2.

Vorzugsweise weist die erfindungsgemäße Schaltungsanordnung eine Reihenschaltung aus einem ersten ohmschen Widerstandselement und einem Diodenelement auf, der ein zweites ohmsches Widerstandselement parallel geschaltet ist, wobei der Wert des zweiten ohmschen Widerstandselements entsprechend dem gewünschten Temperaturkoeffizienten eingestellt wird.The circuit arrangement according to the invention preferably has a series circuit comprising a first ohmic resistance element and a diode element, which is connected in parallel with a second ohmic resistance element, the value of the second ohmic resistance element being set in accordance with the desired temperature coefficient.

Eine bevorzugte Stromspiegelschaltung weist in ihrem Eingangsstrompfad eine aus einem erstem und einem zweitem ohmschen Widerstandselement sowie aus einem Diodenelement bestehende Schaltungsanordnung auf. Dabei wird die Schaltungsanordnung durch einen Eingangsstrom gespeist und die an ihr abfallende Spannung der Basis-Emitter-Strecke eines Transistors zugeführt. In die Emitterleitung des Transistors ist ein Emitterwiderstandselement, das den gleichen Wert aufweist wie das erste ohmsche Widerstandselement der Schaltungsanordnung, eingefügt. Der Ausgangsstrom der Stromspiegelschaltung ist am Kollektor des Transistors abgreifbar.A preferred current mirror circuit has in its input current path a circuit arrangement consisting of a first and a second ohmic resistance element and a diode element. The circuit arrangement is fed by an input current and the voltage drop across it is fed to the base-emitter path of a transistor. An emitter resistance element, which has the same value as the first ohmic resistance element of the circuit arrangement, is inserted into the emitter line of the transistor. The output current of the current mirror circuit can be tapped at the collector of the transistor.

Die Erfindung wird nachfolgend anhand des in der einzigen Figur der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.The invention is explained in more detail below with reference to the embodiment shown in the single figure of the drawing.

Beim Ausführungsbeispiel besteht die erfindungsgemäße Schaltungsanordnung aus einem ohmschen Widerstand 1 und einer dazu in Reihe geschalteten Diode 3 in Durchlaßrichtung. Der Reihenschaltung von Widerstand 1 und Diode 3 ist ein ohmscher Widerstand 2 parallel geschaltet, wobei der Widerstand 2 abgleichbar ist. Ein in die erfindungsgemäße Schaltungsanordnung eingespeister Strom I erzeugt eine Spannung U über der Schaltungsanordnung. Insgesamt ergibt sich demnach ein Widerstandsverhalten der gesamten Schaltungsanordnung, wobei der Widerstandswert mit positivem
Koeffizienten von der Temperatur abhängig ist. Die von dem Strom I und der Temperatur abhängige Spannung I kann beispielsweise zur weiteren Ansteuerung beispielsweise einer Treiberschaltung dienen, die ihrerseits ein zu versorgendes Bauelement wie beispielsweise Leuchtdioden etc. versorgt.
In the exemplary embodiment, the circuit arrangement according to the invention consists of an ohmic resistor 1 and a diode 3 connected to it in series in the forward direction. An ohmic resistor 2 is connected in parallel to the series connection of resistor 1 and diode 3, resistor 2 being adjustable. A current I fed into the circuit arrangement according to the invention generates a voltage U across the circuit arrangement. Overall, this results in resistance behavior of the entire circuit arrangement, the resistance value being positive
Coefficient depends on the temperature. The voltage I, which is dependent on the current I and the temperature, can be used, for example, for further actuation, for example of a driver circuit, which in turn supplies a component to be supplied, for example light-emitting diodes, etc.

Beim vorliegenden Ausführungsbeispiel wird die erfindungsgemäße Schaltungsanordnung bei einer Stromspiegelschaltung verwendet, bei der die erfindungsgemäße Schaltungsanordnung mit den Widerständen 1 und 2 sowie der Diode 3 den Eingangskreis der Stromspiegelschaltung bildet, während ein Transistor 5 in Verbindung mit einem Emitterwiderstand 4 den Ausgangskreis darstellt. Die Basis des Transistors 5 ist dabei mit dem Knotenpunkt von erstem und zweiten Widerstand verbunden, während der Emitter des Transistors 5 unter Zwischenschaltung des Emitterwiderstandes 4 mit dem Knotenpunkt von Diode 3 und Widerstand 2 verbunden ist. Der Leitungstyp des Transistors 5 ist entsprechend der Polung der Diode 3 gewählt. An seinem Kollektor ist ein Ausgangsstrom Q abgreifbar, der gegenüber dem Strom I einen mittels des Widerstandes 2 einstellbaren Temperaturkoeffizienten aufweist. Schließlich kann der Knotenpunkt aus Diode 3, Widerstand 2 und Emitterwiderstand 4 an ein Bezugspotential M angeschlossen sein, um definierte Potentialverhältnisse zu erzielen.In the present exemplary embodiment, the circuit arrangement according to the invention is used in a current mirror circuit in which the circuit arrangement according to the invention with resistors 1 and 2 and diode 3 forms the input circuit of the current mirror circuit, while a transistor 5 in connection with an emitter resistor 4 represents the output circuit. The base of transistor 5 is connected to the node of the first and second resistor, while the emitter of transistor 5 is connected to the node of diode 3 and resistor 2 with the emitter resistor 4 interposed. The conductivity type of the transistor 5 is chosen according to the polarity of the diode 3. An output current Q can be tapped from its collector, which has a temperature coefficient that can be set by means of the resistor 2 compared to the current I. Finally, the node of diode 3, resistor 2 and emitter resistor 4 can be connected to a reference potential M in order to achieve defined potential relationships.

