EP0597138A1 - Combustion chamber for gas turbine - Google Patents
Combustion chamber for gas turbine Download PDFInfo
- Publication number
- EP0597138A1 EP0597138A1 EP92119124A EP92119124A EP0597138A1 EP 0597138 A1 EP0597138 A1 EP 0597138A1 EP 92119124 A EP92119124 A EP 92119124A EP 92119124 A EP92119124 A EP 92119124A EP 0597138 A1 EP0597138 A1 EP 0597138A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- segments
- cooling
- burners
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00014—Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
Definitions
- the invention relates to a gas turbine combustion chamber with an annular combustion chamber, the walls of which extend from the combustion chamber inlet to the inlet of the gas turbine, and in which the combustion chamber inlet is equipped with a plurality of burners which are uniformly distributed in the circumferential direction and which are fastened to a front plate.
- Combustion chambers of the type mentioned at the outset are known from EP-A1-387 532.
- the front plate is formed by a single wall on which premixing burners of the double-cone type are arranged.
- Gas turbine combustion chambers with air-cooled flame tubes are also known, for example from US 4,077,205 or US 3,978,662.
- the flame tube is essentially constructed from wall parts which overlap in the turbine axial direction. On their side facing away from the combustion chamber, the wall parts each have a plurality of inlet openings distributed over the circumference, via which air is introduced into a distribution chamber arranged in the flame tube and communicating with the combustion chamber.
- the respective flame tube In the cooling system there, the respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.
- the invention has for its object to significantly increase the soundproofing of a combustion chamber in a gas turbine combustion chamber of the type mentioned with minimal cooling air consumption by damping the thermoacoustically fanned vibrations.
- Helmholtz dampers consisting of a feed pipe, resonance volume and damping pipe are arranged in the area of the burners.
- the advantage of the invention can be seen, inter alia, in the fact that the proximity of the Helmholtz damper to the combustion zones dampens the thermoacoustic vibrations which arise in the flame fronts particularly intensively.
- damping tubes in the Helmholtz dampers are designed to be interchangeable and if the walls of the combustion chamber are provided with a manhole for this purpose. This means that the dampers can be matched to the vibration to be dampened in the combustion chamber without having to cover the machine.
- the system essentially consists on the gas turbine side (1) of the rotor 11 bladed with rotor blades and the blade carrier 12 equipped with guide blades.
- the blade carrier 12 is correspondingly provided via projections Recordings suspended in the turbine housing 13.
- the exhaust housing 14 is flanged to the turbine housing 13.
- the turbine housing 13 also includes the collecting space 15 for the compressed combustion air. From this collecting space, part of the combustion air passes through a perforated cover 30 in the direction of the arrow directly into the annular combustion chamber 3, which in turn enters the turbine inlet, i.e. flows upstream of the first guide row.
- the compressed air arrives in the collecting space from the diffuser 22 of the compressor 2. Only the last four stages of the latter are shown.
- the blading of the compressor and the turbine sit on the common shaft 11, the central axis of which represents the longitudinal axis 10 of the gas turbine unit.
- the combustion chamber 3 is equipped at its head end with premix burners 20, as are known, for example, from EP-A1-387 532.
- a premix burner shown only schematically in FIG. 2, is a so-called double-cone burner. It essentially consists of two hollow, conical partial bodies 26, 27 which are nested one inside the other in the direction of flow. The respective central axes of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 28 for the combustion air, which in this way reaches the interior of the burner.
- a fuel nozzle 29 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical liquid fuel profile is enclosed by the combustion air flowing in tangentially.
- the concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air.
- the burner can also be operated with gaseous fuel.
- gas inflow openings distributed in the longitudinal direction are provided in the region of the tangential slots in the walls of the two partial bodies.
- the mixture formation with the combustion air thus begins in the zone of the inlet slots 28.
- mixed operation with both types of fuel is also possible in this way.
- a fuel concentration that is as homogeneous as possible is established over the loaded cross-section.
- a defined dome-shaped return flow zone is created at the burner outlet, at the tip of which the ignition takes place.
- the combustion gases reach very high temperatures, which places special demands on the combustion chamber walls to be cooled.
- the annular combustion chamber extends downstream of the burner orifices up to the turbine inlet. It is limited both inside and outside by walls to be cooled, which are usually designed as self-supporting structures.
- the present combustion chamber is equipped with 72 of the said burners 20. 3, which shows a quarter-circle section, shows the arrangement thereof.
- Two burners are arranged radially one above the other on a front segment 31. 36 of these adjacent front segments form a closed circular ring, which in this way forms a heat shield.
- the two burners from adjacent front segments are each radially offset. This means that the radially outer burner of every second front segment directly adjoins the outer ring wall of the combustion chamber, as can also be seen in FIG. 3.
- the radially inner burners of the other front segments are therefore arranged in the immediate vicinity of the inner ring wall. This results in an uneven thermal load on the corresponding ring walls the scope.
- a rinsed Helmholtz resonator 21 is now housed for soundproofing the combustion chamber.
- a Helmholtz damper essentially consists of the actual resonance volume 50, an air inlet opening to the Helmholz volume, which is designed here as a feed pipe 51, and a damping pipe 52 opening into the interior of the combustion chamber. The purge air is drawn from the head space 49 by the damper.
- the feed tubes 51 are dimensioned such that they cause a relatively high pressure drop for the air flow.
- the damping tubes 52 allow the air to enter the interior of the combustion chamber with a low residual pressure drop.
- the limitation of the pressure drop in the damping tubes results from the requirement that even with an uneven pressure distribution on the inside of the combustion chamber wall, an adequate air flow into the combustion chamber is always guaranteed.
- hot gas must not enter the Helmholtz resonator in the opposite direction at any point.
- the choice of the size of the Helmholtz volume 50 results from the requirement that the phase angle between the fluctuations in the damping air mass flows through the supply and damping tubes should be greater than or equal to i T 12.
- this requirement means that the volume should be at least so large that the Helmholtz frequency of the resonator, which is formed by the volume 50 and the openings 51 and 52, is at least the frequency of the combustion chamber vibration to be damped.
- the volume of the Helmholtz resonator used is preferably designed for the lowest natural frequency of the combustion chamber. It is also possible to choose an even larger volume. It is thereby achieved that a pressure fluctuation on the inside of the combustion chamber leads to a strongly opposite-phase fluctuation in the air mass flow, because the fluctuations in the damping air mass flows through the supply pipes and the damping pipes are no longer in phase.
- the feed pipe 51 determines the pressure drop.
- the speed at the end of the feed pipe is adjusted so that the dynamic pressure of the jet together with the losses corresponds to the pressure drop across the combustion chamber.
- the average flow velocity in the damping tube in the present case of a gas turbine combustion chamber can typically be 2 to 4 m / s with an ideal design. So it is very small compared to the vibration amplitude, which means that the air particles move back and forth pulsating in the damping tube. Nevertheless, only enough air is allowed to flow through that a significant heating of the resonator is avoided. Heating by radiation from the area of the combustion chamber would result in the frequency not remaining stable. The flushing should therefore only dissipate the radiated heat.
- the location of the damping is decisive for the stabilization of a thermoacoustic oscillation.
- the greatest increase occurs when the reaction rate and the pressure disturbance oscillate in phase.
- the strongest reaction rate usually occurs near the center of the combustion zone. Therefore, the highest fluctuation in the reaction rate will also be there, if one occurs.
- the arrangement of the dampers at the radially outer or inner end of the front segments has a favorable effect, since in this way the respective damper is located in the middle of three burners.
- the housing of the Helmholtz damper is screwed into the respective front segment 31 from the head space 49 by means of a hollow threaded pin 55.
- the damping tube 52 protruding into the volume 50 is designed to be exchangeable. For this purpose, it penetrates the hollow threaded pin from the combustion chamber and is latched in the front segment by means of a bayonet lock 53.
- Spring means 54 ensure that the bayonet catch on the front segment is positively locked.
- the frequency spectrum is measured with Helmholtz dampers sealed with blind flanges.
- the required length and inner diameter of the damping tubes can be calculated for a given damping volume.
- the pipes determined in this way are then installed with the combustion chamber turned off. It goes without saying that several critical vibrations of different frequencies can also be damped in this way by installing different damper tubes.
- the generally cooled walls of the combustion chamber must be provided with a manhole.
- these walls are of a special kind in order not to impair the cooling.
