EP0698418A2 - Method and apparatus for simultaneously dispersing and spraying of at least two fluids - Google Patents
Method and apparatus for simultaneously dispersing and spraying of at least two fluids Download PDFInfo
- Publication number
- EP0698418A2 EP0698418A2 EP95112765A EP95112765A EP0698418A2 EP 0698418 A2 EP0698418 A2 EP 0698418A2 EP 95112765 A EP95112765 A EP 95112765A EP 95112765 A EP95112765 A EP 95112765A EP 0698418 A2 EP0698418 A2 EP 0698418A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- liquid
- gas
- liquids
- atomizing chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/06—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane
- B05B7/062—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet
- B05B7/065—Spray pistols; Apparatus for discharge with at least one outlet orifice surrounding another approximately in the same plane with only one liquid outlet and at least one gas outlet an inner gas outlet being surrounded by an annular adjacent liquid outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0408—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/02—Spray pistols; Apparatus for discharge
- B05B7/04—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
- B05B7/0416—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
- B05B7/0441—Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/10—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
- F23D11/101—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
- F23D11/102—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/442—Waste feed arrangements
- F23G5/446—Waste feed arrangements for liquid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/10—Liquid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/54402—Injecting fluid waste into incinerator
Definitions
- the invention relates to a method and a device for the simultaneous atomization and dispersion of at least two liquids using propellant gas, in which the resulting gas-liquid mixture is passed through an atomizing chamber consisting of series-connected expansion spaces and attached in the form of a spray cone from a downstream of the atomizing chamber Nozzle gap flows out.
- a method in which a liquid is mixed with a propellant gas in an internal atomizing chamber and then emerges through a nozzle gap at the end of the atomizing chamber is described in DE 32 16 420. It is characterized by an internal mixing of liquid and propellant in fluidically connected chambers, in which the propellant is expanded and compressed several times on the way until it leaves the nozzle. In this way, very good premixing takes place in the atomizer chamber before the mixture emerges from the nozzle with the conical annular gap and is dispersed even further during this expansion. Due to this pressure jump, the liquid is atomized very finely and introduced into the surrounding space as a hollow cone.
- DE 26 45 142 describes a method for generating a stream of at least two mixed and atomized fluids, in which the liquids and a propellant gas are first combined, mixed and pre-atomized in a first injector-like flow passage. The resulting gas-liquid mixture is then accelerated and, after leaving the nozzle body, strikes a baffle or reflection device. In this reflection and impact zone, the second mixing stage can be seen, another mixing and atomization takes place before the atomized mixed fluid leaves the nozzle in the form of an open parachute.
- the invention has for its object to develop a method and a device for the simultaneous dispersion and atomization of several liquids using propellant gas, in which the liquids are mixed homogeneously and reliably with high mixing quality and then atomized as a swarm of drops in the form of a closed hollow cone.
- immiscible liquids should be used.
- liquids F1 and F2 mixed with propellant gas are fed as individual streams T1 and T2 alternately in the circumferential direction into the atomizing chamber; i.e. the individual streams T1 and T2 seen in the circumferential direction alternately on the gutter.
- the spray cone emerging at the nozzle gap can advantageously be stabilized in that a rotationally symmetrical gas curtain with a radial flow component is generated within the nozzle gap.
- a gas with an axial flow component can also be blown in rotationally symmetrically outside the spray cone.
- a preferred application of this multi-phase mixing and dispersing process is that the multi-phase mixture consisting of several liquids and propellant gas is sprayed in a hollow cone shape through the nozzle gap into the combustion chamber of an incineration plant and is burned there together with solid dusty fuels or liquid or gaseous fuels.
- One of the liquids can consist of a liquid waste material with a fluctuating calorific value, to which a liquid of high calorific value is admixed in the atomizing chamber as a second liquid to regulate the flame temperature in the combustion chamber.
- Such incineration has been successfully used in the thermal disposal of waste containing chlorinated hydrocarbons.
- one of the liquids fed into the multi-phase mixing nozzle consists of the chlorinated hydrocarbon-containing waste material and the other liquid consists of a liquid fuel.
- the distributor elements preferably consist of y-shaped pairs of bores with leg lines and common foot lines, the leg lines being connected to the gas and liquid collection channels and the foot lines opening into the atomizing chamber.
- the gutter is advantageously provided with a sharp tear-off edge on the inside.
- annular gap or radial gas bores for generating a gas curtain are arranged in the nozzle head within the spray cone emerging from the nozzle gap.
- a further stabilization of the spray cone can be achieved by a cylindrical gas curtain enveloping the spray cone.
- axially parallel gas holes are provided in the nozzle flange.
- the shape of the spray cone can advantageously be varied in that the nozzle gap can be adjusted with regard to its gap width.
- Fig. 3 it is indicated that the liquid collection channel for the liquid F1 with liquid supply lines 13 and the liquid collection channel for the liquid F2 is provided with a liquid supply line 14.
- the propellant gas compressed air
- the propellant gas is fed to the gas collection duct 6 through the gas feed line 15 (see FIG. 3).
- the foot lines 9 and 12 belonging to the distributor elements are oriented in the nozzle flange 1 in such a way that the liquids flowing through and accelerated by the propellant gas first strike an annular gutter 16 arranged in the upper part of the atomizing chamber 2.
- the gutter 16 has on its inside (towards the nozzle axis) a sharp tear-off edge 17.
- the individual streams T 1... N dispersed with the propellant gas are distributed in the trough-shaped depression of the gutter 16.
- the two liquid flows F 1 and F 2 each divided into the liquid collection channels are mixed intensively for the first time by the impact and the equalization in the gutter 16.
- At the tear-off edge 17 of the gutter 16 there is a first atomization of the premixed liquids F1 and F2.
- the relaxation spaces 19 are connected in series in terms of flow technology in the atomizer chamber 2, so that the multiphase gas / liquid mixture in the atomizer chamber 2 is alternately compressed and decompressed. Due to this alternating compression and expansion, a high mixing quality is achieved.
- the multi-phase mixture consisting of the propellant gas and the liquids F 1 and F 2 is formed by an annular outlet gap 20 that tapers conically in the direction of flow accelerates.
- the annular outlet gap 20 on the nozzle head 3 is arranged at an obtuse angle against the nozzle axis. Since the pressure losses in compression and expansion in the expansion spaces 19 connected in series decrease the pressure in the flow direction, the volume flow increases with the mass flow remaining the same.
- the pressurized multiphase mixture is atomized for the last time to form a hollow cone 22 (see FIG. 3). The swarm of droplets consisting of the multiphase mixture thus leaves the nozzle head 3 through the opening 21 along a conical surface.
- the outlet gap 20 is delimited on the one hand by a conical web 23 at the end of the atomizing chamber 2 and on the other hand by a cone plate 24 belonging to the nozzle head.
- the conical plate 24 is arranged on a central inner tube 25 extending from the nozzle head 1 and is adjustable in height. In this way, the slot width of the exit gap 20 can be adjusted. By adjusting the gap width, the throughput and also the shape of the hollow cone can be influenced within certain limits.
- a conical cap 26 is screwed onto the height-adjustable conical plate 24 such that an annular gap 27 remains between the conical plate 24 and the conical cap 26, the opening of which directly adjoins the outlet gap 21.
- Tapered plate 24 and tapered cap 26 together form the nozzle head 3.
- the annular gap 27 is connected to a central distributor space 28 in the tapered cap 26, which in turn is connected to the inner tube 25.
- the distributor space 28 additionally has gas bores 29 which extend radially outwards.