Der Widerstandswert R von erstem Widerstand 1 und Emitterwiderstand 4 werden dabei gleich groß gewählt. Der Wert des Widerstandes 2 kann beispielsweise zwischen unendlich und dem vierfachen Wert des Widerstandes 1 gewählt werden. Für den Wert unendlich ergibt sich ein Temperaturkoeffizient von 0,3 %/K, während sich für den vierfachen Widerstandswert des Widerstandes 1 ein Temperaturkoeffizient von 1 %/K ergibt. Allgemein können Temperaturgänge realisiert werden, die einen Koeffizienten von größer 100 %/TW aufweisen, wobei T für die absolute Temperatur und W für ... steht.The resistance value R of the first resistor 1 and the emitter resistor 4 are chosen to be the same size. The value of resistor 2 can be chosen, for example, between infinite and four times the value of resistor 1. A temperature coefficient of 0.3% / K results for the value infinite, while a temperature coefficient of 1% / K results for the four-fold resistance value of resistor 1. In general, temperature responses can be realized that have a coefficient of greater than 100% / TW, where T stands for the absolute temperature and W for ...

Die Vorteile der erfindungsgemäßen Schaltungsanordnung liegen in einem minimalen Bauelementebedarf, einer leichten Einstellbarkeit des Temperaturkoeffizienten, der hohen Integrationsfähigkeit, einer minimalen Alterung sowie großen Kompensations-, Spannungs- und Temperaturbereichen.The advantages of the circuit arrangement according to the invention lie in a minimal component requirement, an easy adjustability of the temperature coefficient, the high integration capability, minimal aging and large compensation, voltage and temperature ranges.

Claims (2)

Schaltungsanordnung zum Erzeugen eines Widerstandsverhaltens mit einstellbarem positiven Temperaturkoeffizienten, mit einer Reihenschaltung aus einem ersten ohmschen Widerstandselement (1) und einem Diodenelement (3),
dadurch gekennzeichnet, daß
der Reihenschaltung ein zweites ohmsches Widerstandselement (2) parallel geschaltet ist, wobei der Wert des zweiten ohmschen Widerstandselements (2) entsprechend dem gewünschten Temperaturkoeffizienten einstellbar ist.
Circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient, with a series circuit comprising a first ohmic resistance element (1) and a diode element (3),
characterized in that
a second ohmic resistance element (2) is connected in parallel to the series circuit, the value of the second ohmic resistance element (2) being adjustable in accordance with the desired temperature coefficient.
Stromspiegelschaltung, bei der ein Eingangsstrom (I) eine Schaltungsanordnung nach Patentanspruch 1 speist, die an ihr abfallende Spannung (U) der Basis-Emitter-Strecke eines Transistors (5) zugeführt wird, der Ausgangsstrom (Q) am Kollektor des Transistors (5) abgreifbar ist und ein Emitterwiderstandselement (4) am Emitter-Anschluß des Transistor (5) den gleichen Wert (R) aufweist wie das erste ohmsche Widerstandselement (1) der Schaltungsanordnung.Current mirror circuit, in which an input current (I) feeds a circuit arrangement according to claim 1, the voltage drop across it (U) of the base-emitter path of a transistor (5), the output current (Q) at the collector of the transistor (5) Can be tapped and an emitter resistance element (4) at the emitter terminal of the transistor (5) has the same value (R) as the first ohmic resistance element (1) of the circuit arrangement.
EP97108343A 1996-05-30 1997-05-22 Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit Expired - Lifetime EP0810505B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19621749A DE19621749C2 (en) 1996-05-30 1996-05-30 Circuit arrangement for generating a resistance behavior with adjustable positive temperature coefficient and use of this circuit arrangement
DE19621749 1996-05-30

Publications (3)

Publication Number Publication Date
EP0810505A2 true EP0810505A2 (en) 1997-12-03
EP0810505A3 EP0810505A3 (en) 1998-04-22
EP0810505B1 EP0810505B1 (en) 1999-07-28

Family

ID=7795705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97108343A Expired - Lifetime EP0810505B1 (en) 1996-05-30 1997-05-22 Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit

Country Status (3)

Country Link
US (1) US6121763A (en)
EP (1) EP0810505B1 (en)
DE (2) DE19621749C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062357A1 (en) * 2004-12-14 2006-07-06 Atmel Germany Gmbh Supply circuit for generating a reference current with predeterminable temperature dependence
US20120326185A1 (en) * 2006-12-22 2012-12-27 Epistar Corporation Light emitting device
DE102009003632B4 (en) 2009-03-17 2013-05-16 Lear Corporation Gmbh Method and circuit arrangement for controlling a load
DE102017107412A1 (en) * 2017-04-06 2018-10-11 Lisa Dräxlmaier GmbH CIRCUIT ARRANGEMENT, LIGHTING ARRANGEMENT AND METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956661A (en) * 1973-11-20 1976-05-11 Tokyo Sanyo Electric Co., Ltd. D.C. power source with temperature compensation
US4313082A (en) * 1980-06-30 1982-01-26 Motorola, Inc. Positive temperature coefficient current source and applications
US4956567A (en) * 1989-02-13 1990-09-11 Texas Instruments Incorporated Temperature compensated bias circuit
EP0492117A2 (en) * 1990-12-24 1992-07-01 Motorola, Inc. Current source with adjustable temperature variation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7907161A (en) * 1978-09-27 1980-03-31 Analog Devices Inc INTEGRATED TEMPERATURE COMPENSATED VOLTAGE REFERENCE.
US4243948A (en) * 1979-05-08 1981-01-06 Rca Corporation Substantially temperature-independent trimming of current flows
DE3137504A1 (en) * 1981-09-21 1983-04-07 Siemens AG, 1000 Berlin und 8000 München CIRCUIT ARRANGEMENT FOR GENERATING A TEMPERATURE-INDEPENDENT REFERENCE VOLTAGE
JPS5922433A (en) * 1982-07-29 1984-02-04 Toshiba Corp Bias circuit for temperature compensation
US4736126A (en) * 1986-12-24 1988-04-05 Motorola Inc. Trimmable current source
US4882533A (en) * 1987-08-28 1989-11-21 Unitrode Corporation Linear integrated circuit voltage drop generator having a base-10-emitter voltage independent current source therein
JP3266177B2 (en) * 1996-09-04 2002-03-18 住友電気工業株式会社 Current mirror circuit, reference voltage generating circuit and light emitting element driving circuit using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956661A (en) * 1973-11-20 1976-05-11 Tokyo Sanyo Electric Co., Ltd. D.C. power source with temperature compensation
US4313082A (en) * 1980-06-30 1982-01-26 Motorola, Inc. Positive temperature coefficient current source and applications
US4956567A (en) * 1989-02-13 1990-09-11 Texas Instruments Incorporated Temperature compensated bias circuit
EP0492117A2 (en) * 1990-12-24 1992-07-01 Motorola, Inc. Current source with adjustable temperature variation

Also Published As

Publication number Publication date
DE19621749A1 (en) 1997-12-04
US6121763A (en) 2000-09-19
DE59700279D1 (en) 1999-09-02
EP0810505B1 (en) 1999-07-28
EP0810505A3 (en) 1998-04-22
DE19621749C2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
DE69122844T2 (en) Power source with adjustable temperature fluctuations
EP0281684B1 (en) Over-voltage-protected darlington switch
DE102006003123B4 (en) Reference voltage circuits
EP0160836A2 (en) Temperature sensor
DE102010006865B4 (en) Power source, power source arrangement and their use
DE2462423C3 (en) Operational amplifier
EP0810505B1 (en) Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit
DE3234400A1 (en) SEMICONDUCTOR AMPLIFIER CIRCUIT
DE1806467B2 (en) Circuit arrangement for generating output voltages stabilized against changes in operational voltage
DE2853581C2 (en) Emitter follower circuit
DE3626088C2 (en)
DE69216323T2 (en) Impedance multiplier
DE3136910A1 (en) SIGNAL INTERRUPTION
DE102004002721A1 (en) System for sequencing a first node voltage and a second node voltage
DE1944064A1 (en) Impedance device
DE2416533B2 (en) Electronic circuit arrangement for voltage stabilization
DE2404850C3 (en) Electronic fuse for a push-pull amplifier
DE3509595A1 (en) CIRCUIT ARRANGEMENT
EP0575587B1 (en) Undervoltage detection circuit
DE10054971B4 (en) Buffer circuit and holding circuit
DE2621083C2 (en) Differential amplifier
DE10024515B4 (en) Voltage regulator with a power transistor
DE4326282C2 (en) Power source circuit
EP0766163B1 (en) Circuit for generating a bias voltage
DE2849153A1 (en) Constant voltage power supply for unstabilised DC source - has voltage drop compensation for stabilised supply load variations using transistor with base coupled to supply terminal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

RHK1 Main classification (correction)

Ipc: G05F 3/26

17P Request for examination filed

Effective date: 19980519

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19981217

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59700279

Country of ref document: DE

Date of ref document: 19990902

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030512

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040427

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050522

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050522

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59700279

Country of ref document: DE

Owner name: INFINEON TECHNOLOGIES AG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20111107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160714

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59700279

Country of ref document: DE