- the thermally highly loaded interior of the combustion chamber is divided into two zones, the walls of which are cooled in different ways.
- a secondary zone 32 lying downstream and opening into the turbine inlet is delimited by a double-walled flame tube. It consists both on its inner ring 33 and on its outer ring 34 from a flangeless, welded sheet metal construction, which is held together by spacers, not shown. Both rings 33 and 34 are open at their turbine end and form the entry for the cooling air there.
- the annular space 35 between the double wall of the outer ring 34 draws the air directly from the collecting space 15, as can be seen in FIG. 1. With efficient convection cooling, the air flows in counterflow to the combustion chamber flow in the direction of the primary zone 36.
- the annular space 37 between the double wall of the inner ring 33 is supplied with air from a hub diffuser 38.
- This hub diffuser which connects to the compressor diffuser 22, is delimited on the one hand by a drum cover 24 and on the other hand by an annular shell 39.
- the latter is connected to the drum cover 24 via ribs (not shown).
- the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.
- the cooling of the highly stressed primary zone walls is now carried out by means of individually cooled cooling segments 40. These cooling segments lined up in the circumferential direction and in the axial direction form their flow-limiting wall over the entire axial extent of the primary zone 36. Single cooling has the advantage of a low pressure drop.
- the thermally highly stressed cooling segments 40 consist of a high-temperature, precision cast alloy. They are suspended in the circumferential direction with two feet 42 each provided with supporting teeth in corresponding grooves in a supporting structure, in a manner similar to how guide vane feet are fastened in blade carriers.
- this support structure hereinafter referred to as segment carrier 43, consists of two cast half-shells with a horizontal parting plane and not shown claws with which it is supported in the turbine housing.
- cooling segments 40 arranged side by side in the axial direction corresponds to the number of front segments 31, so that a cooling segment is assigned to each front segment and to the burner 20 closest to the wall (FIG. 3).
- a cooling segment is supplied with cooling air via a radially directed opening 46 which penetrates the segment carrier 43 and connects the collecting space 15 to one end of the cooling chamber 44 lying in the circumferential direction.
- the outlet opening 47 At the opposite end of this same cooling chamber is the outlet opening 47 in the segment carrier. Both the opening 46 and the outlet opening 47 can either be individual bores or elongated holes that extend in the axial direction over a large part of the segment width.
- the outlet opening 47 opens into a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
- a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
- this outer ring is flanged to the segment carrier, the contour of the inner wall being matched to the contour of the cooling segments.
- the channel 48 opens against a head space 49, which is delimited by the cover 30 and the front segments 31.
- the cover 30 is also flanged to the segment carrier 43.
- These axial channels 43 serve to jointly guide the segment cooling air and the cooling air acting on the secondary zone.
- a part 143 of the upper half of the segment carrier 43 which extends over a plurality of cooling segments and forms the above-mentioned manhole is designed to be removable together with the cooling segments 40 suspended therein.
- This detachable part 143 of the segment carrier comprises two cooling segments 40 in the circumferential direction and in the axial direction (shown hatched in FIGS. 2 and 3).
- the part 143 closing the manhole is screwed to the segment carrier 43 by means of a bracket 45 projecting on all sides. It goes without saying that a part of the turbine housing 13 which corresponds to the size of the manhole must also be opened and is therefore designed as an end cover 113.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
Die Erfindung betrifft eine Gasturbinenbrennkammer mit einem ringförmigen Verbrennungsraum, dessen Wandungen sich vom Brennkammereintritt bis zum Eintritt der Gasturbine erstrecken, und bei der der Brennkammereintritt mit einer Mehrzahl von in Umfangsrichtung gleichmässig verteilten Brennern bestückt ist, die an einer Frontplatte befestigt sind.The invention relates to a gas turbine combustion chamber with an annular combustion chamber, the walls of which extend from the combustion chamber inlet to the inlet of the gas turbine, and in which the combustion chamber inlet is equipped with a plurality of burners which are uniformly distributed in the circumferential direction and which are fastened to a front plate.
Für die schadstoffarme Verbrennung eines gasförmigen oder flüssigen Brennstoffs hat sich in letzter Zeit die sogenannte "magere Vormischverbrennung" durchgesetzt. Dabei werden der Brennstoff und die Verbrennugsluft möglichst gleichmässig vorgemischt und erst dann der Flamme zugeführt. Wird dies mit hohem Luftüberschuss vollzogen, wie dies bei Gasturbinenanlagen üblich ist, so entstehen relativ niedrige Flammentemperaturen, was wiederum zu der gewünschten, geringen Bildung von Stickoxyden führt.The so-called "lean premix combustion" has recently become established for the low-pollutant combustion of a gaseous or liquid fuel. The fuel and combustion air are premixed as evenly as possible and only then fed to the flame. If this is done with a high excess of air, as is customary in gas turbine plants, relatively low flame temperatures arise, which in turn leads to the desired, low formation of nitrogen oxides.
Brennkammern der eingangs genannten Art sind bekannt aus der EP-A1-387 532. Die Frontplatte wird dabei von einer einzigen Wand gebildet, an welcher Vormischbrenner der Doppelkegelbauart angeordnet sind.Combustion chambers of the type mentioned at the outset are known from EP-A1-387 532. The front plate is formed by a single wall on which premixing burners of the double-cone type are arranged.
Moderne hochbelastete Gasturbinen erfordern zunehmend komplexere und wirkungsvollere Kühlmethoden. Um niedrige NOx-Emissionen zu erzielen, wird versucht, einen zunehmenden Anteil der Luft durch die Brenner selbst zu leiten. Dieser Zwang zur Reduktion der Kühlluftströme ergibt sich aber auch aus Gründen, die mit der zunehmenden Heissgastemperatur beim Eintritt einer modernen Gasturbine in Zusammenhang stehen. Weil auch die Kühlung der übrigen Anlagenteile wie Beschaufelung, Maschinenwelle etc. immer schärferen Anforderungen genügen muss, und weil die Heissgastemperaturen, die im Interesse eines hohen thermischen Wirkungsgrades immer weiter gesteigert werden, auch direkt zu einer stark erhöhten thermischen Belastung der Brennkammerwände führen, muss mit der Brennkammerkühllluft sehr sparsam umgegangen werden. Diese Anforderungen führen in aller Regel zu mehrstufigen Kühltechniken, wobei der Druckverlustbeiwert, d.h. der durch die Kühlung verursachte Gesamtdruckabfall dividiert durch einen Staudruck beim Kühllufteintritt in die Brennkammer, recht hoch sein kann.Modern, highly loaded gas turbines require increasingly complex and effective cooling methods. In order to achieve low NO x emissions, an attempt is made to channel an increasing proportion of the air through the burners themselves. This compulsion to reduce the cooling air flows also arises for reasons related to the increasing hot gas temperature when a modern gas turbine enters. Because the cooling of the other parts of the system, such as blading, machine shaft etc., must also meet increasingly stringent requirements, and because the hot gas temperatures, which are constantly increasing in the interest of high thermal efficiency, also directly lead to a greatly increased thermal load on the combustion chamber walls, must also be included the combustion chamber cooling air can be used very sparingly. These requirements generally lead to multi-stage cooling techniques, whereby the pressure loss coefficient, ie the total pressure drop caused by the cooling divided by a dynamic pressure when the cooling air enters the combustion chamber, can be quite high.
Gasturbinenbrennkammern mit luftgekühlten Flammrohren sind ebenfalls bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Das Flammrohr ist im wesentlichen aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut. Die Wandteile weisen an ihrer dem Verbrennungsraum abgewandten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen auf, über die Luft in einen im Flammrohr angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum eingeleitet wird. Beim dortigen Kühlsystem weist das jeweilige Flammrohr eine Lippe auf, die sich über den Schlitz erstreckt, durch den der Kühlluftfilm austritt. Dieser Kühlluftfilm soll an der Wand des Flammrohres haften, um für dieses eine kühlende Sperrschicht zu bilden.Gas turbine combustion chambers with air-cooled flame tubes are also known, for example from US 4,077,205 or US 3,978,662. The flame tube is essentially constructed from wall parts which overlap in the turbine axial direction. On their side facing away from the combustion chamber, the wall parts each have a plurality of inlet openings distributed over the circumference, via which air is introduced into a distribution chamber arranged in the flame tube and communicating with the combustion chamber. In the cooling system there, the respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.