- An inert gas air or nitrogen
- an axial gas bores 30 in the extension of the gas collection channel 6 in the nozzle flange 1 also rotationally symmetrically a gas, e.g. outside the spray cone. Air blown in with an axial flow component. The spray cone is further stabilized by this cylindrical gas curtain.
- other distribution elements e.g. an annular gap interrupted at regular intervals.
- annular gas collection channel 6 which shows a cross section through the nozzle head 1, in particular the annular liquid collection channels 4 and 5 for the liquids F1 and F2 and the externally arranged, also annular gas collection channel 6 can be seen.
- the leg lines 10 and 7 for the liquids F1 and F2 and the leg lines 11 and 8 for the propellant gas obliquely downwards, the gas leg lines 11 with the liquid leg lines 10 (for the liquid F1) and unite the gas leg lines 8 with the liquid leg lines 7 (for the liquid F2) (y-shaped distributor bores).
- the axial gas bores 30 are arranged.
- FIG. 3 schematically shows the swarm of drops 22 emerging from the outlet gap 21 on the nozzle head 3 in the form of a hollow cone.
- the homogeneous distribution of the liquids F 1 and F 2 could be demonstrated by means of small sample trays 32 set up on the bottom 31 inside the spray cone 22 by subsequent analysis of the samples.
- the multi-phase mixing nozzle With the aid of the multi-phase mixing nozzle described, it is possible to intensively mix and atomize two or more liquids with very different physical properties. Due to the extremely short average residence time in the entire multi-phase mixing nozzle in the range from 5 to 100 ms, chemical reactions that slowly occur between the liquids do not impair the atomization quality. It has also been found that, due to the extremely short residence time in the multiphase mixing nozzle, even polymerizing liquids can be mixed with one another and the mixture can be atomized without problems.
- the multi-phase mixing nozzle practically enables in-situ mixing and atomization. Polymerizing liquids could e.g. not premixed in a tank and then atomized.
- the flow guidance described in the vicinity of the outlet gap 21 also effectively and permanently prevents caking on the nozzle head in the form of salts or polymers. It has also been found that the multi-phase mixing nozzle requires only relatively low admission pressures for the propellant gas and the liquids in the range from 1 to 4 bar. This also enables the atomization of highly viscous liquid mixtures.
- a preferred application of the method according to the invention is that the multi-phase mixing nozzle is inserted into the combustion chamber of an incineration plant and a swarm of hollow cones is generated there.
- the combustion of liquid waste with a strongly fluctuating calorific value can be carried out successfully.
- the multi-phase mixing nozzle is supplied with the liquid waste material as liquid F 1 and a high-calorific liquid fuel as liquid F 2.
- the flow rate of the liquid fuel F2 can then be controlled so that the temperature in the combustion chamber remains constant.
- the combustion chamber temperature is the reference variable for the fuel flow. It is also possible for a reaction liquid which increases or decreases the flame temperature to be metered in in a controlled manner in the multiphase mixing nozzle in order to keep the flame temperature constant.
- the method according to the invention is particularly suitable for the disposal of liquid problematic waste materials in the chemical industry.
- different, immiscible wastewater or wastewater concentrate together with a liquid fuel are fed into the multiphase mixing nozzle, atomized and burned.
- the combustion process can be improved by the radial and rotationally symmetrical gas curtains (from the annular gap 27 and the axial gas bores 30) are used when oxygen-rich air is used as the gas, so that the gas curtains support and stabilize the combustion as an additional oxygen supplier.
- the process according to the invention can be used for the thermal disposal (combustion) of chlorinated hydrocarbon-containing waste materials with low and, above all, constant residual pollutant concentrations, one of the liquids fed into the multiphase mixing nozzle consisting of the chlorinated hydrocarbon-containing waste liquid, which as a second liquid is a liquid fuel is mixed into the atomizing chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Nozzles (AREA)
- Colloid Chemistry (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur gleichzeitigen Zerstäubung und Dispergierung von mindestens zwei Flüssigkeiten unter Verwendung von Treibgas, bei dem das resultierende Gas-Flüssigkeitsgemisch durch eine aus hintereinandergeschalteten Entspannungsräumen bestehende Zerstäuberkammer geführt wird und in Form eines Sprühkegels aus einem stromabwärts an der Zerstäuberkammer angebrachten Düsenspalt ausströmt.The invention relates to a method and a device for the simultaneous atomization and dispersion of at least two liquids using propellant gas, in which the resulting gas-liquid mixture is passed through an atomizing chamber consisting of series-connected expansion spaces and attached in the form of a spray cone from a downstream of the atomizing chamber Nozzle gap flows out.
Ein Verfahren, bei dem eine Flüssigkeit mit einem Treibgas in einer internen Zerstäuberkammer gemischt wird und anschließend durch einen Düsenspalt am Ende der Zerstäuberkammer austritt, wird in DE 32 16 420 beschrieben. Charakteristisch ist dabei eine interne Vermischung von Flüssigkeit und Treibgas in strömungstechnisch hintereinandergeschalteten Kammern, in denen das Treibgas mehrmals auf dem Weg bis zum Verlassen der Düse entspannt und wieder verdichtet wird. Auf diese Weise erfolgt in der Zerstäuberkammer eine sehr gute Vorvermischung, bevor das Gemisch aus der Düse mit dem kegelförmigen Ringspalt austritt, und bei dieser Expansion noch weiter dispergiert wird. Aufgrund dieses Drucksprungs wird die Flüssigkeit sehr fein zerstäubt und als Hohlkegel in den umgebenden Raum eingetragen.A method in which a liquid is mixed with a propellant gas in an internal atomizing chamber and then emerges through a nozzle gap at the end of the atomizing chamber is described in
Weiterhin wird in DE 26 45 142 ein Verfahren zur Erzeugung eines Stroms von mindestens zwei gemischten und zerstäubten Fluiden beschrieben, bei dem zunächst die Flüssigkeiten und ein Treibgas in einem ersten injektorähnlichen Strömungsdurchlaß zusammengeführt, gemischt und vorzerstäubt werden. Das resultierende Gas-Flüssigkeitsgemisch wird dann anschließend beschleunigt und trifft nach dem Verlassen des Düsenkörpers auf eine Prallfläche bzw. Reflexionsvorrichtung. In dieser Reflexions- und Aufprallzone, die als zweite Mischstufe anzusehen ist, findet eine weitere Mischung und Zerstäubung statt, bevor das zerstäubte Mischfluid die Düse in Form eines offenen Fallschirms verläßt.Furthermore, DE 26 45 142 describes a method for generating a stream of at least two mixed and atomized fluids, in which the liquids and a propellant gas are first combined, mixed and pre-atomized in a first injector-like flow passage. The resulting gas-liquid mixture is then accelerated and, after leaving the nozzle body, strikes a baffle or reflection device. In this reflection and impact zone, the second mixing stage can be seen, another mixing and atomization takes place before the atomized mixed fluid leaves the nozzle in the form of an open parachute.
