EP0792948A1 - Thermal barrier coating with improved underlayer and articles having this thermal barrier coating - Google Patents

Thermal barrier coating with improved underlayer and articles having this thermal barrier coating Download PDF

Info

Publication number
EP0792948A1
EP0792948A1 EP97400436A EP97400436A EP0792948A1 EP 0792948 A1 EP0792948 A1 EP 0792948A1 EP 97400436 A EP97400436 A EP 97400436A EP 97400436 A EP97400436 A EP 97400436A EP 0792948 A1 EP0792948 A1 EP 0792948A1
Authority
EP
European Patent Office
Prior art keywords
thermal barrier
barrier coating
ceramic
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400436A
Other languages
German (de)
French (fr)
Other versions
EP0792948B1 (en
Inventor
Serge Alexandre Alperine
Pierre Josso
Jean-Paul Fournes
Jacques Louis Leger
André Hubert Louis Malie
Denis Georges Manesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Safran Aircraft Engines SAS
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Sochata
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, Sochata, SNECMA SAS filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP0792948A1 publication Critical patent/EP0792948A1/en
Application granted granted Critical
Publication of EP0792948B1 publication Critical patent/EP0792948B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides

Definitions

  • the invention relates to a thermal barrier coating and its sub-layer for metal parts made of superalloy. It applies in particular to hot parts of turbomachinery.
  • Turbine engine manufacturers, both terrestrial and aeronautical, have been confronted for more than thirty years with the imperatives of increasing the efficiency of turbomachines, reducing their specific fuel consumption as well as polluting emissions of CO x , SO types x , NO x and unburnt.
  • One of the ways to meet these requirements consists in approaching the fuel combustion stoichiometry and therefore in increasing the temperature of the gases leaving the combustion chamber and attacking the first stages of the turbine. This trend in the evolution of turbomachinery has been a constant over the past thirty years.
  • thermal barrier An alternative to this change of family of materials consists in depositing on the hot parts in superalloys a thermal insulating coating called "thermal barrier".
  • This ceramic insulating coating makes it possible, on a cooled part, to create a thermal gradient in permanent operating conditions through the ceramic, the total amplitude of which can exceed 200 ° C.
  • the operating temperature of the underlying metal is reduced accordingly with a considerable impact on the volume of cooling air required, the service life of the part and the specific consumption of the engine.
  • a ceramic coating cannot, as a general rule, not be deposited directly on the superalloy, and requires the interposition of a metallic undercoat endowed with multiple functionalities.
  • This underlay plays a mechanical adaptation role between the superalloy substrate and the ceramic coating.
  • the thermal barrier coatings are composed of a mixture of oxides, most often based on zirconia. This oxide constitutes in fact a most interesting compromise between a material having a low thermal conductivity and a relatively high coefficient of expansion, close to that of the alloys based on nickel and / or cobalt on which it is desired to deposit it.
  • zirconia partially stabilized with yttrium oxide ZrO 2 + 6 at 8% by mass of Y 2 O 3 .
  • zirconia it is also possible to use another addition oxide chosen from the oxides of cerium, calcium, magnesium, lanthanum, ytterbium and scandium in particular.
  • the ceramic coating can be deposited on the part to be coated using various methods, most of which belong to two distinct families: sprayed coatings and coatings deposited physically by the vapor phase.
  • the zirconia-based oxide deposition is carried out by techniques related to plasma spraying.
  • the coating consists of a stack of melted ceramic droplets then impact hardened, flattened and stacked so as to form an imperfectly densified deposit with a thickness of between 50 ⁇ m and 1 mm.
  • One of the characteristics of this type of coating is an inherently high roughness (Ra typically between 5 and 35 ⁇ m).
  • the microstructure of this type of coating makes it not very capable of withstanding the tearing forces present during thermal cycling in service, because of the differential of expansion coefficient between the superalloy and the oxide. Its mode of degradation in service is therefore characterized by the slow propagation of a crack in the ceramic parallel to the ceramic / metal interface. It is a cohesive rupture.
  • the mechanically weak point of the coating comprising the ceramic and the undercoat is then not the ceramic / undercoat interface itself, but rather the ceramic itself. Consequently, the sub-layers which are well suited to this type of ceramic deposit are preferably very plastic at high temperature, this in order to compensate by their own deformation those imposed on the ceramic by its differential expansion with the superalloy substrate.
  • the problem is significantly different.
  • Such a deposition can be carried out using devices such as evaporation under electronic bombardment.
  • the coating consists of an assembly of very fine balusters (typically between 0.2 and 10 ⁇ m in diameter) oriented substantially perpendicular to the surface to be coated.
  • the thickness of such a coating can be between 20 and 600 ⁇ m.
  • Such an assembly has the advantageous property of reproducing without altering the surface condition of the covered substrate.
  • final roughnesses far less than a micrometer can be obtained, which is very advantageous for the aerodynamic properties of the blade.
  • the object of the invention is to produce a thermal barrier coating comprising a ceramic coating with columnar structure and an undercoat very adherent to the ceramic and to the superalloy to be coated, the undercoat being designed so as to ensure increased adhesion. of the interfacial alumina layer in all circumstances, to resist the phenomena of high temperature interdiffusion with the superalloy and to exhibit excellent resistance to stresses of the hot corrosion type so as to give the coating an increased service life and a better reliability over time.
  • the invention consists in producing an aluminide thermal barrier sublayer and in introducing into the sublayer at least one metal of the platinum mine with which is associated at least one metal which promotes the formation of the allotropic variety. ⁇ of alumina. The platinum mine metal maintains a good quality oxide layer for a longer time than a simple aluminide.
  • a coating of nickel aluminide and / or of cobalt modified with a platinum mine metal such as in particular palladium is a noble metal with a very strong chemical affinity with the nickel aluminide ⁇ -NiAl. It is possible to incorporate into a nickel aluminide coating of the ⁇ -NiAl type up to 35% or 40% in moles of palladium without changing the crystallographic structure. Palladium in solid solution in nickel aluminide plays several roles.
  • Palladium like the other metals of the platinum mine significantly increases the thermodynamic activity of aluminum and therefore allows the alloy to remain aluminum-forming even when a significant part of the aluminum reserve of the coating is used up.
  • the practical consequence is that under identical conditions of use, a sub-layer of aluminide modified by a metal of platinum mine will maintain a layer of good quality oxide for a longer time than would an under-layer in simple aluminide.
  • Palladium like the other metals in the platinum mine, significantly increases the diffusion coefficient of aluminum in nickel aluminide; thus aluminum can diffuse more easily towards the external surface of the underlayer to compensate for the progressive depletion of the latter during the formation of an interfacial layer alumina. This phenomenon ensures better availability of the aluminum reserve of the sublayer to form an interfacial layer of perennial alumina, compared to the case of a palladium-free aluminide sublayer.
  • Palladium by a steric effect in the ⁇ -NiAl type aluminide, facilitates the mechanisms of rise of dislocations, allowing the sub-layer to accommodate the growth constraints exerted on the layer of interfacial alumina, disagrees between the crystal lattice parameters of the metal making up the superalloy and alumina.
  • the presence of palladium makes it possible to obtain a layer of interfacial alumina that is less constrained and therefore both more compact and more adherent to the metal of the sublayer than in the case of the oxidation of an aluminide in l absence of palladium.
  • palladium leads to sublayers having the same type of ductility as the simple aluminide, unlike the aluminides modified by platinum. This property can be observed by measuring the Vickers hardnesses of the different undercoats in their external part, but also on metallographic section by the absence of cracks in the external part of the undercoat, as will be described in the examples illustrating the detailed description of the invention.
  • the use of palladium in a modified aluminide undercoat also has definite economic appeal compared to the use of platinum.
  • platinum and palladium are not the only elements to promote the formation of good quality alumina layers when are alloyed with the intermetallic NiAl with a ⁇ structure.
  • ruthenium also has this interesting set of properties.
  • the sublayer may comprise several metals of the platinum mine, such as for example, an alloy of palladium and / or platinum and / or ruthenium.
  • Another important aspect of the invention resides in the use of at least one metal which promotes the formation of the allotropic variety ⁇ of alumina such as, for example, chromium, conjugated with the metal of the platinum mine, in the thermal barrier underlay.
  • Chromium plays a crucial role in the mechanisms of formation of the interfacial alumina layer, in particular during the first hours of exposure to high temperature.
  • the addition of chromium in small quantities (between 0.1 and 10% by mass for example) in the thermal barrier undercoat has the effect of promoting the almost immediate formation of the allotropic variety ⁇ of alumina by growth epitaxial on chromium oxide nodules Cr 2 O 3 .
  • the oxidation of the sublayer begins with the formation of alumina of the allotropic variety ⁇ .
  • This variety ⁇ of alumina is highly constrained and not very adherent to the underlying metal.
  • the thermodynamically stable variety ⁇ is also formed, but over an oxide sublayer which is certainly discontinuous but has very little adhesion, which limits the overall adhesion of the oxide layer.
  • this transformation Al 2 O 3 ⁇ -> Al 2 O 3 ⁇ is accompanied by a strong change in volume of the crystallographic mesh which creates high stresses in the oxide layer, very unfavorable for its adhesion on the underlying metal.
  • the adhesion of the oxide layer is reinforced by the fact that the ⁇ variety of alumina is formed immediately.
  • Other metals promoting the formation of the ⁇ allotropic variety alumina can also be used such as for example iron and / or manganese.
  • the examples will be limited to chromium, which also has the advantage of improving the resistance of the coating to hot corrosion.
  • said chromium In order for the chromium introduced into an aluminide underlay modified by a precious metal of the platinum mine to effectively promote the formation of the allotropic variety ⁇ of alumina, said chromium must be present in sufficient proportion in the upper part of the sublayer where the interfacial alumina layer is formed.
  • the introduction of chromium into the upper part of the undercoat can be carried out by different methods.
  • the addition of chromium to the sublayer can be carried out by a suitable heat treatment allowing the diffusion of chromium from the substrate to the surface of the sublayer.
  • the substrate is previously coated with a modifier layer containing a precious metal from the platinum mine, for example a nickel-palladium deposit, this deposit being followed by a diffusion annealing operation, the temperature and duration of which are chosen so that the diffusion of the platinum mine metal into the substrate is shallow and allows the diffusion of chromium from the substrate to the surface of the modifier layer.
  • the energy activation barrier for the diffusion of a precious metal such as platinum or palladium being high compared to that of chromium, diffusion annealing is carried out at a temperature below a limit temperature above from which the precious metals of the platinum mine diffuse faster than the chromium.
  • the temperature of the diffusion annealing is chosen to be less than 1100 ° C. and preferably less than 900 ° C.
  • the duration of the diffusion annealing is adapted as a function of the annealing temperature chosen and of the desired chromium concentration in the upper part of the undercoat. Typically, the duration of the annealing is greater than one hour and preferably greater than or equal to two hours. Diffusion annealing is then followed by an aluminization operation.
  • the addition of chromium to the sublayer can be carried out by a chromization operation.
  • the chromizing operation must be carried out just before or during the aluminizing operation so as, on the one hand, to find the chromium in the outermost part of the final coating and, on the other hand to avoid the formation of a diffusion barrier for all of the elements of the undercoat, in the event that the chromium is deposited in a continuous layer.
  • the sub-layers are produced on a nickel-based superalloy substrate such as IN 100, AM 3, AM 1, DS 200, PD 21, C1023 and N 5 including the composition is recalled in Table 1 shown in Figure 1.
  • a coating of nickel aluminide of the standard low activity type was then produced on this sample by case hardening activated in the case. At the end of this operation, the sample had a healthy surface and a satin pink color.
  • a metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 ⁇ m thick, single-phase and that it has a structure divided into three zones of uneven thickness.
  • the first zone located at the top of the coating is approximately 30 ⁇ m thick and has a negative palladium concentration gradient (The palladium concentration decreases from the top of the coating towards the substrate).
  • the composition of this zone can be written ⁇ - (Ni x , Pd 1-x ) Al, with 0.4 ⁇ x ⁇ 0.9.
  • the second zone is composed of nickel aluminide of the ⁇ -NiAl type containing a little palladium in solid solution. These two zones also contain chromium in a mass proportion of 0.5% to 5%. The presence of chromium in the sublayer, and in particular in an upper part of the sublayer, ensures the immediate formation of the allotropic variety ⁇ of alumina which is very adherent to the underlying metal.
  • the third zone approximately 10 ⁇ m thick, is characteristic coatings obtained by diffusion. It should be noted that microhardness measurements carried out on this coating have shown that they are equivalent to those obtained on a simple aluminide coating. This shows that the sub-layer according to the invention is not very fragile and unlikely to crack in service.
  • Identical coatings obtained on the same type of substrate were subjected to oxidation tests at 1100 ° C and corrosion tests at 850 ° C in the presence of molten sodium sulfate. These two types of tests are cycled; a cycle consists in bringing the test sample from approximately 200 ° C (or from room temperature if it is the first cycle) to the test temperature (1100 ° C for oxidation or 850 ° C for corrosion) in 5 minutes approximately then maintain it at this temperature for one hour and cool it to approximately 200 ° C in less than 5 minutes by forced air convection.
  • the sample is additionally contaminated by a deposit of approximately 50 ⁇ g / cm 2 of sodium sulfate (Na 2 SO 4 ) every 50 cycles.
  • Na 2 SO 4 sodium sulfate
  • the end of the tests extended up to 1000 cycles of one hour, it was found to be resistant to oxidation and to hot corrosion identical to that found with a coating of nickel aluminide modified by a pre-deposit of platinum such as RT22 marketed by the company Chromalloy UK.
  • An identical coating obtained on the same type of substrate was, this time, subjected to isothermal oxidation at 1100 ° C. for 100 hours.
  • This test aims, for example, to prepare a substrate to receive the deposit of a thermal barrier, said substrate being pre-coated with a sublayer resistant to oxidation and to hot corrosion.
  • a mass gain of 0.3 mg / cm 2 was observed, corresponding to an alumina thickness of approximately 1.7 ⁇ m.
  • a micrographic examination of the alumina layer obtained shows that it is dense, continuous and adherent.
  • the thickness of alumina obtained on a simple nickel aluminide can reach 5 ⁇ m after 100 hours of isothermal oxidation under conditions identical.
  • Example 2 The procedure was as in Example 1, replacing the low activity aluminization in the body with a low activity aluminization in the vapor phase (known as "APVS").
  • the nickel-based substrate was covered with a palladium-nickel pre-deposit of approximately 10 ⁇ m, then was annealed under an air pressure of less than 10 -5 Torr for 2 hours at 850 ° C. and introduced into a semi-sealed box containing an aluminum donor cement consisting of coarse shot of a chromium-aluminum alloy activated by 1% by weight of ammonium bifluoride (NH 4 F, HF). The whole is then brought to 1050 ° C. for 15 hours under argon.
  • NH 4 F, HF ammonium bifluoride
  • the sample had a healthy surface and a bright pink color.
  • a metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 ⁇ m thick, single-phase and that it has a structure divided into three zones of uneven thickness. The thicknesses and the compositions of each of the three zones are identical to those of the zones obtained in Example 1.
  • Example 2 The procedure was as in Example 1, replacing the low activity aluminization in the box with a high activity aluminization deposited by painting.
  • the nickel base substrate was covered with a palladium-nickel pre-deposit of approximately 10 ⁇ m, then was annealed under an air pressure below 10 -5 Torr for 2 hours at 850 ° C and coated with a paint.
  • Sermaloy J type aluminizing agent sold by Sermatech Inc.
  • the layer of paint deposited had a thickness of approximately 100 ⁇ m.
  • the whole After a drying operation of half an hour at 80 ° C in air and a pre-diffusion operation of half an hour in air at 350 ° C, as specified in the given application standards by the manufacturer of the product, the whole is then brought to 1020 ° C for 4 hours under argon.
  • the sample had a healthy and black surface.
  • the sample After a micro-sandblasting operation intended to remove the slag inherent in this type of aluminization, the sample had a dark pink color characteristic of a coating modified by a palladium pre-deposit.
  • a metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 ⁇ m thick, single-phase and that it has a structure divided into three zones of uneven thickness.
  • the first zone located at the top of the coating is approximately 30 ⁇ m thick and has a negative palladium concentration gradient (from the top of the coating to the substrate).
  • the composition of this zone can be written ⁇ - (Ni x , Pd 1-x ) Al, with 0.4 ⁇ x ⁇ 0.9.
  • the second zone about 20 ⁇ m thick, is composed of nickel aluminide of the ⁇ -NiAl type containing a little palladium in solid solution. These two zones also contain chromium in a mass proportion of 0.5% to 5%.
  • the third zone approximately 10 ⁇ m thick, is characteristic of the coatings obtained by diffusion.
  • This coating also contains molecules such as silicon (favorable for good adhesion of the oxide layer formed in service), silica and traces of phosphorus. It should be noted that microhardness measurements carried out on this coating have shown that they are always equivalent to that of a simple aluminide coating.
  • Example 2 The procedure was as in Example 2, modifying the pre-deposit of palladium nickel.
  • the nickel-based substrate was previously coated with a palladium-nickel pre-deposit as in Example 2, but with a thickness of approximately 15 ⁇ m.
  • 2 ⁇ m of electrolytic chromium was deposited from a conventional hard chromium bath. This chromium deposit can constitute a source of promoter metal for the ⁇ allotropic variety of alumina.
  • the whole was then annealed under an air pressure of less than 10 -5 Torr for 2 hours at 850 ° C. and aluminized as in Example 1. At the end of this operation the sample presented a healthy surface and satin pink color.
  • a metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 ⁇ m thick, two-phase and that it has a structure divided into three zones of uneven thickness.
  • the first zone located at the top of the coating is approximately 30 ⁇ m thick and has a negative palladium concentration gradient (from the top of the coating to the substrate).
  • the composition of this zone can be written ⁇ - (Ni x , Pd 1-x ) Al, with 0.4 ⁇ x ⁇ 0.9.
  • fine precipitates of ⁇ -Cr characteristics of an aluminization modified by chromium.
  • the second zone is composed of nickel aluminide of the ⁇ -NiAl type containing a little palladium in solid solution.
  • the third zone approximately 10 ⁇ m thick, is characteristic of the coatings obtained by diffusion. However, it should be noted that this zone seems less disturbed than in the previous examples. This is due to the fact that the chromium of the substrate has less diffused towards the coating during construction because this element was present in the modifying pre-deposit.
  • microhardness measurements carried out on this coating showed that they were equivalent to those of a simple aluminide coating modified by chromium (460 Hv 50 ). Tests of high temperature oxidation, of hot corrosion and of isothermal oxidation at 1100 ° C. gave results comparable to those noted in Example 1, or even better in the case of hot corrosion.
  • Examples 5 to 8 described below are illustrations of ceramic coating of the thermal barrier type comprising a sub-layer described in examples 1 to 4 above.
  • Palladium-modified aluminide coatings were deposited according to the method described in Example 1 on N5 alloy discs with a diameter of 25mm and a thickness of 6mm.
  • the N5 alloy the composition of which is given in Table 1 shown in FIG. 1, is a monocrystalline superalloy used in the manufacture of blades and turbine distributors.
  • a thermal barrier coating was then deposited in yttria zirconia (ZrO 2 - 6 to 8% by mass of Y 2 O 3 ) of thickness substantially equal to 125 ⁇ m. This coating was deposited by evaporation under electronic bombardment, at a temperature close to 850 ° C., by a technique described for example in American patent US 5,087,477.
  • this ceramic coating has also been deposited on discs, of the same alloy, having been coated beforehand, either with an MCrAlY alloy sublayer deposited by plasma spraying under reduced pressure, or with an MCrAlY alloy sublayer produced by evaporation under electronic bombardment (EBPVD), these two sublayers corresponding to the state of the art cited in patents US 4,321,311 and US 4,401,697. Samples of the same nature were finally produced with sublayers in simple aluminide NiAl and in aluminide modified by platinum, as described for example in American patent US 5,238,752.
  • Example 5 Samples identical to those described in Example 5 were subjected to an oven cycling experiment identical to that described in Example 5 except for the test temperature of 1100 ° C. and the duration of the cycles using 24 hour temperature steps.
  • the palladium-modified sublayer according to the invention gives the thermal barrier coating a very advantageous resistance to spalling.
  • Example 7 Samples according to Example 7 were produced with different alloys such as the IN100 superalloys as substrate. They were tested according to the three test methods described respectively in Examples 5, 6, 7. In all cases, it appears that the lifetime of the thermal barrier coatings obtained with a sublayer according to the invention is much higher than that obtained with MCrAlY type sublayers or simple aluminides.
  • the thickness of the sub-layer may be different from that chosen in the examples, but preferably between 10 ⁇ m and 500 ⁇ m.
  • the amounts of platinum-containing metal and of metal promoting the formation of an oxide layer consisting of the ⁇ allotropic variety of alumina may be different from those chosen in the examples.
  • the invention is not limited to the use of palladium as a metal of the platinum mine but it extends to all of the metals of the platinum mine such as in particular platinum itself and ruthenium as well as 'to combinations of these metals.
  • the invention is not limited to the use of chromium as a promoter metal for the formation of the ⁇ allotropic variety of alumina, but also extends to the use of manganese, iron and combinations of these metals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Ceramic thermal coating is attached to a nickel-based superalloy substrate by an intermediate layer of aluminide of nickel and/or cobalt, containing at least one platinum group metal such as platinum, palladium and ruthenium, and also containing, at least where it contacts the ceramic, at least one other metal which promotes the formation of a layer of alpha -alumina. Also claimed is a piece of superalloy so coated.

Description

L'invention concerne un revêtement de barrière thermique et sa sous-couche pour des pièces métalliques en superalliage. Elle s'applique notamment aux pièces chaudes des turbomachines.
Les constructeurs de moteurs à turbine, tant terrestres qu'aéronautiques, sont confrontés depuis plus de trente ans à des impératifs d'augmentation du rendement des turbomachines, de diminution de leur consommation spécifique en carburant ainsi que des émissions polluantes de types COx, SOx, NOx et imbrûlés. Une des façons de répondre à ces impératifs consiste à se rapprocher de la stoechiométrie de combustion du carburant et donc à augmenter la température des gaz sortant de la chambre de combustion et attaquant les premiers étages de turbine. Cette tendance dans l'évolution des turbomachines a été une constante au cours des trente dernières années.
The invention relates to a thermal barrier coating and its sub-layer for metal parts made of superalloy. It applies in particular to hot parts of turbomachinery.
Turbine engine manufacturers, both terrestrial and aeronautical, have been confronted for more than thirty years with the imperatives of increasing the efficiency of turbomachines, reducing their specific fuel consumption as well as polluting emissions of CO x , SO types x , NO x and unburnt. One of the ways to meet these requirements consists in approaching the fuel combustion stoichiometry and therefore in increasing the temperature of the gases leaving the combustion chamber and attacking the first stages of the turbine. This trend in the evolution of turbomachinery has been a constant over the past thirty years.

Corrélativement, il s'est avéré nécessaire de rendre les matériaux de la turbine compatibles avec cette élévation de température des gaz de combustion. Une des solutions retenues consiste à améliorer les techniques de refroidissement des aubes de turbine. Cette évolution repose sur celle des techniques de calcul aérothermique et de la fonderie de précision. Elle implique une forte augmentation de la technicité et du coût de réalisation des pièces. Une autre solution consiste à faire évoluer le caractère réfractaire des matériaux utilisés de façon à augmenter la température limite d'usage et la durée de vie en fluage et en fatigue. Cette solution a été largement mise en oeuvre lors de l'apparition des superalliages à base de nickel et/ou de cobalt. Elle a connu une évolution technique considérable par le passage des superalliages équiaxes aux superalliages monocristallins (gain de 80 à 100°C en fluage). Cette voie ne peut aujourd'hui être exploitée qu'à des coûts de développement importants (superalliages dits de troisième génération, devant permettre un gain supplémentaire en fluage de 20°C environ). Au-delà un nouveau changement de famille de matériau s'impose, changement dont la viabilité industrielle n'est pas prouvée à ce jour.Correspondingly, it has proved necessary to make the materials of the turbine compatible with this rise in temperature of the combustion gases. One of the solutions adopted consists in improving the techniques for cooling the turbine blades. This development is based on that of aerothermal calculation techniques and precision foundry. It implies a sharp increase in the technicality and the cost of making the parts. Another solution consists in changing the refractory nature of the materials used so as to increase the limit temperature of use and the lifetime in creep and fatigue. This solution was widely used when superalloys based on nickel and / or cobalt appeared. It has undergone considerable technical development through the transition from equiaxed superalloys to monocrystalline superalloys (gain of 80 to 100 ° C in creep). This channel can now only be used at significant development costs (so-called third generation superalloys, which should allow an additional gain in creep about 20 ° C). Beyond this, a new change in material family is required, a change whose industrial viability has not been proven to date.

Une alternative à ce changement de famille de matériaux consiste à déposer sur les pièces chaudes en superalliages un revêtement isolant thermique appelé " barrière thermique ". Ce revêtement isolant en céramique permet sur une pièce refroidie de créer en régime permanent de fonctionnement un gradient thermique au travers de la céramique dont l'amplitude totale peut dépasser 200°C. La température de fonctionnement du métal sous-jacent se trouve diminuée d'autant avec une incidence considérable sur le volume d'air de refroidissement nécessaire, la durée de vie de la pièce et la consommation spécifique du moteur. Toutefois, un tel revêtement céramique ne peut, en règle générale, pas être déposé directement sur le superalliage, et nécessite l'interposition d'une sous-couche métallique dotée de fonctionnalités multiples. Cette sous-couche joue un rôle d'adaptation mécanique entre le substrat en superalliage et le revêtement céramique.An alternative to this change of family of materials consists in depositing on the hot parts in superalloys a thermal insulating coating called "thermal barrier". This ceramic insulating coating makes it possible, on a cooled part, to create a thermal gradient in permanent operating conditions through the ceramic, the total amplitude of which can exceed 200 ° C. The operating temperature of the underlying metal is reduced accordingly with a considerable impact on the volume of cooling air required, the service life of the part and the specific consumption of the engine. However, such a ceramic coating cannot, as a general rule, not be deposited directly on the superalloy, and requires the interposition of a metallic undercoat endowed with multiple functionalities. This underlay plays a mechanical adaptation role between the superalloy substrate and the ceramic coating.

La sous-couche est également utile pour assurer l'adhérence entre le substrat et le revêtement céramique :

  • l'adhérence entre la sous-couche et le substrat se fait par interdiffusion, et
  • l'adhérence entre la sous-couche et la céramique se fait par ancrage mécanique et/ou par la propension de la sous-couche à développer à haute température à l'interface céramique/sous-couche, une couche d'oxyde d'aluminium mince.
The undercoat is also useful for ensuring adhesion between the substrate and the ceramic coating:
  • the adhesion between the sub-layer and the substrate is effected by interdiffusion, and
  • the adhesion between the sublayer and the ceramic is done by mechanical anchoring and / or by the propensity of the sublayer to develop at high temperature at the ceramic / sublayer interface, an aluminum oxide layer thin.

Enfin, elle assure la protection du superalliage constituant la pièce contre les dégradations de type oxydation haute température et corrosion à chaud auxquelles cette dernière est soumise dans l'environnement des gaz chauds en provenance de la chambre de combustion.Finally, it ensures the protection of the superalloy constituting the part against degradation of the high temperature oxidation and hot corrosion type to which the latter is subjected in the environment of hot gases coming from the combustion chamber.