Die oben erwähnten bekannten Gasturbinenbrennkammern weisen nunmehr den Nachteil auf, dass der Luftverbrauch für Kühlzwecke viel zu hoch ist und dass infolge der Einspeisung der Kühlluft in das Flammrohrinnere stromabwärts der Flamme diese Luft dem eigentlichen Verbrennungsprozess nicht zur Verfügung steht. Die Brennkammer kann demzufolge nicht mit der erforderlichen hohen Luftüberschusszahl gefahren werden.The known gas turbine combustion chambers mentioned above now have the disadvantage that the air consumption for cooling purposes is much too high and that due to the feeding of the cooling air into the flame tube interior downstream of the flame, this air is not available to the actual combustion process. As a result, the combustion chamber cannot be operated with the required high excess air ratio.
Bei konventionellen Brennkammern spielt die Kühlung in der Regel eine äusserst wichtige Rolle für die Schalldämpfung der Brennkammer. Die oben erwähnte Reduktion des Kühlluftmassenstroms gepaart mit einem stark erhöhten Druckverlustbeiwert der gesamten Brennkammerwandkühlung führt nun zu einer fast völligen Unterdrückung der Schalldämpfung. Die Folge dieser Entwicklung ist ein zunehmender Vibrationspegel in modernen LOW-NOx-Brennkammern.In conventional combustion chambers, cooling generally plays an extremely important role in the soundproofing of the combustion chamber. The above-mentioned reduction of the cooling air mass flow paired with a greatly increased pressure loss coefficient of the entire combustion chamber wall cooling now leads to an almost complete suppression of the sound insulation. The consequence of this development is an increasing vibration level in modern LOW-NO x combustion chambers.
Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art bei minimalstem Kühlluftverbrauch durch Dämpfung der thermoakustisch angefachten Schwingungen die Schalldämpfung einer Brennkammer wesentlich zu verstärken.The invention has for its object to significantly increase the soundproofing of a combustion chamber in a gas turbine combustion chamber of the type mentioned with minimal cooling air consumption by damping the thermoacoustically fanned vibrations.
Erfindungsgemäss wird dies dadurch erreicht, dass im Bereich der Brenner gespülte, aus Zuführrohr, Resonanzvolumen und Dämpfungsrohr bestehende Helmholtzdämpfer angeordnet sind.According to the invention, this is achieved in that Helmholtz dampers consisting of a feed pipe, resonance volume and damping pipe are arranged in the area of the burners.
Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass durch die Nähe des Helmholtzdämpfers zu den Verbrennungszonen die in den Flammenfronten entstehenden thermoakustischen Schwingungen besonders intensiv gedämpft werden.The advantage of the invention can be seen, inter alia, in the fact that the proximity of the Helmholtz damper to the combustion zones dampens the thermoacoustic vibrations which arise in the flame fronts particularly intensively.
Es ist besonders zweckmässig, wenn die Dämpfungsrohre in den Helmholtzdämpfern austauschbar gestaltet sind, und wenn hierzu die Wandungen des Verbrennungsraums mit einem Mannloch versehen sind. Ohne die Maschine abdecken zu müssen, können dadurch die Dämpfer auf die im Brennraum festgestellte, zu dämpfende Schwingung abgestimmt werden.It is particularly expedient if the damping tubes in the Helmholtz dampers are designed to be interchangeable and if the walls of the combustion chamber are provided with a manhole for this purpose. This means that the dampers can be matched to the vibration to be dampened in the combustion chamber without having to cover the machine.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.In the drawing, an embodiment of the invention is shown using a single-shaft gas turbine with axial flow.
Es zeigen:
- Fig. 1 einen Teillängsschnitt der Gasturbine;
- Fig. 2 ein vergrösserter Ausschnitt der Primärzone der Brennkammer;
- Fig. 3 einen Teilquerschnitt durch die Primärzone der Brennkammer nach Linie 3-3 in Fig. 2;
- Fig. 4 einen Längsschnitt eines Helmholtzresonators.
- 1 shows a partial longitudinal section of the gas turbine;
- 2 shows an enlarged section of the primary zone of the combustion chamber;
- 3 shows a partial cross section through the primary zone of the combustion chamber according to line 3-3 in FIG. 2;
- Fig. 4 shows a longitudinal section of a Helmholtz resonator.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das vollständige Abgasgehäuse mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the complete exhaust housing with exhaust pipe and chimney, as well as the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.
Die Anlage, von der in Fig. 1 nur die oberhalb der Maschinenachse 10 liegende Hälfte dargestellt ist, besteht gasturbinenseitig (1) im wesentlichen aus dem mit Laufschaufeln beschaufelten Rotor 11 und dem mit Leitschaufeln bestückten Schaufelträger 12. Der Schaufelträger 12 ist über Vorsprünge in entsprechenden Aufnahmen im Turbinengehäuse 13 eingehängt. An das Turbinengehäuse 13 ist das Abgasgehäuse 14 angeflanscht.The system, of which only the half lying above the
Im dargestellten Fall umfasst das Turbinengehäuse 13 ebenfalls den Sammelraum 15 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt ein Teil der Brennluft durch eine gelochte Abdeckung 30 in Pfeilrichtung direkt in die Ringbrennkammer 3 ein, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 22 des Verdichters 2. Von letzterem sind lediglich die vier letzten Stufen dargestellt. Die Laufbeschaufelung des Verdichters und der Turbine sitzen auf der gemeinsamen Welle 11, Deren Mittelachse stellt die Längsachse 10 der Gasturbineneinheit dar.In the illustrated case, the
Die Brennkammer 3 ist an ihrem Kopfende mit Vormischbrennern 20 bestückt, wie sie beispielsweise aus der EP-A1-387 532 bekannt sind. Bei einem solchen in Fig. 2 nur schematisch dargestellten Vormischbrenner handelt es sich um einen sogenannte Doppelkegelbrenner. Im wesentlichen besteht er aus zwei hohlen, kegelförmigen Teilkörpern 26, 27 die in Strömungsrichtung ineinandergeschachtelt sind. Dabei sind die jeweiligen Mittelachsen der beiden Teilkörper gegeneinander versetzt. Die benachbarten Wandungen der beiden Teilkörper bilden in deren Längserstreckung tangentiale Schlitze 28 für die Verbrennungsluft, die auf diese Weise in das Brennerinnere gelangt. Dort ist eine Brennstoffdüse 29 für flüssigen Brennstoff angeordnet. Der Brennstoff wird in einem spitzen Winkel in die Hohlkegel eingedüst. Das entstehende kegelige Flüssigbrennstoffprofil wird von der tangential einströmenden Verbrennungsluft umschlossen. In axialer Richtung wird die Konzentration des Brennstoffes fortlaufend infolge der Vermischung mit der Verbrennungsluft abgebaut. Der Brenner kann ebenfalls mit gasförmigem Brennstoff betrieben werden. Hierzu sind im Bereich der tangentialen Schlitze in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinström- öffnungen vorgesehen. Im Gasbetrieb beginnt die Gemischbildung mit der Verbrennungsluft somit bereits in der Zone der Eintrittsschlitze 28. Es versteht sich, dass auf diese Weise auch ein Mischbetrieb mit beiden Brennstoffarten möglich ist. Am Brenneraustritt stellt sich eine möglichst homogene Brennstoffkonzentration über dem beaufschlagten kreiringförmigen Querschnitt ein. Es entsteht am Brenneraustritt eine definierte kalottenförmige Rückströmzone, an deren Spitze die Zündung erfolgt.The
Anlässlich der Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Brennkammerwandungen darstellt. Dies gilt umsomehr, wenn sogenannte Low NOx-Brenner, beispielsweise die hier zugrundegelegten Vormischbrenner zur Anwendung gelangen, welche bei relativ bescheidenen Kühlluftmengen grosse Flammrohroberflächen erfordern. Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch zu kühlende Wandungen, welche in der Regel als selbsttragende Strukturen konzipiert sind.On the occasion of the combustion, the combustion gases reach very high temperatures, which places special demands on the combustion chamber walls to be cooled. This applies all the more when so-called low NO x burners, for example the premix burners used here, are used, which require large flame tube surfaces with relatively modest amounts of cooling air. The annular combustion chamber extends downstream of the burner orifices up to the turbine inlet. It is limited both inside and outside by walls to be cooled, which are usually designed as self-supporting structures.