Mit den bisher bekannten Mischdüsen ist es unmöglich, zwei oder mehr Flüssigkeiten gleichzeitig und mit hoher Mischgüte in Form eines geschlossenen Hohlkegels zu zerstäuben. Besonders problematisch ist insbesondere die Dispergierung und Zerstäubung mehrerer Flüssigkeiten, wenn sich diese Flüssigkeiten nicht ineinander lösen, oder nicht emulgieren lassen, oder chemisch miteinander reagieren. Derartig "miteinander unverträgliche" Flüssigkeiten werden im folgenden als "nicht mischbare Flüssigkeiten" bezeichnet. Eine wichtige Anwendung der Erfindung besteht ferner darin, daß zwei Flüssigkeiten mit unterschiedlichen Eigenschaften gleichzeitig verbrannt werden sollen. Die beiden Flüssigkeiten können z.B. stark unterschiedliche Heizwerte aufweisen. Um eine zeitstabile gleichmäßige Verbrennung zu gewährleisten, müssen die beiden Flüssigkeiten sehr gut miteinander vermischt werden.With the previously known mixing nozzles, it is impossible to atomize two or more liquids simultaneously and with high mixing quality in the form of a closed hollow cone. The dispersion and atomization of several liquids is particularly problematic if these liquids cannot be dissolved into one another, or cannot be emulsified, or react chemically with one another. Such "incompatible" liquids are referred to below as "immiscible liquids". An important application of the invention is also that two liquids with different properties are to be burned simultaneously. The two liquids can e.g. have very different calorific values. In order to ensure a stable combustion over time, the two liquids must be mixed very well.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur gleichzeitigen Dispergierung und Zerstäubung von mehreren Flüssigkeiten unter Verwendung von Treibgas zu entwickeln, bei dem die Flüssigkeiten homogen und betriebssicher mit hoher Mischgüte gemischt und anschließend als Tropfenschwarm in Form eines geschlossenen Hohlkegels zerstäubt werden. Insbesondere sollen dabei nicht mischbare Flüssigkeiten zum Einsatz kommen.The invention has for its object to develop a method and a device for the simultaneous dispersion and atomization of several liquids using propellant gas, in which the liquids are mixed homogeneously and reliably with high mixing quality and then atomized as a swarm of drops in the form of a closed hollow cone. In particular, immiscible liquids should be used.
Diese Aufgabe wird unter Verwendung einer aus hintereinandergeschalteten Entspannungsräumen bestehenden Zerstäuberkammer mit einem stromabwärts angebrachten Düsenspalt erfindungsgemäß dadurch gelöst,
- a) daß vor dem Eintritt in die Zerstäuberkammer mit dem Treibgas dispergierte Einzelströme T1...n der verschiedenen Flüssigkeiten erzeugt werden,
- b) daß diese Einzelströme durch Verteilelemente rotationssymmetrisch in die Zerstäuberkammer eingespeist und derart auf eine ringförmige Fangrinne in der Zerstäuberkammer gerichtet werden, daß die Einzelströme T1...n in Umfangsrichtung gesehen in zyklischer Reihenfolge auf der Fangrinne auftreffen,
- c) und daß das resultierende Mehrphasengemisch aus den Flüssigkeiten F1...n und dem Treibgas in der Zerstäuberkammer in Strömungsrichtung abwechselnd komprimiert und entspannt und anschließend durch den Düsenspalt in Form eines Hohlkegels versprüht wird.
- a) that individual streams T 1 ... n of the various liquids dispersed with the propellant gas are generated before entering the atomizing chamber,
- b) that these individual streams are fed into the atomizing chamber in a rotationally symmetrical manner by distribution elements and are directed onto an annular collecting channel in the atomizing chamber in such a way that the individual streams T 1.
- c) and that the resulting multiphase mixture of the liquids F 1 ... n and the propellant gas in the atomizing chamber is alternately compressed and relaxed in the flow direction and then sprayed through the nozzle gap in the form of a hollow cone.
Im einfachsten Fall, wenn nur zwei Flüssigkeiten F₁ und F₂ gemischt und zerstäubt werden sollen, werden die mit Treibgas vermischten Flüssigkeiten F₁ und F₂ als Einzelströme T₁ und T₂ in Umfangsrichtung abwechselnd in die Zerstäuberkammer eingespeist; d.h. die Einzelströme T₁ und T₂ treffen in Umfangsrichtung gesehen abwechselnd auf der Fangrinne auf.In the simplest case, if only two liquids F₁ and F₂ are to be mixed and atomized, the liquids F₁ and F₂ mixed with propellant gas are fed as individual streams T₁ and T₂ alternately in the circumferential direction into the atomizing chamber; i.e. the individual streams T₁ and T₂ seen in the circumferential direction alternately on the gutter.
Vorteilhaft kann der am Düsenspalt austretende Sprühkegel dadurch stabilisiert werden, daß innerhalb des Düsenspalts ein rotationssymmetrischer Gasvorhang mit einer radialen Strömungskomponente erzeugt wird. Zur weiteren Stabilisierung kann auch außerhalb des Sprühkegels rotationssymmetrisch ein Gas mit einer axialen Strömungskomponente eingeblasen werden.The spray cone emerging at the nozzle gap can advantageously be stabilized in that a rotationally symmetrical gas curtain with a radial flow component is generated within the nozzle gap. For further stabilization, a gas with an axial flow component can also be blown in rotationally symmetrically outside the spray cone.
Eine bevorzugte Anwendung dieses Mehrphasen-Misch- und Dispergierverfahrens besteht darin, daß das aus mehreren Flüssigkeiten und Treibgas bestehende Mehrphasengemisch durch den Düsenspalt hohlkegelförmig in die Brennkammer einer Verbrennungsanlage gesprüht wird und dort zusammen mit festen staubförmigen Brennstoffen oder flüssigen bzw. gasförmigen Brennstoffen verbrannt wird. Dabei kann eine der Flüssigkeiten aus einem flüssigen Abfallstoff mit schwankendem Heizwert bestehen, dem in der Zerstäuberkammer als zweite Flüssigkeit eine heizwertreiche Flüssigkeit zur Regelung der Flammentemperatur in der Brennkammer beigemischt wird. Eine derartige Verbrennung konnte mit Erfolg bei der thermischen Entsorgung von chlorkohlenwasserstoffhaltigen Abfallstoffen eingesetzt werden. In diesem Fall besteht also die eine der in die Mehrphasenmischdüse eingespeiste Flüssigkeit aus dem chlorkohlenwasserstoffhaltigen Abfallstoff und die andere Flüssigkeit aus einem flüssigen Brennstoff.A preferred application of this multi-phase mixing and dispersing process is that the multi-phase mixture consisting of several liquids and propellant gas is sprayed in a hollow cone shape through the nozzle gap into the combustion chamber of an incineration plant and is burned there together with solid dusty fuels or liquid or gaseous fuels. One of the liquids can consist of a liquid waste material with a fluctuating calorific value, to which a liquid of high calorific value is admixed in the atomizing chamber as a second liquid to regulate the flame temperature in the combustion chamber. Such incineration has been successfully used in the thermal disposal of waste containing chlorinated hydrocarbons. In this case, one of the liquids fed into the multi-phase mixing nozzle consists of the chlorinated hydrocarbon-containing waste material and the other liquid consists of a liquid fuel.
Das erfindungsgemäße Verfahren wird mit Hilfe einer speziellen Mehrphasenmischdüse realisiert, die im wesentlichen aus einem Düsenflansch mit Flüssigkeits- und Treibgaszuführungen und einem Düsenkopf mit einem kreisförmigen Düsenspalt für die Zerstäubung des Gas/Flüssigkeitsgemischs, sowie einer zwischen Düsenflansch und Düsenkopf angeordneten Zerstäuberkammer mit mehreren, hintereinander geschalteten Entspannungsräumen besteht. Diese Mehrphasenmischdüse ist erfindungsgemäß dadurch gekennzeichnet,
- a) daß der Düsenflansch rotationssymmetrisch angeordnete Verteilerelemente aufweist, die jeweils aus einer miteinander verbundenen Flüssigkeits- und Treibgaszuleitung bestehen und in die Zerstäuberkammer münden,
- b) daß die Treibgaszuleitung mit einem Gassammelkanal und die Flüssigkeitszuleitungen gruppenweise mit Flüssigkeitssammelkanälen verbunden sind, die jeweils mit einem Anschluß für die Zuführung einer Flüssigkeit versehen sind,
- c) und daß, in Strömungsrichtung gesehen, hinter der Einmündung der Verteilerelemente an der Innenwand der Zerstäuberkammer eine ringförmige Fangrinne zur Vermischung und Verteilung der mit dem Treibgas dispergierten Einzelflüssigkeitsströme T1...n angebracht ist.
