EP0581760B2 - Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes - Google Patents
Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes Download PDFInfo
- Publication number
- EP0581760B2 EP0581760B2 EP91907522A EP91907522A EP0581760B2 EP 0581760 B2 EP0581760 B2 EP 0581760B2 EP 91907522 A EP91907522 A EP 91907522A EP 91907522 A EP91907522 A EP 91907522A EP 0581760 B2 EP0581760 B2 EP 0581760B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubes
- steam generator
- tube diameter
- quotient
- internal tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002826 coolant Substances 0.000 claims abstract description 12
- 239000002803 fossil fuel Substances 0.000 claims abstract description 5
- 230000001174 ascending effect Effects 0.000 claims abstract 2
- 239000003245 coal Substances 0.000 claims description 3
- 239000004449 solid propellant Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 2
- 238000002485 combustion reaction Methods 0.000 abstract description 21
- 238000010438 heat treatment Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/10—Water tubes; Accessories therefor
- F22B37/101—Tubes having fins or ribs
- F22B37/103—Internally ribbed tubes
Definitions
- the invention relates to a once-through steam generator whose minimum load in continuous operation is equal to or less than 50% of the full load, with a vertical throttle cable from essentially vertical arranged and welded together gastight tubes that together form combustion chamber walls and carry burners for fossil fuels which have an inner tube diameter d and on the inside have a multi-thread forming ribs with a pitch h and a rib height H. and which are connected in parallel for the flow of a coolant.
- the mass flow density of the coolant in the tube is a determining variable for the fluidic design of the parallel tube system, which acts as an evaporator heating surface.
- Typical mass flow densities for helical tubing of the combustion chamber with smooth tubes on the inside are between 2000 and 3000 kg / m 2 s, for vertical tubing with internally finned tubes between 1500 and 2000 kg / m 2 s .
- the proportion of the friction pressure drop in the total pressure drop of the once-through evaporator is very high. Evaporators of this type therefore have a typical characteristic, according to which - starting from the design state - the mass flow rate in the individual tube decreases when it is heated more strongly and increases when it is weaker heated.
- the invention has for its object to produce and to pass steam generators inexpensively operate, the temperature differences at the evaporator outlet in an economical manner to allowable Reduce values and also the application limit for continuous steam generators with vertical Extend the combustion chamber walls to unit outputs well below 500 MW.
- the slope is h in m of the ribs forming a multi-start thread on the inside of the tubes at most equal 0.9 times the root of the pipe inside diameter d in m and the fin height H is at least 0.04 times the pipe inside diameter d.
- An advantageous embodiment of the invention is that the one assigned to a quotient K Pipe inside diameter d by at most 30% of the one belonging to this quotient K on curve A. Inner pipe diameter d deviates.
- Curves A and B are determined so that the once-through steam generator still with a minimum load of 50% of the full load or less can be operated in safe continuous operation without the invention Benefits are lost.
- the inventive design of the once-through steam generator is very advantageous because of it the mass flow density in the tubes through which flow has been reduced so far and the tube inner diameter d so are determined that the share of the geodetic pressure drop in the total pressure drop is a change in Characteristics of continuous flow evaporators, according to the - based on the design state - the Mass throughput in the single pipe is increased with its stronger heating and with its weaker heating goes back. This new characteristic leads to a significant equalization of the steam and thus the tube wall temperatures at the outlet of the combustion chamber walls forming the evaporator heating surface.
- the lowering of the mass flow density in the evaporator tubes has another advantage, because at unchanged total mass flow through the parallel pipe system of the evaporator and while maintaining same tube inner diameter d the number of tubes of the combustion chamber walls connected in parallel in terms of flow of the throttle cable compared to previous designs increased. This makes it possible Increase the ratio of the combustion chamber circumference to the total mass throughput and the application limit for continuous steam generators with vertically tube-shaped combustion chamber walls in a performance range up to far expand below 500 MW.
- a once-through steam generator with a vertical throttle cable 1 is surrounded by combustion chamber walls 2
- Combustion chamber walls 2 consist of tubes 3 arranged vertically and side by side, which are gas-tight with one another are welded ( Figure 1).
- the tubes 3 have ribs 4 on their inside, which have a kind of multi-start thread form a slope h and have a rib height H.
- the inner tube diameter d of the tubes 3 is defined through the calculated diameter of the circle, which has the same area as that through the ribs 4 restricted free cross-section of the pipes 3.
- the combustion chamber walls 2 of the vertical gas flue 1 carry burners for fossil fuels, not shown, which burn inside the throttle cable 1 and thereby generate heat.
- the heat is from a coolant added, which flows through the tubes 3 forming the combustion chamber walls 2 and evaporates in the process Normally, appropriately treated water is used as the coolant.
- the ribs 4 protrude at least by 0.04 times the inner pipe diameter d into the pipe 3 by the water content of the flowing Lead coolant on the inside of the tube, because the twist squeezes especially in the area in where the water evaporates, the water still present as a liquid on the inside of a pipe 3, so that the tube 3 passes the heat it absorbs well to the liquid and thereby is safely cooled.
- the inner pipe diameter d is according to the Invention not chosen independently of the quotient K.
- the quotient K is summed by dividing the sum Mass flow rate (kg / s) of all pipes 3 at 100% steam output determined by the circumference (m) of the throttle cable 1.
- the circumference of the throttle cable 1 is measured along a line 5 shown in broken lines in FIG connects the pipe centers of the individual neighboring pipes 3 with each other.
- Each point in the field between this curve A and a straight line B represents a pair of values at which the proportions of frictional pressure drop and geodetic pressure drop in such a favorable relationship to each other stand - in general then the geodetic pressure drop is greater than the friction pressure drop - that the mass flow rate through this tube increases when heating a single tube.
- a pipe inside diameter assigned to a quotient K should be used d at most 10% smaller or 30% larger than the quotient K on curve A assigned pipe inside diameter d.