Die vorliegende Brennkammer ist mit 72 der genannten Brenner 20 bestückt. Aus Fig. 3, welches einen Viertelkreisausschnitt zeigt, ist deren Anordnung erkennbar. Je zwei Brenner sind radial übereinanderliegend auf einem Frontsegment 31 angeordnet. 36 von diesen aneinanderliegenden Frontsegmenten bilden einen geschlossenen Kreisring, welcher auf diese Art einen Hitzeschild bildet. Die beiden Brenner von benachbarten Frontsegmenten sind jeweils radial versetzt. Dies bedeutet, dass der radial äussere Brenner jedes zweiten Frontsegmentes unmittelbar an die äussere Ringwand der Brennkammer angrenzt, wie dies auch in Fig. 3 erkennbar ist. Die radial inneren Brenner der andern Frontsegmente sind demnach in unmittelbarer Nähe der inneren Ringwand angeordnet. Hieraus ergibt sich eine ungleichmässige thermische Belastung der entsprechenden Ringwände über dem Umfang.The present combustion chamber is equipped with 72 of the said
Am freien, nicht mit einem Brenner belegten Ende jedes Frontsegmentes 31 ist nunmehr zur Schalldämpfung der Brennkammer ein gespülter Helmholtzresonator 21 untergebracht. Gemäss Fig. 4 besteht ein socher Helmholtzdämpfer im wesentlichen aus dem eigentichen Resonanzvolumen 50, einer Lufteinlasssöffnung zum Helmholzvolumen, die hier als Zuführrohr 51 ausgebildet ist, sowie einem in das Brennkammerinnere mündenden Dämpfungsrohr 52. Die Spülluft bezieht der Dämpfer aus dem Kopfraum 49.At the free end of each
Zur Funktionsfähigkeit des Helmholtzresonator sind die Zuführrohre 51 so dimensioniert, dass sie für die Luftströmung einen relativ hohen Druckabfall verursachen. Durch die Dämpfungsrohre 52 hingegen gelangt die Luft bei niedrigem Restdruckabfall in das Brennkammerinnere. Die Begrenzung des Druckabfalls in den Dämpfungsrohren ergibt sich aus der Forderung, dass auch bei ungleichmässiger Druckverteilung auf der Innenseite der Brennkammerwand stets eine ausreichende Luftströmung in die Brennkammer hinein gewährleistet bleibt. Selbstverständlich darf an keiner Stelle Heissgas in umgekehrter Richtung in das Helmholtzresonator eindringen.For the functionality of the Helmholtz resonator, the
Die Wahl der Grösse des Helmholtzvolumens 50 ergibt sich aus der Forderung, dass der Phasenwinkel zwischen den Schwankungen der Dämpfungsluft-Massenströme durch die Zufuhr- und Dämpfungsrohre grösser oder gleich iT12 sein soll. Für eine harmonische Schwingung mit vorgegebener Frequenz auf der Innenseite der Brennkammerwand bedeutet diese Forderung, dass das Volumen mindestens so gross sein soll, dass die Helmholtz-Frequenz des Resonators, der durch das Volumen 50 und die Öffnungen 51 und 52 gebildet wird, mindestens die Frequenz der zu dämpfenden Brennkammerschwingung erreicht. Daraus folgt ausserdem, dass das Volumen des verwendeten Helmholtzresonators vorzugsweise auf die tiefste Eigenfrequenz des Brennraumes ausgelegt wird. Möglich ist auch die Wahl eines noch grösseren Volumens. Dadurch wird erreicht, dass eine Druckschwankung auf der Innenseite des Brennraumes zu einer stark gegenphasigen Schwankung des Luftmassenstromes führt, weil ja jetzt die Schwankungen der Dämpfungsluft-Massenströme durch die Zuführrohre und die Dämpfungsrohre nicht mehr phasengleich sind.The choice of the size of the
Das Zuführrohr 51 bestimmt den Druckabfall. Die Geschwindigkeit am Ende des Zuführrohres stellt sich so ein, dass der dynamische Druck des Strahles zusammen mit den Verlusten dem Druckabfall über der Brennkammer entspricht. Die mittlere Strömungsgeschwindigkeit im Dämpfungsrohr kann im vorliegenden Fall einer Gasturbinenbrennkammer typisch 2 bis 4 m/s betragen bei idealer Auslegung. Sie ist also sehr klein im Vergleich zur Schwingungsamplitude, was bedeutet, dass die Luftteilchen sich im Dämpfungsrohr pulsierend vorwärts und rückwärts bewegen. Dennoch wird nur gerade soviel Luft durchströmen lassen, dass ein nennenswertes Aufheizen des Resonators vermieden wird. Eine Aufheizung durch Strahlung aus dem Bereich der Brennkammer hätte zur Folge, dass die Frequenz nicht stabil bleibt. Die Durchspülung soll deshalb lediglich die eingestrahlte Wärmemenge abführen.The
Entscheidend für die Stabilisierung einer thermoakustischen Schwingung ist der Ort der Dämpfung. Stärkste Anfachung tritt dann auf, wenn die Reaktionsrate und die Druckstörung in Phase schwingen. Die stärkste Reaktionsrate tritt in der Regel in der Nähe des Zentrums der Verbrennungszone auf. Deshalb wird auch dort die höchste Reaktionsratenschwankung sein, falls eine solche stattfindet. Als günstig wirkt sich hierbei die vorliegende Anordnung der Dämpfer am radial äusseren respektiv inneren Ende der Frontsegmente aus, da auf diese Art der jeweilige Dämpfer sich inmitten von drei Brennern befindet.The location of the damping is decisive for the stabilization of a thermoacoustic oscillation. The greatest increase occurs when the reaction rate and the pressure disturbance oscillate in phase. The strongest reaction rate usually occurs near the center of the combustion zone. Therefore, the highest fluctuation in the reaction rate will also be there, if one occurs. The arrangement of the dampers at the radially outer or inner end of the front segments has a favorable effect, since in this way the respective damper is located in the middle of three burners.
Das Gehäuse des Helmholtzdämpfers ist vom Kopfraum 49 her mittels eines hohlen Gewindezapfens 55 in dem jeweiligen Frontsegment 31 eingeschraubt. Das in das Volumen 50 hineinragende Dämpfungsrohr 52 ist austauschbar ausgebildet. Hierzu durchdringt es den hohlen Gewindezapfen vom Brennraum her und ist im Frontsegment mittels eines Bajonettverschluss 53 eingeklinkt. Federmittel 54 sorgen für einen kraftschlüssigen Anschlag des Bajonettverschluss am Frontsegment.The housing of the Helmholtz damper is screwed into the
Anlässlich der Inbetriebnahme der Brennkammer wird bei mit Blindflanschen verschlossenen Helmholtzdämpfern das Frequenzspektrum gemessen. Anhand der zu dämpfenden Schwingung lässt sich bei vorgegebenem Dämpfungsvolumen die erforderliche Länge und Innendurchmesser der Dämpfungsrohre errechnen. Die derart ermittelten Rohre werden in der Folge bei abgestellter Brennkammer montiert. Es versteht sich, dass auf diese Weise auch mehrere kritische Schwingungen verschiedener Frequenz durch den Einbau von unterschiedlichen Dämpferrohren gedämpft werden können.When the combustion chamber is commissioned, the frequency spectrum is measured with Helmholtz dampers sealed with blind flanges. Using the vibration to be damped, the required length and inner diameter of the damping tubes can be calculated for a given damping volume. The pipes determined in this way are then installed with the combustion chamber turned off. It goes without saying that several critical vibrations of different frequencies can also be damped in this way by installing different damper tubes.
Um nun von aussen zu den Helmholtzdämpfern zu gelangen, müssen die in der Regel gekühlten Wandungen des Verbrennungsraums mit einem Mannloch versehen sein. Diese Wandungen sind im vorliegenden Fall von besonderer Art, um die Kühlung nicht zu beeinträchtigen.In order to get to the Helmholtz dampers from the outside, the generally cooled walls of the combustion chamber must be provided with a manhole. In the present case, these walls are of a special kind in order not to impair the cooling.
Das thermisch hochbelastete Brennkammerinnere ist nämlich in zwei Zonen unterteilt, deren Wandungen auf unterschiedliche Art gekühlt werden.The thermally highly loaded interior of the combustion chamber is divided into two zones, the walls of which are cooled in different ways.
