EP0519334B1 - Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher - Google Patents

Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher Download PDF

Info

Publication number
EP0519334B1
EP0519334B1 EP92109870A EP92109870A EP0519334B1 EP 0519334 B1 EP0519334 B1 EP 0519334B1 EP 92109870 A EP92109870 A EP 92109870A EP 92109870 A EP92109870 A EP 92109870A EP 0519334 B1 EP0519334 B1 EP 0519334B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flat
flat tubes
exchanger according
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92109870A
Other languages
English (en)
French (fr)
Other versions
EP0519334A3 (en
EP0519334A2 (de
Inventor
Roland Dipl.-Ing. Haussmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Original Assignee
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4120442A external-priority patent/DE4120442A1/de
Application filed by Thermal-Werke Warme- Kalte- Klimatechnik GmbH filed Critical Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Publication of EP0519334A2 publication Critical patent/EP0519334A2/de
Publication of EP0519334A3 publication Critical patent/EP0519334A3/de
Application granted granted Critical
Publication of EP0519334B1 publication Critical patent/EP0519334B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction

Definitions

  • the invention relates to a flat tube heat exchanger according to the preamble of claim 1.
  • a flat tube heat exchanger is known for example from DE-A1-37 20 483 (Fig. 4).
  • the invention further relates to a manufacturing method of such a flat tube heat exchanger, applications and flat tubes for installation in the flat tube heat exchanger according to the invention.
  • Zigzag lamellas and with these equivalent lamellas - in the following also sometimes just called lamellas - are sandwiched in the sequence flat tube - (zigzag) lamella - flat tube - (zigzag) lamella - etc. side by side.
  • This arrangement is not equivalent to the insertion of pipes into, usually with collars, fins of plate packs, where, unlike the flat tube heat exchangers of the invention, the fins or their collars surround the respective pipe all around (see, for example, GB-A-538 018 ); the latter arrangement is therefore not considered in the context of the invention drawn.
  • the known profiles of the narrow sides of the flat tubes prove to be only conditionally favorable in terms of flow with regard to the external heat exchange fluid passing through the fins, e.g. of an air flow.
  • the invention is therefore based on the object of improving the quality of connection of the fins with the flat tubes and taking account of aspects of the external flow dynamics, wherein the risk of falling rocks should also be reduced in the case of the use of the flat tube heat exchanger in a motor vehicle.
  • the c W value ie the coefficient of resistance of the heat exchanger with respect to the flow of the external heat exchange medium
  • the pressure loss of the external heat exchange medium is reduced.
  • the longitudinal extent 1 of the semicircularly rounded narrow side of the respective flat tube is equal to half the distance d between the flat sides of the flat tube or equal to their half width d.
  • the other known flat tube heat exchangers mentioned have even smaller values 1. This is not a coincidence, because up to now the longest possible soldering path along the flat sides of the flat tube profile has been attempted. The invention is consciously based on this previous design principle of all known flat tube heat exchangers in favor of the new effects mentioned. In addition, the soldering distance of the fins along the flat tube profile is also increased, since for the first time soldering also takes place in partial areas of the rounded narrow sides of the flat tube.
  • the measure according to claim 4 is preferably provided to continue the slats freely at least up to the two tangent planes to the vertices of the narrow sides in the area not soldered to the narrow sides.
  • the extended lamella areas at least partially cover the rounded narrow sides of the flat tubes to the outside and thus provide additional protection against damage, e.g. against stone chips in motor vehicles. If one were to let the known flat tube heat exchangers survive the fins only soldered to the flat sides via the imaginary tangential planes to the vertices of the rounded narrow sides of the flat tubes, then one would get rectangular protruding lamellar contours without covering the rounded narrow sides of the flat tubes; such protruding fins would be mechanically unstable, since they protrude freely over a relatively large distance up to the soldered areas with the flat sides of the flat tubes. Since, in the arrangement according to the invention, soldering also takes place with relatively large sections of the rounded narrow sides of the flat tubes, the free protrusion distance is, on the other hand, much less, which in turn leads to relatively greater mechanical stability.
  • Claim 6 gives a structurally particularly simple way of creating the supernatant with a good degree of coverage with an already existing radius of curvature. This does not conflict with the fact that the teaching of claim 5 can also be fulfilled with different degrees of curvature, possibly even in a linear continuation behind the soldered area, depending on how the desired coverage ratios of the rounded narrow sides of the flat tubes are selected.
  • the overall depth in the area of the collector is the determining dimension when installing it in a motor vehicle, for example.
  • this installation dimension is kept as small as possible, since it depends on the total length of the motor vehicle or its engine compartment, including the material consumption associated with this length problem in motor vehicle construction.
  • a saving of 3 mm in the collector area leads to a saving of 10 to 20 kg vehicle weight, especially sheet metal, depending on the vehicle type.
  • the collector could also be made of a plastic, for example, if the possibility of soldering, or an equivalent, is ensured, e.g. in the case of the plastic. a plastic weld.
  • soldering or an equivalent
  • the flat tubes are extruded profiles.
  • internal stiffeners such as the known intermediate webs
  • claims 14 to 17 are preferred and their dimensions correspond to optimal conditions in comparison with competitive heat exchangers according to the current state of the art. The same applies to the slat thickness for claim 18.
  • Claim 19 results in an additional mechanical solidification in addition to their better soldering to the flat tubes.
  • the heat exchangers according to the invention or manufactured according to the invention find their main fields of application as mass articles in the applications of claims 24 and 25.
  • other known applications such as, for example, as a cooler or as an evaporator, also come into question.
  • applications in motor vehicle construction are also preferred, without any areas of application in other fields of application, possibly also stationary arrangements, being excluded.
  • the invention also relates to Flat tubes for installation in a flat tube heat exchanger according to the invention.
  • claims 26 to 29 is based on the object of being able to produce and provide flat tubes for the flat tube heat exchanger according to the invention quickly and easily in a manner suitable for mass production.
  • the flat tube heat exchanger 2 according to FIG. 1 has two parallel collectors 4 which, without restriction of generality, have the design of the German utility model G 90 15 090.2.
  • the collectors have tube plates 6 which are parallel to one another and which are provided with slots 8 at equidistant intervals and in the two collectors opposite one another. Ends 10 of a flat tube 12 each engage in these slots 8.
  • the flat tubes 12 are gas-tight with the collectors 4 and thus also soldered liquid-tight.
  • the arrangement is such that the mutually parallel flat sides 14 of the flat tubes 12 run in the longitudinal direction L of the flat tube profile in the flow direction (arrow A) of the external heat exchange medium.
  • the flat tubes 12 have a heat exchange ribbing in the form of zigzag fins 16, or the sandwich-like type of installation flat tube - fin - flat tube - fin - etc. with such zigzag fins equivalent to other fins, which are soldered to the flat sides 14 of the flat tubes 12 adjacent edges 18 to the flat sides 14 of the flat tubes 12.
  • the scope of the respective collector 4 is composed of two components 20 and 22, of which the component 20 forms the tube sheet.
  • the tube sheet 20 has the slots 8 for receiving the flat tube ends 10 inserted therein, of which only one can be seen in the cross section according to FIG. 6.
  • the second component 22 together with the first component 20 complements the scope of the collector 4.
  • Separate caps are usually attached to the collector 4 at the end; however, these caps could also be integrally formed on one of the components 20 or 22. Separate caps are, however, sensible to provide if the second component 22 is preferably an extruded profile.
  • the first component 20 is expediently hard-solder coated on both sides.
  • the second component 22 is expediently free of solder.
  • Both components 20 and 22 overlap in two connection zones 24 extending along the collector 4 in three layers, a hard solder connection using the hard solder coating of the first component 20 in particular being present in the overlap zone.
  • the respective inner arm 32 of the fork-shaped design 30 is already arranged further inwards than the narrow sides of the mouth 28 of the flat tubes 12, so that the wall thickness of the inner arm 32 of the fork-shaped Training 30 contributes nothing to the depth, on the other hand, can be trained unimpaired according to the strength conditions.
  • the respective outer arm 34 of the fork-shaped configuration 30 can then, as already mentioned, be formed with a smaller wall thickness, as is also shown in FIG. 6.
  • the respective outer arm 34 is connected via a predetermined bending line in the form of a longitudinal groove 36 on the inside of the outer arm 34 at the base of the fork-shaped design 30, so that the outer arm 34 can be easily spread outwards. This promotes a desired clamping connection between the two arms 32 and 34 of the fork-shaped design 30 on the one hand and the wall webs 26 on the other hand.
  • the first component 20 is advantageously manufactured with its slots 8 as a flat part and provided with the solder coating 38 on both sides from the outset and only then bulged.
  • the flat tubes 12 are then expediently inserted into the receiving slots 8 and mechanically expanded therein.
  • the second component 22 with its fork-shaped configurations 30 is pushed onto the wall webs 26 of the first component 20.
  • the required braze joints are formed on the one hand in the connection zones 24 and on the other hand between the flat tubes 12 and the receiving slots 8 in a soldering furnace.
  • One collector 4 is provided with at least one partition 52 and on one side of the partition with an inlet 54 and on the other side of the partition with an outlet 56 for an internal heat exchange medium. If the other collector is then designed without such a partition, the internal heat exchange medium flows from inlet 54 through the connected part of the collector and the connected flat tubes 12 to the opposite collector and then through the other flat tubes 12 back into the other section of the former collector and out of the outlet 56.
  • the second collector can be dispensed with entirely and, if necessary, replaced by hairpin bypasses.
  • the profile of the flat tubes 12 can be seen from FIG. 3 in connection with FIGS. 4 and 5.
  • the profile has a profile length L.
  • the profile is a mirror image of the imaginary longitudinal center plane BB, on the two sides of which parallel profile walls 40 extend, which form the two mutually parallel flat sides 14 on the outside.
  • the parallel walls 40 are stiffened with respect to one another by intermediate webs 42 which are perpendicular to them, four equidistant intermediate webs being provided here without restricting the generality.
  • the parallel walls 40 continue in rounded walls 44, which end in an apex 46 of the profile and together result in rounded narrow sides 50 of the profile.
  • the longitudinal extent of one of these rounded narrow sides in the direction of dimension L here has dimension 1 in each case.
  • the rounded narrow sides 50 adjoin the outermost intermediate web 42.
  • FIG. 3 The representation of FIG. 3 is approximately true to scale in a ratio of 1: 8.
  • the fins 16 are not only soldered to the flat sides 14 of the flat tubes 12, but also to the areas 58 of the rounded narrow sides, specifically in the construction of two circular arcs r1 and r2 along the entire length of the two arcs with radius r2.
  • an imaginary tangential plane C to the adjacent apex 46 of adjacent flat tubes 12 can be seen in dashed lines. From Fig. 3 it can also be seen that the slats 16 on both sides of the rounded narrow side 50 in the vicinity of the circular arc with the radius r1 with the radius r2 extends freely, not only up to the tangential plane C, but also beyond this . At the end of the heat exchanger, the edges 60 of the fins 16, which are aligned in a straight line, only form a small gap 62 with respect to the apex 46 of the flat tube.
  • the lamella 16 is provided with a corrugation 64 which projects on both sides with respect to the otherwise essentially flat lamella plane and stiffens the lamella region which projects freely from the flat tubes.
  • This area is relatively small anyway, since, according to FIG. 3, the lamella is close to its apex 46, i.e. in the area of the entire circular arc with the radius r2, is soldered.
  • the length S of the respective slot 8 in the collector 4 is also smaller than the length L of the profile according to FIG. 3 of the flat tube in the area of the ribbing with the fins 16.
  • the ends 10 of the flat tubes can nevertheless be inserted into the slots 8 because they are drawn in relative to the other profile according to FIG. 3 of the flat tubes 12.
  • the ends 10 of the flat tubes 12 merge into the normal profile of the flat tubes according to FIG. 3 via a transition zone 66 located outside the collector.
  • the possibility of retracting the ends 10 of the flat tubes is based on the selected shape of the rounded narrow sides 50 of the flat tube profiles. If these are compressed in the longitudinal direction of their profile cross-section according to FIG. 7b or FIG. 7c - which is only practically usable due to the relatively elongated shape of the rounded narrow sides 50 of the profiles - the tube ends 10 are given a reduced effective length, which is an insertion in the slots 8 allows.
  • FIG. 7b and 7c illustrate two preferred options for this longitudinal compression of the profiles.
  • the deformation takes place with tube compression on the rounded narrow sides 50 in the longitudinal direction of the flat tube profiles while maintaining the length of the neutral fiber 68 (shown in broken lines).
  • the deformation takes place with tube compression on the rounded narrow sides 50 in the longitudinal direction of the flat tube profiles with simultaneous compression of the material wall thickness, so that the neutral fiber shown in broken lines is shortened.
  • a collection of material can be seen, in particular in the corner areas of the end faces of the compressed profile, as is indicated, for example, at a corner by reference number 70. This type of compression can go so far that a central fold 72 forms in the apex region of the compressed rounded section 50.
  • the end 10 of the flat tube engaging in the slot 8 can be expanded by a mandrel against the edge of the slot shown in dashed line in FIG. 7c 8 widen and thereby stretch the fold 72 which was initially formed again and bring it into straight contact with the narrow side of the edge of the slot.
  • the length of the fold initially formed can be used to fill the otherwise particularly critical corner areas of the slot when expanding.
  • This type of expansion technology involves a two-part training of the collector ahead of both components 20 and 22, the cover-like component 22 then being placed on the component 20 forming the tube sheet after the expansion.
  • the narrow side of the flat tube is also critical in terms of the quality of the soldering outdoors.
  • the transition region 66 into the retracted end 10 forms a relatively acute angle with the tube sheet 20, which is particularly suitable for solder absorption.
  • the transition region 66 can also serve as a tolerance-compensating stop for a form-fitting insertion of the pipe ends 10 into the slots 8 of the collector 4.
  • the respective material bridge 80 has a low material thickness and a short length in the plane of extension of the flat tubes 12.
  • the dimensions are selected apart from the desired function of the interlinked arrangement of the flat tubes 12 so that the entire interlinked arrangement can be produced as an integral extruded profile of indefinite length . This applies in particular to the minimum dimensions of the material bridges 80.
  • the maximum thickness of the material bridges 80 is chosen so that the separation line can be torn off, pressed, sheared, cut off or the like known separation process. Functionally, the following must also be taken into account when dimensioning:
  • the interlinked arrangement of the flat tubes 12, initially with an indefinite length should be able to be wound up as an integral extruded part on a core in order to be able to store it temporarily and, if necessary, to transport it.
  • the longitudinal extent 1 of the respective rounded narrow side 50 of the respective flat tube 12 and the distance d between the flat sides 14 of the respective flat tube 12 also correspond to the information given in the description of the flat tube heat exchanger according to the invention.
  • the direction of extension of the material bridges 80 is to be understood analogously in the direction of the longitudinal extension 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung bezieht sich auf einen Flachrohrwärmetauscher gemäß dem Oberbegriff von Anspruch 1. Ein solcher Flachrohrwärmetauscher ist beispielsweise aus der DE-A1-37 20 483 (Fig. 4) bekannt. Die Erfindung betrifft ferner ein Herstellungsverfahren eines solchen Flachrohrwärmetauschers, Anwendungen und Flachrohre zum Einbau in den erfindungsgemäßen Flachrohrwärmetauscher.
  • Bei solchen bekannten Flachrohrwärmetauschern (vgl. auch die EP-B1-0 255 313 oder die eigene EP-A2 0 374 896 der Anmelderin) sind die Schmalseiten der Flachrohre mit einem Halbkreisbogen gerundet, dessen Radius dem halben Abstand d der Flachseiten eines Flachrohres, oder anders ausgedrückt der halben Breite d des Flachrohres, entspricht. Dies ist die meistgebrauchte Schmalseitenausbildung von Flachrohrwärmetauschern, die für verschiedene Anwendungszwecke in Massenfertigung hergestellt werden.
  • Zickzacklamellen und mit diesen äquivalente Lamellen - im folgenden teilweise auch nur kurz Lamellen genannt - werden sandwichartig in der Folge Flachrohr - (Zickzack-)Lamelle - Flachrohr - (Zickzack-)Lamelle - etc. seitlich nebeneinander geschachtelt. Diese Anordnung ist nicht äquivalent mit dem Einstecken von Rohren in, meist mit Krägen versehene, Lamellen von Lamellenpaketen, wo anders als bei den Flachrohrwärmetauschern der Erfindung die Lamellen bzw. deren Krägen das jeweilige Rohr ringsum umgeben (vgl. z.B. GB-A-538 018); die letztgenannte Anordnung ist daher im Rahmen der Erfindung nicht mit in Betracht gezogen.
  • Daneben ist es noch bekannt, die Schmalseiten der Flachrohre rechteckig, mit abgerundeten Kanten oder dachförmig mit stumpfem Scheitelwinkel des Daches auszubilden. In all diesen Fällen sind die Zickzacklamellen nur mit den Flachseiten benachbarter Flachrohre verlötet, und es besteht dementsprechend das Bestreben, die Erstreckungslänge dieser Flachseiten möglichst groß zu wählen. Es kommt dabei jedoch vor, daß die nur an flachen Flächen verlöteten Lamellen vor dem Verlöten verrutschen. Dies führt neben einer optischen Störung der Oberfläche des Wärmetauschers zu einer vergrößerten realen Bautiefe desselben und darüber hinaus gelegentlich sogar zu Störungen der wärmeleitenden Verbindung zwischen den Flachrohren und den Lamellen.
  • Darüber hinaus erweisen sich die bekannten Profilierungen der Schmalseiten der Flachrohre als nur bedingt strömungsgünstig bezüglich des die Lamellen durchstreichenden äußeren Wärmetauschfluids, z.B. eines Luftstroms.
  • Schließlich sind die bekannten Profile der Schmalseiten der Flachrohre gegen Steinschlag bei Anordnung im Motorraum eines Kraftwagens empfindlich.
  • Der Erfindung liegt daher zunächst die Aufgabe zugrunde, die Verbindungsgüte der Lamellen mit den Flachrohren zu verbessern und dabei Gesichtspunkten der äußeren Strömungsdynamik Rechnung zu tragen, wobei im Falle der Anwendung des Flachrohrwärmetauschers in einem Kraftwagen auch die Steinschlaggefahr gemindert werden soll.
  • Diese Aufgabe wird bei einem Flachrohrwärmetauscher mit den Merkmalen des Oberbegriffs von Anspruch 1 durch dessen kennzeichnenden Merkmale gelöst.
  • Indem nach der Erfindung die gerundeten Schmalseiten mit einer langgestreckteren Rundung als bisher versehen werden, wird der cW-Wert, d.h. der Widerstandsbeiwert des Wärmetauschers in bezug auf die Strömung des äußeren Wärmetauschmediums, verringert und dadurch der Druckverlust des äußeren Wärmetauschmediums reduziert. Dabei wird bei Einbau in Kraftfahrzeugengen zugleich äußerer Steinschlag besser abgeleitet, soweit er nicht unmittelbar den Scheitelbereich der gerundeten Schmalseiten trifft. Darüber hinaus bieten die langgestreckten gerundeten Schmalseiten die Möglichkeit, daß nunmehr die Lamellen nicht nur an den Flachseiten benachbarter Flachrohre anliegen, sondern die Flachrohre auch noch über eine nennenswerte Länge des Profils formschlüssig umgreifen und so gegen ein Verrutschen in Längsrichtung L des Flachrohrprofils vor dem Verlöten durch Formschluß gesichert sind.
  • Bei den Flachrohrwärmetauschern, auf welche sich die Erfindung mit ihrem Oberbegriff bezieht, ist die Längserstrekkung 1 der halbkreisförmig gerundeten Schmalseite des jeweiligen Flachrohres gleich dem halben Abstand d der Flachseiten des Flachrohres bzw. gleich deren halber Breite d. Die anderen erwähnten bekannten Flachrohrwärmetauscher haben sogar noch kleinere Werte 1. Dies ist kein Zufall, weil man bisher eine möglichst lange Verlötungsstrecke längs der Flachseiten des Flachrohrprofils angestrebt hat. Die Erfindung geht bewußt von diesem bisherigen Konstruktionsprinzip aller bekannten Flachrohrwärmetauscher ab zugunsten der erwähnten neuen Wirkungen. Dabei wird darüber hinaus sogar die Verlötungsstrecke der Lamellen längs des Flachrohrprofils noch vergrößert, da erstmalig eine Verlötung auch in Teilbereichen der gerundeten Schmalseiten des Flachrohres erfolgt.
  • Mit den Merkmalen des Anspruchs 2 wird der erfindungsgemäße Effekt einer langgestreckten Ausbildung der gerundeten Schmalseiten der Flachrohre noch wesentlich stärker ausgeprägt.
  • Es ist möglich, die langgestreckt gerundeten Schmalseiten der Flachrohre mit sich kontinuierlich ändernder Krümmung zu gestalten, beispielsweise längs einer Ellipse. Konstruktiv einfacher und zugleich für die praktischen Bedürfnisse völlig ausreichend ist jedoch eine Zusammensetzung der Krümmung aus Kreisbögen unterschiedlicher Radien. Dabei reicht es im Grenzfall völlig aus, einen ersten Kreisbogen zur Bildung des Scheitels der gerundeten Schmalseite zu verwenden und den Anschluß dieses Kreisbogens durch einen einzigen weiteren Kreis bogen zu beiden Seiten des Scheitels bis in die Flachseiten vorzunehmen. Bei mehr als zwei Kreisbögen mit unterschiedlichem Radius erfolgt dann entsprechend der Übergang vom Scheitel in die Flachseiten über eine Folge von Kreisbögen mit vom Scheitel zu den Flachseiten jeweils zunehmendem Radius.
  • Rein theoretisch wäre es denkbar, die Lamellen mit den gerundeten Schmalseiten der Flachrohre bis zum Scheitel der Flachrohre zu verlöten und insoweit die Umgreifung der Flachrohre hundertprozentig zu gestalten. Aus materialtechnischen Gründen, nämlich zum Vermeiden eines Reißens von Lamellen bei zu großer Verformung, wird jedoch vorzugsweise die Maßnahme nach Anspruch 4 vorgesehen, die Lamellen mindestens bis an die beiden Tangentialebenen an die Scheitelpunkte der Schmalseiten im nicht mit den Schmalseiten verlöteten Bereich frei weiterzuführen.
  • Diesen Gedanken der freien Weiterführung kann man dabei nach Anspruch 5 noch steigern, indem die weitergeführten Lamellenbereiche die gerundeten Schmalseiten der Flachrohre mindestens teilweise nach außen hin abdecken und so einen zusätzlichen Beschädigungsschutz, z.B. gegen Steinschlag bei Kraftfahrzeugen, bilden. Würde man nämlich bei den bekannten Flachrohrwärmetauschern die nur an den Flachseiten angelöteten Lamellen über die gedachten Tangentialebenen an die Scheitelpunkte der gerundeten Schmalseiten der Flachrohre überstehen lassen, so erhielte man dabei rechteckig vorstehende Lamellenkonturen ohne Überdeckung der gerundeten Schmalseiten der Flachrohre; dabei wären derartig überstehende Lamellen mechanisch unstabil, da sie bis zu den verlöteten Bereichen mit den Flachseiten der Flachrohre über eine relativ große Strecke frei hervorstehen. Da bei der erfindungsgemäßen Anordnung eine Verlötung auch mit relativ großen Abschnitten der gerundeten Schmalseiten der Flachrohre erfolgt, ist die freie Überstandsstrecke demgegenüber weitaus geringer, was wiederum zu relativ größerer mechanischer Stabilität führt.
  • Anspruch 6 gibt einen konstruktiv besonders einfachen Weg der Schaffung des Überstandes mit gutem Überdeckungsgrad mit einem konstruktiv schon vorhandenen Krümmungsradius an. Dem steht nicht entgegen, daß man die Lehre des Anspruchs 5 auch mit unterschiedlichen Krümmungsgraden, ja gegebenenfalls gar in linearer Fortsetzung hinter dem verlöteten Bereich, erfüllen kann, je nachdem wie die gewünschten Abdeckungsverhältnisse der gerundeten Schmalseiten der Flachrohre gewählt sind.
  • Jedenfalls kann man im Rahmen des Anspruchs 5 frei zwischen einer vollständigen oder nahezu vollständigen Überdeckung der gerundeten Schmalseiten der Flachrohre und verbleibenden zentralen Restspalten wählen.
  • Bei Flachrohrwärmetauschern der Bauart, auf die sich die Erfindung bezieht, besteht allgemein das Problem, daß in Strömungsrichtung des äußeren Wärmetauschmediums die Bautiefe des Sammlers größer ist als die Länge L des Profils des Flachrohres. Wenn beispielsweise gemäß der EP-B1 0 255 313 der Sammler ein Rundrohr ist, bei dem die Flachrohre in Schlitze dicht verlötet eingeschoben sind, trägt die durch den Sammler bedingte zusätzliche Bautiefe in Strömungsrichtung des äußeren Wärmetauschmediums mindestens das Doppelte der Wandstärke des Rundrohres, in Praxis noch zuzüglich eines etwa eine weitere Wandstärke ausmachenden Einbauspiels. Bei einer Bautiefe von 16 mm im Bereich der Lamellenverrippung der Flachrohre kommt man dabei auf eine minimale Bautiefe im Bereich der Sammler von 19 mm. Die Bautiefe im Bereich der Sammler ist dabei das bestimmende Maß beim Einbau etwa in einen Kraftwagen. Allgemein besteht dabei die Tendenz, dieses Einbaumaß so gering wie möglich zu halten, da davon die Gesamtlänge des Kraftwagens bzw. dessen Motorraums einschließlich des mit dieser Längenproblematik verbundenen Materialverbrauchs beim Kraftfahrzeugbau selbst abhängt. Eine Einsparung von 3 mm Bautiefe im Sammlerbereich führt je nach Fahrzeugtyp zu einer Einsparung von 10 bis 20 kg Fahrzeuggewicht, insbesondere Blech.