- a) that the nozzle flange has rotationally symmetrically arranged distributor elements, each consisting of an interconnected liquid and propellant gas feed line and opening into the atomizer chamber,
- b) the propellant gas supply line is connected to a gas collection channel and the liquid supply lines are connected in groups to liquid collection channels, each of which is provided with a connection for supplying a liquid,
- c) and that, seen in the flow direction, an annular gutter for mixing and distributing the individual liquid streams T 1 ... n dispersed with the propellant gas is attached behind the mouth of the distributor elements on the inner wall of the atomizing chamber.
Vorzugsweise bestehen die Verteilerelemente aus y-förmigen Bohrungspaaren mit Schenkelleitungen und gemeinsamen Fußleitungen, wobei die Schenkelleitungen mit den Gas- und Flüssigkeitssammelkanälen verbunden sind und die Fußleitungen in die Zerstäuberkammer münden.The distributor elements preferably consist of y-shaped pairs of bores with leg lines and common foot lines, the leg lines being connected to the gas and liquid collection channels and the foot lines opening into the atomizing chamber.
Die Fangrinne ist vorteilhaft an ihrer Innenseite mit einer scharfen Abreißkante versehen.The gutter is advantageously provided with a sharp tear-off edge on the inside.
Eine weitere Verbesserung besteht darin, daß im Düsenkopf ein Ringspalt oder radiale Gasbohrungen zur Erzeugung eines Gasvorhangs innerhalb des aus dem Düsenspalt austretenden Sprühkegels angeordnet sind. Eine weitere Stabilisierung des Sprühkegels kann durch einen zylindrischen, den Sprühkegel einhüllenden Gasvorhang erreicht werden. Zu diesem Zweck sind im Düsenflansch achsenparallele Gasbohrungen vorgesehen. Durch diese strömungstechnischen Maßnahmen wird verhindert, daß zerstaubte Flüssigkeitspartikel an die Düsenoberfläche gelangen und dort ein die Bedüsung behindernder Produktaufbau stattfindet.Another improvement is that an annular gap or radial gas bores for generating a gas curtain are arranged in the nozzle head within the spray cone emerging from the nozzle gap. A further stabilization of the spray cone can be achieved by a cylindrical gas curtain enveloping the spray cone. For this purpose, axially parallel gas holes are provided in the nozzle flange. These fluidic measures prevent atomized liquid particles from reaching the surface of the nozzle and preventing the spraying of the product.
Vorteilhaft kann die Form des Sprühkegels dadurch variiert werden, daß der Düsenspalt bezüglich seiner Spaltweite einstellbar ist.The shape of the spray cone can advantageously be varied in that the nozzle gap can be adjusted with regard to its gap width.
Mit der Erfindung werden folgende Vorteile erzielt:
- Die Mischung und Zerstäubung von zwei oder mehr Flüssigkeiten kann innerhalb einer sehr kurzen Zeit erfolgen (0,005 s bis 0,5 s)
- Vor allem können auch nicht mischbare, insbesondere reaktive Flüssigkeiten, die nicht zusammen in einem Behälter homogenisiert werden können, problemlos gemischt werden.
- Ebenso können hinsichtlich ihrer Viskosität unterschiedliche Flüssigkeiten gleichmäßig gemischt und zerstäubt werden.
- Es hat sich gezeigt, daß aufgrund schnell wechselnder instabiler Strömungen in der Zerstäuberkammer und innerhalb der Düse ein Selbstreinigungseffekt eintritt.
- Aufgrund des intensiven Kontakts der gemischten Flüssigkeiten mit der Zerstäuberkammerinnenwand wird ein guter Wärmeübergang gewährleistet, so daß die Wärme durch die Flüssigkeit schnell abtransportiert wird. Aus diesem Grund braucht bei der Anfertigung der Mehrphasenmischdüse kein hochtemperaturbeständiger Werkstoff eingesetzt werden.
Die erfindungsgemäße Mehrphasendüse ist sowohl für kleine (5 l / h) als auch für große Durchsätze (10 000 l / h und mehr) geeignet. - Die erfindungsgemäße Mehrphasenmischdüse arbeitet mit einem sehr hohen Wirkungsgrad; d.h. die auf das Flüssigkeitsvolumen bezogene erforderliche Treibgasmenge ist vergleichsweise gering.
- Bei Verwendung der Mehrphasenmischdüse als Brennerdüse kann problemlos ein im Heizwert stabiles Brennstoffgemisch bereitgestellt werden, wenn ein oder mehrere Flüssigbrennstoffe schwankende Heizwerte aufweisen. Diese Einstellung und Regelung ist vor allem bei der Verbrennung von flüssigen Abfallbrennstoffen mit variierender Zusammensetzung von großer Bedeutung, weil damit eine stabile Verbrennung mit niedrigem Schadstoffausstoß erreicht werden kann.
Über den radialen und axialen Luftvorhang kann sauerstoffreiche Luft zu beiden Seiten des Sprühkegels zugeführt werden, so daß auch bei minderwertigem Brennstoff eine hohe Stabilität der Flamme gewährleistet ist. - Aufgrund der hohen Hohlkegelsprühfläche mit relativ geringer Tropfendichte erfolgt eine großflächige Verteilung des Brennstoffs im Brennraum. Dadurch ist eine wesentliche Voraussetzung für einen guten Ausbrand erfüllt.
- Fig. 1 einen Längsquerschnitt durch die Mehrphasenmischdüse,
- Fig. 2 einen Querschnitt AA' durch den Düsenflansch der Mehrphasenmischdüse und
- Fig. 3 das Sprühbild der Mehrphasenmischdüse
- Two or more liquids can be mixed and atomized in a very short time (0.005 s to 0.5 s)
- Above all, immiscible, especially reactive liquids that cannot be homogenized together in one container can also be mixed without any problems.
- Different liquids can also be mixed and atomized uniformly with regard to their viscosity.
- It has been shown that a self-cleaning effect occurs due to rapidly changing unstable flows in the atomizing chamber and inside the nozzle.
- Due to the intensive contact of the mixed liquids with the inner wall of the atomizer chamber, good heat transfer is ensured, so that the heat is quickly removed by the liquid. For this reason, no high-temperature resistant material needs to be used in the manufacture of the multi-phase mixing nozzle.
The multiphase nozzle according to the invention is suitable for both small (5 l / h) and large throughputs (10,000 l / h and more). - The multi-phase mixing nozzle according to the invention works with a very high efficiency; ie the required amount of propellant gas related to the liquid volume is comparatively small.
- When using the multi-phase mixing nozzle as a burner nozzle, a fuel mixture that is stable in the calorific value can be provided without any problems if one or more liquid fuels have fluctuating calorific values. This setting and control is particularly important when burning liquid waste fuels with varying compositions, because it enables stable combustion with low pollutant emissions to be achieved.
Via the radial and axial air curtain, oxygen-rich air can be supplied to both sides of the spray cone, so that a high stability of the flame is ensured even with inferior fuel. - Due to the high hollow cone spray area with a relatively low droplet density, the fuel is distributed over a large area in the combustion chamber. This fulfills an essential requirement for a good burnout.
- 1 shows a longitudinal cross section through the multi-phase mixing nozzle,
- Fig. 2 shows a cross section AA 'through the nozzle flange of the multi-phase mixing nozzle and
- Fig. 3 shows the spray pattern of the multi-phase mixing nozzle
In Fig. 3 ist angedeutet, daß der Flüssigkeitssammelkanal für die Flüssigkeit F₁ mit Flüssigkeitszuleitungen 13 und der Flüssigkeitssammelkanal für die Flüssigkeit F₂ mit einer Flüssigkeitszuleitung 14 versehen ist. Das Treibgas (Preßluft) wird dem Gassammelkanal 6 durch die Gaszuleitung 15 zugeführt (s. Fig. 3).In Fig. 3 it is indicated that the liquid collection channel for the liquid F₁ with
Die zu den Verteilerelementen gehörenden Fußleitungen 9 und 12 sind im Düsenflansch 1 so orientiert, daß die hindurchströmenden, vom Treibgas beschleunigten Flüssigkeiten zunächst auf eine ringförmige, im oberen Teil der Zerstäuberkammer 2 angeordnete Fangrinne 16 auftreffen. Die Fangrinne 16 weist an ihrer Innenseite (zur Düsenachse hin) eine scharfe Abreißkante 17 auf. In der rinnenförmigen Vertiefung der Fangrinne 16 verteilen sich die mit dem Treibgas dispergierten Einzelströme T1...n. Die beiden jeweils in den Flüssigkeitssammelkanälen aufgeteilten Flüssigkeitsströme F₁ und F₂ werden durch den Aufprall und die Vergleichmäßigung in der Fangrinne 16 ein erstes Mal intensiv gemischt. An der Abreißkante 17 der Fangrinne 16 erfolgt eine erste Zerstäubung der vorgemischten Flüssigkeiten F₁ und F₂. Eine weitere Zerstäubung und Vermischung findet dann in den durch Stege 18 gebildeten Entspannungsräumen 19 in der Zerstäuberkammer 2 statt. Die Entspannungsräume 19 sind in der Zerstäuberkammer 2 strömungstechnisch hintereinander geschaltet, so daß das mehrphasige Gas/Flüssigkeitsgemisch in der Zerstäuberkammer 2 abwechselnd komprimiert und dekomprimiert wird. Durch diese abwechselnde Verdichtung und Entspannung wird eine hohe Mischgüte erreicht.The
Am Austritt der Zerstäuberkammer 2 wird das aus dem Treibgas und den Flüssigkeiten F₁ und F₂ bestehende Mehrphasengemisch durch einen sich in Strömungsrichtung konisch verjüngenden ringförmigen Austrittsspalt 20 beschleunigt. Der ringförmige Austrittsspalt 20 am Düsenkopf 3 ist unter einem stumpfen Winkel gegen die Düsenachse angeordnet. Da durch die Druckverluste bei der Komprimierung und Entspannung in den hintereinander geschalteten Entspannungsräumen 19 der Druck in Strömungsrichtung gesehen abnimmt, nimmt bei gleichbleibendem Massenstrom der Volumenstrom zu. An der Öffnung 21 des Austrittsspalts 20 findet letztmalig eine Zerstäubung des unter Druck stehenden Mehrphasengemisches unter Ausbildung eines Hohlkegels 22 statt (s. Fig. 3). Der aus dem Mehrphasengemisch bestehende Tropfenschwarm verläßt also den Düsenkopf 3 durch die Öffnung 21 längs einer Kegelfläche.At the outlet of the
Der Austrittsspalt 20 wird einerseits von einem konischen Steg 23 am Ende der Zerstäuberkammer 2 und andererseits durch eine zum Düsenkopf gehörende Kegelplatte 24 begrenzt. Die Kegelplatte 24 ist an einem zentralen, vom Düsenkopf 1 ausgehenden Innenrohr 25 höhenverstellbar angeordnet. Auf diese Weise kann die Schlitzbreite des Austrittsspalts 20 eingestellt werden. Durch Verstellung der Spaltweite kann der Durchsatz und auch die Form des Hohlkegels in gewissen Grenzen beeinflußt werden.The outlet gap 20 is delimited on the one hand by a
Auf die höhenverstellbare Kegelplatte 24 ist eine Kegelkappe 26 derart aufgeschraubt, daß zwischen der Kegelplatte 24 und der Kegelkappe 26 ein Ringspalt 27 verbleibt, dessen Öffnung unmittelbar an den Austrittsspalt 21 angrenzt. Kegelplatte 24 und Kegelkappe 26 bilden zusammen den Düsenkopf 3. Der Ringspalt 27 ist mit einem zentralen Verteilerraum 28 in der Kegelkappe 26 verbunden, der seinerseits mit dem Innenrohr 25 in Verbindung steht. Der Verteilerraum 28 weist zusätzlich radial nach außen geführte Gasbohrungen 29 auf. Dem zentralen Innenrohr 25 kann über den Düsenflansch 1 ein Inertgas zugeführt werden (Luft oder Stickstoff), das über den Verteilerraum 28 durch den Ringspalt 27 und die Gasbohrungen 29 ausströmt. Auf diese Weise wird innerhalb des Sprühkegels ein rotationssymmetrischer Gasvorhang mit einer radialen Strömungskomponente erzeugt. Dieser Gasvorhang hat die Aufgabe, das sich im Bereich der Kegelkappe 26 bildende Unterdruckgebiet aufzufüllen. Ohne diese Auffüllung besteht die Tendenz, daß der Tropfenschwarm in Hohlkegelform unterhalb des Austrittsspaltes 21 kollabiert. Die Zerstäubung würde dann die Form eines Vollkegels annehmen, wobei in der Nähe des Austrittsspaltes eine bauchförmige Aufweitung auftritt.A
Ferner wurde beobachtet, daß auch oberhalb des Sprühkegels in Wandnähe der Zerstäuberkammer 2 Unterdruck entsteht, der ebenfalls zu Instabilitäten führen kann. Um dies zu verhindern, wird mittels der axialen Gasbohrungen 30 in Verlängerung des Gassammelkanals 6 im Düsenflansch 1 auch außerhalb des Sprühkegels rotationssymmetrisch ein Gas, z.B. Luft, mit einer axialen Strömungskomponente eingeblasen. Durch diesen zylindrischen Gasvorhang wird der Sprühkegel noch weiter stabilisiert. Anstelle der rotationssymmetrisch angeordneten axialen Gasbohrungen 30 können natürlich auch andere Verteilelemente, z.B. ein in regelmäßigen Abständen unterbrochener Ringspalt, vorgesehen werden.It was also observed that a vacuum is also formed above the spray cone near the wall of the
Aus der Fig. 2, die einen Querschnitt durch den Düsenkopf 1 zeigt, sind insbesondere die ringförmigen Flüssigkeitssammelkanäle 4 und 5 für die Flüssigkeiten F₁ und F₂ und der außen angeordnete, ebenfalls ringförmige Gassammelkanal 6 ersichtlich. Von den Sammelkanälen führen, in regelmäßigem Abstand über den Umfang verteilt, die Schenkelleitungen 10 und 7 für die Flüssigkeiten F₁ und F₂ und die Schenkelleitungen 11 und 8 für das Treibgas schräg nach unten, wobei sich die Gasschenkelleitungen 11 mit den Flüssigkeitsschenkelleitungen 10 (für die Flüssigkeit F₁) und die Gasschenkelleitungen 8 mit den Flüssigkeitsschenkelleitungen 7 (für die Flüssigkeit F₂) vereinigen (y-förmige Verteilerbohrungen). Neben den vom Boden des Gassammelkanals 6 ausgehenden Gasschenkelleitungen 8 und 11 sind die axialen Gasbohrungen 30 angeordnet.From Fig. 2, which shows a cross section through the nozzle head 1, in particular the annular
Fig. 3 zeigt schematisch den vom Austrittsspalt 21 am Düsenkopf 3 ausgehenden Tropfenschwarm 22 in Form eines Hohlkegels. Die homogene Verteilung der Flüssigkeiten F₁ und F₂ konnte mit Hilfe kleiner am Boden 31 innerhalb des Sprühkegels 22 aufgestellter Probenwannen 32 durch nachfolgende Analyse der Proben nachgewiesen werden.FIG. 3 schematically shows the swarm of
Bei einem Versuch wurden jeweils 1 000 l / h der Flüssigkeiten F₁ und F₂ sowie 130 m³ / h Preßluft (auf den Normzustand bezogen) der Mehrphasenmischdüse zugeführt. Der Druckabfall in der Mehrphasenmischdüse betrug 2,6 bar, der erzeugte Sprühwinkel des Hohlkegels 95°. Das Volumen der Zerstäuberkammer 2 betrug dabei 120 000 mm³. Mit dem an der Mehrphasenmischdüse anliegenden Systemdruck von 2,6 bar ergab sich eine mit der Mischzeit gleichzusetzende Verweilzeit von 13 ms in der Zerstäubungskammer 2.In an experiment, 1,000 l / h of the liquids F 1 and
Mit Hilfe der beschriebenen Mehrphasenmischdüse ist es möglich, zwei oder mehrere Flüssigkeiten mit stark unterschiedlichen physikalischen Eigenschaften intensiv zu vermischen und zu verdüsen. Aufgrund der äußerst geringen mittleren Verweilzeit in der gesamten Mehrphasenmischdüse im Bereich von 5 bis 100 ms führen auch zwischen den Flüssigkeiten langsam ablaufende chemische Reaktionen zu keiner Beeinträchtigung der Zerstäubungsqualität. Es wurde auch gefunden, daß selbst polymerisierende Flüssigkeiten aufgrund der äußerst kurzen Verweilzeit in der Mehrphasenmischdüse miteinander gemischt und die Mischung problemlos zerstäubt werden kann. Die Mehrphasenmischdüse ermöglicht praktisch eine in-situ Mischung und Zerstäubung. Polymerisierende Flüssigkeiten könnten z.B. nicht in einem Tank vorgemischt und anschließend zerstäubt werden. Durch die beschriebene Strömungsführung in der Nähe des Austrittsspalts 21 (axialer und radialer Gasvorhang) werden ferner Anbackungen am Düsenkopf in Form von Salzen oder Polymerisaten wirksam und auf Dauer verhindert. Ferner hat sich herausgestellt, daß die Mehrphasenmischdüse nur relativ geringe Vordrücke für das Treibgas und die Flüssigkeiten im Bereich von 1 bis 4 bar benötigt. Dadurch wird auch die Zerstäubung von höherviskosen Flüssigkeitsmischungen ermöglicht.With the aid of the multi-phase mixing nozzle described, it is possible to intensively mix and atomize two or more liquids with very different physical properties. Due to the extremely short average residence time in the entire multi-phase mixing nozzle in the range from 5 to 100 ms, chemical reactions that slowly occur between the liquids do not impair the atomization quality. It has also been found that, due to the extremely short residence time in the multiphase mixing nozzle, even polymerizing liquids can be mixed with one another and the mixture can be atomized without problems. The multi-phase mixing nozzle practically enables in-situ mixing and atomization. Polymerizing liquids could e.g. not premixed in a tank and then atomized. The flow guidance described in the vicinity of the outlet gap 21 (axial and radial gas curtain) also effectively and permanently prevents caking on the nozzle head in the form of salts or polymers. It has also been found that the multi-phase mixing nozzle requires only relatively low admission pressures for the propellant gas and the liquids in the range from 1 to 4 bar. This also enables the atomization of highly viscous liquid mixtures.
Eine bevorzugte Anwendung des erfindungsgemäßen Verfahrens besteht darin, daß die Mehrphasenmischdüse in die Brennkammer einer Verbrennungsanlage eingesetzt wird und dort ein hohlkegelförmiger Tropfenschwarm erzeugt wird. Damit kann insbesondere die Verbrennung flüssiger Abfallstoffe mit stark schwankendem Heizwert erfolgreich durchgeführt werden. Zu diesem Zweck wird der Mehrphasenmischdüse der flüssige Abfallstoff als Flüssigkeit F₁ und ein heizwertreicher flüssiger Brennstoff als Flüssigkeit F₂ zugeführt. Der Mengenstrom des flüssigen Brennstoffs F₂ kann dann so geregelt werden, daß die Temperatur im Brennraum konstant bleibt. Die Brennkammertemperatur ist dabei die Führungsgröße für den Brennstoffmengenstrom. Es ist auch möglich, daß in der Mehrphasenmischdüse eine die Flammentemperatur erhöhende oder erniedrigende Reaktionsflüssigkeit geregelt zudosiert wird, um die Flammentemperatur konstant zu halten. Das erfindungsgemäße Verfahren ist aber vor allem für die Entsorgung von flüssigen Problemabfallstoffen in der chemischen Industrie geeignet. Zu diesem Zweck werden z.B. unterschiedliche, nicht mischbare Abwässer bzw. Abwasserkonzentrate zusammen mit einem flüssigen Brennstoff in die Mehrphasenmischdüse eingespeist, zerstäubt und verbrannt. Der Verbrennungsvorgang kann dabei durch die radialen und rotationssymmetrischen Gasvorhänge (aus dem Ringspalt 27 und den axialen Gasbohrungen 30) verbessert werden, wenn als Gas sauerstoffreiche Luft verwendet wird, so daß die Gasvorhänge als zusätzlicher Sauerstofflieferant die Verbrennung unterstützen und stabilisieren. Insbesondere kann das erfindungsgemäße Verfahren zur thermischen Entsorgung (Verbrennung) von Chlorkohlenwasserstoff-haltigen Abfallstoffen mit geringen und vor allem konstanten Restschadstoffkonzentrationen eingesetzt werden, wobei eine der in die Mehrphasenmischdüse eingespeisten Flüssigkeiten aus der Chlorkohlenwasserstoff-haltigen Abfallflüssigkeit besteht, dem als zweite Flüssigkeit ein flüssiger Brennstoff in der Zerstäuberkammer beigemischt wird.A preferred application of the method according to the invention is that the multi-phase mixing nozzle is inserted into the combustion chamber of an incineration plant and a swarm of hollow cones is generated there. In particular, the combustion of liquid waste with a strongly fluctuating calorific value can be carried out successfully. For this purpose, the multi-phase mixing nozzle is supplied with the liquid waste material as liquid F 1 and a high-calorific liquid fuel as
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4430307A DE4430307A1 (en) | 1994-08-26 | 1994-08-26 | Method and device for the simultaneous dispersion and atomization of at least two liquids |
DE4430307 | 1994-08-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0698418A2 true EP0698418A2 (en) | 1996-02-28 |
EP0698418A3 EP0698418A3 (en) | 1996-11-20 |
EP0698418B1 EP0698418B1 (en) | 2001-11-07 |
Family
ID=6526627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95112765A Expired - Lifetime EP0698418B1 (en) | 1994-08-26 | 1995-08-14 | Method and apparatus for simultaneously dispersing and spraying of at least two fluids |