Eine stromabwärts liegende und in den Turbineneintritt mündende Sekundärzone 32 ist von einem doppelwandigen Flammrohr begrenzt. Es besteht sowohl an seinem Innenring 33 als auch an seinem Aussenring 34 aus einer flanschlosen, geschweissten Blechkonstruktion, welche über nichtgezeigte Distanzstücke zusammengehalten ist. Beide Ringe 33 und 34 sind an ihrem turbinenseitigen Ende offen und bilden dort den Eintritt für die Kühlluft. Der Ringraum 35 zwischen der Doppelwand des Aussenringes 34 bezieht die Luft direkt aus dem Sammelraum 15, wie aus Fig. 1 erkennbar ist. Unter Ausübung einer effizienten Konvektionskühlung strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36. Der Ringraum 37 zwischen der Doppelwand des Innenringes 33 wird mit Luft aus einem Nabendiffusor 38 versorgt. Dieser Nabendiffusor, welcher an den Verdichterdiffusor 22 anschliesst, wird begrenzt einerseits von einer Trommelabdeckung 24 und andererseits von einer Ringschale 39. Letztere ist über nicht dargestellte Rippen mit der Trommelabdeckung 24 verbunden. Auch in diesem Ringraum 37 strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36.A
Die Kühlung der hochbelasteten Primärzonen-Wandungen wird nun mittels einzeln gekühlter Kühlsegmente 40 durchgeführt. Diese in Umfangsrichtung und in Axialrichtung aneinandergereihten Kühlsegmente bilden über die ganze axiale Erstreckung der Primärzone 36 deren strömungsbegrenzende Wandung. Die Einzelkühlung hat den Vorteil des geringen Druckabfalls.The cooling of the highly stressed primary zone walls is now carried out by means of individually cooled cooling
Die thermisch hochbelasteten Kühlsegmente 40 bestehen aus einer hochwarmfesten Präzisionsgusslegierung. Sie sind in Umfangsrichtung mit je zwei mit Tragzacken versehenen Füssen 42 in entsprechenden Nuten in einer Tragstruktur eingehängt, ähnlich wie beispielsweise Leitschaufelfüsse in Schaufelträgern befestigt sind. Ebenfalls ähnlich wie Schaufelträger besteht diese Tragstruktur, im folgenden Segmentträger 43 genannt, aus zwei gegossenen Halbschalen mit horizontaler Trennebene und nichtgezeigten Pratzen, mit welchen sie im Turbinengehäuse abgestützt ist.The thermally highly stressed
In axialer Richtung sind auf diese Weise drei solche Kühlsegmente nebeneinander angeordnet (Fig.2). In Umfangsrichtung entspricht die Anzahl nebeneinandergereihter Kühlsegmente 40 der Anzahl Frontsegmente 31, so dass jedem Frontsegment und dem der Wand nächstliegendem Brenner 20 ein Kühlsegment zugeordnet ist (Fig. 3).In this way, three such cooling segments are arranged side by side in the axial direction (FIG. 2). In the circumferential direction, the number of
Die Anspeisung eines Kühlsegmentes mit Kühlluft erfolgt über eine radialgerichtete Öffnung 46, welche den Segmentträger 43 durchdringt und den Sammelraum 15 mit einem in Umfangsrichtung liegenden Ende der Kühlkammer 44 verbindet. Am gegenüberliegenden Ende dieser gleichen Kühlkammer befindet sich die Auslassöffnung 47 im Segmentträger. Sowohl die Öffnung 46 als auch die Auslassöffnung 47 können entweder Einzelbohrungen oder Langlöcher sein, die sich in Axialrichtung über einen Grossteil der Segmentbreite erstrecken.A cooling segment is supplied with cooling air via a radially directed
Die Auslassöffnung 47 mündet in einen Kanal 48, der den Segmentträger 43 in seiner ganzen axialen Erstreckung durchdringt und beidseitig offen ist. Turbinenseitig öffnet er gegen den Ringraum 35 zwischen der Doppelwand des Aussenringes 34. Wie in Fig. 2 schematisch angedeutet, ist dieser Aussenring am Segmentträger angeflanscht, wobei die Kontur der Innenwand an die Kontur der Kühlsegmente angepasst ist. Brennerseitig öffnet der Kanal 48 gegen einen Kopfraum 49, welcher von der Abdeckung 30, und den Frontsegmenten 31 begrenzt ist. Die Abdeckung 30 ist ebenfalls am Segmentträger 43 angeflanscht.The
Diese axialen Kanäle 43, von denen je einer einem Segment in Umfangsrichtung zugeordnet ist, dienen somit der gemeinsamen Führung der Segment-Kühlluft und der die Sekundärzone beaufschlagenden Kühlluft.These
Zur Kühlung der inneren Wandung der Primärzone werden die gleichen Massnahmen getroffen, wie dies in Fig. 3 anhand der Kühlsegmente 140 angedeutet ist.The same measures are taken for cooling the inner wall of the primary zone as is indicated in FIG. 3 with the aid of the cooling
In den Fig. 2 und 3 ist nunmehr dargestellt, wie der Zugang in das Brennkammerinnere und insbesondere zu den Dämpfungsrohren der Helmholzresonatoren ermöglicht ist. Ein sich über mehrere Kühlsegmente erstreckender, das obengenannte Mannloch bildender Teil 143 der oberen Hälfte des Segmentträgers 43 ist zusammen mit den darin eingehängten Kühlsegmenten 40 herausnehmbar gestaltet. Dieser lösbare Teil 143 des Segmentträgers umfasst in Umfangsrichtung und in Axialrichtung je zwei Kühlsegmente 40 (in den Fig. 2 und 3 schraffiert dargestellt). Mittels einem allseits herauskragendem Bügel 45 ist der das Mannloch verschliessende Teil 143 mit dem Segmentträger 43 verschraubt. Es versteht sich, dass ein der Grösse des Mannlochs entsprechender Teil des Turbinengehäuses 13 ebenfalls geöffnet werden muss und demzufolge als Abschlussdeckel 113 gestaltet ist.2 and 3 it is now shown how access to the interior of the combustion chamber and in particular to the damping tubes of the Helmholz resonators is made possible. A
- 1 Gasturbine1 gas turbine
- 2 Verdichter2 compressors
- 3 Brennkammer3 combustion chamber
- 10 Maschinenachse10 machine axis
- 11 Rotor11 rotor
- 12 Schaufelträger12 blade carriers
- 13 Turbinengehäuse13 turbine housing
- 113 Abschlussdeckel von 13113 end cover from 13
- 14 Abgasgehäuse14 exhaust housing
- 15 Sammelraum15 collecting room
- 20 Brenner20 burners
- 21 Helmholtzdämpfer21 Helmholtz dampers
- 22 Diffusor von 222 diffuser of 2
- 2323
- 24 Trommelabdeckung24 drum cover
- 2525th
- 26 Teilkörper von 2026 partial bodies of 20
- 27 Teilkörper von 2027 partial bodies of 20
- 28 tangentialer Schlitz28 tangential slot
- 29 Brennstoffdüse29 Fuel nozzle
- 30 Abdeckung30 cover
- 31 Frontsegment31 front segment
- 32 Sekundärzone32 secondary zone
- 33 Innenring von 3233 inner ring of 32
- 34 Aussenring von 3234 outer ring of 32
- 35 Ringraum von 3435 annulus of 34
- 36 Primärzone36 primary zone
- 37 Ringraum von 3337 annulus of 33
- 38 Nabendiffusor38 hub diffuser
- 39 Ringschale39 ring bowl
- 40, 140 Kühlsegment40, 140 cooling segment
- 42 Fuss42 feet
- 43 Segmentträger43 segment carriers
- 143 lösbarer Teil von 43143 detachable part of 43
- 44 Kühlkammer44 cooling chamber
- 45 Bügel45 stirrups
- 46 Öffnung46 opening
- 47 Auslassöffnung47 outlet opening
- 48 Kanal48 channel
- 49 Kopfraum49 headroom
- 50 Resonanzvolumen50 resonance volume
- 51 Zuführrohr51 feed pipe
- 52 Dämpfungsrohr52 damping tube
- 53 Bajonettverschluss53 bayonet catch
- 54 Federmittel54 spring means
- 55 hohler Gewindezapfen55 hollow threaded pin
Claims (5)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59208715T DE59208715D1 (en) | 1992-11-09 | 1992-11-09 | Gas turbine combustor |
EP92119124A EP0597138B1 (en) | 1992-11-09 | 1992-11-09 | Combustion chamber for gas turbine |
US08/132,185 US5373695A (en) | 1992-11-09 | 1993-10-06 | Gas turbine combustion chamber with scavenged Helmholtz resonators |
KR1019930021695A KR940011862A (en) | 1992-11-09 | 1993-10-19 | Gas turbine combustion chamber |