- This flow rate is at 100% steam output for the pipes up to a pipe inside diameter d of 25 mm at a maximum of about 800 and 850 kg / m 2 s (curve A). With inner pipe diameters d greater than 25 mm, the mass flow density increases somewhat and is then at a maximum of 850 and about 950 kg / m 2 s (curve A).
- the total pressure drop in the tubes 3, i.e. the difference between the pressure in the bottom Inlet collector and the pressure in the outlet collector at the top is made up of the proportions Frictional pressure drop, geodetic pressure drop and acceleration pressure drop.
- the share of the acceleration pressure drop is 1 to 2% of the total pressure drop and can therefore be neglected here.
- the drop in frictional pressure of an individual tube 3 increases in the case of an existing tube compared to other tubes More heating due to the increased volume of the water-steam mixture. Because everyone pipes connected in parallel of an evaporator heating surface of a once-through steam generator through their coupling the same pressure drop is given to a common inlet and outlet manifold is to compensate for this pressure drop in a more heated pipe, the throughput go back. This decrease in throughput leads to the increased heating of the pipe consequently too high steam outlet temperatures at the pipe end compared to average or weaker heated pipes.
- the geodetic pressure drop of a single pipe 3 decreases when this pipe is heated more compared to other pipes due to increased steam formation, because the water-steam column becomes lighter.
- the Throughput through the multi-heated pipe therefore increases due to this effect until the sum of increased Frictional pressure drop and decreased geodetic pressure drop due to the coupling via inlet and Outlet collector reaches predetermined pressure drop. This increase in throughput is desirable to keep the steam outlet temperature at the end of the pipe low despite the additional heating.
- the reason for the change is the comparatively large influence of the geodetically caused pressure drop the characteristic of the once-through steam generator towards a behavior in which larger temperature differences at the tube end of the evaporator are avoided because a stronger heating of an individual Pipe is largely compensated for by a higher throughput of the coolant.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Devices For Medical Bathing And Washing (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Combustion Of Fluid Fuel (AREA)
- Feeding And Controlling Fuel (AREA)
- Air Humidification (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
Die Erfindung betrifft einen Durchlaufdampferzeuger dessen Mindestlast im Durchlaufbetrieb gleich oder kleiner als 50% des Vollast ist, mit einem vertikalen Gaszug aus im wesentlichen vertikal angeordneten und miteinander gasdicht verschweißten Rohren, die gemeinsam Brennkammerwände bilden und Brenner für fossile Brennstoffe tragen, die einen Rohrinnendurchmesser d aufweisen und auf ihrer Innenseite ein mehrgängiges Gewinde bildende Rippen mit einer Steigung h und einer Rippenhöhe H aufweisen und die für den Durchfluß eines Kühlmittels parallel geschaltet sind.The invention relates to a once-through steam generator whose minimum load in continuous operation is equal to or less than 50% of the full load, with a vertical throttle cable from essentially vertical arranged and welded together gastight tubes that together form combustion chamber walls and carry burners for fossil fuels which have an inner tube diameter d and on the inside have a multi-thread forming ribs with a pitch h and a rib height H. and which are connected in parallel for the flow of a coolant.
Derartige Durchlaufdampferzeuger mit vertikaler Berohrung der Brennkammerwände sind gegenüber solchen mit schraubenförmiger Berohrung kostengünstiger herzustellen und haben außerdem einen niedrigeren wasser-/dampfseitigen Druckverlust. Allerdings können die nicht vermeidbaren Unterschiede in der Wärmezufuhr zu den einzelnen Rohren, z.B. infolge unterschiedlichen Verschlackungsgrades vor und nach dem Rußblasen, zu Temperaturdifferenzen zwischen einzelnen Rohren am Verdampferaustritt bis zu 160 °C führen (Europäische Patentanmeldung 0 217 079), die Schäden aufgrund von unzulässigen Wärmespannungen verursachen. Außerdem können derartige Dampferzeuger bisher aus Gründen der Rohrkühlung nur für große Einheitenleistungen ausgeführt werden. In einer Veröffentlichung "Zwangdurchlaufkessel für Gleitdruckbetrieb mit vertikaler Brennkammerberohrung" von H. Juzie et al in der VGB KRAFTWERKSTECHNIK 64, Heft 4, ab Seite 292, wird für Dampferzeuger mit einer Brennkammer mit vertikaler Berohrung und Steinkohle- Tangentialfeuerung eine untere Leistungsgrenze von 500 MW angegeben.Pass-through steam generators of this type with vertical tubing of the combustion chamber walls are compared to such with helical tubing cheaper to manufacture and also have a lower water / steam side pressure loss. However, the unavoidable differences in heat input can to the individual pipes, e.g. due to different degrees of slagging before and after soot blowing, lead to temperature differences between individual tubes at the evaporator outlet up to 160 ° C (European Patent application 0 217 079), which cause damage due to inadmissible thermal stresses. In addition, such steam generators have so far only been possible for large pipe cooling reasons Unit services are carried out. In a publication "Forced-flow boiler for sliding pressure operation with vertical combustion chamber tubing "by H. Juzie et al in VGB KRAFTWERKSTECHNIK 64, booklet 4, from page 292, is for steam generators with a combustion chamber with vertical tubes and hard coal tangential combustion a lower power limit of 500 MW is specified.