Country Status (5)
Country | Link |
---|---|
US (1) | US5639024A (en) |
EP (1) | EP0698418B1 (en) |
AT (1) | ATE208237T1 (en) |
DE (2) | DE4430307A1 (en) |
ES (1) | ES2166795T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888990A (en) * | 2015-05-08 | 2015-09-09 | 中国环境科学研究院 | Double-fluid atomization spray gun |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6158672A (en) * | 2000-01-12 | 2000-12-12 | Northrop Grumman Corporation | Spray gun atomizing air balance |
WO2001064352A1 (en) * | 2000-03-03 | 2001-09-07 | Saurin Enterprises Pty. Ltd. | Twin fluid centrifugal nozzle for spray dryers |
GB2362847A (en) * | 2000-06-02 | 2001-12-05 | Hamworthy Combustion Eng Ltd | Fuel burner nozzle |
KR100384065B1 (en) * | 2000-07-07 | 2003-05-14 | 오창선 | Method for burning liquid fuel |
DE10345342A1 (en) * | 2003-09-19 | 2005-04-28 | Engelhard Arzneimittel Gmbh | Producing an ivy leaf extract containing hederacoside C and alpha-hederin, useful for treating respiratory diseases comprises steaming comminuted ivy leaves before extraction |
US20060283980A1 (en) * | 2005-06-20 | 2006-12-21 | Wang Muh R | Atomizer system integrated with micro-mixing mechanism |
US8097712B2 (en) | 2007-11-07 | 2012-01-17 | Beelogics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
US8962584B2 (en) | 2009-10-14 | 2015-02-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Compositions for controlling Varroa mites in bees |
US9873096B2 (en) * | 2009-12-29 | 2018-01-23 | Indian Oil Corporation Limited | Feed nozzle assembly |
ES2641642T3 (en) | 2010-03-08 | 2017-11-10 | Monsanto Technology Llc | Polynucleotide molecules for gene regulation in plants |
US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
CN104160028A (en) | 2011-09-13 | 2014-11-19 | 孟山都技术公司 | Methods and compositions for weed control |
US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
US9840715B1 (en) | 2011-09-13 | 2017-12-12 | Monsanto Technology Llc | Methods and compositions for delaying senescence and improving disease tolerance and yield in plants |
UA115535C2 (en) | 2011-09-13 | 2017-11-27 | Монсанто Текнолоджи Ллс | Methods and compositions for weed control |
BR112014005975A8 (en) | 2011-09-13 | 2017-09-12 | Monsanto Technology Llc | PLANT CONTROL METHOD, METHOD OF REDUCING EXPRESSION OF A PDS GENE IN A PLANT, MICROBIAL EXPRESSION CASSETTE, METHOD OF MAKING A POLYNUCLEOTIDE, METHOD OF IDENTIFICATION OF POLYNUCLEOTIDES, AND COMPOSITIONS FOR WEED CONTROL |
US20130326731A1 (en) | 2011-09-13 | 2013-12-05 | Daniel Ader | Methods and compositions for weed control |
US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
BR112014005979A8 (en) | 2011-09-13 | 2017-09-12 | Monsanto Technology Llc | AGRICULTURAL CHEMICAL METHODS AND COMPOSITIONS FOR PLANT CONTROL, METHOD FOR REDUCING EXPRESSION OF A PPG OXIDASE GENE IN A PLANT, MICROBIAL EXPRESSION CASSETTE, METHOD FOR MAKING A POLYNUCLEOTIDE, METHOD FOR IDENTIFYING POLYNUCLEOTIDES USEFUL IN MODULATING THE EXPRESSION OF THE PPG OXIDASE GENE AND HERBICIDAL MIXTURE |
US9920326B1 (en) | 2011-09-14 | 2018-03-20 | Monsanto Technology Llc | Methods and compositions for increasing invertase activity in plants |
IN2014MN02404A (en) | 2012-05-24 | 2015-08-21 | Seeds Ltd Ab | |
WO2014062989A2 (en) | 2012-10-18 | 2014-04-24 | Monsanto Technology Llc | Methods and compositions for plant pest control |
WO2014106838A2 (en) | 2013-01-01 | 2014-07-10 | A.B. Seeds Ltd. | Methods of introducing dsrna to plant seeds for modulating gene expression |
US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
UA123082C2 (en) | 2013-03-13 | 2021-02-17 | Монсанто Текнолоджи Ллс | Methods and compositions for weed control |
AR095233A1 (en) | 2013-03-13 | 2015-09-30 | Monsanto Technology Llc | METHODS AND COMPOSITIONS FOR WEED CONTROL |
US20140283211A1 (en) | 2013-03-14 | 2014-09-18 | Monsanto Technology Llc | Methods and Compositions for Plant Pest Control |
US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
EP3030663B1 (en) | 2013-07-19 | 2019-09-04 | Monsanto Technology LLC | Compositions and methods for controlling leptinotarsa |
US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
NZ719544A (en) | 2013-11-04 | 2022-09-30 | Beeologics Inc | Compositions and methods for controlling arthropod parasite and pest infestations |
UA119253C2 (en) | 2013-12-10 | 2019-05-27 | Біолоджикс, Інк. | Compositions and methods for virus control in varroa mite and bees |
US10334848B2 (en) | 2014-01-15 | 2019-07-02 | Monsanto Technology Llc | Methods and compositions for weed control using EPSPS polynucleotides |
CN103769324B (en) * | 2014-01-24 | 2015-08-19 | 山东建筑大学 | Internal-mixing two phase flow nozzle |
CN110506752B (en) | 2014-04-01 | 2022-02-18 | 孟山都技术公司 | Compositions and methods for controlling insect pests |
WO2015200223A1 (en) | 2014-06-23 | 2015-12-30 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via rna interference |
EP3161138A4 (en) | 2014-06-25 | 2017-12-06 | Monsanto Technology LLC | Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression |
RU2754955C2 (en) | 2014-07-29 | 2021-09-08 | Монсанто Текнолоджи Ллс | Compositions and methods for combating insect pests |
UA124255C2 (en) | 2015-01-22 | 2021-08-18 | Монсанто Текнолоджі Елелсі | Compositions and methods for controlling leptinotarsa |
US10883103B2 (en) | 2015-06-02 | 2021-01-05 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
AU2016270913A1 (en) | 2015-06-03 | 2018-01-04 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
JP6270896B2 (en) * | 2016-03-29 | 2018-01-31 | 本田技研工業株式会社 | COATING NOZZLE, COATING DEVICE, AND COATING METHOD USING THEM |
US11278924B2 (en) * | 2017-11-21 | 2022-03-22 | Wagner Spray Tech Corporation | Plural component spray gun system |
CN113304904B (en) * | 2021-05-25 | 2022-04-22 | 南通迈维特自动化科技有限公司 | Atomizing spray head structure for spraying aqueous pesticide |
US20230027176A1 (en) * | 2021-07-26 | 2023-01-26 | Palo Alto Research Center Incorporated | Annular effervescent nozzle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2645142A1 (en) | 1976-05-27 | 1977-12-08 | Mitsubishi Precision Co Ltd | METHOD FOR GENERATING MIXED AND ATOMIZED FLUIDA AND DEVICE FOR CARRYING OUT THE METHOD |
DE3216420A1 (en) | 1982-05-03 | 1983-11-03 | Bayer Ag, 5090 Leverkusen | METHOD FOR CLEAVING DILUTED SULFURIC ACID |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1785803A (en) * | 1923-12-06 | 1930-12-23 | Adams Henry | Atomizing mixing nozzle |