JP27936693A JP3397858B2 (en) | 1992-11-09 | 1993-11-09 | Gas turbine combustion chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92119124A EP0597138B1 (en) | 1992-11-09 | 1992-11-09 | Combustion chamber for gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0597138A1 true EP0597138A1 (en) | 1994-05-18 |
EP0597138B1 EP0597138B1 (en) | 1997-07-16 |
Family
ID=8210218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92119124A Expired - Lifetime EP0597138B1 (en) | 1992-11-09 | 1992-11-09 | Combustion chamber for gas turbine |
Country Status (5)
Country | Link |
---|---|
US (1) | US5373695A (en) |
EP (1) | EP0597138B1 (en) |
JP (1) | JP3397858B2 (en) |
KR (1) | KR940011862A (en) |
DE (1) | DE59208715D1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0892217A1 (en) * | 1997-07-15 | 1999-01-20 | Abb Research Ltd. | Vibration-damping device for a combustion chamber |
EP0892216A1 (en) * | 1997-07-15 | 1999-01-20 | Abb Research Ltd. | Vibration-damping combustor wall structure |
EP0976982A1 (en) | 1998-07-27 | 2000-02-02 | Asea Brown Boveri AG | Method of operating the combustion chamber of a liquid-fuel gas turbine |
EP1004823A3 (en) * | 1998-11-10 | 2000-11-29 | Asea Brown Boveri AG | Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner |
WO2003058123A1 (en) | 2002-01-14 | 2003-07-17 | Alstom Technology Ltd | Burner arrangement for the annular combustion chamber of a gas turbine |
WO2003060381A1 (en) | 2002-01-16 | 2003-07-24 | Alstom Technology Ltd | Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant |
EP1342953A1 (en) | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Gas turbine |
EP1342952A1 (en) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Burner, process for operating a burner and gas turbine |
DE102006007711A1 (en) * | 2006-02-14 | 2007-08-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Combustion chamber, especially for rockets, has at least one resonator which by overtone is matched to eigenmode, wherein matching is achieved by adjustment of geometric dimensions of resonance chamber of resonator |
GB2443838A (en) * | 2006-11-16 | 2008-05-21 | Rolls Royce Plc | Combustion Control for a Gas Turbine |
DE19640980B4 (en) * | 1996-10-04 | 2008-06-19 | Alstom | Device for damping thermoacoustic oscillations in a combustion chamber |
US7661267B2 (en) | 2003-12-16 | 2010-02-16 | Ansaldo Energia S.P.A. | System for damping thermo-acoustic instability in a combustor device for a gas turbine |
EP2187125A1 (en) | 2008-09-24 | 2010-05-19 | Siemens Aktiengesellschaft | Method and device for damping combustion oscillation |
WO2010115980A2 (en) | 2009-04-11 | 2010-10-14 | Alstom Technology Ltd. | Combustion chamber having a helmholtz damper |
US7878799B2 (en) | 2004-03-31 | 2011-02-01 | Alstom Technology Ltd | Multiple burner arrangement for operating a combustion chamber, and method for operating the multiple burner arrangement |
EP2383515A1 (en) | 2010-04-28 | 2011-11-02 | Siemens Aktiengesellschaft | Combustion system and method for dampening such a combustion system |
EP2383514A1 (en) | 2010-04-28 | 2011-11-02 | Siemens Aktiengesellschaft | Combustion system and method for dampening such a combustion system |
US8206079B2 (en) | 2007-05-02 | 2012-06-26 | Rolls Royce Plc | Temperature controlling apparatus |
WO2015176887A1 (en) | 2014-05-19 | 2015-11-26 | Siemens Aktiengesellschaft | Burner arrangement with resonator |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4411624A1 (en) * | 1994-04-02 | 1995-10-05 | Abb Management Ag | Combustion chamber with premix burners |
US5644918A (en) * | 1994-11-14 | 1997-07-08 | General Electric Company | Dynamics free low emissions gas turbine combustor |
US5685157A (en) * | 1995-05-26 | 1997-11-11 | General Electric Company | Acoustic damper for a gas turbine engine combustor |
DE19523094A1 (en) * | 1995-06-26 | 1997-01-02 | Abb Management Ag | Combustion chamber |
US6464489B1 (en) * | 1997-11-24 | 2002-10-15 | Alstom | Method and apparatus for controlling thermoacoustic vibrations in a combustion system |
SE9802707L (en) | 1998-08-11 | 2000-02-12 | Abb Ab | Burner chamber device and method for reducing the influence of acoustic pressure fluctuations in a burner chamber device |
EP0990851B1 (en) | 1998-09-30 | 2003-07-23 | ALSTOM (Switzerland) Ltd | Gas turbine combustor |
US6351947B1 (en) | 2000-04-04 | 2002-03-05 | Abb Alstom Power (Schweiz) | Combustion chamber for a gas turbine |
DE10026121A1 (en) * | 2000-05-26 | 2001-11-29 | Alstom Power Nv | Device for damping acoustic vibrations in a combustion chamber |
US6530221B1 (en) * | 2000-09-21 | 2003-03-11 | Siemens Westinghouse Power Corporation | Modular resonators for suppressing combustion instabilities in gas turbine power plants |
DE10058688B4 (en) * | 2000-11-25 | 2011-08-11 | Alstom Technology Ltd. | Damper arrangement for the reduction of combustion chamber pulsations |
DE10108560A1 (en) | 2001-02-22 | 2002-09-05 | Alstom Switzerland Ltd | Method for operating an annular combustion chamber and an associated annular combustion chamber |
JP3962554B2 (en) * | 2001-04-19 | 2007-08-22 | 三菱重工業株式会社 | Gas turbine combustor and gas turbine |
EP1270902B1 (en) | 2001-06-22 | 2009-10-21 | ALSTOM Technology Ltd | Procedure for the start of a gas turbine system |
CA2399534C (en) * | 2001-08-31 | 2007-01-02 | Mitsubishi Heavy Industries, Ltd. | Gasturbine and the combustor thereof |
KR100804951B1 (en) * | 2001-11-27 | 2008-02-20 | 주식회사 포스코 | A shock absorber for combustion chamber of gas turbine |
US7832211B2 (en) * | 2002-12-02 | 2010-11-16 | Mitsubishi Heavy Industries, Ltd. | Gas turbine combustor and a gas turbine equipped therewith |
GB2396687A (en) * | 2002-12-23 | 2004-06-30 | Rolls Royce Plc | Helmholtz resonator for combustion chamber use |
GB0305025D0 (en) * | 2003-03-05 | 2003-04-09 | Alstom Switzerland Ltd | Method and device for efficient usage of cooling air for acoustic damping of combustion chamber pulsations |
US7272931B2 (en) * | 2003-09-16 | 2007-09-25 | General Electric Company | Method and apparatus to decrease combustor acoustics |
US7464552B2 (en) * | 2004-07-02 | 2008-12-16 | Siemens Energy, Inc. | Acoustically stiffened gas-turbine fuel nozzle |
US7334408B2 (en) * | 2004-09-21 | 2008-02-26 | Siemens Aktiengesellschaft | Combustion chamber for a gas turbine with at least two resonator devices |
CH698104B1 (en) | 2004-11-03 | 2009-05-29 | Alstom Technology Ltd | Fuel throttle valve for operating a burner assembly of a gas turbine and burner assembly with fuel throttle valve. |
EP1703208B1 (en) * | 2005-02-04 | 2007-07-11 | Enel Produzione S.p.A. | Thermoacoustic oscillation damping in gas turbine combustors with annular plenum |
DE102005062284B4 (en) | 2005-12-24 | 2019-02-28 | Ansaldo Energia Ip Uk Limited | Combustion chamber for a gas turbine |
US7413053B2 (en) * | 2006-01-25 | 2008-08-19 | Siemens Power Generation, Inc. | Acoustic resonator with impingement cooling tubes |
US7600370B2 (en) * | 2006-05-25 | 2009-10-13 | Siemens Energy, Inc. | Fluid flow distributor apparatus for gas turbine engine mid-frame section |
GB0610800D0 (en) * | 2006-06-01 | 2006-07-12 | Rolls Royce Plc | Combustion chamber for a gas turbine engine |
US7788926B2 (en) * | 2006-08-18 | 2010-09-07 | Siemens Energy, Inc. | Resonator device at junction of combustor and combustion chamber |
DE102006053278A1 (en) * | 2006-11-03 | 2008-05-08 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | combustion chamber device |