Aus dieser Veröffentlichung ergibt sich auch, daß die Massenstromdichte des Kühlmittels im Rohr neben dem Rohrinnendurchmesser eine bestimmende Größe für die strömungstechnische Auslegung des Parallelrohrsystems ist, das als Verdampferheizfläche wirkt. Typische Massenstromdichten für schraubenförmige Berohrung der Brennkammer mit auf der Innenseite glatten Rohren liegen zwischen 2000 und 3000 kg/m2s, für vertikale Berohrung mit innenberippten Rohren zwischen 1500 und 2000 kg/m2s. Bei diesen Auslegungsparametern ist der Anteil des Reibungsdruckabfalls am gesamten Druckabfall der Durchlauf-Verdampfer sehr hoch. Derartige Verdampfer haben demzufolge eine typische Charakteristik, gemäß der - ausgehend vom Auslegungszustand - der Massendurchsatz im Einzelrohr bei dessen stärkerer Beheizung zurückgeht und bei dessen schwächerer Beheizung ansteigt.From this publication it also emerges that the mass flow density of the coolant in the tube, in addition to the tube inner diameter, is a determining variable for the fluidic design of the parallel tube system, which acts as an evaporator heating surface. Typical mass flow densities for helical tubing of the combustion chamber with smooth tubes on the inside are between 2000 and 3000 kg / m 2 s, for vertical tubing with internally finned tubes between 1500 and 2000 kg / m 2 s . With these design parameters, the proportion of the friction pressure drop in the total pressure drop of the once-through evaporator is very high. Evaporators of this type therefore have a typical characteristic, according to which - starting from the design state - the mass flow rate in the individual tube decreases when it is heated more strongly and increases when it is weaker heated.
Diese Charakteristik ist eine Ursache für größere Temperaturdifferenzen zwischen einzelnen Rohren am Verdampferaustritt bei Gaszügen mit vertikal angeordneten Rohren. Zur Minderung dieser Temperaturdifferenzen ist es bekannt, Drosseln am Verdampfereintritt einzubauen und/oder im oberen Teil der Brennkammerwände außerhalb des Gaszuges Mischsammler anzuordnen, in welche die Rohre münden und in denen ein gewisser Enthalpieausgleich durch Mischung stattfindet. Bei Einheitsleistungen unter 500 MW ist bei bisher ausgeführten Durchlaufdampferzeugern für die Brennkammerwände eine schraubenförmige Berohrung vorgesehen worden, um die für die Kühlung der Glattrohre notwendige Massenstromdichte in den Rohren einhalten zu können und um einen gewissen Beheizungsausgleich bei der großen Rohrlänge zu erreichen. Diese Maßnahme führt jedoch zu höheren Herstellungskosten der Durchlaufdampferzeuger und erfordert verhältnismäßig große Speisepumpenleistungen aufgrund des auftretenden hohen Druckabfalls.This characteristic is a cause for larger temperature differences between individual pipes on Evaporator outlet on throttle cables with vertically arranged pipes. To reduce these temperature differences it is known to install throttles at the evaporator inlet and / or in the upper part of the combustion chamber walls to arrange mix collectors outside the throttle cable, into which the pipes open and into which one certain enthalpy compensation takes place by mixing. With unit outputs below 500 MW is with so far continuous steam generators designed for the combustion chamber walls provided a helical tubing in order to maintain the mass flow density in the tubes necessary for cooling the smooth tubes to be able to and to achieve a certain heating compensation with the large pipe length. This However, measure leads to higher production costs of the once-through steam generator and requires proportionately large feed pump capacities due to the high pressure drop that occurs.
Der Erfindung liegt die Aufgabe zugrunde, Durchlaufdampferzeuger kostengünstig herzustellen und zu betreiben, dabei die Temperaturdifferenzen am Verdampferaustritt auf wirtschaftliche Art und Weise auf zulässige Werte zu reduzieren und darüber hinaus die Anwendungsgrenze für Durchlaufdampferzeuger mit vertikaler Berohrung der Brennkammerwände auf Einheitenleistungen deutlich unterhalb von 500 MW auszudehnen.The invention has for its object to produce and to pass steam generators inexpensively operate, the temperature differences at the evaporator outlet in an economical manner to allowable Reduce values and also the application limit for continuous steam generators with vertical Extend the combustion chamber walls to unit outputs well below 500 MW.
Erfindungsgemäß wird diese Aufgabe für Durchlaufdampferzeuger der eingangs genannten Art dadurch
gelöst, daß der Rohrinnendurchmesser d eine Funktion eines Quotienten K ist und daß Punkte, bestimmt durch
Wertepaare aus Rohrinnendurchmesser d und Quotient K, in einem Koordinatensystem zwischen einer Kurve
A und einer Geraden B liegen. Dabei wird zur Bildung des Quotienten K der summierte Massendurchsatz M
aller Rohre bei 100% Dampfleistung dividiert durch den Umfang des Gaszugs in einem horizontalen Schnitt,
gemessen auf den Verbindungslinien der Rohrmitten benachbarter Rohre. Dabei liegen Punkte entsprechend
der Wertepaare
und
auf der Kurve A, die stetig steigend ist und dabei ist die Gerade B durch Punkte entsprechend den Wertepaaren
und
definiert.
and
on the curve A, which is continuously increasing and the straight line B is through points corresponding to the value pairs
and
Are defined.
Nach zweckmäßigen Ausgestaltungen des erfindungsgemäßen Durchlaufdampferzeugers ist die Steigung h in m der ein mehrgängiges Gewinde bildenden Rippen auf der Innenseite der Rohre höchstens gleich dem 0,9-fachen der Wurzel aus dem Rohrinnendurchmesser d in m und die Rippenhöhe H beträgt mindestens das 0,04-fache des Rohrinnendurchmessers d.According to expedient configurations of the once-through steam generator according to the invention, the slope is h in m of the ribs forming a multi-start thread on the inside of the tubes at most equal 0.9 times the root of the pipe inside diameter d in m and the fin height H is at least 0.04 times the pipe inside diameter d.
Eine vorteilhafte Ausgestaltung der Erfindung besteht darin, daß der jeweils einem Quotienten K zugeordnete Rohrinnendurchmesser d um höchstens 30% von dem auf der Kurve A diesem Quotienten K zugehörigen Rohrinnendurchmesser d abweicht.An advantageous embodiment of the invention is that the one assigned to a quotient K Pipe inside diameter d by at most 30% of the one belonging to this quotient K on curve A. Inner pipe diameter d deviates.