La façon dont cette sous-couche remplit ces différentes fonctions a une très grande incidence sur l'efficacité pratique de la barrière thermique, puisque la sous-couche déterminera dans une large mesure, la durée de vie du revêtement céramique au-delà de laquelle un décollement total ou partiel de la barrière thermique interviendra, mettant un terme aux gains en performance souhaités.
Les revêtements de barrière thermique sont composés de mélange d'oxydes, le plus souvent à base de zircone. Cet oxyde constitue en effet un compromis des plus intéressants entre un matériau possédant une conductivité thermique faible et un coefficient de dilatation relativement élevé, proche de celui des alliages à base de nickel et/ou de cobalt sur lesquels on souhaite le déposer. Une des compositions de céramique donnant le plus de satisfaction est la zircone partiellement stabilisée par l'oxyde d'yttrium : ZrO2 + 6 à 8 % massique d'Y2O3. Pour stabiliser la zircone, il est également possible d'utiliser un autre oxyde d'addition choisi parmi les oxydes de cérium, de calcium, de magnésium, de lanthane, d'ytterbium et de scandium notamment.
How this underlayment performs these different functions has a huge impact on efficiency practicality of the thermal barrier, since the underlayer will to a large extent determine the lifetime of the ceramic coating beyond which a total or partial detachment of the thermal barrier will occur, putting an end to the desired performance gains.
The thermal barrier coatings are composed of a mixture of oxides, most often based on zirconia. This oxide constitutes in fact a most interesting compromise between a material having a low thermal conductivity and a relatively high coefficient of expansion, close to that of the alloys based on nickel and / or cobalt on which it is desired to deposit it. One of the most satisfactory ceramic compositions is zirconia partially stabilized with yttrium oxide: ZrO 2 + 6 at 8% by mass of Y 2 O 3 . To stabilize the zirconia, it is also possible to use another addition oxide chosen from the oxides of cerium, calcium, magnesium, lanthanum, ytterbium and scandium in particular.

Le revêtement de céramique peut être déposé sur la pièce à revêtir en utilisant des procédés divers appartenant pour la plupart d'entre eux à deux familles distinctes : les revêtements projetés et les revêtements déposés par voie physique en phase vapeur.The ceramic coating can be deposited on the part to be coated using various methods, most of which belong to two distinct families: sprayed coatings and coatings deposited physically by the vapor phase.

Pour les revêtements projetés, le dépôt d'oxyde à base de zircone est effectué par des techniques apparentées à la projection plasma. Le revêtement est constitué d'un empilement de gouttelettes de céramique fondues puis trempées par choc, aplaties et empilées de façon à former un dépôt imparfaitement densifié d'une épaisseur comprise entre 50 µm et 1 mm. Une des caractéristiques de ce type de revêtement est une rugosité intrinsèquement élevée (Ra compris typiquement entre 5 et 35 µm). La microstructure de ce type de revêtement le rend peu apte à résister aux efforts d'arrachement présents lors de cyclages thermiques en service, à cause du différentiel de coefficient de dilatation entre le superalliage et l'oxyde. Son mode de dégradation en service est donc caractérisé par la propagation lente d'une fissure dans la céramique parallèlement à l'interface céramique/métal. Il s'agit d'une rupture cohésive. Le point mécaniquement faible du revêtement comprenant la céramique et la sous-couche n'est alors pas l'interface céramique/sous-couche à proprement parler, mais plutôt la céramique elle-même. En conséquence, les sous-couches bien adaptées à ce type de dépôt céramique sont de préférence très plastiques à haute température, ceci afin de compenser par leur propre déformation celles imposées à la céramique par son différentiel de dilatation avec le substrat en superalliage.For sprayed coatings, the zirconia-based oxide deposition is carried out by techniques related to plasma spraying. The coating consists of a stack of melted ceramic droplets then impact hardened, flattened and stacked so as to form an imperfectly densified deposit with a thickness of between 50 μm and 1 mm. One of the characteristics of this type of coating is an inherently high roughness (Ra typically between 5 and 35 μm). The microstructure of this type of coating makes it not very capable of withstanding the tearing forces present during thermal cycling in service, because of the differential of expansion coefficient between the superalloy and the oxide. Its mode of degradation in service is therefore characterized by the slow propagation of a crack in the ceramic parallel to the ceramic / metal interface. It is a cohesive rupture. The mechanically weak point of the coating comprising the ceramic and the undercoat is then not the ceramic / undercoat interface itself, but rather the ceramic itself. Consequently, the sub-layers which are well suited to this type of ceramic deposit are preferably very plastic at high temperature, this in order to compensate by their own deformation those imposed on the ceramic by its differential expansion with the superalloy substrate.

Dans le cas des revêtements déposés par voie physique en phase vapeur, le problème est sensiblement différent. Un tel dépôt peut être réalisé à l'aide de dispositifs tels que l'évaporation sous bombardement électronique. Sa caractéristique principale est que le revêtement est constitué d'un assemblage de colonnettes très fines (entre 0,2 et 10 µm de diamètre typiquement) orientées sensiblement perpendiculairement à la surface à revêtir. L'épaisseur d'un tel revêtement peut être comprise entre 20 et 600 µm. Un tel assemblage présente la propriété intéressante de reproduire sans l'altérer l'état de surface du substrat recouvert. En particulier, dans le cas d'aubes de turbines, des rugosités finales largement inférieures au micromètre peuvent être obtenues, ce qui est très avantageux pour les propriétés aérodynamiques de l'aube. Une autre conséquence de la structure dite " colonnaire " des dépôts de céramique par voie physique en phase vapeur, est que l'espace situé entre les colonnettes permet au revêtement d'accommoder de manière très efficace les contraintes de compression qu'il subit en service à cause du différentiel de dilatation avec le substrat en superalliage. Dans ce cas, des durées de vie élevées en fatigue thermique à haute température peuvent être atteintes et la rupture du revêtement n'a plus lieu dans la céramique elle-même, mais de manière adhésive, par rupture de l'interface sous-couche/céramique. Par conséquent, la principale caractéristique d'une sous-couche adaptée à ce type de revêtement céramique déposé par voie physique en phase vapeur, avec pour objectif une durée de vie en fatigue thermique accrue, est le renforcement de cette interface et donc de l'adhésion entre la céramique et la sous-couche.In the case of coatings deposited physically by the vapor phase, the problem is significantly different. Such a deposition can be carried out using devices such as evaporation under electronic bombardment. Its main characteristic is that the coating consists of an assembly of very fine balusters (typically between 0.2 and 10 µm in diameter) oriented substantially perpendicular to the surface to be coated. The thickness of such a coating can be between 20 and 600 μm. Such an assembly has the advantageous property of reproducing without altering the surface condition of the covered substrate. In particular, in the case of turbine blades, final roughnesses far less than a micrometer can be obtained, which is very advantageous for the aerodynamic properties of the blade. Another consequence of the so-called "columnar" structure of ceramic deposits by the physical vapor phase, is that the space between the columns allows the coating to very effectively accommodate the compression stresses it undergoes in service because of the expansion differential with the superalloy substrate. In this case, high lifetimes in thermal fatigue at high temperature can be reached and the rupture of the coating no longer takes place in the ceramic itself, but in an adhesive manner, by rupture of the underlay / ceramic. Consequently, the main characteristic of an undercoat suitable for this type of ceramic coating deposited physically by the vapor phase, with the objective of a duration of life in increased thermal fatigue, is the strengthening of this interface and therefore of the adhesion between the ceramic and the undercoat.

Plusieurs types de sous-couches sont utilisés à ce jour pour les revêtements de barrière thermique. Les brevets US 4.321.311 et US 4 401 697 décrivent des sous-couches en alliages alumino-formeurs de type MCrAlY (M=Ni et/ou Co et/ou Fe) Ces sous-couches présentent l'inconvénient d'être déposées, tout comme la céramique, soit par des procédés de projection thermique, soit par des procédés de dépôt physique en phase vapeur. Ces deux types de procédés sont directionnels, et rendent donc très difficile le recouvrement homogène de pièces de turbine comme des doublets d'aubes de redresseur. Un autre inconvénient est le coût élevé de ces procédés de dépôt. Enfin, les revêtements de barrière thermique obtenus grâce à ces procédés ne présentent pas toujours des durées de vie suffisantes. La diffusion à haute température d'éléments du superalliage métallique vers les sous-couches en MCrAlY tend en effet à limiter dans le temps leurs qualités de revêtements protecteurs contre l'oxydation et la corrosion à chaud.Several types of undercoats are used today for thermal barrier coatings. US Patents 4,321,311 and US 4,401,697 describe sublayers of aluminum-forming alloys of MCrAlY type (M = Ni and / or Co and / or Fe) These sublayers have the disadvantage of being deposited, just like ceramic, either by thermal spraying processes or by physical vapor deposition processes. These two types of process are directional, and therefore make it very difficult to uniformly cover turbine parts such as doublets of stator blades. Another disadvantage is the high cost of these deposition methods. Finally, the thermal barrier coatings obtained by these processes do not always have sufficient service lives. The diffusion at high temperature of elements of the metallic superalloy towards the MCrAlY sub-layers tends to limit in time their qualities of protective coatings against oxidation and hot corrosion.

Par ailleurs le brevet Américain US 5 238 752 enseigne qu'il est possible d'utiliser des revêtements protecteurs de type aluminiures simples NiAl et aluminiures modifiés par le platine pour servir de sous-couches de barrières thermiques, en particulier dans le cas où la couche céramique est composée de colonnettes et préférentiellement élaborée par dépôt physique en phase vapeur. Aucune de ces sous-couches n'est entièrement satisfaisante. En effet, les aluminiures simples de type NiAl ou CoAl montrent une résistance à l'oxydation insuffisante aux températures très élevées ; ils ne sont donc pas efficaces comme sous-couche de barrière thermique pour les pièces soumises pendant de longues durées à des températures extrêmes. Les aluminiures modifiés par le platine se sont avérés plus intéressants ; ils conduisent en général à des durées de vie bien supérieures en fatigue thermique du revêtement. Ils présentent toutefois également certains inconvénients. Selon le type de superalliage substrat utilisé, et les conditions d'aluminisation après dépôt de platine, on risque d'obtenir une sous-couche d'une grande dureté dans sa partie externe. De plus le platine est un métal à la fois très onéreux et très dense, ce qui rend la réalisation de ce type de sous-couche très coûteuse. En outre dans le cas des sous-couches en aluminiure simple, comme dans celui des sous-couches en aluminiure modifié par le platine, il a été relevé que l'adhérence de la couche d'alumine formée par oxydation à l'interface sous-couche/céramique était parfois insuffisante, conduisant à des durées de vie trop courtes pour le revêtement de barrière thermique. Les auteurs ont ainsi noté que ce défaut d'adhérence était dépendant de façon reproductible de la composition chimique des superalliages substrat.
Le but de l'invention est de réaliser un revêtement de barrière thermique comportant un revêtement céramique à structure colonnaire et une sous-couche très adhérente à la céramique et au superalliage à revêtir, la sous-couche étant élaborée de façon à assurer une adhésion accrue de la couche d'alumine interfaciale en toutes circonstances, à résister aux phénomènes d'interdiffusion à haute température avec le superalliage et à présenter une excellente résistance aux sollicitations de type corrosion à chaud de manière à conférer au revêtement une durée de vie accrue et une meilleure fiabilité dans le temps.
Pour cela, l'invention consiste à réaliser une sous-couche de barrière thermique en aluminiure et à introduire dans la sous-couche au moins un métal de la mine du platine auquel est associé au moins un métal promoteur de la formation de la variété allotropique α de l'alumine.
Le métal de la mine du platine permet de maintenir une couche d'oxyde de bonne qualité pendant un temps plus long qu'un aluminiure simple.
Furthermore, American patent US Pat. No. 5,238,752 teaches that it is possible to use protective coatings of the type simple aluminides NiAl and aluminides modified by platinum to serve as sublayers of thermal barriers, in particular in the case where the layer ceramic is made up of balusters and preferably produced by physical vapor deposition. None of these sublayers is entirely satisfactory. Indeed, simple aluminides of NiAl or CoAl type show insufficient oxidation resistance at very high temperatures; they are therefore not effective as a thermal barrier undercoat for parts subjected for long periods of time at extreme temperatures. The platinum modified aluminides have been found to be more interesting; they generally lead to much longer lifetimes in thermal fatigue of the coating. However, they also present some disadvantages. Depending on the type of substrate superalloy used, and the aluminization conditions after platinum deposition, there is a risk of obtaining a sub-layer of high hardness in its external part. In addition, platinum is a metal that is both very expensive and very dense, which makes the production of this type of underlay very expensive. Furthermore, in the case of simple aluminide sublayers, as in that of platinum-modified aluminide sublayers, it has been noted that the adhesion of the layer of alumina formed by oxidation at the interface layer / ceramic was sometimes insufficient, leading to life times too short for the thermal barrier coating. The authors thus noted that this adhesion defect was reproducibly dependent on the chemical composition of the substrate superalloys.
The object of the invention is to produce a thermal barrier coating comprising a ceramic coating with columnar structure and an undercoat very adherent to the ceramic and to the superalloy to be coated, the undercoat being designed so as to ensure increased adhesion. of the interfacial alumina layer in all circumstances, to resist the phenomena of high temperature interdiffusion with the superalloy and to exhibit excellent resistance to stresses of the hot corrosion type so as to give the coating an increased service life and a better reliability over time.
For this, the invention consists in producing an aluminide thermal barrier sublayer and in introducing into the sublayer at least one metal of the platinum mine with which is associated at least one metal which promotes the formation of the allotropic variety. α of alumina.
The platinum mine metal maintains a good quality oxide layer for a longer time than a simple aluminide.

L'utilisation du métal promoteur de la variété allotropique α de l'alumine permet d'augmenter l'adhérence de la couche d'oxyde formée entre la sous-couche et la céramique.
Selon l'invention, le revêtement de barrière thermique pour substrat en superalliage comportant un revêtement céramique et une sous-couche interposée entre le substrat et la céramique est caractérisé en ce que la sous-couche est composée d'un aluminiure de nickel et/ou de cobalt modifié par au moins un métal de la mine du platine, et comportant, au moins dans une partie supérieure de la sous-couche au contact avec la céramique, un métal promoteur de la formation d'une couche d'oxyde constitué de la variété allotropique α de l'alumine.
Le métal de la mine du platine est choisi préférentiellement dans le groupe constitué du platine lui-même, du palladium, du ruthénium et des combinaisons de ces métaux.
Le métal promoteur de la formation de la variété allotropique α de l'alumine est choisi préférentiellement dans le groupe constitué du chrome, du fer, du manganèse, et des combinaisons de ces métaux.
Dans le cas de l'utilisation du palladium, la quantité de palladium introduite dans la sous-couche est en proportion comprise entre 3 % et 40 % en moles.
La quantité de métal promoteur de la formation de la variété allotropique α de l'alumine introduite dans la sous-couche est en proportion comprise entre 0,1 % et 10 % en masse.
L'épaisseur de la sous-couche peut être comprise entre 10 µm et 500µm, préférentiellement entre 50 et 100 µm.
La céramique est de structure colonnaire et à base de zircone avantageusement stabilisée par de l'oxyde d'yttrium et d'épaisseur comprise entre 20 µm et 600 µm, préférentiellement entre 50 et 250 µm.
L'invention concerne également une pièce en superalliage comportant un tel revêtement de barrière thermique.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description, donnée à titre d'exemple non limitatif et faite en regard des figures annexées qui représentent :

  • la figure 1, un tableau dans lequel est indiquée la composition de différents alliages en pourcentage massique.
  • la figure 2, un tableau dans lequel est reportée la prise de masse après 100 heures d'oxydation isotherme à 1100°C de différents revêtements obtenus sur l'alliage AM1, et l'épaisseur d'alumine correspondante selon l'invention.
  • les figures 3,4,5, trois tableaux dans lesquels sont reportés les nombres moyens de cycles à l'écaillage pour différents types de sous-couches, chaque tableau étant relatif à des tests de cyclage oxydant effectués dans des conditions différentes, selon l'invention.
Le revêtement de barrière thermique pour substrat en superalliage conforme à l'invention comporte un revêtement céramique et une sous-couche interposée entre la céramique et le substrat.The use of the promoter metal of the α allotropic variety of alumina makes it possible to increase the adhesion of the oxide layer formed between the sublayer and the ceramic.
According to the invention, the thermal barrier coating for a superalloy substrate comprising a ceramic coating and a sublayer interposed between the substrate and the ceramic is characterized in that the sublayer is composed of a nickel aluminide and / or of cobalt modified by at least one metal from the platinum mine, and comprising, at least in an upper part of the underlayer in contact with the ceramic, a metal promoting the formation of an oxide layer consisting of the α allotropic variety of alumina.
The platinum mine metal is preferably chosen from the group consisting of platinum itself, palladium, ruthenium and combinations of these metals.
The metal which promotes the formation of the allotropic variety α of alumina is preferably chosen from the group consisting of chromium, iron, manganese, and combinations of these metals.
In the case of the use of palladium, the amount of palladium introduced into the sublayer is in proportion between 3% and 40% by moles.
The amount of metal promoting the formation of the allotropic variety α of alumina introduced into the sublayer is in proportion between 0.1% and 10% by mass.
The thickness of the sub-layer can be between 10 μm and 500 μm, preferably between 50 and 100 μm.
The ceramic has a columnar structure and is based on zirconia, advantageously stabilized with yttrium oxide and with a thickness of between 20 μm and 600 μm, preferably between 50 and 250 μm.
The invention also relates to a superalloy part comprising such a thermal barrier coating.
Other features and advantages of the invention will appear clearly in the following description, given by way of nonlimiting example and made with reference to the appended figures which represent:
  • Figure 1, a table in which is indicated the composition of different alloys in mass percentage.
  • FIG. 2, a table in which the mass gain after 100 hours of isothermal oxidation at 1100 ° C. of different coatings obtained on the AM1 alloy is reported, and the corresponding thickness of alumina according to the invention.
  • Figures 3,4,5, three tables in which are reported the average numbers of chipping cycles for different types of underlayers, each table being related to oxidative cycling tests carried out under different conditions, according to invention.
The thermal barrier coating for a superalloy substrate according to the invention comprises a ceramic coating and an underlay interposed between the ceramic and the substrate.

L'adhérence entre la céramique et la sous-couche juste après la réalisation du dépôt de céramique est limitée. Par contre, dès que le revêtement se trouve porté à haute température en atmosphère oxydante, il se forme à l'interface céramique/sous-couche une couche d'oxyde protectrice très adhérente également sur la céramique. Cette couche d'oxyde renforce considérablement l'adhésion entre la céramique et la sous-couche. On considère que pour les revêtements de barrière thermique déposés par dépôt physique en phase vapeur, avec une interface céramique/sous-couche par conséquent peu rugueuse, c'est la pérennité dans le temps et l'adhérence de cette couche d'oxyde qui va pour l'essentiel déterminer la durée de vie du revêtement face à des sollicitations de type fatigue thermique. Une bonne sous-couche pour revêtement de barrière thermique à structure colonnaire doit donc posséder les qualités suivantes :

  • Former par oxydation à température élevée une couche d'oxyde protectrice : stable, à croissance très lente, exempte de contraintes de croissance, adhérente au métal, adhérente au revêtement céramique,
  • Etre de préférence monophasée,
  • Résister convenablement aux phénomènes d'interdiffusion à haute température avec le substrat,
  • Avoir une excellente résistance aux sollicitations de type corrosion à chaud en présence de sels fondus de type sulfate et/ou vanadate,
  • Pouvoir revêtir de façon homogène des pièces de forme complexe (procédé(s) de dépôt(s) peu ou pas directifs),
  • Etre économiquement attractif.
The adhesion between the ceramic and the undercoat just after the ceramic deposit has been made is limited. On the other hand, as soon as the coating is brought to high temperature in an oxidizing atmosphere, a very adherent protective oxide layer also forms on the ceramic / underlay interface also on the ceramic. This oxide layer considerably strengthens the adhesion between the ceramic and the undercoat. It is considered that for the thermal barrier coatings deposited by physical vapor deposition, with a ceramic / undercoat interface which is therefore not very rough, it is the durability over time and the adhesion of this oxide layer which will essentially determine the life of the coating in the face of thermal fatigue type stresses. A good undercoat for thermal barrier coating with columnar structure must therefore have the following qualities:
  • Form by oxidation at high temperature a protective oxide layer: stable, very slow growing, free from growth constraints, adherent to metal, adherent to ceramic coating,
  • Preferably be single-phase,
  • Adequately resist the phenomena of high temperature interdiffusion with the substrate,
  • Have excellent resistance to stresses of the hot corrosion type in the presence of molten salts of the sulfate and / or vanadate type,
  • Being able to homogeneously coat parts of complex shape (deposition process (es) with little or no direction),
  • Be economically attractive.

Dans le cas de la présente invention, il est proposé d'utiliser comme sous-couche un revêtement d'aluminiure de nickel et/ou de cobalt modifié par un métal de la mine du platine tel que notamment le palladium. Le palladium est un métal noble possédant une très forte affinité chimique avec l'aluminiure de nickel β-NiAl. Il est possible d'incorporer dans un revêtement d'aluminiure de nickel de type β-NiAl jusqu'à 35% ou 40% en moles de palladium sans en changer la structure cristallographique. Le palladium en solution solide dans l'aluminiure de nickel joue plusieurs rôles.In the case of the present invention, it is proposed to use as a sublayer a coating of nickel aluminide and / or of cobalt modified with a platinum mine metal such as in particular palladium. Palladium is a noble metal with a very strong chemical affinity with the nickel aluminide β-NiAl. It is possible to incorporate into a nickel aluminide coating of the β-NiAl type up to 35% or 40% in moles of palladium without changing the crystallographic structure. Palladium in solid solution in nickel aluminide plays several roles.

Le palladium comme les autres métaux de la mine du platine augmente significativement l'activité thermodynamique de l'aluminium et permet donc à l'alliage de rester alumino-formeur même quand une partie importante de la réserve d'aluminium du revêtement est épuisée. La conséquence pratique est que dans des conditions identiques d'usage, une sous-couche en aluminiure modifié par un métal de la mine du platine maintiendra une couche d'oxyde de bonne qualité pendant un temps plus long que ne le ferait une sous-couche en aluminiure simple.Palladium like the other metals of the platinum mine significantly increases the thermodynamic activity of aluminum and therefore allows the alloy to remain aluminum-forming even when a significant part of the aluminum reserve of the coating is used up. The practical consequence is that under identical conditions of use, a sub-layer of aluminide modified by a metal of platinum mine will maintain a layer of good quality oxide for a longer time than would an under-layer in simple aluminide.

Le palladium, comme les autres métaux de la mine du platine, augmente de manière importante le coefficient de diffusion de l'aluminium dans l'aluminiure de nickel ; ainsi l'aluminium peut diffuser plus facilement vers la surface externe de la sous-couche pour compenser l'appauvrissement progressif de cette dernière lors de la formation d'une couche interfaciale d'alumine. Ce phénomène assure une meilleure disponibilité de la réserve d'aluminium de la sous-couche pour former une couche interfaciale d'alumine pérenne, par rapport au cas d'une sous-couche en aluminiure exempte de palladium.Palladium, like the other metals in the platinum mine, significantly increases the diffusion coefficient of aluminum in nickel aluminide; thus aluminum can diffuse more easily towards the external surface of the underlayer to compensate for the progressive depletion of the latter during the formation of an interfacial layer alumina. This phenomenon ensures better availability of the aluminum reserve of the sublayer to form an interfacial layer of perennial alumina, compared to the case of a palladium-free aluminide sublayer.

Le palladium, par un effet stérique dans l'aluminiure de type β-NiAl, facilite les mécanismes de montée de dislocations, permettant à la sous-couche d'accommoder les contraintes de croissance s 'exerçant sur la couche d'alumine interfaciale, du fait du désaccord entre les paramètres de réseau cristallin du métal constituant le superalliage et de l'alumine. La présence du palladium permet l'obtention d'une couche d'alumine interfaciale moins contrainte et donc à la fois plus compacte et plus adhérente sur le métal de la sous-couche que dans le cas de l'oxydation d'un aluminiure en l'absence de palladium.Palladium, by a steric effect in the β-NiAl type aluminide, facilitates the mechanisms of rise of dislocations, allowing the sub-layer to accommodate the growth constraints exerted on the layer of interfacial alumina, disagrees between the crystal lattice parameters of the metal making up the superalloy and alumina. The presence of palladium makes it possible to obtain a layer of interfacial alumina that is less constrained and therefore both more compact and more adherent to the metal of the sublayer than in the case of the oxidation of an aluminide in l absence of palladium.

Enfin, le palladium en respectant la nature cristallographique de l'aluminiure de type β-NiAl, conduit à des sous-couches possédant le même type de ductilité que l'aluminiure simple, contrairement au cas des aluminiures modifiés par le platine. Cette propriété peut être constatée par la mesure des duretés Vickers des différentes sous-couches dans leur partie externe, mais aussi sur coupe métallographique par l'absence de fissures dans la partie externe de la sous-couche, ainsi qu'il sera décrit dans les exemples illustrant la description détaillée de l'invention. Il existe de nombreuses façons de réaliser une sous-couche de barrière thermique en aluminiure modifié par le palladium. Il est possible d'utiliser les enseignements de la demande de brevet français FR 2.638.174. Il est également possible de procéder comme dans les exemples décrits ci-après.
Parmi les métaux de la mine du platine, l'utilisation du palladium dans une sous-couche en aluminiure modifié présente en outre un attrait économique certain par rapport à l'utilisation du platine. Cependant le platine et le palladium ne sont pas les seuls éléments à promouvoir la formation de couches d'alumine de bonne qualité lorsqu'ils sont alliés à l'intermétallique NiAl de structure β. En particulier, le ruthénium possède également cet ensemble intéressant de propriétés. De même, la sous-couche peut comporter plusieurs métaux de la mine du platine, tel que par exemple, un alliage de palladium et/ou de platine et/ou de ruthénium.
Un autre aspect important de l'invention réside dans l'utilisation d'au moins un métal promoteur de la formation de la variété allotropique α de l'alumine tel que par exemple le chrome, conjugué avec le métal de la mine du platine, dans la sous-couche de barrière thermique. Le chrome joue en effet un rôle primordial dans les mécanismes de formation de la couche d'alumine interfaciale, en particulier lors des premières heures d'exposition à haute température. L'adjonction de chrome en petites quantités (comprise entre 0,1 et 10 % en masse par exemple) dans la sous-couche de barrière thermique a pour effet de promouvoir la formation quasi immédiate de la variété allotropique α de l'alumine par croissance épitaxique sur des nodules d'oxydes de chrome Cr2O3. En l'absence de chrome, l'oxydation de la sous-couche commence par la formation d'alumine de la variété allotropique Θ. Cette variété Θ de l'alumine est fortement contrainte et peu adhérente au métal sous-jacent. Par la suite, la variété α, stable thermodynamiquement, se forme aussi, mais par-dessus une sous-couche d'oxyde certes discontinue mais très peu adhérente, qui limite l'adhérence globale de la couche d'oxyde. De plus, cette transformation Al2O3 Θ -> Al2O3 α s'accompagne d'un fort changement de volume de la maille cristallographique qui crée des contraintes élevées dans la couche d'oxyde, très peu favorables à son adhésion sur le métal sous-jacent. Ces deux phénomènes sont globalement très néfastes pour la durée de vie de la barrière thermique déposée sur une telle sous-couche. En présence de chrome, au contraire, l'adhérence de la couche d'oxyde est renforcée par le fait que la variété α de l'alumine se forme immédiatement. D'autres métaux promoteurs de la formation de la variété allotropique α de l'alumine peuvent être également utilisés tel que par exemple le fer et/ou le manganèse. Dans la suite de la description, on limitera les exemples au chrome qui présente en outre l'avantage d'améliorer la résistance du revêtement en corrosion à chaud. Pour que le chrome introduit dans une sous-couche en aluminiure modifié par un métal précieux de la mine du platine puisse effectivement promouvoir la formation de la variété allotropique α de l'alumine, ledit chrome doit être présent en proportion suffisante dans la partie supérieure de la sous-couche où se forme la couche d'alumine interfaciale.
L'introduction du chrome dans la partie supérieure de la sous-couche peut être réalisée par différentes méthodes. Lorsque le substrat en superalliage contient suffisamment de chrome, l'apport de chrome dans la sous-couche peut être effectué par un traitement thermique adapté permettant la diffusion du chrome du substrat vers la surface de la sous-couche.
Dans ce cas le substrat est préalablement revêtu d'une couche modificatrice contenant un métal précieux de la mine du platine, par exemple un dépôt de nickel-palladium, ce dépôt étant suivi d'une opération de recuit de diffusion dont la température et la durée sont choisies de façon que la diffusion du métal de la mine du platine dans le substrat soit peu profonde et permette la diffusion du chrome du substrat vers la surface de la couche modificatrice.
A cet effet, la barrière énergétique d'activation pour la diffusion d'un métal précieux tel que le platine ou le palladium étant élevée par rapport à celle du chrome, le recuit de diffusion est effectué à une température inférieure à une température limite au dessus de laquelle les métaux précieux de la mine du platine diffusent plus vite que le chrome. Avantageusement la température du recuit de diffusion est choisie inférieure à 1100°C et préférentiellement inférieure à 900°C.
La durée du recuit de diffusion est adaptée en fonction de la température de recuit choisie et de la concentration de chrome souhaitée dans la partie supérieure de la sous-couche.
Typiquement, la durée du recuit est supérieure à une heure et de préférence supérieure ou égale à deux heures.
Le recuit de diffusion est alors suivi par une opération d'aluminisation.
Finally, while respecting the crystallographic nature of the β-NiAl type aluminide, palladium leads to sublayers having the same type of ductility as the simple aluminide, unlike the aluminides modified by platinum. This property can be observed by measuring the Vickers hardnesses of the different undercoats in their external part, but also on metallographic section by the absence of cracks in the external part of the undercoat, as will be described in the examples illustrating the detailed description of the invention. There are many ways to make a palladium modified aluminide thermal barrier sublayer. It is possible to use the lessons from French patent application FR 2,638,174. It is also possible to proceed as in the examples described below.
Among the metals of the platinum mine, the use of palladium in a modified aluminide undercoat also has definite economic appeal compared to the use of platinum. However platinum and palladium are not the only elements to promote the formation of good quality alumina layers when are alloyed with the intermetallic NiAl with a β structure. In particular, ruthenium also has this interesting set of properties. Likewise, the sublayer may comprise several metals of the platinum mine, such as for example, an alloy of palladium and / or platinum and / or ruthenium.
Another important aspect of the invention resides in the use of at least one metal which promotes the formation of the allotropic variety α of alumina such as, for example, chromium, conjugated with the metal of the platinum mine, in the thermal barrier underlay. Chromium plays a crucial role in the mechanisms of formation of the interfacial alumina layer, in particular during the first hours of exposure to high temperature. The addition of chromium in small quantities (between 0.1 and 10% by mass for example) in the thermal barrier undercoat has the effect of promoting the almost immediate formation of the allotropic variety α of alumina by growth epitaxial on chromium oxide nodules Cr 2 O 3 . In the absence of chromium, the oxidation of the sublayer begins with the formation of alumina of the allotropic variety Θ. This variety Θ of alumina is highly constrained and not very adherent to the underlying metal. Thereafter, the thermodynamically stable variety α is also formed, but over an oxide sublayer which is certainly discontinuous but has very little adhesion, which limits the overall adhesion of the oxide layer. In addition, this transformation Al 2 O 3 Θ -> Al 2 O 3 α is accompanied by a strong change in volume of the crystallographic mesh which creates high stresses in the oxide layer, very unfavorable for its adhesion on the underlying metal. These two phenomena are overall very harmful for the lifetime of the thermal barrier deposited on such an undercoat. In the presence of chromium, on the contrary, the adhesion of the oxide layer is reinforced by the fact that the α variety of alumina is formed immediately. Other metals promoting the formation of the α allotropic variety alumina can also be used such as for example iron and / or manganese. In the following description, the examples will be limited to chromium, which also has the advantage of improving the resistance of the coating to hot corrosion. In order for the chromium introduced into an aluminide underlay modified by a precious metal of the platinum mine to effectively promote the formation of the allotropic variety α of alumina, said chromium must be present in sufficient proportion in the upper part of the sublayer where the interfacial alumina layer is formed.
The introduction of chromium into the upper part of the undercoat can be carried out by different methods. When the superalloy substrate contains sufficient chromium, the addition of chromium to the sublayer can be carried out by a suitable heat treatment allowing the diffusion of chromium from the substrate to the surface of the sublayer.
In this case, the substrate is previously coated with a modifier layer containing a precious metal from the platinum mine, for example a nickel-palladium deposit, this deposit being followed by a diffusion annealing operation, the temperature and duration of which are chosen so that the diffusion of the platinum mine metal into the substrate is shallow and allows the diffusion of chromium from the substrate to the surface of the modifier layer.
For this purpose, the energy activation barrier for the diffusion of a precious metal such as platinum or palladium being high compared to that of chromium, diffusion annealing is carried out at a temperature below a limit temperature above from which the precious metals of the platinum mine diffuse faster than the chromium. Advantageously, the temperature of the diffusion annealing is chosen to be less than 1100 ° C. and preferably less than 900 ° C.
The duration of the diffusion annealing is adapted as a function of the annealing temperature chosen and of the desired chromium concentration in the upper part of the undercoat.
Typically, the duration of the annealing is greater than one hour and preferably greater than or equal to two hours.
Diffusion annealing is then followed by an aluminization operation.

Lorsque le substrat en superalliage ne contient pas suffisamment de chrome, ou que le chrome contenu dans le substrat est insuffisamment mobile, l'apport de chrome dans la sous-couche peut être effectué par une opération de chromisation. Dans ce cas, l'opération de chromisation doit être effectuée juste avant ou pendant l'opération d'aluminisation de façon, d'une part, à retrouver le chrome dans la partie la plus externe du revêtement final et, d'autre part à éviter la formation d'une barrière de diffusion pour l'ensemble des éléments de la sous-couche, au cas où le chrome serait déposé en couche continue.When the superalloy substrate does not contain sufficient chromium, or when the chromium contained in the substrate is insufficiently mobile, the addition of chromium to the sublayer can be carried out by a chromization operation. In this case, the chromizing operation must be carried out just before or during the aluminizing operation so as, on the one hand, to find the chromium in the outermost part of the final coating and, on the other hand to avoid the formation of a diffusion barrier for all of the elements of the undercoat, in the event that the chromium is deposited in a continuous layer.

Les exemples 1 à 4 décrits ci-après sont des illustrations de différents modes de réalisation de sous-couches selon l'invention et montrent quel est le lien entre la composition et le mode de réalisation de la sous-couche et ses qualités intrinsèques:

  • Cinétique de croissance lente de la couche d'oxyde à haute température,
  • Dureté limitée et absence de fissuration de la sous-couche assurant que le revêtement n'est pas fragile,
  • Résistance d'un superalliage revêtu de cette sous-couche en oxydation cyclée, montrant la qualité d'adhérence de la couche d'alumine sur la sous-couche,
  • Résistance d'un superalliage revêtu de cette sous-couche en corrosion à chaud.
Examples 1 to 4 described below are illustrations of different embodiments of sublayers according to the invention and show what is the link between the composition and the embodiment of the sublayer and its intrinsic qualities:
  • Kinetics of slow growth of the oxide layer at high temperature,
  • Limited hardness and absence of cracking of the underlay ensuring that the coating is not fragile,
  • Resistance of a superalloy coated with this sublayer in cyclic oxidation, showing the quality of adhesion of the alumina layer on the sublayer,
  • Resistance of a superalloy coated with this underlayer in hot corrosion.

Dans tous ces exemples, les sous-couches sont réalisées sur un substrat en superalliage base nickel tels que l'IN 100, l'AM 3, l'AM 1, le DS 200, le PD 21, le C1023 et le N 5 dont la composition est rappelée dans le tableau 1 représenté sur la figure 1.In all of these examples, the sub-layers are produced on a nickel-based superalloy substrate such as IN 100, AM 3, AM 1, DS 200, PD 21, C1023 and N 5 including the composition is recalled in Table 1 shown in Figure 1.

EXEMPLE 1.EXAMPLE 1.

Sur un substrat base nickel choisi parmi les alliages dont la composition est rappelée dans le tableau 1 représenté sur la figure 1, on a déposé par voie électrolytique 10 µm environ d'un alliage palladium-nickel à 20 % de nickel en masse. L'échantillon a ensuite subi un traitement thermique de diffusion de 2 heures à 850°C sous une pression d'air au plus égale à 10-5 Torr. Ce traitement thermique assure, outre une meilleure adhérence du dépôt électrolytique sur le substrat, une diffusion d'une partie du chrome contenu dans ledit substrat vers la surface dudit dépôt électrolytique. A titre d'exemple, en utilisant un substrat en IN 100, une concentration de chrome égale à 2,5 % massique a été obtenue à la surface du dépôt électrolytique de l'alliage Palladium-Nickel. Un revêtement d'aluminiure de nickel de type basse activité standard a ensuite été réalisé sur cet échantillon par cémentation activée en caisse. A l'issue de cette opération l'échantillon présentait une surface saine et de couleur rose satinée. Une coupe métallographique pratiquée perpendiculairement à la surface montre que le revêtement obtenu est épais d'environ 60 µm, monophasé et qu'il présente une structure divisée en trois zones d'épaisseur inégale. La première zone située au sommet du revêtement est épaisse d'environ 30 µm et présente un gradient négatif de concentration en palladium (La concentration en palladium décroît du sommet du revêtement vers le substrat). La composition de cette zone peut s'écrire β-(Nix, Pd1-x)Al, avec 0,4 ≤ x ≤ 0,9. La seconde zone, épaisse d'environ 20 µm, est composée d'aluminiure de nickel de type β-NiAl contenant un peu de palladium en solution solide. Ces deux zones contiennent en outre du chrome en proportion massique de 0,5 % à 5 %. La présence du chrome dans la sous-couche, et en particulier dans une partie supérieure de la sous-couche, assure la formation immédiate de la variété allotropique α de l'alumine très adhérente sur le métal sous-jacent. Enfin, la troisième zone, épaisse de 10 µm environ, est caractéristique des revêtements obtenus par diffusion. Il est à noter que des mesures de microdureté effectuées sur ce revêtement ont montré qu'elles étaient équivalentes à celles obtenues sur un revêtement d'aluminiure simple. Ceci montre que la sous-couche selon l'invention est peu fragile et peu susceptible de se fissurer en service.On a nickel-based substrate chosen from the alloys the composition of which is recalled in Table 1 shown in FIG. 1, approximately 10 μm of a palladium-nickel alloy containing 20% nickel by mass has been electrolytically deposited. The sample was then subjected to a 2 hour diffusion heat treatment at 850 ° C under an air pressure at most equal to 10 -5 Torr. This heat treatment ensures, in addition to better adhesion of the electrolytic deposit on the substrate, a diffusion of part of the chromium contained in said substrate towards the surface of said electrolytic deposit. For example, using an IN 100 substrate, a chromium concentration equal to 2.5% by mass was obtained on the surface of the electrolytic deposit of the Palladium-Nickel alloy. A coating of nickel aluminide of the standard low activity type was then produced on this sample by case hardening activated in the case. At the end of this operation, the sample had a healthy surface and a satin pink color. A metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 µm thick, single-phase and that it has a structure divided into three zones of uneven thickness. The first zone located at the top of the coating is approximately 30 µm thick and has a negative palladium concentration gradient (The palladium concentration decreases from the top of the coating towards the substrate). The composition of this zone can be written β- (Ni x , Pd 1-x ) Al, with 0.4 ≤ x ≤ 0.9. The second zone, about 20 µm thick, is composed of nickel aluminide of the β-NiAl type containing a little palladium in solid solution. These two zones also contain chromium in a mass proportion of 0.5% to 5%. The presence of chromium in the sublayer, and in particular in an upper part of the sublayer, ensures the immediate formation of the allotropic variety α of alumina which is very adherent to the underlying metal. Finally, the third zone, approximately 10 µm thick, is characteristic coatings obtained by diffusion. It should be noted that microhardness measurements carried out on this coating have shown that they are equivalent to those obtained on a simple aluminide coating. This shows that the sub-layer according to the invention is not very fragile and unlikely to crack in service.

Des revêtements identiques obtenus sur le même type de substrat ont été soumis à des tests d'oxydation à 1100°C et à des tests de corrosion à 850°C en présence de sulfate de sodium fondu. Ces deux types de tests sont cyclés ; un cycle consiste à porter l'échantillon testé de 200°C environ (ou de la température ambiante si c'est le premier cycle) à la température du test (1100°C pour l'oxydation ou 850°C pour la corrosion) en 5 mn environ puis de le maintenir à cette température pendant une heure et de le refroidir à 200°C environ en moins de 5 mn par convection forcée d'air. Dans le cas d'un essai de corrosion, l'échantillon est en plus contaminé par un dépôt d'environ 50 µg/cm2 de sulfate de sodium (Na2SO4) tous les 50 cycles. Dans tous les cas, à l'issue des tests prolongés jusqu'à 1000 cycles d'une heure, il a été constaté une tenue à l'oxydation et à la corrosion à chaud identique à celle constatée avec un revêtement d'aluminiure de nickel modifié par un pré-dépôt de platine tel que le RT22 commercialisé par la société Chromalloy U.K..Identical coatings obtained on the same type of substrate were subjected to oxidation tests at 1100 ° C and corrosion tests at 850 ° C in the presence of molten sodium sulfate. These two types of tests are cycled; a cycle consists in bringing the test sample from approximately 200 ° C (or from room temperature if it is the first cycle) to the test temperature (1100 ° C for oxidation or 850 ° C for corrosion) in 5 minutes approximately then maintain it at this temperature for one hour and cool it to approximately 200 ° C in less than 5 minutes by forced air convection. In the case of a corrosion test, the sample is additionally contaminated by a deposit of approximately 50 µg / cm 2 of sodium sulfate (Na 2 SO 4 ) every 50 cycles. In all cases, at the end of the tests extended up to 1000 cycles of one hour, it was found to be resistant to oxidation and to hot corrosion identical to that found with a coating of nickel aluminide modified by a pre-deposit of platinum such as RT22 marketed by the company Chromalloy UK.

Un revêtement identique et obtenu sur un même type de substrat a été, cette fois-ci, soumis à une oxydation isotherme à 1100°C pendant 100 heures. Cet essai vise, par exemple, à préparer un substrat pour recevoir le dépôt d'une barrière thermique, ledit substrat étant pré-revêtu d'une sous-couche résistant à l'oxydation et à la corrosion à chaud. A l'issue de ce test, il a été constaté une prise de masse de 0,3 mg/cm2, correspondant à une épaisseur d'alumine d'environ 1,7 µm. Un examen micrographique de la couche d'alumine obtenue montre qu'elle est dense, continue et adhérente. A titre de comparaison, l'épaisseur d'alumine obtenue sur un aluminiure de nickel simple peut atteindre 5 µm après 100 heures d'oxydation isotherme dans des conditions identiques. De plus, la structure d'une telle couche à vitesse de croissance rapide est très perturbée et présente des risques de desquamation, préjudiciables à une bonne adhérence d'une barrière thermique.
Les prises de masse et les épaisseurs d'alumine obtenues dans les mêmes conditions après 100 heures d'oxydation isotherme à 1100°C de différents revêtements réalisés sur un substrat base nickel sont reportées dans le tableau 2 représenté sur la figure 2.
Le tableau 2 montre que la sous-couche β-(Ni, Pd) Al conforme à l'invention est celle qui pour un temps et des conditions d'oxydation données présente la couche d'oxyde la plus fine, c'est à dire à croissance la plus lente. Ceci illustre une des qualités fondamentales de ce revêtement comme sous-couche de barrière thermique : celle permettant la formation d'une couche interfaciale d'oxyde à croissance plus lente conférant une durée de vie accrue en fatigue thermique à la barrière thermique.
An identical coating obtained on the same type of substrate was, this time, subjected to isothermal oxidation at 1100 ° C. for 100 hours. This test aims, for example, to prepare a substrate to receive the deposit of a thermal barrier, said substrate being pre-coated with a sublayer resistant to oxidation and to hot corrosion. At the end of this test, a mass gain of 0.3 mg / cm 2 was observed, corresponding to an alumina thickness of approximately 1.7 μm. A micrographic examination of the alumina layer obtained shows that it is dense, continuous and adherent. By way of comparison, the thickness of alumina obtained on a simple nickel aluminide can reach 5 μm after 100 hours of isothermal oxidation under conditions identical. In addition, the structure of such a layer at a rapid growth rate is very disturbed and presents risks of scaling, detrimental to good adhesion of a thermal barrier.
The mass gains and the thicknesses of alumina obtained under the same conditions after 100 hours of isothermal oxidation at 1100 ° C. of various coatings produced on a nickel-based substrate are shown in Table 2 represented in FIG. 2.
Table 2 shows that the β- (Ni, Pd) Al sublayer according to the invention is the one which, for a given time and given oxidation conditions, has the thinnest oxide layer, that is to say slowest growing. This illustrates one of the fundamental qualities of this coating as a thermal barrier underlayer: that allowing the formation of an interfacial layer of slower growing oxide giving an increased lifetime in thermal fatigue to the thermal barrier.

EXEMPLE 2.EXAMPLE 2.

On a opéré comme dans l'exemple 1, en remplaçant l'aluminisation basse activité en caisse par une aluminisation basse activité en phase vapeur (connue sous le nom de "APVS"). Pour cela, le substrat base nickel, a été recouvert par un prédépôt de palladium-nickel de 10 µm environ, puis a été recuit sous une pression d'air inférieure à 10-5 Torr pendant 2 heures à 850°C et introduit dans une boîte semi-étanche contenant un cément donneur d'aluminium constitué de grenaille grossière d'un alliage de chrome et d'aluminium activé par 1 % en poids de bifluorure d'ammonium (NH4F, HF). L'ensemble est ensuite porté à 1050°C pendant 15 heures sous argon. A l'issue de cette opération l'échantillon présentait une surface saine et de couleur rose brillante. Une coupe métallographique pratiquée perpendiculairement à la surface montre que le revêtement obtenu est épais d'environ 60 µm, monophasé et qu'il présente une structure divisée en trois zones d'épaisseur inégale. Les épaisseurs et les compositions de chacune des trois zones sont identiques à celles des zones obtenues dans l'exemple 1.The procedure was as in Example 1, replacing the low activity aluminization in the body with a low activity aluminization in the vapor phase (known as "APVS"). For this, the nickel-based substrate was covered with a palladium-nickel pre-deposit of approximately 10 μm, then was annealed under an air pressure of less than 10 -5 Torr for 2 hours at 850 ° C. and introduced into a semi-sealed box containing an aluminum donor cement consisting of coarse shot of a chromium-aluminum alloy activated by 1% by weight of ammonium bifluoride (NH 4 F, HF). The whole is then brought to 1050 ° C. for 15 hours under argon. At the end of this operation, the sample had a healthy surface and a bright pink color. A metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 µm thick, single-phase and that it has a structure divided into three zones of uneven thickness. The thicknesses and the compositions of each of the three zones are identical to those of the zones obtained in Example 1.

Des tests d'oxydation à haute température, de corrosion à chaud et d'oxydation isotherme à 1100°C ont donné des résultats comparables à ceux relevés dans l'exemple 1. Cependant, il est à noter que la rugosité d'un tel revêtement est exceptionnellement faible (Ra est de l'ordre de 1 µm), ce qui, augmenté de ses propriétés intéressantes vis à vis de la corrosion à chaud, le rend particulièrement apte à devenir une sous-couche de barrière thermique très performante pour des revêtements microcolonnaires réalisés par dépôt physique en phase vapeur.Oxidation tests at high temperature, hot corrosion and isothermal oxidation at 1100 ° C gave results comparable to those noted in Example 1. However, it should be noted that the roughness of such a coating is exceptionally low (Ra is around 1 µm), which, increased by its advantageous properties with regard to hot corrosion, makes it particularly suitable for becoming a very efficient thermal barrier undercoat for coatings microcolumns produced by physical vapor deposition.

EXEMPLE 3.EXAMPLE 3.

On a opéré comme dans l'exemple 1, en remplaçant l'aluminisation basse activité en caisse par une aluminisation haute activité déposée par peinture. Pour cela, le substrat base nickel a été recouvert par un prédépôt de palladium-nickel de 10 µm environ, puis a été recuit sous une pression d'air inférieure à 10-5 Torr pendant 2 heures à 850°C et revêtu par une peinture aluminisante de type Sermaloy J vendue par la Société Sermatech Inc.. La couche de peinture déposée avait une épaisseur d'environ 100 µm. Après une opération de séchage d'une demi-heure à 80°C sous air et une opération de pré-diffusion d'une demi-heure sous air à 350°C, ainsi qu'il est spécifié dans les normes d'application données par le fabricant du produit, l'ensemble est ensuite porté à 1020°C pendant 4 heures sous argon. A l'issue de cette opération l'échantillon présentait une surface saine et de couleur noire. Après une opération de micro-sablage destiné à éliminer le laitier inhérent à ce type d'aluminisation, l'échantillon présentait une couleur rose sombre caractéristique d'un revêtement modifié par un prédépôt de palladium. Une coupe métallographique pratiquée perpendiculairement à la surface montre que le revêtement obtenu est épais d'environ 60 µm, monophasé et qu'il présente une structure divisée en trois zones d'épaisseur inégale. La première zone située au sommet du revêtement est épaisse d'environ 30 µm et présente un gradient négatif de concentration en palladium (du sommet du revêtement vers le substrat). La composition de cette zone peut s'écrire β-(Nix, Pd1-x)Al, avec 0,4 ≤ x ≤ 0,9. La seconde zone, épaisse d'environ 20 µm, est composée d'aluminiure de nickel de type β-NiAl contenant un peu de palladium en solution solide. Ces deux zones contiennent en outre du chrome en proportion massique de 0,5 % à 5 %. Enfin, la troisième zone, épaisse de 10 µm environ, est caractéristique des revêtements obtenus par diffusion. Ce revêtement contient de plus des molécules telles que du silicium (favorable à une bonne adhérence de la couche d'oxyde formée en service), de la silice et des traces de phosphore. Il est à noter que des mesures de microdureté effectuées sur ce revêtement ont montré qu'elles étaient toujours équivalentes à celle d'un revêtement d'aluminiure simple.The procedure was as in Example 1, replacing the low activity aluminization in the box with a high activity aluminization deposited by painting. For this, the nickel base substrate was covered with a palladium-nickel pre-deposit of approximately 10 µm, then was annealed under an air pressure below 10 -5 Torr for 2 hours at 850 ° C and coated with a paint. Sermaloy J type aluminizing agent sold by Sermatech Inc. The layer of paint deposited had a thickness of approximately 100 μm. After a drying operation of half an hour at 80 ° C in air and a pre-diffusion operation of half an hour in air at 350 ° C, as specified in the given application standards by the manufacturer of the product, the whole is then brought to 1020 ° C for 4 hours under argon. At the end of this operation, the sample had a healthy and black surface. After a micro-sandblasting operation intended to remove the slag inherent in this type of aluminization, the sample had a dark pink color characteristic of a coating modified by a palladium pre-deposit. A metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 µm thick, single-phase and that it has a structure divided into three zones of uneven thickness. The first zone located at the top of the coating is approximately 30 µm thick and has a negative palladium concentration gradient (from the top of the coating to the substrate). The composition of this zone can be written β- (Ni x , Pd 1-x ) Al, with 0.4 ≤ x ≤ 0.9. The second zone, about 20 µm thick, is composed of nickel aluminide of the β-NiAl type containing a little palladium in solid solution. These two zones also contain chromium in a mass proportion of 0.5% to 5%. Finally, the third zone, approximately 10 µm thick, is characteristic of the coatings obtained by diffusion. This coating also contains molecules such as silicon (favorable for good adhesion of the oxide layer formed in service), silica and traces of phosphorus. It should be noted that microhardness measurements carried out on this coating have shown that they are always equivalent to that of a simple aluminide coating.

Des tests d'oxydation à haute température, de corrosion à chaud et d'oxydation isotherme à 1100°C ont donné des résultats comparables à ceux relevés dans l'exemple 1.Tests of high temperature oxidation, hot corrosion and isothermal oxidation at 1100 ° C gave results comparable to those noted in Example 1.

EXEMPLE 4.EXAMPLE 4.

On a opéré comme dans l'exemple 2, en modifiant le prédépôt de palladium nickel. Pour cela le substrat base nickel a été préalablement revêtu d'un prédépôt de palladium-nickel comme dans l'exemple 2, mais d'une épaisseur d'environ 15 µm. On a ensuite déposé 2µm de chrome électrolytique à partir d'un bain de chrome dur classique. Ce dépôt de chrome peut constituer une source de métal promoteur de la variété allotropique α de l'alumine. L'ensemble a été ensuite recuit sous une pression d'air inférieure à 10-5 Torr pendant 2 heures à 850°C et aluminisé comme dans l'exemple 1. A l'issue de cette opération l'échantillon présentait une surface saine et de couleur rose satinée. Une coupe métallographique pratiquée perpendiculairement à la surface montre que le revêtement obtenu est épais d'environ 60 µm, biphasé et qu'il présente une structure divisée en trois zones d'épaisseur inégale. La première zone située au sommet du revêtement est épaisse d'environ 30 µm et présente un gradient négatif de concentration en palladium (du sommet du revêtement vers le substrat). La composition de cette zone peut s'écrire β-(Nix, Pd1-x)Al, avec 0,4 ≤ x ≤ 0,9. De plus, on distingue dans cette zone des fins précipités de α-Cr, caractéristiques d'une aluminisation modifiée par le chrome. La seconde zone, épaisse d'environ 20 µm, est composée d'aluminiure de nickel de type β-NiAl contenant un peu de palladium en solution solide. Enfin, la troisième zone, épaisse de 10 µm environ, est caractéristique des revêtements obtenus par diffusion. Cependant, on notera que cette zone semble moins perturbée que dans les exemples précédents. Ceci est dû au fait que le chrome du substrat a moins diffusé vers le revêtement en cours de construction car cet élément était présent dans le prédépôt modificateur.The procedure was as in Example 2, modifying the pre-deposit of palladium nickel. For this, the nickel-based substrate was previously coated with a palladium-nickel pre-deposit as in Example 2, but with a thickness of approximately 15 μm. Then 2 μm of electrolytic chromium was deposited from a conventional hard chromium bath. This chromium deposit can constitute a source of promoter metal for the α allotropic variety of alumina. The whole was then annealed under an air pressure of less than 10 -5 Torr for 2 hours at 850 ° C. and aluminized as in Example 1. At the end of this operation the sample presented a healthy surface and satin pink color. A metallographic section made perpendicular to the surface shows that the coating obtained is approximately 60 µm thick, two-phase and that it has a structure divided into three zones of uneven thickness. The first zone located at the top of the coating is approximately 30 µm thick and has a negative palladium concentration gradient (from the top of the coating to the substrate). The composition of this zone can be written β- (Ni x , Pd 1-x ) Al, with 0.4 ≤ x ≤ 0.9. In addition, there are in this zone fine precipitates of α-Cr, characteristics of an aluminization modified by chromium. The second zone, about 20 µm thick, is composed of nickel aluminide of the β-NiAl type containing a little palladium in solid solution. Finally, the third zone, approximately 10 µm thick, is characteristic of the coatings obtained by diffusion. However, it should be noted that this zone seems less disturbed than in the previous examples. This is due to the fact that the chromium of the substrate has less diffused towards the coating during construction because this element was present in the modifying pre-deposit.

Les mesures de microdureté effectuées sur ce revêtement ont montré qu'elles étaient équivalentes à celles d'un revêtement d'aluminiure simple modifié par le chrome (460 Hv50). Des tests d'oxydation à haute température, de corrosion à chaud et d'oxydation isotherme à 1100°C ont donné des résultats comparables à ceux relevés dans l'exemple 1, voire supérieurs dans le cas de la corrosion à chaud.The microhardness measurements carried out on this coating showed that they were equivalent to those of a simple aluminide coating modified by chromium (460 Hv 50 ). Tests of high temperature oxidation, of hot corrosion and of isothermal oxidation at 1100 ° C. gave results comparable to those noted in Example 1, or even better in the case of hot corrosion.

Les exemples 5 à 8 décrits ci-après sont des illustrations de revêtement céramique de type barrière thermique comportant une sous-couche décrite dans les exemples 1 à 4 précédents.Examples 5 to 8 described below are illustrations of ceramic coating of the thermal barrier type comprising a sub-layer described in examples 1 to 4 above.

EXEMPLE 5.EXAMPLE 5.

Des revêtements d'aluminiure modifiés par le palladium ont été déposés selon le procédé décrit dans l'exemple 1 sur des disques en alliage N5 de diamètre 25mm et d'épaisseur 6mm. L'alliage N5, dont la composition est rappelée dans le tableau 1 représenté sur la figure 1, est un superalliage monocristallin utilisé dans la fabrication d'aubes et de distributeurs de turbine. Sur une face de ces disques, il a ensuite été déposé un revêtement de barrière thermique en zircone yttriée (ZrO2- 6 à 8% massique d'Y2O3) d'épaisseur sensiblement égale à 125 µm. Ce revêtement a été déposé par évaporation sous bombardement électronique, à une température voisine de 850°C, par une technique décrite par exemple dans le brevet américain US 5 087 477. En parallèle, ce revêtement céramique a également été déposé sur des disques, de même alliage, ayant été revêtus au préalable, soit d'une sous-couche en alliage MCrAlY déposée par projection plasma sous pression réduite, soit d'une sous-couche en alliage MCrAlY réalisée par évaporation sous bombardement électronique (EBPVD), ces deux sous-couches correspondant à l'état de l'art cité dans les brevets US 4 321 311 et US 4 401 697. Des échantillons de même nature ont enfin été réalisés avec des sous-couches en aluminiure simple NiAl et en aluminiure modifié par le platine, tel que décrit par exemple dans le brevet américain US 5 238 752.Palladium-modified aluminide coatings were deposited according to the method described in Example 1 on N5 alloy discs with a diameter of 25mm and a thickness of 6mm. The N5 alloy, the composition of which is given in Table 1 shown in FIG. 1, is a monocrystalline superalloy used in the manufacture of blades and turbine distributors. On one face of these discs, a thermal barrier coating was then deposited in yttria zirconia (ZrO 2 - 6 to 8% by mass of Y 2 O 3 ) of thickness substantially equal to 125 μm. This coating was deposited by evaporation under electronic bombardment, at a temperature close to 850 ° C., by a technique described for example in American patent US 5,087,477. In parallel, this ceramic coating has also been deposited on discs, of the same alloy, having been coated beforehand, either with an MCrAlY alloy sublayer deposited by plasma spraying under reduced pressure, or with an MCrAlY alloy sublayer produced by evaporation under electronic bombardment (EBPVD), these two sublayers corresponding to the state of the art cited in patents US 4,321,311 and US 4,401,697. Samples of the same nature were finally produced with sublayers in simple aluminide NiAl and in aluminide modified by platinum, as described for example in American patent US 5,238,752.

Ces échantillons ont été soumis à un test de cyclage oxydant en four. Pour cela ils ont été introduits dans un four préalablement chauffé à la température de 1135°C sous air de laboratoire ; cette température a été atteinte par les échantillons en 10 minutes environ. Ils ont été maintenus une heure à cette température, puis sortis du four et refroidis par convection forcée d'air de façon à porter leur température de surface à 200°C en 4 minutes environ, créant ainsi un choc thermique. Ils ont ensuite été réintroduits pour un nouveau cycle. Les échantillons ont été ainsi cyclés jusqu'à écaillage de 10 % environ de la surface recouverte de barrière thermique.These samples were subjected to an oxidative cycling test in an oven. For this they were introduced into an oven previously heated to the temperature of 1135 ° C under laboratory air; this temperature was reached by the samples in about 10 minutes. They were kept for one hour at this temperature, then removed from the oven and cooled by forced air convection so as to bring their surface temperature to 200 ° C in about 4 minutes, thus creating a thermal shock. They were then reintroduced for a new cycle. The samples were thus cycled until flaking of approximately 10% of the surface covered with thermal barrier.

Les nombres de cycles avant écaillage pour les différents types d'échantillons sont reproduits dans le tableau 3 représenté sur la figure 3.
Il apparaît dans ce test que la sous-couche modifiée par le palladium selon l'invention confère au revêtement de barrière thermique une résistance à l'écaillage très supérieure à celle des sous-couches classiques et comparable à celle de la sous-couche d'aluminiure modifiée par le platine selon l'état de l'art antérieur, pour un coût de réalisation bien moindre.
The numbers of cycles before flaking for the different types of samples are shown in Table 3 shown in Figure 3.
It appears in this test that the palladium-modified sublayer according to the invention gives the thermal barrier coating a resistance to flaking very much greater than that of conventional sublayers and comparable to that of the sublayer. aluminide modified by platinum according to the state of the prior art, for a much lower production cost.

EXEMPLE 6.EXAMPLE 6.

Des échantillons identiques à ceux décrits dans l'exemple 5 ont été soumis à une expérience de cyclage en four identique à celle décrite dans l'exemple 5 sauf concernant la température d'essai de 1100°C et la durée des cycles utilisant des paliers en température de 24 heures.Samples identical to those described in Example 5 were subjected to an oven cycling experiment identical to that described in Example 5 except for the test temperature of 1100 ° C. and the duration of the cycles using 24 hour temperature steps.

Les nombres de cycles avant écaillage pour les différents types d'échantillons sont reproduits dans le tableau 4 représenté sur la figure 4.The numbers of cycles before flaking for the different types of samples are reproduced in table 4 represented in FIG. 4.

Il apparaît encore dans ce test que la sous-couche modifiée par le palladium selon l'invention confère au revêtement de barrière thermique une résistance à l'écaillage très intéressante.It also appears in this test that the palladium-modified sublayer according to the invention gives the thermal barrier coating a very advantageous resistance to spalling.

EXEMPLE 7.EXAMPLE 7.

Des échantillons identiques à ceux décrits dans l'exemple 6 ont été soumis à une expérience de cyclage oxydant, généré par l'exposition à une flamme d'oxypropane portant la surface des échantillons à 1135°C en 10 à 20 secondes. Les échantillons sont restés 6 minutes à cette température puis ont été refroidis très rapidement. Ce type de test crée des chocs thermiques très sévères au niveau du revêtement de barrière thermique. Le nombre de cycles à l'écaillage lors de ce test est reporté dans le tableau 5 représenté sur la figure 5.Samples identical to those described in Example 6 were subjected to an oxidative cycling experiment, generated by exposure to an oxypropane flame bringing the surface of the samples to 1135 ° C. in 10 to 20 seconds. The samples remained 6 minutes at this temperature and were then cooled very quickly. This type of test creates very severe thermal shock to the thermal barrier coating. The number of chipping cycles during this test is reported in Table 5 shown in Figure 5.

Il apparaît encore dans ce test que la sous-couche selon l'invention confère au revêtement de barrière thermique une résistance à l'écaillage très intéressante.It also appears in this test that the sub-layer according to the invention gives the thermal barrier coating a very attractive flaking resistance.

EXEMPLE 8.EXAMPLE 8.

Des échantillons selon l'exemple 7 ont été fabriqués avec comme substrat des alliages différents tels que les superalliages IN100. Ils ont été testés selon les trois modalités de test décrites respectivement dans les exemples 5, 6, 7. Dans tous les cas, il apparaît que la durée de vie des revêtements de barrière thermique obtenue avec une sous-couche selon l'invention est très supérieure à celle obtenue avec des sous-couches de type MCrAlY ou aluminiures simples.Samples according to Example 7 were produced with different alloys such as the IN100 superalloys as substrate. They were tested according to the three test methods described respectively in Examples 5, 6, 7. In all cases, it appears that the lifetime of the thermal barrier coatings obtained with a sublayer according to the invention is much higher than that obtained with MCrAlY type sublayers or simple aluminides.

L'invention n'est pas limitée aux exemples de réalisation précisément décrits. En particulier, l'épaisseur de la sous-couche peut être différente de celle choisie dans les exemples, mais comprise préférentiellement entre 10 µm et 500 µm.The invention is not limited to the embodiments precisely described. In particular, the thickness of the sub-layer may be different from that chosen in the examples, but preferably between 10 μm and 500 μm.

Les quantités de métal de la mine du platine et de métal promoteur de la formation d'une couche d'oxyde constitué de la variété allotropique α de l'alumine peuvent être différentes de celles choisies dans les exemples.
L'invention n'est pas limitée à l'utilisation du palladium comme métal de la mine du platine mais elle s'étend à l'ensemble des métaux de la mine du platine tels que notamment le platine lui-même et le ruthénium ainsi qu'aux combinaisons de ces métaux. De même l'invention n'est pas limitée à l'utilisation du chrome comme métal promoteur de la formation de la variété allotropique α de l'alumine, mais s'étend aussi à l'utilisation du manganèse, du fer et aux combinaisons de ces métaux.
The amounts of platinum-containing metal and of metal promoting the formation of an oxide layer consisting of the α allotropic variety of alumina may be different from those chosen in the examples.
The invention is not limited to the use of palladium as a metal of the platinum mine but it extends to all of the metals of the platinum mine such as in particular platinum itself and ruthenium as well as 'to combinations of these metals. Similarly, the invention is not limited to the use of chromium as a promoter metal for the formation of the α allotropic variety of alumina, but also extends to the use of manganese, iron and combinations of these metals.

Claims (10)

Revêtement de barrière thermique pour substrat en superalliage comportant un revêtement céramique et une sous-couche interposée entre le substrat et la céramique, caractérisé en ce que la sous-couche est composée d'un aluminiure de nickel et/ou de cobalt modifié par au moins un métal de la mine du platine et, comportant, au moins dans une partie supérieure de la sous-couche au contact avec la céramique, un métal promoteur de la formation d'une couche d'oxyde constitué de la variété allotropique α de l'alumine.Thermal barrier coating for superalloy substrate comprising a ceramic coating and an underlay interposed between the substrate and the ceramic, characterized in that the underlay is composed of a nickel aluminide and / or cobalt modified by at least a metal from the platinum mine and, comprising, at least in an upper part of the sublayer in contact with the ceramic, a metal which promotes the formation of an oxide layer consisting of the allotropic variety α of the alumina. Revêtement de barrière thermique selon la revendication 1, caractérisé en ce que le métal de la mine du platine est choisi dans le groupe constitué du platine lui-même, du palladium, du ruthénium, et des combinaisons de ces métaux.Thermal barrier coating according to claim 1, characterized in that the platinum lead metal is selected from the group consisting of platinum itself, palladium, ruthenium, and combinations of these metals. Revêtement de barrière thermique, selon la revendication 1, caractérisé en ce que le métal de la mine du platine est le palladium et en ce que la quantité de palladium dans la sous-couche est en proportion comprise entre 3% et 40% en moles.Thermal barrier coating according to claim 1, characterized in that the platinum lead metal is palladium and in that the amount of palladium in the undercoat is in proportion between 3% and 40% by moles. Revêtement de barrière thermique selon la revendication 1, caractérisé en ce que le métal promoteur de la formation de la variété allotropique α de l'alumine est choisi dans le groupe constitué du chrome, du fer, du manganèse, et des combinaisons de ces métaux.Thermal barrier coating according to claim 1, characterized in that the metal promoting the formation of the allotropic variety α of alumina is chosen from the group consisting of chromium, iron, manganese, and combinations of these metals. Revêtement de barrière thermique selon la revendication 4, caractérisé en ce que la quantité de métal promoteur de la formation de la variété allotropique α de l'alumine dans la sous-couche est en proportion comprise entre 0,1 % et 10 % en masse.Thermal barrier coating according to claim 4, characterized in that the quantity of metal which promotes the formation of the allotropic variety α of alumina in the sublayer is in proportion between 0.1% and 10% by mass. Revêtement de barrière thermique selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'épaisseur de la sous-couche est comprise entre 10 µm et 500 µm.Thermal barrier coating according to any one of claims 1 to 5, characterized in that the thickness of the undercoat is between 10 µm and 500 µm. Revêtement de barrière thermique selon la revendication 1, caractérisé en ce que la céramique est de structure colonnaire et à base de zircone.Thermal barrier coating according to claim 1, characterized in that the ceramic is of columnar structure and based on zirconia. Revêtement de barrière thermique selon la revendication 7, caractérisé en ce que la zircone est stabilisée par de l'oxyde d'yttrium.Thermal barrier coating according to claim 7, characterized in that the zirconia is stabilized with yttrium oxide. Revêtement de barrière thermique selon l'une quelconque des revendications 1,7 et 8, caractérisé en ce que l'épaisseur de la céramique est comprise entre 20 µm et 600 µm.Thermal barrier coating according to any one of claims 1,7 and 8, characterized in that the thickness of the ceramic is between 20 µm and 600 µm. Pièce métallique en superalliage comportant un revêtement de barrière thermique selon l'une quelconque des revendications 1 à 9.Superalloy metal part comprising a thermal barrier coating according to any one of claims 1 to 9.
EP97400436A 1996-02-29 1997-02-27 Thermal barrier coating with improved underlayer and articles having this thermal barrier coating Expired - Lifetime EP0792948B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9602536A FR2745590B1 (en) 1996-02-29 1996-02-29 THERMAL BARRIER COATING WITH IMPROVED UNDERLAYER AND PARTS COATED WITH SUCH A THERMAL BARRIER
FR9602536 1996-02-29

Publications (2)

Publication Number Publication Date
EP0792948A1 true EP0792948A1 (en) 1997-09-03
EP0792948B1 EP0792948B1 (en) 2001-06-13

Family

ID=9489709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400436A Expired - Lifetime EP0792948B1 (en) 1996-02-29 1997-02-27 Thermal barrier coating with improved underlayer and articles having this thermal barrier coating

Country Status (7)

Country Link
US (1) US5843585A (en)
EP (1) EP0792948B1 (en)
JP (1) JP3961606B2 (en)
CA (1) CA2196744C (en)
DE (1) DE69705141T2 (en)
ES (1) ES2158459T3 (en)
FR (1) FR2745590B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327702A1 (en) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Mcraiy bond coating and method of depositing said mcraiy bond coating
EP0985745B1 (en) * 1998-09-08 2006-07-12 General Electric Company Bond coat for a thermal barrier coating system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495271B1 (en) 1993-03-01 2002-12-17 General Electric Company Spallation-resistant protective layer on high performance alloys
US6103315A (en) * 1998-04-13 2000-08-15 General Electric Co. Method for modifying the surface of a thermal barrier coating by plasma-heating
FR2784120B1 (en) 1998-10-02 2000-11-03 Snecma LOW THERMAL CONDUCTIVITY THERMAL BARRIER COATING, METAL PIECE PROTECTED BY THIS COATING, METHOD FOR DEPOSITING THE COATING
SG81253A1 (en) * 1998-12-10 2001-06-19 Gen Electric Improved diffusion aluminide bond coat for a thermal barrier coating system and method therefor
EP1094131B1 (en) 1999-10-23 2004-05-06 ROLLS-ROYCE plc A corrosion protective coating for a metallic article and a method of applying a corrosion protective coating to a metallic article
US6833328B1 (en) * 2000-06-09 2004-12-21 General Electric Company Method for removing a coating from a substrate, and related compositions
US6812176B1 (en) 2001-01-22 2004-11-02 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
US6682827B2 (en) * 2001-12-20 2004-01-27 General Electric Company Nickel aluminide coating and coating systems formed therewith
US6886327B1 (en) 2002-03-20 2005-05-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration NiAl-based approach for rocket combustion chambers
US6669471B2 (en) 2002-05-13 2003-12-30 Visteon Global Technologies, Inc. Furnace conveyer belt having thermal barrier
JP4173762B2 (en) * 2003-04-04 2008-10-29 株式会社神戸製鋼所 Method for producing alumina film mainly composed of α-type crystal structure and method for producing laminated film-coated member
DE10358813A1 (en) * 2003-12-16 2005-07-21 Alstom Technology Ltd Quasi-crystalline alloy used in the production of a component of a gas turbine or compressor comprises a composition containing aluminum, nickel, ruthenium and transition metal
FR2870858B1 (en) * 2004-05-28 2007-04-06 Snecma Moteurs Sa PROCESS FOR PRODUCING OR REPAIRING A COATING ON A METALLIC SUBSTRATE
DE102004045049A1 (en) * 2004-09-15 2006-03-16 Man Turbo Ag Protection layer application, involves applying undercoating with heat insulating layer, and subjecting diffusion layer to abrasive treatment, so that outer structure layer of diffusion layer is removed by abrasive treatment
US7282271B2 (en) * 2004-12-01 2007-10-16 Honeywell International, Inc. Durable thermal barrier coatings
US7308294B2 (en) 2005-03-16 2007-12-11 Textronics Inc. Textile-based electrode system
US7846261B2 (en) * 2006-02-14 2010-12-07 Aeromet Technologies, Inc. Methods of using halogen-containing organic compounds to remove deposits from internal surfaces of turbine engine components
US7597934B2 (en) * 2006-02-21 2009-10-06 General Electric Company Corrosion coating for turbine blade environmental protection
FR2926137B1 (en) * 2008-01-03 2012-07-06 Snecma METHOD FOR DETERMINING THE ADHESION OF A CERAMIC THERMAL BARRIER LAYER FORMED ON A SUBSTRATE
JP5481993B2 (en) * 2009-07-23 2014-04-23 株式会社Ihi Aluminized processing method
FR2979014B1 (en) * 2011-08-10 2013-08-30 Snecma METHOD FOR DETERMINING THE APPEARANCE OF DECOHESIONS IN A TRANSPARENT CERAMIC COATING LAYER FORMED ON A SUBSTRATE
FR2979015B1 (en) * 2011-08-10 2013-08-30 Snecma METHOD FOR DETERMINING THE ADHESION OF A CERAMIC THERMAL BARRIER LAYER FORMED ON A SUBSTRATE BY APPLYING A THERMAL BARRIER SIDE LASER PULSE
US8334011B1 (en) 2011-08-15 2012-12-18 General Electric Company Method for regenerating oxide coatings on gas turbine components by addition of oxygen into SEGR system
DE102012101032A1 (en) * 2012-02-08 2013-08-08 Eads Deutschland Gmbh Rotary piston engine and method of manufacturing a rotary piston engine
GB201610768D0 (en) 2016-06-21 2016-08-03 Rolls Royce Plc Gas turbine engine component with protective coating
CN106767070A (en) * 2017-01-12 2017-05-31 山东大学 A kind of flat type loop heat pipe evaporator and loop circuit heat pipe
CN115640632A (en) * 2022-10-14 2023-01-24 港珠澳大桥管理局 Method, device, equipment and medium for evaluating service state of steel box girder bridge coating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2072284A5 (en) * 1969-12-05 1971-09-24 Deutsche Edelstahlwerke Ag
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
GB2041246A (en) * 1979-02-01 1980-09-10 Johnson Matthey Co Ltd Improved protective layer
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5015502A (en) * 1988-11-03 1991-05-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
EP0587341A1 (en) * 1992-09-05 1994-03-16 ROLLS-ROYCE plc High temperature corrosion resistant composite coatings
US5427866A (en) * 1994-03-28 1995-06-27 General Electric Company Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems
GB2285632A (en) * 1985-08-19 1995-07-19 Garrett Corp Thermal barrier coating system for superalloy components
US5514482A (en) * 1984-04-25 1996-05-07 Alliedsignal Inc. Thermal barrier coating system for superalloy components
EP0718419A2 (en) * 1994-12-24 1996-06-26 ROLLS-ROYCE plc Thermal barrier coating for a superalloy article and method of application

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401697A (en) * 1980-01-07 1983-08-30 United Technologies Corporation Method for producing columnar grain ceramic thermal barrier coatings
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
GB9204791D0 (en) * 1992-03-05 1992-04-22 Rolls Royce Plc A coated article
US5658614A (en) * 1994-10-28 1997-08-19 Howmet Research Corporation Platinum aluminide CVD coating method
US5562998A (en) * 1994-11-18 1996-10-08 Alliedsignal Inc. Durable thermal barrier coating
DE69509202T2 (en) * 1994-12-24 1999-09-09 Chromalloy United Kingdom Ltd. Thermal insulation layer and method for applying it to a superalloy body
US5512382A (en) * 1995-05-08 1996-04-30 Alliedsignal Inc. Porous thermal barrier coating
US5683761A (en) * 1995-05-25 1997-11-04 General Electric Company Alpha alumina protective coatings for bond-coated substrates and their preparation
FR2757181B1 (en) * 1996-12-12 1999-02-12 Snecma PROCESS FOR PRODUCING A HIGH EFFICIENCY PROTECTIVE COATING AGAINST HIGH TEMPERATURE CORROSION FOR SUPERALLOYS, PROTECTIVE COATING OBTAINED BY THIS PROCESS AND PARTS PROTECTED BY THIS COATING

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2072284A5 (en) * 1969-12-05 1971-09-24 Deutsche Edelstahlwerke Ag
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
GB2041246A (en) * 1979-02-01 1980-09-10 Johnson Matthey Co Ltd Improved protective layer
US5514482A (en) * 1984-04-25 1996-05-07 Alliedsignal Inc. Thermal barrier coating system for superalloy components
GB2285632A (en) * 1985-08-19 1995-07-19 Garrett Corp Thermal barrier coating system for superalloy components
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5015502A (en) * 1988-11-03 1991-05-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US5238752A (en) * 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
EP0587341A1 (en) * 1992-09-05 1994-03-16 ROLLS-ROYCE plc High temperature corrosion resistant composite coatings
US5427866A (en) * 1994-03-28 1995-06-27 General Electric Company Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems
EP0718419A2 (en) * 1994-12-24 1996-06-26 ROLLS-ROYCE plc Thermal barrier coating for a superalloy article and method of application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985745B1 (en) * 1998-09-08 2006-07-12 General Electric Company Bond coat for a thermal barrier coating system
EP1327702A1 (en) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd Mcraiy bond coating and method of depositing said mcraiy bond coating
WO2003057944A3 (en) * 2002-01-10 2004-07-15 Alstom Technology Ltd Mcraly bond coating and method of depositing said mcraly bond coating
US7264887B2 (en) 2002-01-10 2007-09-04 Alstom Technology Ltd. MCrAlY bond coating and method of depositing said MCrAlY bond coating

Also Published As

Publication number Publication date
JP3961606B2 (en) 2007-08-22
JPH09324278A (en) 1997-12-16
US5843585A (en) 1998-12-01
CA2196744C (en) 2004-05-18
ES2158459T3 (en) 2001-09-01
DE69705141D1 (en) 2001-07-19
EP0792948B1 (en) 2001-06-13
FR2745590A1 (en) 1997-09-05
DE69705141T2 (en) 2002-03-14
CA2196744A1 (en) 1997-08-29
FR2745590B1 (en) 1998-05-15

Similar Documents

Publication Publication Date Title
EP0792948B1 (en) Thermal barrier coating with improved underlayer and articles having this thermal barrier coating
EP1085109B1 (en) Thermal barrier coating composition with low thermal conductivity, superalloy mechanical part with ceramic coating of said composition and method for obtaining such coating
EP0848079B1 (en) Method for depositing a protective coating with great efficiency against corrosion at high temperatures for superalloys, protective coating and pieces protected with such a coating
FR2511042A1 (en) COATING COMPOSITION FOR THE PROTECTION OF METALLIC SUBSTRATES AGAINST OXIDATION AND CORROSION AT HIGH TEMPERATURES
FR2861423A1 (en) Forming a thermal protection coating on a superalloy substrate, especially a gas turbine part, comprises forming a bonding sublayer comprising an intermetallic compound of alpha-nickel-platinum and aluminum
FR2814473A1 (en) PROCESS FOR MAKING A PROTECTIVE COATING FORMING THERMAL BARRIER WITH BONDING UNDERLAYER ON A SUBSTRATE IN SUPERALLY AND PART OBTAINED
CA2284384C (en) Thermal barrier coating with low thermal conductivity, metal part protected by said coating, process for depositing said coating
EP3538500A1 (en) Turbomachine part coated with a thermal barrier and process for obtaining same
FR2941963A1 (en) METHOD FOR MANUFACTURING A THERMAL BARRIER COVERING A SUPERALLIATION METALLIC SUBSTRATE AND THERMOMECHANICAL PART RESULTING FROM THIS METHOD OF MANUFACTURE
EP1522533A1 (en) Target destined for electron beam evaporation, its process of manufacture, a thermal barrier layer obtained using the target and a workpiece comprising such a layer.
FR2768750A1 (en) PROCESS FOR IMPROVING OXIDATION AND CORROSION RESISTANCE OF A SUPERALLOY PART AND SUPERALLOY PART OBTAINED BY THIS PROCESS
FR2565525A1 (en) HIGH MECHANICAL RESISTANCE SURFACE COATINGS FOR SUPERALLIATION ARTICLES
FR2718464A1 (en) Superalloy article and method of mfr.
WO2012146864A1 (en) Part comprising a coating over a metal substrate made of a superalloy, said coating including a metal sublayer
FR2827308A1 (en) PROCESS FOR GLOBAL REPAIR OF A PART COATED WITH A THERMAL BARRIER
EP3601634B1 (en) Turbine component made from superalloy and associated manufacturing method
CA2508821C (en) Process for manufacturing or repairing a coating on a metallic substrate
WO2006118455A2 (en) Coating, substrate provided with a coating and method for the application of a corrosion-resistant coating
FR3053076A1 (en) TURBOMACHINE PART COATED WITH A THERMAL BARRIER AND A CMAS PROTECTION COATING AND METHOD FOR OBTAINING SAME
FR2941967A1 (en) Fabricating a thermal barrier covering a superalloy metal substrate, comprises depositing a platinum layer containing platinoids on the substrate, performing a thermal treatment of the piece, and depositing a ceramic layer on treated piece
EP4041930A1 (en) Aircraft part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
FR3113254A1 (en) Protection against oxidation or corrosion of a hollow superalloy part
FR2999611A1 (en) Forming coating on metal substrate of thermochemical component e.g. turbine blade, by providing superalloy article, and forming metallic sub-layer by depositing platinum group metal on substrate layer and providing aluminum in vapor phase
FR3053075A1 (en) TURBOMACHINE PART COATED WITH A THERMAL BARRIER AND A CMAS PROTECTION COATING AND METHOD FOR OBTAINING SAME
FR2966167A1 (en) METHOD FOR DEPOSITING OXIDATION PROTECTION COATING AND HOT CORROSION ON A SUPERALLIATION SUBSTRATE, COATING OBTAINED

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IE SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MANESSE, DENIS GEORGES

Inventor name: MALIE, ANDRE HUBERT LOUIS

Inventor name: LEGER, JACQUES LOUIS

Inventor name: FOURNES, JEAN-PAUL

Inventor name: JOSSO, PIERRE

Inventor name: ALPERINE, SERGE ALEXANDRE

17Q First examination report despatched

Effective date: 19990701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPA

Owner name: SNECMA SERVICES

Owner name: SNECMA MOTEURS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IE SE

REF Corresponds to:

Ref document number: 69705141

Country of ref document: DE

Date of ref document: 20010719

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158459

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010817

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20101216 AND 20101222

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SNECMA

Effective date: 20120816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130207

Year of fee payment: 17

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150122

Year of fee payment: 19

Ref country code: IE

Payment date: 20150123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150123

Year of fee payment: 19

Ref country code: GB

Payment date: 20150123

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160215

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69705141

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160227

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SNECMA, FR

Effective date: 20170713