FR2920525B1 (en) * | 2007-08-31 | 2014-06-13 | Snecma | SEPARATOR FOR SUPPLYING THE COOLING AIR OF A TURBINE |
US8516819B2 (en) | 2008-07-16 | 2013-08-27 | Siemens Energy, Inc. | Forward-section resonator for high frequency dynamic damping |
US8408004B2 (en) * | 2009-06-16 | 2013-04-02 | General Electric Company | Resonator assembly for mitigating dynamics in gas turbines |
US8336312B2 (en) * | 2009-06-17 | 2012-12-25 | Siemens Energy, Inc. | Attenuation of combustion dynamics using a Herschel-Quincke filter |
US8789372B2 (en) * | 2009-07-08 | 2014-07-29 | General Electric Company | Injector with integrated resonator |
EP2295864B1 (en) * | 2009-08-31 | 2012-11-14 | Alstom Technology Ltd | Combustion device of a gas turbine |
RU2508506C2 (en) * | 2009-09-01 | 2014-02-27 | Дженерал Электрик Компани | Method and unit for fluid feed in gas turbine engine combustion chamber |
EP2299177A1 (en) * | 2009-09-21 | 2011-03-23 | Alstom Technology Ltd | Combustor of a gas turbine |
JP5448762B2 (en) * | 2009-12-02 | 2014-03-19 | 三菱重工業株式会社 | Combustion burner for gas turbine |
CH702594A1 (en) * | 2010-01-28 | 2011-07-29 | Alstom Technology Ltd | Helmholtz damper for incorporation in the combustor of a gas turbine and method of installation of such a Helmholtz damper. |
FR2958016B1 (en) * | 2010-03-23 | 2017-03-24 | Snecma | METHOD OF REDUCING COMBUSTION INSTABILITIES BY CHOOSING THE POSITIONING OF AIR TANK ON A TURBOMACHINE |
US9127837B2 (en) * | 2010-06-22 | 2015-09-08 | Carrier Corporation | Low pressure drop, low NOx, induced draft gas heaters |
US9546558B2 (en) | 2010-07-08 | 2017-01-17 | Siemens Energy, Inc. | Damping resonator with impingement cooling |
EP2474784A1 (en) | 2011-01-07 | 2012-07-11 | Siemens Aktiengesellschaft | Combustion system for a gas turbine comprising a resonator |
FR2977639B1 (en) * | 2011-07-07 | 2013-08-09 | Snecma | INJECTION ELEMENT |
US9341375B2 (en) | 2011-07-22 | 2016-05-17 | General Electric Company | System for damping oscillations in a turbine combustor |
US8469141B2 (en) | 2011-08-10 | 2013-06-25 | General Electric Company | Acoustic damping device for use in gas turbine engine |
US8966903B2 (en) * | 2011-08-17 | 2015-03-03 | General Electric Company | Combustor resonator with non-uniform resonator passages |
EP2559945A1 (en) * | 2011-08-17 | 2013-02-20 | Siemens Aktiengesellschaft | Combustion arrangement and turbine comprising a damping facility |
US9400108B2 (en) | 2013-05-14 | 2016-07-26 | Siemens Aktiengesellschaft | Acoustic damping system for a combustor of a gas turbine engine |
EP2816288B1 (en) | 2013-05-24 | 2019-09-04 | Ansaldo Energia IP UK Limited | Combustion chamber for a gas turbine with a vibration damper |
US9890954B2 (en) | 2014-08-19 | 2018-02-13 | General Electric Company | Combustor cap assembly |
US9964308B2 (en) | 2014-08-19 | 2018-05-08 | General Electric Company | Combustor cap assembly |
US10267523B2 (en) * | 2014-09-15 | 2019-04-23 | Ansaldo Energia Ip Uk Limited | Combustor dome damper system |
WO2016089341A1 (en) * | 2014-12-01 | 2016-06-09 | Siemens Aktiengesellschaft | Resonators with interchangeable metering tubes for gas turbine engines |
EP3029377B1 (en) * | 2014-12-03 | 2018-04-11 | Ansaldo Energia Switzerland AG | Damper for a gas turbine |
US9835333B2 (en) * | 2014-12-23 | 2017-12-05 | General Electric Company | System and method for utilizing cooling air within a combustor |
US10221769B2 (en) * | 2016-12-02 | 2019-03-05 | General Electric Company | System and apparatus for gas turbine combustor inner cap and extended resonating tubes |
US10220474B2 (en) * | 2016-12-02 | 2019-03-05 | General Electricd Company | Method and apparatus for gas turbine combustor inner cap and high frequency acoustic dampers |
JP7008722B2 (en) * | 2017-03-30 | 2022-01-25 | シーメンス アクティエンゲゼルシャフト | A system with a conduit arrangement for dual use of cooling fluid in the combustor section of a gas turbine engine |
US20180313540A1 (en) * | 2017-05-01 | 2018-11-01 | General Electric Company | Acoustic Damper for Gas Turbine Engine Combustors |
JP2020056542A (en) * | 2018-10-02 | 2020-04-09 | 川崎重工業株式会社 | Annular type gas turbine combustor for aircraft |
US11204204B2 (en) | 2019-03-08 | 2021-12-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Acoustic absorber with integrated heat sink |
CN116293795A (en) * | 2021-12-06 | 2023-06-23 | 通用电气阿维奥有限责任公司 | Dome integrated acoustic damper for gas turbine combustor applications |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2881337A (en) * | 1957-07-01 | 1959-04-07 | Gen Electric | Acoustically treated motor |
US4012902A (en) * | 1974-03-29 | 1977-03-22 | Phillips Petroleum Company | Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone |
FR2570129A1 (en) * | 1984-09-05 | 1986-03-14 | Messerschmitt Boelkow Blohm | Liq.-fuelled esp. hydrogen-oxygen. fuelled rocket |
EP0576717A1 (en) * | 1992-07-03 | 1994-01-05 | Abb Research Ltd. | Gas turbine combustor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850261A (en) * | 1973-03-01 | 1974-11-26 | Gen Electric | Wide band width single layer sound suppressing panel |
US3978662A (en) * | 1975-04-28 | 1976-09-07 | General Electric Company | Cooling ring construction for combustion chambers |
US4077205A (en) * | 1975-12-05 | 1978-03-07 | United Technologies Corporation | Louver construction for liner of gas turbine engine combustor |
GB2036296B (en) * | 1978-11-20 | 1982-12-01 | Rolls Royce | Gas turbine |
US5082421A (en) * | 1986-04-28 | 1992-01-21 | Rolls-Royce Plc | Active control of unsteady motion phenomena in turbomachinery |
US4944362A (en) * | 1988-11-25 | 1990-07-31 | General Electric Company | Closed cavity noise suppressor |
CH678757A5 (en) * | 1989-03-15 | 1991-10-31 | Asea Brown Boveri |
-
1992
- 1992-11-09 EP EP92119124A patent/EP0597138B1/en not_active Expired - Lifetime
- 1992-11-09 DE DE59208715T patent/DE59208715D1/en not_active Expired - Lifetime
-
1993
- 1993-10-06 US US08/132,185 patent/US5373695A/en not_active Expired - Lifetime
- 1993-10-19 KR KR1019930021695A patent/KR940011862A/en not_active Application Discontinuation
- 1993-11-09 JP JP27936693A patent/JP3397858B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2881337A (en) * | 1957-07-01 | 1959-04-07 | Gen Electric | Acoustically treated motor |
US4012902A (en) * | 1974-03-29 | 1977-03-22 | Phillips Petroleum Company | Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone |
FR2570129A1 (en) * | 1984-09-05 | 1986-03-14 | Messerschmitt Boelkow Blohm | Liq.-fuelled esp. hydrogen-oxygen. fuelled rocket |
EP0576717A1 (en) * | 1992-07-03 | 1994-01-05 | Abb Research Ltd. | Gas turbine combustor |
Non-Patent Citations (3)
Title |
---|
FR-A- 2 570 129 * |
US-A- 2 881 337 * |
US-A- 4 012 902 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19640980B4 (en) * | 1996-10-04 | 2008-06-19 | Alstom | Device for damping thermoacoustic oscillations in a combustion chamber |
EP0892216A1 (en) * | 1997-07-15 | 1999-01-20 | Abb Research Ltd. | Vibration-damping combustor wall structure |
US6164058A (en) * | 1997-07-15 | 2000-12-26 | Abb Research Ltd. | Arrangement for damping combustion-chamber oscillations |
EP0892217A1 (en) * | 1997-07-15 | 1999-01-20 | Abb Research Ltd. | Vibration-damping device for a combustion chamber |
EP0976982A1 (en) | 1998-07-27 | 2000-02-02 | Asea Brown Boveri AG | Method of operating the combustion chamber of a liquid-fuel gas turbine |