Die Kurven A und B sind so bestimmt, daß der Durchlaufdampferzeuger noch mit einer Mindestlast von 50% der Vollast oder darunter im sicheren Durchlaufbetrieb betrieben werden kann, ohne daß die erfindungsgemäßen Vorteile verloren gehen.Curves A and B are determined so that the once-through steam generator still with a minimum load of 50% of the full load or less can be operated in safe continuous operation without the invention Benefits are lost.
Die erfindungsgemäße Ausgestaltung des Durchlaufdampferzeugers ist sehr vorteilhaft, weil durch sie die Massenstromdichte in den durchströmten Rohren so weit abgesenkt und der Rohrinnendurchmesser d so bestimmt sind, daß der Anteil des geodätischen Druckabfalls am gesamten Druckabfall eine Veränderung der Charakteristik von Durchlaufverdampfern erzwingt, gemäß der - ausgehend vom Auslegungszustand - der Massendurchsatz im Einzelrohr bei dessen stärkerer Beheizung erhöht wird und bei dessen schwächerer Beheizung zurückgeht. Diese neuartige Charakteristik führt zu einer bedeutenden Vergleichmäßigung der Dampf- und damit der Rohrwandtemperaturen am Austritt der die Verdampferheizfläche bildenden Brennkammerwände.The inventive design of the once-through steam generator is very advantageous because of it the mass flow density in the tubes through which flow has been reduced so far and the tube inner diameter d so are determined that the share of the geodetic pressure drop in the total pressure drop is a change in Characteristics of continuous flow evaporators, according to the - based on the design state - the Mass throughput in the single pipe is increased with its stronger heating and with its weaker heating goes back. This new characteristic leads to a significant equalization of the steam and thus the tube wall temperatures at the outlet of the combustion chamber walls forming the evaporator heating surface.
Die Absenkung der Massenstromdichte in den Verdampferrohren hat einen weiteren Vorteil, weil sich bei unverändertem Gesamtmassendurchsatz durch das Parallelrohrsystem des Verdampfers und bei Beibehaltung gleicher Rohrinnendurchmesser d die Anzahl der durchflußmäßig parallel geschalteten Rohre der Brennkammerwände des Gaszugs gegenüber bisher üblichen Auslegungen vergrößert. Dadurch ist es möglich, das Verhältnis von Brennkammerumfang zum Gesamtmassendurchsatz zu vergrößern und die Anwendungsgrenze für Durchlaufdampferzeuger mit vertikal berohrten Brennkammerwänden in einen Leistungsbereich bis weit unterhalb von 500 MW auszudehnen.The lowering of the mass flow density in the evaporator tubes has another advantage, because at unchanged total mass flow through the parallel pipe system of the evaporator and while maintaining same tube inner diameter d the number of tubes of the combustion chamber walls connected in parallel in terms of flow of the throttle cable compared to previous designs increased. This makes it possible Increase the ratio of the combustion chamber circumference to the total mass throughput and the application limit for continuous steam generators with vertically tube-shaped combustion chamber walls in a performance range up to far expand below 500 MW.
Um jedoch dabei eine sichere Kühlung der einzelnen Rohre zu gewährleisten, müssen diese innen berippt sein. Dabei muß die Rippengeometrie so beschaffen sein, daß nahezu im gesamten Verdampfungsgebiet, erzwungen durch den Drall des Kühlmittelstroms, stets Wasser auf der Rohrinnenwand vorhanden ist und somit die Gefahr von Filmverdampfung beseitigt ist.However, to ensure reliable cooling of the individual pipes, they must be finned on the inside his. The fin geometry must be such that almost the entire evaporation area is forced due to the swirl of the coolant flow, there is always water on the inner pipe wall and thus the risk of film evaporation is eliminated.
Die erfindungsgemäße Gestaltung von Durchlaufdampferzeugern wird anhand einer Zeichnung näher erläutert.
Im einzelnen zeigen:
Ein Durchlaufdampferzeuger mit einem vertikalen Gaszug 1 ist von Brennkammerwänden 2 umfaßt Die
Brennkammerwände 2 bestehen aus vertikal und nebeneinander angeordneten Rohren 3, die miteinander gasdicht
verschweißt sind (Figur 1). Die miteinander gasdicht verschweißten Rohre bilden beispielsweise in einer
Rohr-Steg-Rohr-Konstruktion oder in einer Flossenrohr-Konstruktion eine gasdichte Brennkammerwand 2.A once-through steam generator with a
Die Rohre 3 tragen nach Figur 2 auf ihrer Innenseite Rippen 4, die eine Art mehrgängiges Gewinde mit einer Steigung h bilden und eine Rippenhöhe H haben. Der Rohrinnendurchmesser d der Rohre 3 ist definiert durch den rechnerischen Durchmesser des Kreises, der den gleichen Flächeninhalt hat wie der durch die Rippen 4 eingeengte freie Querschnitt der Rohre 3. Der Rohrinnendurchmesser d und die Steigung h bestimmen sich gegenseitig durch die Funktion h ≦ 0,9 .√d, um die Strömung des Kühlmittels in einen ausreichend großen Drall zu versetzen. Dabei ist sowohl h als auch d in der Maßeinheit Meter eingesetztAccording to FIG. 2, the tubes 3 have ribs 4 on their inside, which have a kind of multi-start thread form a slope h and have a rib height H. The inner tube diameter d of the tubes 3 is defined through the calculated diameter of the circle, which has the same area as that through the ribs 4 restricted free cross-section of the pipes 3. Determine the pipe inside diameter d and the pitch h each other through the function h ≦ 0.9 .√d to reduce the flow of the coolant into a sufficiently large To put a twist. Both h and d are used in the unit of meter
Die Brennkammerwände 2 des vertikalen Gaszuges 1 tragen nicht dargestellte Brenner für fossile Brennstoffe,
die innerhalb des Gaszuges 1 verbrennen und dabei Wärme erzeugen. Die Wärme wird von einem Kühlmittel
aufgenommen, welches die die Brennkammerwände 2 bildenden Rohre 3 durchströmt und dabei verdampft
Im Normalfall dient als Kühlmittel entsprechend aufbereitetes Wasser. Die Rippen 4 ragen mindestens
um das 0,04-fache des Rohrinnendurchmessers d in das Rohr 3 hinein, um den Wasseranteil des strömenden
Kühlmittels auf der Innenseite des Rohres zu führen, denn der Drall preßt vor allem auch in dem Bereich, in
dem das Wasser verdampft, das jeweils noch als Flüssigkeit vorhandene Wasser an die Innenseite eines Rohres
3, so daß das Rohr 3 die von ihm aufgenommene Wärme gut an die Flüssigkeit weitergibt und dadurch
sicher gekühlt wird.The combustion chamber walls 2 of the
Um dies jeweils in ausreichendem Maße zu gewährleisten, ist der Rohrinnendurchmesser d gemäß der
Erfindung nicht unabhängig vom Quotienten K gewählt. Dabei ist der Quotient K durch Division des summierten
Massendurchsatzes (kg/s) aller Rohre 3 bei 100% Dampfleistung durch den Umfang (m) des Gaszugs 1 bestimmt.
Der Umfang des Gaszugs 1 ist entlang einer in Figur 1 gestrichelt dargestellten Linie 5 gemessen, die
die Rohrmitten der einzelnen benachbarten Rohre 3 miteinander verbindet.In order to ensure this in each case to a sufficient extent, the inner pipe diameter d is according to the
Invention not chosen independently of the quotient K. The quotient K is summed by dividing the sum
Mass flow rate (kg / s) of all pipes 3 at 100% steam output determined by the circumference (m) of the
In dem Koordinatensystem gemäß Figur 3 ist der Rohrinnendurchmesser d als Funktion des Quotienten
K darstellbar. Vier Punkte einer Kurve A sind durch die Wertepaare
und
gegeben.
and
given.
Jeder Punkt in dem Feld zwischen dieser Kurve A und einer Geraden B stellt ein Wertepaar dar, bei dem die Anteile von Reibungsdruckabfall und geodätischem Druckabfall in einem so günstigen Verhältnis zueinander stehen - im allgemeinen ist dann der geodätische Druckabfall größer als der Reibungsdruckabfall -, daß bei der Mehrbeheizung eines einzelnen Rohres der Massendurchsatz durch dieses Rohr ansteigt.Each point in the field between this curve A and a straight line B represents a pair of values at which the proportions of frictional pressure drop and geodetic pressure drop in such a favorable relationship to each other stand - in general then the geodetic pressure drop is greater than the friction pressure drop - that the mass flow rate through this tube increases when heating a single tube.
Eine sichere Kühlung der Rohre erlaubt daher bei einem vorgegebenen Quotienten K keine beliebige Wahl
des Rohrinnendurchmessers d. Deshalb wird das Feld auf in der Praxis üblicherweise vorkommende Wertepaare
durch eine Gerade B begrenzt, die durch die Punkte entsprechend den Wertepaaren
und
and
Bei besonders ungünstigen Beheizungsverhältnissen sollte ein einem Quotienten K zugeordneter Rohrinnendurchmesser d höchstens 10% kleiner bzw. 30% größer als der auf der Kurve A diesem Quotienten K zugeordnete Rohrinnendurchmesser d sein.In the case of particularly unfavorable heating conditions, a pipe inside diameter assigned to a quotient K should be used d at most 10% smaller or 30% larger than the quotient K on curve A assigned pipe inside diameter d.
Durch die Ermittlung der Größe des Rohrinnendurchmessers d auf die angegebene Art und Weise werden
in den Rohren 3 Strömungsverhältnisse erzwungen, bei denen ein durch Reibung erzeugter Anteil des Druckabfalls
in einem günstigen Verhältnis zum geodätisch verursachter Anteil des Druckabfalls am Gesamtdruckabfall
steht, und zwar sowohl bei Vollast- als auch bei Teillastbetrieb, bis zu einer Teillast von 50% der Vollast
und darunter. Infolge der erfindungsgemäß aufeinander abgestimmten Abmessungen der Rohre 3 sowie des
Gaszugs 1 werden diese günstigen Verhältnisse gewährleistet durch eine relativ niedrige, auf die Masse des
Kühlmittels bezogene Strömungsgeschwindigkeit des Kühlmittels in axialer Richtung bei gleichzeitig starker
Drallbewegung desselben. Diese Strömungsgeschwindigkeit, ausgedrückt als Massenstromdichte, liegt bei
100% Dampfleistung für die Rohre bis zu einem Rohrinnendurchmesser d von 25 mm maximal bei etwa 800
und 850 kg/m2s (Kurve A). Bei Rohrinnendurchmessern d größer als 25 mm steigt die Massenstromdichte etwas
an und liegt dann maximal bei 850 und etwa 950 kg/m2s (Kurve A).By determining the size of the pipe inside diameter d in the specified manner, 3 flow conditions are forced in the pipes, in which a portion of the pressure drop caused by friction is in a favorable relationship to the geodetically caused portion of the pressure drop in the total pressure drop, both at full load - as well as in partial load operation, up to a partial load of 50% of full load and below. As a result of the dimensions of the pipes 3 and of the
Der Gesamtdruckabfall in den Rohren 3, also der Unterschied zwischen dem Druck im unten liegenden Eintrittssammler und dem Druck im oben liegenden Austrittssammler, setzt sich zusammen aus den Anteilen Reibungsdruckabfall, geodätischer Druckabfall und Beschleunigungsdruckabfall. Der Anteil des Beschleunigungsdruckabfalls liegt bei 1 bis 2% des Gesamtdruckabfalls und kann deshalb hier vernachlässigt werden.The total pressure drop in the tubes 3, i.e. the difference between the pressure in the bottom Inlet collector and the pressure in the outlet collector at the top is made up of the proportions Frictional pressure drop, geodetic pressure drop and acceleration pressure drop. The share of the acceleration pressure drop is 1 to 2% of the total pressure drop and can therefore be neglected here.
Der Reibungsdruckabfall eines einzelnen Rohres 3 erhöht sich bei einer gegenüber anderen Rohren vorhandenen Mehrbeheizung infolge der erhöhten Volumenzunahme des Wasser-Dampf-Gemisches. Da allen parallel geschalteten Rohren einer Verdampferheizfläche eines Durchlaufdampferzeugers durch ihre Kopplung an einen gemeinsamen Eintritts- und einen gemeinsamen Austrittssammler der gleiche Druckabfall vorgegeben ist, muß zum Ausgleich dieses Druckabfallanteils bei einem stärker beheizten Rohr der Durchsatz zurückgehen. Dieser zurückgehende Durchsatz führt in Verbindung mit der stärkeren Beheizung des Rohres demzufolge zu stark erhöhten Dampfaustrittstemperaturen am Rohrende gegenüber durchschnittlich oder schwächer beheizten Rohren.The drop in frictional pressure of an individual tube 3 increases in the case of an existing tube compared to other tubes More heating due to the increased volume of the water-steam mixture. Because everyone pipes connected in parallel of an evaporator heating surface of a once-through steam generator through their coupling the same pressure drop is given to a common inlet and outlet manifold is to compensate for this pressure drop in a more heated pipe, the throughput go back. This decrease in throughput leads to the increased heating of the pipe consequently too high steam outlet temperatures at the pipe end compared to average or weaker heated pipes.
Der geodätische Druckabfall eines einzelnen Rohres 3 sinkt dagegen bei Mehrbeheizung dieses Rohres gegenüber anderen Rohren infolge erhöhter Dampfbildung, weil die Wasser-Dampf-Säule leichter wird. Der Durchsatz durch das mehrbeheizte Rohr steigt aufgrund dieses Effekts also an, bis die Summe von erhöhtem Reibungsdruckabfall und gesunkenem geodätischen Druckabfall den durch die Kopplung über Eintritts- und Austrittssammler vorgegebenen Druckabfall erreicht. Diese Steigerung des Durchsatzes ist erwünscht, um die Dampfaustrittstemperatur am Rohrende trotz der Mehrbeheizung niedrig zu halten. Dieser erfindungsgemäß vergleichsweise große Einfluß des geodätisch verursachten Druckabfalls ist die Ursache für die Veränderung der Charakteristik des Durchlaufdampferzeugers hin zu einem Verhalten, bei dem größere Temperaturunterschiede am Rohrende des Verdampfers vermieden sind, weil eine stärkere Beheizung eines einzelnen Rohres durch einen höheren Durchsatz des Kühlmittels durch dasselbe größtenteils kompensiert wird.The geodetic pressure drop of a single pipe 3, however, decreases when this pipe is heated more compared to other pipes due to increased steam formation, because the water-steam column becomes lighter. The Throughput through the multi-heated pipe therefore increases due to this effect until the sum of increased Frictional pressure drop and decreased geodetic pressure drop due to the coupling via inlet and Outlet collector reaches predetermined pressure drop. This increase in throughput is desirable to keep the steam outlet temperature at the end of the pipe low despite the additional heating. This according to the invention the reason for the change is the comparatively large influence of the geodetically caused pressure drop the characteristic of the once-through steam generator towards a behavior in which larger temperature differences at the tube end of the evaporator are avoided because a stronger heating of an individual Pipe is largely compensated for by a higher throughput of the coolant.
Diese Vorteile der Erfindung werden bei mit festen Brennstoffen wie Kohle befeuerten Durchlaufdampferzeugern besonders deutlich, da dort aufgrund der unterschiedlichen Verschmutzung der Brennkammerwände die Mehr- oder Minderbeheizung einzelner Rohre sehr groß ist.These advantages of the invention will be seen in continuous steam generators fired with solid fuels such as coal particularly clear, because there the different pollution of the combustion chamber walls the over or under heating of individual pipes is very large.
Claims (6)
- A continuous flow steam generator, the minimum load of which in continuous flow operation is equal to or less than 50% of full load, comprising a vertical gas flue, which is formed of tubes welded to one another in a gas-tight manner and on which burners for fossil fuel are arranged, the tubes of the gas flue being essentially vertically disposed, having an internal tube diameter d, carrying fins on their inner surface forming a multiple thread and being connected in parallel for conducting a coolant flow, characterisedin that the internal tube diameter d is a function of a quotient K,in that points determined by pairs of values of said internal tube diameter d and of said quotient K are located in a coordinate system between a curve A and a straight line B,with the quotient K being formed of the summated mass throughput of all the tubes at 100% steam output, divided by the circumference of the gas flue in a horizontal section, measured on lines connecting the tube centres of adjacent tubes, andwith points corresponding to the pairs of valuesd1 = 12.5 mm at K1 = 3 kg/s m,d2 = 20.4 mm at K2 = 7 kg/s m,d3 = 30.6 mm at K3 = 13 kg/s m
andd4 = 39.0 mm at K4 = 19 kg/s mwith the points corresponding to the pairs of valuesd5 = 14.3 mm at K5 = 1.8 kg/s m
andd6 = 38.4 mm at K6 = 7.6 kg/s m - A continuous flow steam generator according to claim 1, characterised in that a pitch h (given in the measurement unit "metres") of the fins in the tubes is at most equal to 0.9 times the square root of the internal tube diameter d (given in the measurement unit "metres"), and in that a height H of the fins forming the thread is at least equal to 0.04 times said internal tube diameter d.
- A continuous flow steam generator according to claim 1 or 2, characterised in that the internal tube diameter d associated with a quotient K is at most 10% smaller than and at most 30% greater than the internal tube diameter d associated with said quotient K on the curve A.
- A continuous flow steam generator according to one of claims 1 to 3, characterised in that the fossil fuel is coal or another solid fuel.
- A continuous flow steam generator according to one of claims 1 to 3, characterised in that the electric power of the power station block, in which the continuous flow steam generator is incorporated, is significantly less than 500 MW.
- A continuous flow steam generator according to one of claims 1 to 5, characterised in that a mass flow density in the tubes (3) is at most in a range from about 800 to 850 kg/m2s when the internal tube diameter d is up to 25 mm and is at most in a range from about 850 to about 950 kg/m2s when said internal tube diameter is greater than 25 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE1991/000319 WO1992018807A1 (en) | 1991-04-18 | 1991-04-18 | Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0581760A1 EP0581760A1 (en) | 1994-02-09 |
EP0581760B1 EP0581760B1 (en) | 1995-01-18 |
EP0581760B2 true EP0581760B2 (en) | 2001-10-31 |
Family
ID=6863278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91907522A Expired - Lifetime EP0581760B2 (en) | 1991-04-18 | 1991-04-18 | Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes |
Country Status (11)
Country | Link |
---|---|
US (1) | US5662070A (en) |
EP (1) | EP0581760B2 (en) |
JP (1) | JP3091220B2 (en) |
AT (1) | ATE117420T1 (en) |
DE (1) | DE59104348D1 (en) |
DK (1) | DK0581760T4 (en) |
ES (1) | ES2067227T5 (en) |
GR (1) | GR3015181T3 (en) |
RU (1) | RU2075690C1 (en) |
UA (1) | UA27775C2 (en) |
WO (1) | WO1992018807A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7021106B2 (en) | 2004-04-15 | 2006-04-04 | Mitsui Babcock (Us) Llc | Apparatus and method for forming internally ribbed or rifled tubes |
DE102011004266A1 (en) * | 2011-02-17 | 2012-08-23 | Siemens Aktiengesellschaft | Solar panel with internally ribbed pipes |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6302194B1 (en) * | 1991-03-13 | 2001-10-16 | Siemens Aktiengesellschaft | Pipe with ribs on its inner surface forming a multiple thread and steam generator for using the pipe |
DE4333404A1 (en) * | 1993-09-30 | 1995-04-06 | Siemens Ag | Continuous steam generator with vertically arranged evaporator tubes |
DE4431185A1 (en) * | 1994-09-01 | 1996-03-07 | Siemens Ag | Continuous steam generator |
FI102396B1 (en) * | 1995-03-22 | 1998-11-30 | Tampella Power Oy | Method and arrangements for coolant circulation in a soda pan |
DE19600004C2 (en) * | 1996-01-02 | 1998-11-19 | Siemens Ag | Continuous steam generator with spirally arranged evaporator tubes |
DE19602680C2 (en) * | 1996-01-25 | 1998-04-02 | Siemens Ag | Continuous steam generator |
DE19644763A1 (en) * | 1996-10-28 | 1998-04-30 | Siemens Ag | Steam generator pipe |
DE19645748C1 (en) * | 1996-11-06 | 1998-03-12 | Siemens Ag | Steam generator operating method |
EP1086339B1 (en) * | 1998-06-10 | 2001-12-12 | Siemens Aktiengesellschaft | Fossil fuel fired steam generator |
DE19858780C2 (en) * | 1998-12-18 | 2001-07-05 | Siemens Ag | Fossil-heated continuous steam generator |
DE19914760C1 (en) * | 1999-03-31 | 2000-04-13 | Siemens Ag | Fossil-fuel through-flow steam generator for power plant |
EP1546607A4 (en) * | 2002-10-04 | 2006-05-03 | Nooter Eriksen Inc | Once-through evaporator for a steam generator |
US20080156236A1 (en) * | 2006-12-20 | 2008-07-03 | Osamu Ito | Pulverized coal combustion boiler |
DE102009012322B4 (en) * | 2009-03-09 | 2017-05-18 | Siemens Aktiengesellschaft | Flow evaporator |
DE102009012321A1 (en) * | 2009-03-09 | 2010-09-16 | Siemens Aktiengesellschaft | Flow evaporator |
DE102010040214A1 (en) * | 2010-09-03 | 2012-03-08 | Siemens Aktiengesellschaft | Drilling an evaporator heating surface for continuous steam generators in solar tower power plants with direct evaporation and natural circulation characteristics |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1288755A (en) * | 1960-12-27 | 1962-03-30 | Babcock & Wilcox Co | Ribbed steam production tube |
JPS5623603A (en) * | 1979-08-01 | 1981-03-06 | Mitsubishi Heavy Ind Ltd | Forced flowinggthrough boiler |
JPS6042361B2 (en) * | 1981-06-04 | 1985-09-21 | フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン | A variable pressure steam generator using a crossover circuit for the rifted internal fluid pipes that make up the furnace wall. |
JPH0613921B2 (en) * | 1986-01-31 | 1994-02-23 | 三浦工業株式会社 | Heat transfer surface structure of multi-tube once-through boiler |
EP0349834B1 (en) * | 1988-07-04 | 1996-04-17 | Siemens Aktiengesellschaft | Once-through steam generator |
US5069171A (en) * | 1990-06-12 | 1991-12-03 | Foster Wheeler Agency Corporation | Fluidized bed combustion system and method having an integral recycle heat exchanger with a transverse outlet chamber |
US5094191A (en) * | 1991-01-31 | 1992-03-10 | Foster Wheeler Energy Corporation | Steam generating system utilizing separate fluid flow circuitry between the furnace section and the separating section |
-
1991
- 1991-04-18 ES ES91907522T patent/ES2067227T5/en not_active Expired - Lifetime
- 1991-04-18 AT AT91907522T patent/ATE117420T1/en not_active IP Right Cessation
- 1991-04-18 RU RU9193058367A patent/RU2075690C1/en active
- 1991-04-18 DK DK91907522T patent/DK0581760T4/en active
- 1991-04-18 DE DE59104348T patent/DE59104348D1/en not_active Expired - Lifetime
- 1991-04-18 UA UA93004094A patent/UA27775C2/en unknown
- 1991-04-18 JP JP03506749A patent/JP3091220B2/en not_active Expired - Lifetime
- 1991-04-18 EP EP91907522A patent/EP0581760B2/en not_active Expired - Lifetime
- 1991-04-18 WO PCT/DE1991/000319 patent/WO1992018807A1/en active IP Right Grant
-
1995
- 1995-02-24 GR GR950400019T patent/GR3015181T3/en unknown
- 1995-10-26 US US08/548,524 patent/US5662070A/en not_active Expired - Lifetime
Non-Patent Citations (3)
Title |
---|
ETV-Bericht 23/1974: "Probleme bei der Auslegung grosser Zwangsdurchlauf-Dampferzeuger" † |
Technical Review, Vol. 17, Nr. 3, Okt. 1980, S. 1-12 † |
VGB-Kraftwerkstechnik 64, Heft 4, April 1984, S. 279-302 † |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7021106B2 (en) | 2004-04-15 | 2006-04-04 | Mitsui Babcock (Us) Llc | Apparatus and method for forming internally ribbed or rifled tubes |
DE102011004266A1 (en) * | 2011-02-17 | 2012-08-23 | Siemens Aktiengesellschaft | Solar panel with internally ribbed pipes |
Also Published As
Publication number | Publication date |
---|---|
UA27775C2 (en) | 2000-10-16 |
US5662070A (en) | 1997-09-02 |
ES2067227T3 (en) | 1995-03-16 |
DE59104348D1 (en) | 1995-03-02 |
JPH06500850A (en) | 1994-01-27 |
GR3015181T3 (en) | 1995-05-31 |
DK0581760T3 (en) | 1995-06-26 |
ATE117420T1 (en) | 1995-02-15 |
EP0581760A1 (en) | 1994-02-09 |
EP0581760B1 (en) | 1995-01-18 |
JP3091220B2 (en) | 2000-09-25 |
WO1992018807A1 (en) | 1992-10-29 |
ES2067227T5 (en) | 2002-04-01 |
RU2075690C1 (en) | 1997-03-20 |
DK0581760T4 (en) | 2001-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0581760B2 (en) | Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes | |
EP0617778B1 (en) | Fossil-fuelled continuous steam generator | |
EP0657010B1 (en) | Steam generator | |
EP0349834B1 (en) | Once-through steam generator | |
EP0503116B2 (en) | Tube with a plurality of spiral ribs on his internal wall and steam generator using the same | |
EP0778932B1 (en) | Continuous steam generator | |
EP0720714B1 (en) | Steam boiler of once-through type and process for operating the same | |
EP0937218B1 (en) | Method applicable to a continuous steam generator, and the steam generator needed for applying same | |
EP1144910B1 (en) | Fossil fuel fired steam generator | |
EP1141625B1 (en) | Fossil fuel fired continuous-flow steam generator | |
EP0808440B1 (en) | Method and device for starting a once-through steam generator | |
DE4427859A1 (en) | Tube with inner ribbing forming multi-hand thread | |
EP0873489B1 (en) | Continuous-flow steam generator with spiral evaporation tubes | |
DE4236835A1 (en) | Steam generator | |
EP0812407B1 (en) | Process and system for starting a continuous steam generator | |
DE1751641A1 (en) | Forced once-through steam generator with wall tubing formed from vertical welded tubes and a method for operating the steam generator | |
CH666532A5 (en) | Brennkammer-rohranordnung in zwangdurchlauf-dampferzeugern. | |
WO2005050089A1 (en) | Continuous steam generator | |
DE19644763A1 (en) | Steam generator pipe | |
WO1994005950A1 (en) | Steam generator | |
DE9102579U1 (en) | Natural circulation waste heat boiler behind gas turbine with additional firing | |
DE2327892B2 (en) | Forced once-through steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19940623 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 117420 Country of ref document: AT Date of ref document: 19950215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59104348 Country of ref document: DE Date of ref document: 19950302 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2067227 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950305 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3015181 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH Effective date: 19951018 Opponent name: ABB MANAGEMENT AG, BADEN TEI/IMMATERIALGUETERRECHT Effective date: 19951018 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ABB MANAGEMENT AG, BADEN TEI/IMMATERIALGUETERRECHT Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH * 951018 AB Effective date: 19951018 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ABB MANAGEMENT AG IMMATERIALGUETERRECHT (TEI) Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
R26 | Opposition filed (corrected) |
Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH * 951018 AS Effective date: 19951018 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ASEA BROWN BOVERI AG Opponent name: EVT ENERGIE UND VERFAHRENSTECHNIK GMBH |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 951018 ASEA BROWN BOV Effective date: 19951018 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ASEA BROWN BOVERI AG Opponent name: ALSTOM ENERGY SYSTEMS GMBH |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ALSTOM ENERGY SYSTEMS GMBH * 19951018 ASEA BROWN B Effective date: 19951018 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAE | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOS REFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ALSTOM ENERGY SYSTEMS GMBH Opponent name: ASEA BROWN BOVERI AG |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ABB ALSTOM POWER COMBUSTION GMBH * 19951018 ASEA B Effective date: 19951018 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ABB ALSTOM POWER COMBUSTION GMBH Opponent name: ASEA BROWN BOVERI AG |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20011031 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
NLR2 | Nl: decision of opposition | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20020201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20020313 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20020329 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Kind code of ref document: T5 Effective date: 20020115 |
|
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020410 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020419 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020423 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020426 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20020400274 Country of ref document: GR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020711 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030419 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20030430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031101 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030419 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20100408 Year of fee payment: 20 Ref country code: FR Payment date: 20100423 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100427 Year of fee payment: 20 Ref country code: DE Payment date: 20100621 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100412 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59104348 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20110417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110418 |