DE630863C (en) * | 1933-07-17 | 1936-06-08 | Hans Barthel | Device for fine distribution and atomization of substances in liquid, powder or gas form |
US2259011A (en) * | 1939-05-24 | 1941-10-14 | William F Doyle | Atomizer for liquid fuels |
US2319591A (en) * | 1941-05-09 | 1943-05-18 | Nat Airoil Burner Company Inc | Method of treating imperfectly combustible liquids or semiliquids |
FR1099400A (en) * | 1954-04-26 | 1955-09-05 | Improvements to heating by liquid and gaseous fuels for hoffmann furnaces and others | |
US2893646A (en) * | 1958-10-07 | 1959-07-07 | Charles C Batts | Fluid spray nozzle |
FR1320016A (en) * | 1961-07-03 | 1963-03-08 | Ibm | Print format control devices |
DE1263619B (en) * | 1966-05-06 | 1968-03-14 | Huels Chemische Werke Ag | Two-substance nozzle for spray drying |
FR2052003A5 (en) * | 1969-07-08 | 1971-04-09 | Tunzini Sames | |
FR2288940A1 (en) * | 1974-10-24 | 1976-05-21 | Pillard Chauffage | IMPROVEMENTS TO LIQUID FUEL BURNERS SPRAYED BY THE RELIEF OF AN AUXILIARY FLUID AND METHOD OF USING THE latter |
BE853725A (en) * | 1977-04-19 | 1977-08-16 | Socometal S A | INDUSTRIAL BURNER FOR LIQUID OR PASTE WASTE OR RESIDUES |
SU677769A1 (en) * | 1977-11-21 | 1979-08-05 | Запорожский Проектно-Конструкторский И Технологический Институт | Sprayer |
WO1983002147A1 (en) * | 1981-12-07 | 1983-06-23 | Dewald, Jack, J. | Improved method and apparatus for combustion of oil |
US4699587A (en) * | 1985-05-23 | 1987-10-13 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Burner |
DE3625659A1 (en) * | 1986-07-29 | 1988-02-04 | Utp Schweissmaterial | METHOD FOR COATING COMPONENTS, AND DEVICE FOR CARRYING OUT THE METHOD |
SU1641449A1 (en) * | 1989-01-26 | 1991-04-15 | Казахский Проектно-Конструкторский Технологический Институт "Казпктиагрострой" | Spray gun |
DE4230535C2 (en) * | 1992-09-10 | 1996-06-13 | Metacap Gmbh Fabrikation Farbs | Two-component spray gun |
US5484107A (en) * | 1994-05-13 | 1996-01-16 | The Babcock & Wilcox Company | Three-fluid atomizer |
-
1994
- 1994-08-26 DE DE4430307A patent/DE4430307A1/en not_active Withdrawn
-
1995
- 1995-08-14 EP EP95112765A patent/EP0698418B1/en not_active Expired - Lifetime
- 1995-08-14 AT AT95112765T patent/ATE208237T1/en not_active IP Right Cessation
- 1995-08-14 ES ES95112765T patent/ES2166795T3/en not_active Expired - Lifetime
- 1995-08-14 DE DE59509798T patent/DE59509798D1/en not_active Expired - Fee Related
- 1995-08-18 US US08/517,012 patent/US5639024A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2645142A1 (en) | 1976-05-27 | 1977-12-08 | Mitsubishi Precision Co Ltd | METHOD FOR GENERATING MIXED AND ATOMIZED FLUIDA AND DEVICE FOR CARRYING OUT THE METHOD |
DE3216420A1 (en) | 1982-05-03 | 1983-11-03 | Bayer Ag, 5090 Leverkusen | METHOD FOR CLEAVING DILUTED SULFURIC ACID |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888990A (en) * | 2015-05-08 | 2015-09-09 | 中国环境科学研究院 | Double-fluid atomization spray gun |
Also Published As
Publication number | Publication date |
---|---|
DE4430307A1 (en) | 1996-02-29 |
DE59509798D1 (en) | 2001-12-13 |
ATE208237T1 (en) | 2001-11-15 |
EP0698418B1 (en) | 2001-11-07 |
US5639024A (en) | 1997-06-17 |
EP0698418A3 (en) | 1996-11-20 |
ES2166795T3 (en) | 2002-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0698418B1 (en) | Method and apparatus for simultaneously dispersing and spraying of at least two fluids | |
EP0902233B1 (en) | Combined pressurised atomising nozzle | |
EP0794383B1 (en) | Method of operating a pressurised atomising nozzle | |
CH680467A5 (en) | ||
DE3520781A1 (en) | METHOD AND DEVICE FOR BURNING LIQUID AND / OR SOLID FUELS IN POWDERED FORM | |
DE2722226A1 (en) | DEVICE FOR SPRAYING LIQUIDS AND MIXING GASES | |
EP0924460B1 (en) | Two-stage pressurised atomising nozzle | |
DE19752245C2 (en) | Two-substance nozzle and low-pressure atomization device with several neighboring two-substance nozzles | |
DE102005039412A1 (en) | Zweistoffzerstäubervorrichtung | |
EP0762057B1 (en) | Mixing device for fuel and air for gas turbine combustors | |
EP0711953A2 (en) | Premix burner | |
EP0742411B1 (en) | Air supply for a premix combustor | |
DD253144A3 (en) | DUESE FOR DESTROYING FLUIDS | |
DE3423373A1 (en) | Nozzle for atomising viscous fluids | |
DE69423900T2 (en) | V-JET ATOMISATEUR | |
EP0914869B1 (en) | Nozzle with constant spray characteristics over a large size range | |
EP0777082A2 (en) | Premix burner | |
DE2552864A1 (en) | PROCEDURE AND BURNER FOR BURNING LIQUID FUEL | |
EP0121877A2 (en) | Spray nozzle in the shape of a hollow cone | |
DE19854382B4 (en) | Method and device for atomizing liquid fuel for a firing plant | |
DE19822607A1 (en) | Equipment for mixing of fluid into a gas stream | |
DE102018128128A1 (en) | Burner head, burner system and method for operating a burner system | |
DE10054359A1 (en) | Nozzle for atomizing substance, used in devices for coating, granulating or pelleting, has device which reduces speed of gases leaving one of nozzle openings | |
WO2011116893A1 (en) | Two-component internal mixing nozzle arrangement and method for atomizing a liquid | |
DE19505614A1 (en) | Operating method for pre-mixing burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19970515 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010404 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 208237 Country of ref document: AT Date of ref document: 20011115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59509798 Country of ref document: DE Date of ref document: 20011213 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020110 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2166795 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: BAYER AG Free format text: BAYER AG# #51368 LEVERKUSEN (DE) -TRANSFER TO- BAYER AG# #51368 LEVERKUSEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080803 Year of fee payment: 14 Ref country code: ES Payment date: 20080922 Year of fee payment: 14 Ref country code: DE Payment date: 20080730 Year of fee payment: 14 Ref country code: CH Payment date: 20080912 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080827 Year of fee payment: 14 Ref country code: FR Payment date: 20080818 Year of fee payment: 14 Ref country code: AT Payment date: 20080814 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080827 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090119 Year of fee payment: 14 |
|
BERE | Be: lapsed |
Owner name: *BAYER A.G. Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100301 Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100302 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090815 |