EP1004823A3 (en) * | 1998-11-10 | 2000-11-29 | Asea Brown Boveri AG | Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner |
US7055331B2 (en) | 2002-01-14 | 2006-06-06 | Alstom Technology Ltd | Burner arrangement for the annular combustion chamber of a gas turbine |
WO2003058123A1 (en) | 2002-01-14 | 2003-07-17 | Alstom Technology Ltd | Burner arrangement for the annular combustion chamber of a gas turbine |
WO2003060381A1 (en) | 2002-01-16 | 2003-07-24 | Alstom Technology Ltd | Combustion chamber and damper arrangement for reduction of combustion chamber pulsations in a gas turbine plant |
US7331182B2 (en) | 2002-01-16 | 2008-02-19 | Alstom Technology Ltd | Combustion chamber for a gas turbine |
WO2003074936A1 (en) * | 2002-03-07 | 2003-09-12 | Siemens Aktiengesellschaft | Gas turbine |
CN1320314C (en) * | 2002-03-07 | 2007-06-06 | 西门子公司 | Gas turbine |
US7246493B2 (en) | 2002-03-07 | 2007-07-24 | Siemens Aktiengesellschaft | Gas turbine |
US7320222B2 (en) | 2002-03-07 | 2008-01-22 | Siemens Aktiengesellschaft | Burner, method for operating a burner and gas turbine |
EP1342952A1 (en) * | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Burner, process for operating a burner and gas turbine |
EP1342953A1 (en) | 2002-03-07 | 2003-09-10 | Siemens Aktiengesellschaft | Gas turbine |
WO2003074937A1 (en) * | 2002-03-07 | 2003-09-12 | Siemens Aktiengesellschaft | Burner, method for operating a burner and gas turbine |
US7661267B2 (en) | 2003-12-16 | 2010-02-16 | Ansaldo Energia S.P.A. | System for damping thermo-acoustic instability in a combustor device for a gas turbine |
US7878799B2 (en) | 2004-03-31 | 2011-02-01 | Alstom Technology Ltd | Multiple burner arrangement for operating a combustion chamber, and method for operating the multiple burner arrangement |
DE102006007711A1 (en) * | 2006-02-14 | 2007-08-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Combustion chamber, especially for rockets, has at least one resonator which by overtone is matched to eigenmode, wherein matching is achieved by adjustment of geometric dimensions of resonance chamber of resonator |
DE102006007711B4 (en) * | 2006-02-14 | 2008-07-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Combustion chamber and method for adjusting the acoustic properties of a combustion chamber |
GB2443838A (en) * | 2006-11-16 | 2008-05-21 | Rolls Royce Plc | Combustion Control for a Gas Turbine |
GB2443838B (en) * | 2006-11-16 | 2009-01-28 | Rolls Royce Plc | Combustion control for a gas turbine |
US8206079B2 (en) | 2007-05-02 | 2012-06-26 | Rolls Royce Plc | Temperature controlling apparatus |
EP2187125A1 (en) | 2008-09-24 | 2010-05-19 | Siemens Aktiengesellschaft | Method and device for damping combustion oscillation |
WO2010115980A2 (en) | 2009-04-11 | 2010-10-14 | Alstom Technology Ltd. | Combustion chamber having a helmholtz damper |
WO2010115980A3 (en) * | 2009-04-11 | 2011-10-20 | Alstom Technology Ltd. | Combustion chamber having a helmholtz damper |
CH700799A1 (en) * | 2009-04-11 | 2010-10-15 | Alstom Technology Ltd | Combustor with Helmholtz damper for a gas turbine. |
AU2010233724B2 (en) * | 2009-04-11 | 2015-06-18 | General Electric Technology Gmbh | Combustion chamber having a helmholtz damper |
EP2383515A1 (en) | 2010-04-28 | 2011-11-02 | Siemens Aktiengesellschaft | Combustion system and method for dampening such a combustion system |
EP2383514A1 (en) | 2010-04-28 | 2011-11-02 | Siemens Aktiengesellschaft | Combustion system and method for dampening such a combustion system |
WO2011134706A1 (en) | 2010-04-28 | 2011-11-03 | Siemens Aktiengesellschaft | Burner system and method for damping such a burner system |
WO2011134713A1 (en) | 2010-04-28 | 2011-11-03 | Siemens Aktiengesellschaft | Burner system and method for damping such a burner system |
JP2013525737A (en) * | 2010-04-28 | 2013-06-20 | シーメンス アクチエンゲゼルシヤフト | Burner device and vibration damping method for this kind of burner |
US8631654B2 (en) | 2010-04-28 | 2014-01-21 | Siemens Aktiengesellschaft | Burner system and method for damping such a burner system |
WO2015176887A1 (en) | 2014-05-19 | 2015-11-26 | Siemens Aktiengesellschaft | Burner arrangement with resonator |
US10605457B2 (en) | 2014-05-19 | 2020-03-31 | Siemens Aktiengesellschaft | Burner arrangement with resonator |
Also Published As
Publication number | Publication date |
---|---|
JPH06221563A (en) | 1994-08-09 |
US5373695A (en) | 1994-12-20 |
DE59208715D1 (en) | 1997-08-21 |
JP3397858B2 (en) | 2003-04-21 |
KR940011862A (en) | 1994-06-22 |
EP0597138B1 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0597138B1 (en) | Combustion chamber for gas turbine | |
EP0781967B1 (en) | Annular combustion chamber for gas turbine | |
DE4316475C2 (en) | A gas turbine combustor | |
DE60007946T2 (en) | A combustion chamber | |
EP0985882B1 (en) | Vibration damping in combustors | |
DE19640980B4 (en) | Device for damping thermoacoustic oscillations in a combustion chamber | |
DE60224141T2 (en) | Gas turbine and combustion chamber for it | |
EP1534997B1 (en) | Gas turbine burner | |
EP0592717B1 (en) | Gas-operated premix burner | |
DE102008037480A1 (en) | Lean premixed dual-fuel annular tube combustion chamber with radial multi-ring stage nozzle | |
EP0931979A1 (en) | Method and apparatus for supressing flame and pressure fluctuations in a furnace | |
EP0687860A2 (en) | Self igniting combustion chamber | |
DE112013007579B4 (en) | Liquid fuel cartridge for a fuel nozzle and fuel nozzle | |
DE102008002931A1 (en) | Apparatus / method for cooling a combustor / venturi in a low NOx burner | |
DE102014102782A1 (en) | Multiinjector micro-mixing system | |
CH702825B1 (en) | Turbine combustor insert assembly. | |
DE102008022669A1 (en) | Fuel nozzle and method for its production | |
DE3222347A1 (en) | VIBRATION BURNER WITH PRE-MIX | |
DE102011051366A1 (en) | Apparatus and method for mixing fuel in a gas turbine nozzle | |
WO2003074937A1 (en) | Burner, method for operating a burner and gas turbine | |
EP1279898A2 (en) | Premix burner with high flame stability | |
EP2006606A1 (en) | Swirling-free stabilising of the flame of a premix burner | |
DE112019000871B4 (en) | COMBUSTION CHAMBER AND THE GAS TURBINE EQUIPPED WITH IT | |
EP0995066B1 (en) | Arrangement of burners for heating installation, in particular a gas turbine combustion chamber | |
DE60225411T2 (en) | Flame pipe or clothing for the combustion chamber of a gas turbine with low pollutant emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI NL |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB LI NL |
|
17P | Request for examination filed |
Effective date: 19941031 |
|
17Q | First examination report despatched |
Effective date: 19951218 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19970716 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASEA BROWN BOVERI AG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59208715 Country of ref document: DE Date of ref document: 19970821 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970919 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091130 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101109 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20101025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101022 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111109 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |