EP0768826A1 - Kaltwasserdispergierbare zubereitungen fettlöslicher wirkstoffe - Google Patents
Kaltwasserdispergierbare zubereitungen fettlöslicher wirkstoffeInfo
- Publication number
- EP0768826A1 EP0768826A1 EP95924961A EP95924961A EP0768826A1 EP 0768826 A1 EP0768826 A1 EP 0768826A1 EP 95924961 A EP95924961 A EP 95924961A EP 95924961 A EP95924961 A EP 95924961A EP 0768826 A1 EP0768826 A1 EP 0768826A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fat
- soluble active
- preparations
- active ingredients
- preparations according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/174—Vitamins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J3/00—Working-up of proteins for foodstuffs
- A23J3/30—Working-up of proteins for foodstuffs by hydrolysis
- A23J3/32—Working-up of proteins for foodstuffs by hydrolysis using chemical agents
- A23J3/34—Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
- A23J3/346—Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
- A23L2/66—Proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
- A23L33/155—Vitamins A or D
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/40—Colouring or decolouring of foods
- A23L5/42—Addition of dyes or pigments, e.g. in combination with optical brighteners
- A23L5/43—Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
- A23L5/44—Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/40—Shaping or working of foodstuffs characterised by the products free-flowing powder or instant powder, i.e. powder which is reconstituted rapidly when liquid is added
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1658—Proteins, e.g. albumin, gelatin
Definitions
- the present invention relates to the use of partially degraded soy proteins as protective colloids for fat-soluble active substances.
- the invention further relates to preparations containing fat-soluble active ingredients and partially degraded soy proteins and the use of such preparations.
- Fat-soluble active ingredients such as vitamins and carotenoids play an important role in human and animal nutrition, be it as essential substances such as vitamins or proteins, or, especially with carotenoids, as natural or nature-identical dyes that are characteristic of many foods or feeds Give coloring.
- fat-soluble active ingredients have in common is that they are difficult or impossible to handle in their pure form, since they are substances sensitive to oxidation. Furthermore, a fine distribution of the active ingredient is advantageous for optimal resorbability or coloring effect. In addition, water dispersibility of the active ingredients is often desirable. For this reason, these substances are often offered in the form of emulsions or dry powders, the active substances being embedded in a protective colloid either in pure form or as a solution in a physiologically compatible oil.
- the sensitivity of oil-soluble vitamins and carotenoids to oxygen places high demands on the matrix in which the substances are embedded.
- the protective colloid shell must be a good oxygen barrier in order to effectively prevent oxidative decomposition processes.
- Gelatin which has excellent stabilizing properties is therefore often used.
- fish gelatin is also suitable as a protective colloid for fat-soluble substances.
- gelatins are their highly adhesive properties. With the usual drying methods for liquid systems such as spray drying or spray fluidized bed drying, it can when using gelatin-containing products, thread formation or caking occur.
- Synthetic colloids such as polyvinylpyrrolidone or partially synthetic polymers such as cellulose derivatives also have a limited emulsifying capacity and are not always accepted, especially in the food sector.
- soy proteins as protective colloids for fat-soluble substances.
- Such preparations also have a number of disadvantages which are due to the protein-typical properties. In particular, the following should be mentioned: a frequently pronounced tendency to flocculate when exposed to heat or in the presence of salts and not always sufficient emulsifying capacity.
- the products produced in this way often have insufficient cold water dispersibility.
- plant proteins can greatly increase the viscosity of liquid water-containing systems, as a result of which the manufacture or processing of such products can be restricted.
- partially degraded soy proteins are used as protective colloids for fat-soluble active substances, which preferably have a degree of hydrolysis ("DH") of 0.1 to 5%, particularly preferably 0.2 to 3%.
- DH degree of hydrolysis
- the degree of degradation can be determined according to the so-called "pH-stat method" as described by C.F. Jacobsen et al. in “Methods of Biochemical Analysis", Vol. IV, pp. 171-210, Interscience Publishers Inc., New York 1957.
- Partial degradation is usually carried out enzymatically, proteases from plants, microorganisms, fungi or animal proteases being suitable enzymes.
- the partial degradation preferably takes place with the plant protease bromelain.
- soy protein isolates and concentrates with protein contents of 70 to 90% by weight are usually used as soy proteins, the remaining 10 to 30% by weight representing more or less undefined other plant constituents.
- the soy protein isolates are incubated with the enzyme in an aqueous medium, preferably at temperatures from 50 to 70 ° C. and pH values from 7 to 9.
- the appropriate ratio of protein to enzyme can be determined in the individual case for the desired degree of degradation ⁇ simple laboratory tests can be determined.
- aqueous soy protein hydrolyzate solutions are generally prepared in such a way that the protein content is 6 to 10% by weight.
