EP0810505A2 - Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit - Google Patents
Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit Download PDFInfo
- Publication number
- EP0810505A2 EP0810505A2 EP97108343A EP97108343A EP0810505A2 EP 0810505 A2 EP0810505 A2 EP 0810505A2 EP 97108343 A EP97108343 A EP 97108343A EP 97108343 A EP97108343 A EP 97108343A EP 0810505 A2 EP0810505 A2 EP 0810505A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- circuit arrangement
- temperature coefficient
- resistance element
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006978 adaptation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/24—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S323/00—Electricity: power supply or regulation systems
- Y10S323/907—Temperature compensation of semiconductor
Definitions
- the invention relates to a circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient and the use of this circuit arrangement in a current mirror circuit.
- a temperature compensation circuit with a fixed compensation behavior is known, for example, from Tietze / Schenk, semiconductor circuit technology, Springer-Verlag, 7th edition, chapter 4.6.3.
- a diode is switched into the input current path of a simple current mirror, which compensates for the temperature effect on the transistor in the output current path.
- the compensation is determined by the choice of the diode.
- a large number of electrical and electronic components such as light-emitting diodes, laser diodes, sensors, display elements, controllers, etc., show an undesired temperature dependence with a negative coefficient during operation.
- correction circuits with positive temperature coefficients are often provided in such components. Since these temperature coefficients should assume different values depending on the component to be compensated, different compensation circuits or compensation elements must be used depending on the respective component. Adaptation to the temperature behavior of the respective component is therefore generally complex.
- the object of the invention is to provide compensation means with a variable positive temperature coefficient.
- the circuit arrangement according to the invention preferably has a series circuit comprising a first ohmic resistance element and a diode element, which is connected in parallel with a second ohmic resistance element, the value of the second ohmic resistance element being set in accordance with the desired temperature coefficient.
- a preferred current mirror circuit has in its input current path a circuit arrangement consisting of a first and a second ohmic resistance element and a diode element.
- the circuit arrangement is fed by an input current and the voltage drop across it is fed to the base-emitter path of a transistor.
- An emitter resistance element which has the same value as the first ohmic resistance element of the circuit arrangement, is inserted into the emitter line of the transistor.
- the output current of the current mirror circuit can be tapped at the collector of the transistor.
- the circuit arrangement according to the invention consists of an ohmic resistor 1 and a diode 3 connected to it in series in the forward direction.
- An ohmic resistor 2 is connected in parallel to the series connection of resistor 1 and diode 3, resistor 2 being adjustable.
- a current I fed into the circuit arrangement according to the invention generates a voltage U across the circuit arrangement.
- the voltage I which is dependent on the current I and the temperature, can be used, for example, for further actuation, for example of a driver circuit, which in turn supplies a component to be supplied, for example light-emitting diodes, etc.
- the circuit arrangement according to the invention is used in a current mirror circuit in which the circuit arrangement according to the invention with resistors 1 and 2 and diode 3 forms the input circuit of the current mirror circuit, while a transistor 5 in connection with an emitter resistor 4 represents the output circuit.
- the base of transistor 5 is connected to the node of the first and second resistor, while the emitter of transistor 5 is connected to the node of diode 3 and resistor 2 with the emitter resistor 4 interposed.
- the conductivity type of the transistor 5 is chosen according to the polarity of the diode 3.
- An output current Q can be tapped from its collector, which has a temperature coefficient that can be set by means of the resistor 2 compared to the current I.
- the node of diode 3, resistor 2 and emitter resistor 4 can be connected to a reference potential M in order to achieve defined potential relationships.
- the resistance value R of the first resistor 1 and the emitter resistor 4 are chosen to be the same size.
- the value of resistor 2 can be chosen, for example, between infinite and four times the value of resistor 1.
- a temperature coefficient of 0.3% / K results for the value infinite, while a temperature coefficient of 1% / K results for the four-fold resistance value of resistor 1.
- temperature responses can be realized that have a coefficient of greater than 100% / TW, where T stands for the absolute temperature and W for ...
- the advantages of the circuit arrangement according to the invention lie in a minimal component requirement, an easy adjustability of the temperature coefficient, the high integration capability, minimal aging and large compensation, voltage and temperature ranges.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Semiconductor Integrated Circuits (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Led Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine Schaltungsanordnung zum Erzeugen eines Widerstandsverhaltens mit einstellbarem positiven Temperaturkoeffizienten sowie die Verwendung dieser Schaltungsanordnung in einer Stromspiegelschaltung.The invention relates to a circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient and the use of this circuit arrangement in a current mirror circuit.
Eine Temperaturkompensationsschaltung mit festem Kompensationsverhalten ist beispielsweise aus Tietze/Schenk, Halbleiter-Schaltungstechnik, Springer-Verlag, 7. Auflage, Kapitel 4.6.3 bekannt. Dabei wird in den Eingangsstrompfad eines einfachen Stromspiegels eine Diode geschaltet, die den Temperatureffekt beim Transistor im Ausgangsstrompfad kompensiert. Die Kompensation ist jedoch durch die Wahl der Diode festgelegt.A temperature compensation circuit with a fixed compensation behavior is known, for example, from Tietze / Schenk, semiconductor circuit technology, Springer-Verlag, 7th edition, chapter 4.6.3. In this case, a diode is switched into the input current path of a simple current mirror, which compensates for the temperature effect on the transistor in the output current path. However, the compensation is determined by the choice of the diode.
Eine Vielzahl von elektrischen und elektronischen Bauelementen wie beispielsweise Leuchtdioden, Laserdioden, Sensoren, Anzeigeelemente, Regler etc. zeigt im Betrieb eine unterwünschte Temperaturabhängigkeit mit negativem Koeffizienten. Zur Erzielung eines gleichbleibenden Verhaltens über einen großen Temperaturbereich werden bei derartigen Bauelementen häufig Korrekturschaltungen mit positiven Temperaturkoeffizienten vorgesehen. Da diese Temperaturkoeffizienten je nach zu kompensierendem Bauelement unterschiedliche Werte annehmen sollen, müssen abhängig vom jeweiligen Bauelement unterschiedliche Kompensationsschaltungen oder Kompensationselemente verwendet werden. Eine Anpassung an das Temperaturverhalten des jeweiligen Bauelementes gestaltet sich daher in der Regel aufwendig.A large number of electrical and electronic components, such as light-emitting diodes, laser diodes, sensors, display elements, controllers, etc., show an undesired temperature dependence with a negative coefficient during operation. In order to achieve constant behavior over a large temperature range, correction circuits with positive temperature coefficients are often provided in such components. Since these temperature coefficients should assume different values depending on the component to be compensated, different compensation circuits or compensation elements must be used depending on the respective component. Adaptation to the temperature behavior of the respective component is therefore generally complex.
Aufgabe der Erfindung ist es, Kompensationsmittel mit veränderbarem positiven Temperaturkoeffizienten anzugeben.The object of the invention is to provide compensation means with a variable positive temperature coefficient.
Die Aufgabe wird durch eine Schaltungsanordnung mit den Merkmalen von Patentanspruch 1 gelöst. Eine Stromspiegelschaltung, bei der eine erfindungsgemäße Schaltung eingesetzt wird, ist in Patentanspruch 2 angegeben.The object is achieved by a circuit arrangement with the features of claim 1. A current mirror circuit in which a circuit according to the invention is used is specified in
Vorzugsweise weist die erfindungsgemäße Schaltungsanordnung eine Reihenschaltung aus einem ersten ohmschen Widerstandselement und einem Diodenelement auf, der ein zweites ohmsches Widerstandselement parallel geschaltet ist, wobei der Wert des zweiten ohmschen Widerstandselements entsprechend dem gewünschten Temperaturkoeffizienten eingestellt wird.The circuit arrangement according to the invention preferably has a series circuit comprising a first ohmic resistance element and a diode element, which is connected in parallel with a second ohmic resistance element, the value of the second ohmic resistance element being set in accordance with the desired temperature coefficient.
Eine bevorzugte Stromspiegelschaltung weist in ihrem Eingangsstrompfad eine aus einem erstem und einem zweitem ohmschen Widerstandselement sowie aus einem Diodenelement bestehende Schaltungsanordnung auf. Dabei wird die Schaltungsanordnung durch einen Eingangsstrom gespeist und die an ihr abfallende Spannung der Basis-Emitter-Strecke eines Transistors zugeführt. In die Emitterleitung des Transistors ist ein Emitterwiderstandselement, das den gleichen Wert aufweist wie das erste ohmsche Widerstandselement der Schaltungsanordnung, eingefügt. Der Ausgangsstrom der Stromspiegelschaltung ist am Kollektor des Transistors abgreifbar.A preferred current mirror circuit has in its input current path a circuit arrangement consisting of a first and a second ohmic resistance element and a diode element. The circuit arrangement is fed by an input current and the voltage drop across it is fed to the base-emitter path of a transistor. An emitter resistance element, which has the same value as the first ohmic resistance element of the circuit arrangement, is inserted into the emitter line of the transistor. The output current of the current mirror circuit can be tapped at the collector of the transistor.
Die Erfindung wird nachfolgend anhand des in der einzigen Figur der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.The invention is explained in more detail below with reference to the embodiment shown in the single figure of the drawing.
Beim Ausführungsbeispiel besteht die erfindungsgemäße Schaltungsanordnung aus einem ohmschen Widerstand 1 und einer dazu in Reihe geschalteten Diode 3 in Durchlaßrichtung. Der Reihenschaltung von Widerstand 1 und Diode 3 ist ein ohmscher Widerstand 2 parallel geschaltet, wobei der Widerstand 2 abgleichbar ist. Ein in die erfindungsgemäße Schaltungsanordnung eingespeister Strom I erzeugt eine Spannung U über der Schaltungsanordnung. Insgesamt ergibt sich demnach ein Widerstandsverhalten der gesamten Schaltungsanordnung, wobei der Widerstandswert mit positivem
Koeffizienten von der Temperatur abhängig ist. Die von dem Strom I und der Temperatur abhängige Spannung I kann beispielsweise zur weiteren Ansteuerung beispielsweise einer Treiberschaltung dienen, die ihrerseits ein zu versorgendes Bauelement wie beispielsweise Leuchtdioden etc. versorgt.In the exemplary embodiment, the circuit arrangement according to the invention consists of an ohmic resistor 1 and a
Coefficient depends on the temperature. The voltage I, which is dependent on the current I and the temperature, can be used, for example, for further actuation, for example of a driver circuit, which in turn supplies a component to be supplied, for example light-emitting diodes, etc.
Beim vorliegenden Ausführungsbeispiel wird die erfindungsgemäße Schaltungsanordnung bei einer Stromspiegelschaltung verwendet, bei der die erfindungsgemäße Schaltungsanordnung mit den Widerständen 1 und 2 sowie der Diode 3 den Eingangskreis der Stromspiegelschaltung bildet, während ein Transistor 5 in Verbindung mit einem Emitterwiderstand 4 den Ausgangskreis darstellt. Die Basis des Transistors 5 ist dabei mit dem Knotenpunkt von erstem und zweiten Widerstand verbunden, während der Emitter des Transistors 5 unter Zwischenschaltung des Emitterwiderstandes 4 mit dem Knotenpunkt von Diode 3 und Widerstand 2 verbunden ist. Der Leitungstyp des Transistors 5 ist entsprechend der Polung der Diode 3 gewählt. An seinem Kollektor ist ein Ausgangsstrom Q abgreifbar, der gegenüber dem Strom I einen mittels des Widerstandes 2 einstellbaren Temperaturkoeffizienten aufweist. Schließlich kann der Knotenpunkt aus Diode 3, Widerstand 2 und Emitterwiderstand 4 an ein Bezugspotential M angeschlossen sein, um definierte Potentialverhältnisse zu erzielen.In the present exemplary embodiment, the circuit arrangement according to the invention is used in a current mirror circuit in which the circuit arrangement according to the invention with
Der Widerstandswert R von erstem Widerstand 1 und Emitterwiderstand 4 werden dabei gleich groß gewählt. Der Wert des Widerstandes 2 kann beispielsweise zwischen unendlich und dem vierfachen Wert des Widerstandes 1 gewählt werden. Für den Wert unendlich ergibt sich ein Temperaturkoeffizient von 0,3 %/K, während sich für den vierfachen Widerstandswert des Widerstandes 1 ein Temperaturkoeffizient von 1 %/K ergibt. Allgemein können Temperaturgänge realisiert werden, die einen Koeffizienten von größer 100 %/TW aufweisen, wobei T für die absolute Temperatur und W für ... steht.The resistance value R of the first resistor 1 and the
Die Vorteile der erfindungsgemäßen Schaltungsanordnung liegen in einem minimalen Bauelementebedarf, einer leichten Einstellbarkeit des Temperaturkoeffizienten, der hohen Integrationsfähigkeit, einer minimalen Alterung sowie großen Kompensations-, Spannungs- und Temperaturbereichen.The advantages of the circuit arrangement according to the invention lie in a minimal component requirement, an easy adjustability of the temperature coefficient, the high integration capability, minimal aging and large compensation, voltage and temperature ranges.
Claims (2)
dadurch gekennzeichnet, daß
der Reihenschaltung ein zweites ohmsches Widerstandselement (2) parallel geschaltet ist, wobei der Wert des zweiten ohmschen Widerstandselements (2) entsprechend dem gewünschten Temperaturkoeffizienten einstellbar ist.Circuit arrangement for generating a resistance behavior with an adjustable positive temperature coefficient, with a series circuit comprising a first ohmic resistance element (1) and a diode element (3),
characterized in that
a second ohmic resistance element (2) is connected in parallel to the series circuit, the value of the second ohmic resistance element (2) being adjustable in accordance with the desired temperature coefficient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19621749A DE19621749C2 (en) | 1996-05-30 | 1996-05-30 | Circuit arrangement for generating a resistance behavior with adjustable positive temperature coefficient and use of this circuit arrangement |
DE19621749 | 1996-05-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0810505A2 true EP0810505A2 (en) | 1997-12-03 |
EP0810505A3 EP0810505A3 (en) | 1998-04-22 |
EP0810505B1 EP0810505B1 (en) | 1999-07-28 |
Family
ID=7795705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97108343A Expired - Lifetime EP0810505B1 (en) | 1996-05-30 | 1997-05-22 | Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit |
Country Status (3)
Country | Link |
---|---|
US (1) | US6121763A (en) |
EP (1) | EP0810505B1 (en) |
DE (2) | DE19621749C2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004062357A1 (en) * | 2004-12-14 | 2006-07-06 | Atmel Germany Gmbh | Supply circuit for generating a reference current with predeterminable temperature dependence |
US20120326185A1 (en) * | 2006-12-22 | 2012-12-27 | Epistar Corporation | Light emitting device |
DE102009003632B4 (en) | 2009-03-17 | 2013-05-16 | Lear Corporation Gmbh | Method and circuit arrangement for controlling a load |
DE102017107412A1 (en) * | 2017-04-06 | 2018-10-11 | Lisa Dräxlmaier GmbH | CIRCUIT ARRANGEMENT, LIGHTING ARRANGEMENT AND METHOD |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3956661A (en) * | 1973-11-20 | 1976-05-11 | Tokyo Sanyo Electric Co., Ltd. | D.C. power source with temperature compensation |
US4313082A (en) * | 1980-06-30 | 1982-01-26 | Motorola, Inc. | Positive temperature coefficient current source and applications |
US4956567A (en) * | 1989-02-13 | 1990-09-11 | Texas Instruments Incorporated | Temperature compensated bias circuit |
EP0492117A2 (en) * | 1990-12-24 | 1992-07-01 | Motorola, Inc. | Current source with adjustable temperature variation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7907161A (en) * | 1978-09-27 | 1980-03-31 | Analog Devices Inc | INTEGRATED TEMPERATURE COMPENSATED VOLTAGE REFERENCE. |
US4243948A (en) * | 1979-05-08 | 1981-01-06 | Rca Corporation | Substantially temperature-independent trimming of current flows |
DE3137504A1 (en) * | 1981-09-21 | 1983-04-07 | Siemens AG, 1000 Berlin und 8000 München | CIRCUIT ARRANGEMENT FOR GENERATING A TEMPERATURE-INDEPENDENT REFERENCE VOLTAGE |
JPS5922433A (en) * | 1982-07-29 | 1984-02-04 | Toshiba Corp | Bias circuit for temperature compensation |
US4736126A (en) * | 1986-12-24 | 1988-04-05 | Motorola Inc. | Trimmable current source |
US4882533A (en) * | 1987-08-28 | 1989-11-21 | Unitrode Corporation | Linear integrated circuit voltage drop generator having a base-10-emitter voltage independent current source therein |
JP3266177B2 (en) * | 1996-09-04 | 2002-03-18 | 住友電気工業株式会社 | Current mirror circuit, reference voltage generating circuit and light emitting element driving circuit using the same |
-
1996
- 1996-05-30 DE DE19621749A patent/DE19621749C2/en not_active Expired - Fee Related
-
1997
- 1997-05-22 DE DE59700279T patent/DE59700279D1/en not_active Expired - Lifetime
- 1997-05-22 EP EP97108343A patent/EP0810505B1/en not_active Expired - Lifetime
- 1997-05-30 US US08/866,415 patent/US6121763A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3956661A (en) * | 1973-11-20 | 1976-05-11 | Tokyo Sanyo Electric Co., Ltd. | D.C. power source with temperature compensation |
US4313082A (en) * | 1980-06-30 | 1982-01-26 | Motorola, Inc. | Positive temperature coefficient current source and applications |
US4956567A (en) * | 1989-02-13 | 1990-09-11 | Texas Instruments Incorporated | Temperature compensated bias circuit |
EP0492117A2 (en) * | 1990-12-24 | 1992-07-01 | Motorola, Inc. | Current source with adjustable temperature variation |
Also Published As
Publication number | Publication date |
---|---|
DE19621749A1 (en) | 1997-12-04 |
US6121763A (en) | 2000-09-19 |
DE59700279D1 (en) | 1999-09-02 |
EP0810505B1 (en) | 1999-07-28 |
EP0810505A3 (en) | 1998-04-22 |
DE19621749C2 (en) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69122844T2 (en) | Power source with adjustable temperature fluctuations | |
EP0281684B1 (en) | Over-voltage-protected darlington switch | |
DE102006003123B4 (en) | Reference voltage circuits | |
EP0160836A2 (en) | Temperature sensor | |
DE102010006865B4 (en) | Power source, power source arrangement and their use | |
DE2462423C3 (en) | Operational amplifier | |
EP0810505B1 (en) | Circuit arrangement for generating a resistance with adjustable positive temperature coefficient and the use of this circuit | |
DE3234400A1 (en) | SEMICONDUCTOR AMPLIFIER CIRCUIT | |
DE1806467B2 (en) | Circuit arrangement for generating output voltages stabilized against changes in operational voltage | |
DE2853581C2 (en) | Emitter follower circuit | |
DE3626088C2 (en) | ||
DE69216323T2 (en) | Impedance multiplier | |
DE3136910A1 (en) | SIGNAL INTERRUPTION | |
DE102004002721A1 (en) | System for sequencing a first node voltage and a second node voltage | |
DE1944064A1 (en) | Impedance device | |
DE2416533B2 (en) | Electronic circuit arrangement for voltage stabilization | |
DE2404850C3 (en) | Electronic fuse for a push-pull amplifier | |
DE3509595A1 (en) | CIRCUIT ARRANGEMENT | |
EP0575587B1 (en) | Undervoltage detection circuit | |
DE10054971B4 (en) | Buffer circuit and holding circuit | |
DE2621083C2 (en) | Differential amplifier | |
DE10024515B4 (en) | Voltage regulator with a power transistor | |
DE4326282C2 (en) | Power source circuit | |
EP0766163B1 (en) | Circuit for generating a bias voltage | |
DE2849153A1 (en) | Constant voltage power supply for unstabilised DC source - has voltage drop compensation for stabilised supply load variations using transistor with base coupled to supply terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
RHK1 | Main classification (correction) |
Ipc: G05F 3/26 |
|
17P | Request for examination filed |
Effective date: 19980519 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19981217 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59700279 Country of ref document: DE Date of ref document: 19990902 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030512 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040427 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050522 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050522 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59700279 Country of ref document: DE Owner name: INFINEON TECHNOLOGIES AG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE Effective date: 20111107 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160714 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59700279 Country of ref document: DE |