- vitamins A, D, E and K are suitable as fat-soluble active substances, their derivatives such as, for example, vitamin A palmitate or vitamin E acetate, and also carotenoids, for example ⁇ -carotene, apocarotenal, ethyl apocarotenate, Canthaxanthin, zeaxanthin, astaxanthin, lycopene, citranaxanthin or mixtures of the substances mentioned.
- carotenoids for example ⁇ -carotene, apocarotenal, ethyl apocarotenate, Canthaxanthin, zeaxanthin, astaxanthin, lycopene, citranaxanthin or mixtures of the substances mentioned.
- the fat-soluble active ingredients can be added to the preparations according to the invention either in pure form or as a mixture with physiologically compatible oils such as, for example, sesame oil, corn oil, cottonseed oil, soybean oil or peanut oil.
- the preparations according to the invention can also contain customary auxiliaries, for example sugar and sugar alcohols, starch or starch derivatives, stabilizers such as, for example, t-butyl-hydroxy-toluene, and also emulsifiers such as, for example, ascorbyl palmitate or lecithin.
- auxiliaries for example sugar and sugar alcohols, starch or starch derivatives, stabilizers such as, for example, t-butyl-hydroxy-toluene, and also emulsifiers such as, for example, ascorbyl palmitate or lecithin.
- the preparations can be prepared in a manner known per se by emulsifying the fat-soluble active ingredients, either in pure form or as a mixture with physiologically compatible oils or fats, in the aqueous phase containing protective colloids.
- the emulsification can be carried out with the aid of conventional stirrers, rotor-stator dispersers and other customary mixing devices. It is advisable to carry out the emulsification process at 40 to 70 ° C.
- the preparations according to the invention can be both liquid and solid preparations, with solid preparations being preferred. Solid preparations can be easily produced by spray drying or spray fluidized bed drying.
- the preparations according to the invention contain the fat-soluble active ingredients in amounts of 2 to 40, preferably 10 to 20% by weight, based on the total amount of active ingredient and protective colloid.
- the content of active ingredient in the preparations depends on the particular use and can be adjusted accordingly.
- the preparations according to the invention are outstandingly suitable for use in animal nutrition, as an additive to animal feed or, because of their good cold water dispersibility, as a drinking water additive.
- Preparations containing carotenoids are furthermore suitable as food colors, especially for soft drinks.
- the preparations can also be used in other foods. agents are added, for example baking mixes or pudding powders.
- the preparations are also outstandingly suitable for the production of preparations for food supplementation with vitamins.
- the enzyme bromelain used was a commercially available enzyme (2m-Ansom-E / mg from Merck).
- the spray drying of the emulsions was carried out in each case in a "Minor" spray dryer from Niro, the tower inlet temperature being 140 ° C. and the tower outlet temperature being 90 ° C.
- the pH values are adjusted in each case with 1 M aqueous NaOH.
- 35 mixture 80 g of glucose syrup (80%) and 5.0 g of ascorbyl palmitate are added and mixed in by brief stirring with an Ultraturrax (2000 rpm).
- 55 g of vitamin A acetate (stabilized, 2.1 million IU / g) were then emulsified in and the emulsion was further treated for 30 minutes with the Ultraturrax (9000 rpm), with
- the emulsion temperature was kept between 55 ° C and 65 ° C by occasional cooling with a water bath (20 ° C). The emulsion was then spray dried.
- the powder obtained has a vitamin A acetate content of 45.063 million IU / g.
- Example 2 Analogously to Example 1, 45 g of soy protein isolate in 600 ml of water were partially broken down with 0.19 g of bromelain, 80 g of glucose syrup (80%) and 5 g of ascorbyl palmitate were added, and 60 g of D / L-alpha-tocopherol were then emulsified. The determined degree of degradation for the soy protein was 2.9%. The emulsion was processed as in Example 1 and spray dried.
- the powder had a tocopherol content of 33% by weight.
- ethyl apo-8'-carotenate dispersion in a medium-chain triglyceride (Miglyol-810) were stabilized with tocopherol and stirred with an impeller in an oil bath at 180 ° C solved.
- the hot oily solution was emulsified into the aqueous phase and dispersed at 9000 rpm for 20 minutes with the Ultraturrax, the emulsion temperature being kept at about 60 ° C. by cooling with an ice bath.
- the emulsion was dried in a spray dryer.
- the apo- ⁇ '-carotenic acid ethyl ester content in the dry powder was 5%.
- Example 2 Analogously to Example 1, 20 g of soy protein isolate in 280 ml of water were partially broken down with 0.002 g of bromelain in a 1 1 beaker, 110 g of glucose syrup (80%) and 2.6 g of ascorbyl palmitate were added, and Ultraturrax was used (2000 rpm) briefly mixed. The degree of degradation of the protein was 0.1%.
- the citranaxanthin content in the dry powder was 3.0%.
- Example 2 Analogously to Example 1, 20 g of soy protein isolate in 280 ml of water were partially broken down with 0.05 g of bromelain in a 1 1 beaker. The degree of degradation was 2.2%. After 110 g of glucose syrup (80%) and 2.6 g of ascorbyl palmitate have been added, the mixture is briefly mixed by means of Ultraturrax (2000 rpm).
- the ß-carotene content in the dry powder was 2.9%.
- Orangeade drinks and multivitamin juices which were produced with a ⁇ -carotene-containing preparation according to the invention had a more brilliant color and greater clarity than those which were produced using gelatin or native soy protein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- General Preparation And Processing Of Foods (AREA)
- Non-Alcoholic Beverages (AREA)
Abstract
Verwendung von teilabgebautem Sojaprotein als Schutzkolloid für fettlösliche Wirkstoffe.
Description
Kaltwasserdispergierbare Zubereitungen fettlöslicher Wirkstoffe
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von teilabge¬ bauten Sojaproteinen als Schutzkolloide für fettlösliche Wirk¬ stoffe.
Weiterhin betrifft die Erfindung Zubereitungen enthaltend fett¬ lösliche Wirkstoffe und teilabgebaute Sojaproteine sowie die Ver¬ wendung solcher Zubereitungen.
Fettlösliche Wirkstoffe wie Vitamine und Carotinoide spielen eine bedeutende Rolle in der menschlichen und tierischen Ernährung, sei es als essentielle Substanzen wie die Vitamine oder Proteine, oder aber, speziell bei den Carotinoiden, als natürliche oder naturidentische Farbstoffe, die vielen Lebens- oder Futtermitteln eine charakteristische Färbung verleihen.
Gemeinsam ist diesen fettlöslichen Wirkstoffen, daß sie in ihrer reinen Form nur schwer oder gar nicht handhabbar sind, da es sich um oxidationsempfindliche Substanzen handelt. Des weiteren ist für eine optimale Resorbierbarkeit oder Färbewirkung eine Fein- Verteilung des Wirkstoffs von Vorteil. Zusätzlich ist häufig eine Wasserdispergierbarkeit der Wirkstoffe erwünscht. Deshalb werden diese Stoffe häufig in Form von Emulsionen oder Trockenpulvern angeboten, wobei die Wirkstoffe entweder in reiner Form oder als Lösung in einem physiologisch verträglichen Öl feinzerteilt in einem Schutzkolloid eingebettet sind.
Die Empfindlichkeit von öllöslichen Vitaminen und Carotinoiden gegenüber Sauerstoff stellt an die Matrix, in die die Substanzen eingebettet werden, hohe Anforderungen. Die Schutzkolloid-Hülle muß, um oxidative Zersetzungsprozesse wirkungsvoll zu verhindern, eine gute Sauerstoffbarriere darstellen. Häufig wird daher Gela¬ tine verwendet, die hervorragende stabilisierende Eigenschaften aufweist.
Nach der EP-A 0 347 761 eignet sich auch Fischgelatine als Schutzkolloid für fettlösliche Substanzen.
Nachteilig an Gelatinen sind jedoch deren stark klebende Eigen¬ schaften. Mit den für flüssige Systeme üblichen Trocknungsmetho- den wie die Sprühtrocknung oder Sprühwirbelbett-Trocknung kann es
bei Verwendung von gelatinehaltigen Produkten zu Fadenbildung oder Verbackungen kommen.
In andere oft verwendete Schutzkolloide wie Gummi arabicum, Stärke, Dextrine, Pektin oder Tragant lassen sich häufig nur re¬ lativ geringe Konzentrationen von fettlöslichen Substanzen ein¬ betten. Darüber hinaus stand insbesondere Gummi arabicum in der Vergangenheit infolge von Mißernten nicht immer und in ausrei¬ chender Qualität zur Verfügung.
Synthetische Kolloide wie Polyvinylpyrrolidon oder partialsynthe- tische Polymere wie Cellulosederivate zeigen ebenfalls eine be¬ grenzte Emulgierkapazitat und werden vor allem im Lebensmittelbe¬ reich nicht immer akzeptiert .
Weiterhin ist es bekannt, natürliche pflanzliche Proteine wie So¬ japroteine als Schutzkolloide für fettlösliche Substanzen einzu¬ setzen. Solche Präparate weisen aber ebenfalls eine Reihe von Nachteilen auf, die durch die proteintypischen Eigenschaften be- dingt sind. Insbesondere sind hier zu nennen: eine häufig ausge¬ prägte Flockungsneigung bei Hitzeeinwirkung oder in Gegenwart von Salzen sowie nicht immer ausreichende Emulgierkapazitat. Außerdem weisen die so hergestellten Produkte oft eine ungenügende Kalt- wasserdispergierbarkeit auf. Darüber hinaus können Pflanzenpro- teine stark die Viskosität von flüssigen wasserhaltigen Systemen erhöhen, wodurch die Herstellung oder Verarbeitung solcher Pro¬ dukte eingeschränkt sein kann.
Der Einsatz von teilhydrolysierten Sojaproteinen als Ersatz für Schaummittel auf Eiweißbasis in Lebensmitteln ist aus der
US-A 3 932 672 und der US-A 4 015 019 bekannt. Teilhydrolysierte Sojaproteine können auch zur Proteinanreicherung von Erfri¬ schungsgetränken eingesetzt werden (H.S. Olsen und J. Adler-Nis¬ sen, Zeitschrift für Lebensmitteltechnologie und Verfahrenstech- nik, 31 (8), S. 259-360, 1980).
Aus der US-A 4 293 574 ist die Herstellung von mayonnaise-ähnli- chen Lebensmitteln bekannt, wobei als Ersatzmittel für Eier spe¬ zielle alkoholdenaturierte und teilhydrolysierte Sojaproteine eingesetzt werden.
Aufgabe der vorliegenden Erfindung war es, geeignete Schutz¬ kolloide für fettlösliche Wirkstoffe wie Vitamine oder Carotinoide sowie Zubereitungen daraus zu finden.
Demgemäß wurde die Verwendung von teilabgebauten Sojaproteinen als Schutzkolloid und Zubereitungen von fettlöslichen Wirkstoffen gefunden.
Aufgabe der vorliegenden Erfindung war es, geeignete Schutz¬ kolloide für fettlösliche Wirkstoffe zu finden, die keine verarbeitungstechnischen Nachteile mit sich bringen und auf ein¬ fache Weise die Herstellung von stabilen, kaltwasserdispergierba- ren Zubereitungen fettlöslicher Wirkstoffe ermöglichen.
Erfindungsgemäß werden als Schutzkolloide für fettlösliche Wirk¬ stoffe teilabgebaute Sojaproteine verwendet, welche vorzugsweise einen Abbaugrad ("DH": "degree of hydrolysis") von 0,1 bis 5 %, besonders bevorzugt 0,2 bis 3 %, aufweisen. Der Abbaugrad "DH" ist folgendermaßen definiert:
Anzahl der gespaltenen Peptidbindungen
DH = x 100 %
Gesamtzahl der Peptidbindungen
Der Abbaugrad kann gemäß der sogenannten "pH-Stat-Methode" be¬ stimmt werden, wie von C.F. Jacobsen et al. in "Methods of Bio- chemical Analysis", Vol. IV, S. 171-210, Interscience Publishers Inc., New York 1957, beschrieben.
Der Teilabbau erfolgt in der Regel enzymatisch, wobei als ge¬ eignete Enzyme Proteasen aus Pflanzen, Mikroorganismen, Pilzen oder tierische Proteasen in Betracht kommen. Vorzugsweise erfolgt der Teilabbau mit der pflanzlichen Protease Bromelain.
Als Sojaproteine werden üblicherweise handelsübliche Sojaprotein- Isolate und -Konzentrate mit Proteingehalten von 70 bis 90 Gew.-% eingesetzt, wobei die restlichen 10 bis 30 Gew.-% mehr oder weni¬ ger Undefinierte andere Pflanzenbestandteile darstellen. Die So- japrotein-Isolate werden in wäßrigem Medium mit dem Enzym inkubiert, vorzugsweise bei Temperaturen von 50 bis 70°C und pH- Werten von 7 bis 9. Das geeignete Verhältnis Protein zu Enzym kann im Einzelfall für den gewünschten Abbaugrad in für den Fach¬ mann einfachen Laborversuchen ermittelt werden.
Die wäßrigen Sojaproteinhydrolysat-Lösungen werden in der Regel so hergestellt, daß der Proteingehalt 6 bis 10 Gew.-% beträgt.
Als fettlösliche Wirkstoffe kommen erfindungsgemäß die Vita- mine A, D, E und K in Betracht, deren Derivate wie beispielsweise Vitamin-A-Palmitat oder Vitamin-E-Acetat, ebenso wie Carotinoide, beispielsweise ß-Carotin, Apocarotinal, Apocarotinsäureethylester,
Canthaxanthin, Zeaxanthin, Astaxanthin, Lycopin, Citranaxanthin oder Mischungen der genannten Substanzen.
Die fettlöslichen Wirkstoffe können zu den erfindungsgemäßen Zu- bereitungen entweder in reiner Form oder als Gemisch mit physio¬ logisch verträglichen Ölen wie beispielsweise Sesamöl, Mais- keimöl, Baumwollsaatöl, Sojabohnenöl oder Erdnußöl zugegeben wer¬ den.
Zusätzlich zu den fettlöslichen Wirkstoffen und den teilabgebau¬ ten Sojaproteinen können die erfindungsgemäßen Zubereitungen auch übliche Hilfsstoffe enthalten, beispielsweise Zucker und Zucker¬ alkohole, Stärke oder Stärkederivate, Stabilisatoren wie bei¬ spielsweise t-Butyl-hydroxy-toluol, weiterhin auch Emulgatoren wie beispielsweise Ascorbylpalmitat oder Lecithin.
Die Zubereitungen können in an sich bekannter Weise hergestellt werden, indem die fettlöslichen Wirkstoffe entweder in reiner Form oder als Gemisch mit physiologisch verträglichen Ölen oder Fetten in die schutzkolloidhaltige wäßrige Phase einemulgiert werden. Die Emulgierung kann mit Hilfe üblicher Rührer, Rotor- Stator-Dispergatoren und anderer gebräuchlicher Mischvor¬ richtungen erfolgen. Es empfiehlt sich, den Emulgiervorgang bei 40 bis 70°C vorzunehmen.
Die erfindungsgemäßen Zubereitungen können sowohl flüssige als auch feste Zubereitungen sein, wobei feste Zubereitungen bevor¬ zugt sind. Die Herstellung fester Zubereitungen kann auf einfache Weise durch Sprühtrocknung oder Sprühwirbelbett-Trocknung erfol- gen.
Die erfindungsgemäßen Zubereitungen enthalten die fettlöslichen Wirkstoffe in Mengen von 2 bis 40, vorzugsweise 10 bis 20 Gew.-%, bezogen auf die Gesamtmenge an Wirkstoff und Schutzkolloid.
Der Gehalt an Wirkstoff in den Zubereitungen richtet sich nach der jeweiligen Verwendung und kann entsprechend eingestellt wer¬ den.
Die erfindungsgemäßen Zubereitungen eignen sich hervorragend zur Verwendung in der Tierernährung, als Zusatz zu Futtermitteln oder, aufgrund ihrer guten Kaltwasserdispergierbarkeit, als Trinkwasserzusatz. Weiterhin eignen sich carotinoidhaltige Zu¬ bereitungen als Lebensmittelfarbstoffe, speziell für Erfri- schungsgetränke. Die Zubereitungen können auch anderen Lebensmit-
teln zugegeben werden, beispielsweise Backmischungen oder Pud¬ dingpulvern.
Ebenso eignen sich die Zubereitungen hervorragend für die Her- 5 Stellung von Präparaten zur Nahrungsmittelergänzung mit Vitami¬ nen.
Beispiele
10 In den nachstehenden Beispielen 1, 2, 4 und 5 wurden handelsüb¬ liche Sojaprotein-Isolate mit einem Proteingehalt von 85 Gew.-% eingesetzt. In Beispiel 3 wurde ein Konzentrat mit einem Protein¬ gehalt von 65 Gew.-% verwendet.
15 Bei dem verwendeten Enzym Bromelain handelte es sich um ein han¬ delsübliches Enzym (2m-Ansom-E/mg der Fa. Merck) .
Die Sprühtrocknung der Emulsionen erfolgte jeweils in einem Sprühtrockner "Minor" der Fa. Niro, wobei die Turmeingangstempe- 20 ratur 140°C und die Turmausgangstemperatur 90°C betrug.
Die Einstellung der pH-Werte erfolge jeweils mit 1 m wäßriger NaOH.
25 Beispiel 1
In einem 2 1 Becherglas wurden 600 ml Wasser und 45 g Soja- protein-Isolat vorgelegt und unter Rühren auf 60°C erwärmt. Dann wurde der pH auf 9,0 eingestellt. 0,46 g Bromelain zugegeben und
30 30 Minuten lang bei 60°C weitergerührt. Anschließend wurde der pH erneut auf 9,0 eingestellt. Anhand des Natronlauge-Verbrauchs ließ sich ein DH-Wert von 5 berechnen. Das Gemisch wurde mit einem Tauchsieder für 2 Minuten zum Kochen gebracht, wiederum auf 60°C abgekühlt und das verdampfte Wasser ergänzt. Dann wurden dem
35 Gemisch 80 g Glucosesirup (80 %) und 5,0 g Ascorbylpalmitat zuge¬ geben und durch kurzes Rühren mit einem Ultraturrax (2000 U/Min) untergemischt. Daraufhin wurden 55 g Vitamin-A-Acetat (stabili¬ siert, 2,1 Mio IE/g) einemulgiert und die Emulsion 30 Minuten lang mit dem Ultraturrax (9000 U/min) weiterbehandelt, wobei
40 durch gelegentliches Kühlen mit einem Wasserbad (20°C) die Emul¬ sionstemperatur zwischen 55°C und 65°C gehalten wurde. Die Emul¬ sion wurde dann sprühgetrocknet.
Das erhaltene Pulver weist einen Vitamin-A-Acetat-Gehalt von 45 0, 63 Mio IE/g auf.
Beispiel 2
Analog zu Beispiel 1 wurden 45 g Sojaprotein-Isolat in 600 ml Wasser mit 0,19 g Bromelain teilabgebaut, mit 80 g Glucosesirup (80 %) sowie 5 g Ascorbylpalmitat versetzt, und dann 60 g D/L- alpha-Tocopherol einemulgiert. Der ermittelte Abbaugrad für das Sojaprotein lag bei 2,9 %. Die Emulsion wurde wie in Beispiel 1 weiterverarbeitet und sprühgetrocknet.
Das Pulver wies einen Tocopherol-Gehalt von 33 Gew.-% auf.
Beispiel 3
In einem 1 1 Becherglas wurden 300 ml Wasser und 34 g Sojapro- tein-Konzentrat (Proteingehalt 65 %) vorgelegt und unter Rühren mit einem Magnetrührer auf 60°C erwärmt. Dann wurde der pH auf 8,0 eingestellt, 0,05 g Bromelain zugegeben und 30 Minuten lang bei 60°C weitergerührt. Anschließend wurde der pH erneut auf 8,0 ein¬ gestellt, das Gemisch anschließend für 2 Minuten zum Kochen er- hitzt, mit 90 g Glucosesirup (80 %) sowie 3,5 g Ascorbylpalmitat versetzt und mittels Ultraturrax (2000 U/min) kurz gemischt. Der Abbaugrad des Proteins betrug 1,6 %.
In einem 100 ml Rundkolben wurden 27 g einer 30 gew.-%igen Apo-8'-carotinsäure-ethylester-Dispersion in einem mittelkettigen Triglycerid ("Miglyol-810") mit Tocopherol stabilisiert und unter Rühren mit einem Flügelrührer in einem Ölbad bei 180°C gelöst. Die heiße ölige Lösung wurde in die wäßrige Phase einemulgiert und bei 9000 U/Min über 20 Minuten mit dem Ultraturrax dispergiert, wobei durch Kühlen mit einem Eisbad die Emulsionstemperatur bei ca. 60°C gehalten wurde. Die Emulsion wurde in einem Sprühtrockner getrocknet.
Der Apo-β'-carotinsäure-ethylester-Gehalt im Trockenpulver betrug 5 %.
Beispiel 4
Analog zu Beispiel 1 wurden in einem 1 1 Becherglas 20 g Soja- protein-Isolat in 280 ml Wasser mit einem 0,002 g Bromelain teil¬ abgebaut, mit 110 g Glucosesirup (80 %) sowie 2,6 g Ascorbyl¬ palmitat versetzt und mittels Ultraturrax (2000 U/Min) kurz ge¬ mischt. Der Abbaugrad des Proteins betrug 0,1 %.
In einem 100 ml Rundkolben wurden 21,7 g einer 20 %igen Citrana- xanthin-Dispersion in einem mittelkettigen Triglycerid ("Mig- lyol 810") mit Tocopherol stabilisiert und unter Rühren bei 180°C
gelöst. Die heiße ölige Lösung wurde in die wäßrige Phase ein¬ emulgiert und bei 9000 U/Min über 20 Minuten mit dem Ultraturrax dispergiert, wobei durch Kühlen mit einem Eisbad die Emulsions¬ temperatur bei ca. 60°C gehalten wurde.
Der Citranaxanthin-Gehalt im Trockenpulver betrug 3,0 %.
Beispiel 5
Analog zu Beispiel 1 wurden in einem 1 1 Becherglas 20 g Soja- protein-Isolat in 280 ml Wasser mit 0,05 g Bromelain teilabge¬ baut. Der Abbaugrad betrug 2,2 %. Nach Zugabe von 110 g Glucose¬ sirup (80 %) sowie 2,6 g Ascorbylpalmitat wird das Gemisch mit¬ tels Ultraturrax (2000 U/Min) kurz gemischt.
In einem 100 ml Rundkolben wurden 21,6 g einer 20 %igen ß-Carotin- Dispersion in Erdnußöl mit Tocopherol stabilisiert und unter Rüh¬ ren mit einem Flügelrührer in einem Ölbad bei 180°C gelöst. Die heiße ölige Lösung wurde vorsichtig in die wäßrige Phase einemul- giert und bei 9000 U/Min über 20 Minuten mit dem Ultraturrax dis¬ pergiert, wobei durch Kühlen mit einem Eisbad die Emulsionstempe¬ ratur bei ca. 60°C gehalten wurde. Die Emulsion wurde im Sprüh¬ trockner getrocknet.
Der ß-Carotin-Gehalt im Trockenpulver betrug 2,9 %.
Orangeade-Getränke und Multivitaminsäfte, die mit einer erfindungsgemäßen ß-Carotin-haltigen Zubereitung hergestellt wur¬ den, wiesen im Vergleich zu solchen, die unter Verwendung von Ge- latine oder nativem Sojaprotein hergestellt wurden, eine brillan¬ tere Farbe und höhere Klarheit auf.
Claims
1. Verwendung von teilabgebauten Sojaproteinen als Schutz- kolloide für fettlösliche Wirkstoffe.
2. Verwendung nach Anspruch 1, wobei die teilabgebauten Soja¬ proteine einen Abbaugrad von 0,1 bis 5 % aufweisen.
3. Kaltwasserdispergierbare Zubereitungen, enthaltend als wesentliche Bestandteile fettlösliche Wirkstoffe und als Schutzkolloid teilabgebaute Sojaproteine.
4. Zubereitungen nach Anspruch 3, welche in fester Form vor- liegen.
5. Zubereitungen nach Anspruch 3 oder 4, enthaltend als fett¬ lösliche Wirkstoffe die Vitamine A, D, E oder K oder ein Carotinoid oder Gemische dieser Wirkstoffe.
6. Zubereitungen nach einem der Ansprüche 3 bis 5, enthaltend 2 bis 40 Gew.-% eines fettlöslichen Wirkstoffes, bezogen auf die Gesamtmenge von Wirkstoff und Schutzkolloid.
7. Verwendung der Zubereitungen gemäß einem der Ansprüche 3 bis 6 in der Tierernährung.
8. Verwendung der Zubereitungen gemäß einem der Ansprüche 3 bis 6 als Zusätze in menschlichen Nahrungsmitteln.
9. Verwendung der Zubereitungen gemäß einem der Ansprüche 3 bis 6 zur Ergänzung der menschlichen Nahrung.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4424085A DE4424085A1 (de) | 1994-07-11 | 1994-07-11 | Kaltwasserdispergierbare Zubereitungen fettlöslicher Wirkstoffe |
DE4424085 | 1994-07-11 | ||
PCT/EP1995/002559 WO1996001570A1 (de) | 1994-07-11 | 1995-07-03 | Kaltwasserdispergierbare zubereitungen fettlöslicher wirkstoffe |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0768826A1 true EP0768826A1 (de) | 1997-04-23 |
Family
ID=6522640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95924961A Withdrawn EP0768826A1 (de) | 1994-07-11 | 1995-07-03 | Kaltwasserdispergierbare zubereitungen fettlöslicher wirkstoffe |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0768826A1 (de) |
JP (1) | JPH10502626A (de) |
CN (1) | CN1152857A (de) |
AU (1) | AU2926495A (de) |
CA (1) | CA2194796A1 (de) |
DE (1) | DE4424085A1 (de) |
WO (1) | WO1996001570A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19642359A1 (de) | 1996-10-14 | 1998-04-16 | Basf Ag | Stabile Emulsionen und Trockenpulver von Mischungen fettlöslicher Vitamine, deren Herstellung und Verwendung |
FR2774261B1 (fr) * | 1998-02-02 | 2000-03-31 | Rhodia Chimie Sa | Composition a usage alimentaire sous forme d'une emulsion seche, son procede de fabrication et son utilisation |
DE19951615A1 (de) * | 1999-10-26 | 2001-05-03 | Basf Ag | Verfahren zur Stabilisierung von flüssigen, wäßrigen Präparaten fettlöslicher Substanzen |
IL134701A0 (en) | 2000-02-23 | 2001-04-30 | J P M E D Ltd | Homogeneous solid matrix containing vegetable proteins |
DE10064387A1 (de) | 2000-12-21 | 2002-06-27 | Basf Ag | Verfahren zur Herstellung von Trockenpulvern eines oder mehrerer Sauerstoff-haltiger Carotinoide |
DE10104494A1 (de) | 2001-01-31 | 2002-08-01 | Basf Ag | Verfahren zur Herstellung von Trockenpulvern eines oder mehrerer Carotinoide |
IL146737A (en) * | 2001-11-26 | 2010-02-17 | Lycored Natural Prod Ind Ltd | Method for protecting lycopene dispersed in tomato fibers |
DE102005030952A1 (de) | 2005-06-30 | 2007-01-18 | Basf Ag | Verfahren zur Herstellung einer wässrigen Suspension und einer pulverförmigen Zubereitung eines oder mehrerer Carotinoide |
US20080241320A1 (en) * | 2007-03-30 | 2008-10-02 | Dsm Ip Assets B.V. | Protective hydrocolloid for active ingredients |
FR2953409B1 (fr) * | 2009-12-09 | 2011-12-23 | Adisseo France Sas | Particules de principes actifs liposolubles stables |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4167587A (en) * | 1977-06-22 | 1979-09-11 | Danforth Richard C | Compositions and process for colored liquid food or drink |
JPS6042317A (ja) * | 1983-08-18 | 1985-03-06 | Nisshin Oil Mills Ltd:The | 化粧料 |
DE3702030A1 (de) * | 1987-01-24 | 1988-08-04 | Basf Ag | Pulverfoermige, wasserdispergierbare carotinoid-zubereitungen und verfahren zu ihrer herstellung |
EP0298419B1 (de) * | 1987-07-06 | 1992-05-20 | Katayama Chemical Works Co., Ltd. | Partielles Abbauprodukt von Proteinen, Verfahren zu seiner Herstellung und seine Verwendung |
US5082672A (en) * | 1989-06-21 | 1992-01-21 | The United States Of American As Represented By The Secretary Of Agriculture | Enzymatic deamidation of food proteins for improved food use |
DK0410236T3 (da) * | 1989-07-25 | 1993-12-13 | Hoffmann La Roche | Fremgangsmåde til fremstilling af caratenoidpræparater |
US5053240A (en) * | 1989-10-24 | 1991-10-01 | Kalamazoo Holdings, Inc. | Norbixin adducts with water-soluble or water-dispersible proteins or branched-chain or cyclic polysaccharides |
-
1994
- 1994-07-11 DE DE4424085A patent/DE4424085A1/de not_active Withdrawn
-
1995
- 1995-07-03 CN CN95194123A patent/CN1152857A/zh active Pending
- 1995-07-03 AU AU29264/95A patent/AU2926495A/en not_active Abandoned
- 1995-07-03 JP JP8504092A patent/JPH10502626A/ja active Pending
- 1995-07-03 CA CA002194796A patent/CA2194796A1/en not_active Abandoned
- 1995-07-03 EP EP95924961A patent/EP0768826A1/de not_active Withdrawn
- 1995-07-03 WO PCT/EP1995/002559 patent/WO1996001570A1/de not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9601570A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2926495A (en) | 1996-02-09 |
JPH10502626A (ja) | 1998-03-10 |
DE4424085A1 (de) | 1996-01-18 |
WO1996001570A1 (de) | 1996-01-25 |
CN1152857A (zh) | 1997-06-25 |
CA2194796A1 (en) | 1996-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3190465B2 (ja) | 脂溶性物質を含有する安定な液体製品 | |
EP2413710B1 (de) | Gebrauchsfertige, stabile suspension teilamorpher beta-carotinpartikel | |
EP0795585B1 (de) | Feinverteilte Carotinoid- und Retinoidsuspensionen und Verfahren zu ihrer Herstellung | |
DE2521815C3 (de) | Diätnahrungspräparate und -mischungen und Verfahren zu deren Herstellung | |
EP0981969B1 (de) | Carotinoid-Formulierungen, enthaltend ein Gemisch aus Beta-Carotin, Lycopin und Lutein | |
US6863914B1 (en) | Stable, aqueous dispersions and stable, water-dispersible dry powders of xanthophylls, and production and use of the same | |
EP2062570B1 (de) | Verfahren zur gewinnung von stabilen mikroemulsionen von derivaten von oxycarotenoiden kurzkettiger organischer säuren, erhaltene mikroemulsionen und diese enthaltende formulierung | |
DE60014868T3 (de) | Nahrungszusammensetzung insbesondere für die spezifische gastrointestinale reifung in frühgeborenen säugetieren | |
EP1228705B1 (de) | Verfahren zur Herstellung von Trockenpulvern eines oder mehrerer Carotinoide | |
EP0347751A1 (de) | Stabile, kaltwasserdispergierbare Präparate | |
EP0565989A1 (de) | Präparate von fettlöslichen Substanzen | |
EP1219292B1 (de) | Verfahren zur Herstellung von Trockenpulvern eines oder mehrerer Sauerstoff-haltiger Carotinoide | |
EP2111125B1 (de) | Flüssige formulierungen enthaltend carotinoide | |
DE10253111A1 (de) | Pulverförmige Phytosterol-Formulierungen | |
EP0986963A2 (de) | Stabile, pulverförmige Lycopin-Formulierungen, enthaltend Lycopin mit einem Kristallinitätsgrad von grösser 20% | |
EP1981357A2 (de) | Zusammensetzungen mit beta-carotin | |
WO2007003599A2 (de) | Emulgatorsystem, emulsion und deren verwendung | |
JP2009505809A (ja) | 乳化剤系、そのエマルジョンおよびその使用 | |
EP2124615A1 (de) | Ölige formulierungen | |
CN109157510A (zh) | 一种水溶性类胡萝卜素制剂及其制备方法与应用 | |
DE60314526T2 (de) | Modifizierte lupinproteine zur herstellung einer wasser-dispergierbaren produktform fettlöslicher stoffe | |
EP2403362B1 (de) | Pulverförmige zusammensetzungen von astaxanthin-derivaten ii | |
DE60223569T2 (de) | Zeacarotene-farbstoff für lebensmittel oder pharmazeutika | |
EP0768826A1 (de) | Kaltwasserdispergierbare zubereitungen fettlöslicher wirkstoffe | |
DE69630666T2 (de) | Wirkstoff für verbesserten Fettstoffwechsel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19971120 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980701 |