  • Auch wenn man nicht wie im Falle der zuletzt erwähnten EP-B1 0 255 313 integrale Rundrohre benutzt, sondern den Sammler aus zwei (oder mehr) Teilen zusammensetzt, ergibt sich eine vergleichbare Problematik. So ergibt der in dieser Hinsicht auch schon optimierte Sammler gemäß dem eigenen deutschen Gebrauchsmuster G 90 15 090.2 im Sammlerbereich unter Einschluß des Montagespiels auch einen Bautiefenüberstand von drei bis vier Wandstärken des Sammlers.
  • Diese beiden bekannten Sammlerbauarten verkörpern dabei das Optimum dessen, was man an Bautiefeneinsparung im Sammlerbereich bisher bei Flachrohrwärmetauschern mit den Merkmalen des Oberbegriffs von Anspruch 1 für erreichbar gehalten hat.
  • Die erfindungsgemäße langgestreckte Gestaltung der gerundeten Schmalseiten der Flachrohre ermöglicht es nun, im Sinne von Anspruch 7 die in die Schlitze eines Sammlers beliebiger Bauart eingesteckten Enden der Flachrohre durch Verformung in Längsrichtung L des Flachrohrprofils so weit zu verjüngen, daß dabei der sonst auftretende Bautiefenüberstand des Sammlers mindestens teilweise oder ganz kompensiert werden kann, im Grenzfall sogar eine geringere Bautiefe des Sammlers als die Länge L des Flachrohrprofils denkbar ist. Dem entsprechen die Angaben von Anspruch 10, während die Ansprüche 8 und 9 zwei alternative bevorzugte Verformungsergebnisse beschreiben.
  • Als Materialien für die Flachrohre, die Lamellen und die Sammler kommen alle in diesem Zusammenhang bekannten Metalle oder Metallersatzstoffe in Frage. So könnte man gegebenenfalls den Sammler beispielsweise auch aus einem Kunststoff herstellen, wenn die Verlötungsmöglichkeit, oder ein Äquivalent, sichergestellt ist, im Falle des Kunststoffs z.B. eine Kunststoffverschweißung. In erster Linie kommen, wie auch schon beim Stand der Technik, die Materialien gemäß Anspruch 11 in Frage.
  • Praktisch besonders interessant ist der Fall, daß die Flachrohre Strangpreßprofile sind. Dabei kann man beispielsweise auch innere Versteifungen, wie die bekannten Zwischenstege, bei der Strangpreßfertigung mit gewinnen und so in einem Arbeitsgang das ganze Flachrohr als Massenartikel herstellen. Daneben ist es noch bekannt, Flachrohre mehrteilig mit Einfügung gesonderter Versteifungen zu fertigen.
  • Insbesondere für den Fall der Herstellung der Flachrohre rohre als Strangpreßprofile, aber auch allgemein, sind die Maßangaben der Ansprüche 14 bis 17 bevorzugt und entsprechen in ihren Größenordnungen auch im Vergleich mit Wettbewerbs-Wärmetauschern nach derzeitigem Stand der Technik optimalen Bedingungen. Entsprechendes gilt bezüglich der Lamellendicke für Anspruch 18.
  • Anspruch 19 ergibt eine zusätzliche mechanische Verfestigung in Ergänzung zu deren besserer Verlötung an den Flachrohren.
  • Es ist bisher schon bekannt, Flachrohre, die keine Zwischenversteifung besitzen, nach Einstecken in Schlitze eines Sammlers mechanisch aufzuweiten. Dies ist bei solchen Flachrohren bekannt, die in druckarmen Wasserkühlern oder Heizungswärmetauschern bei Kraftfahrzeugen eingesetzt werden. Damit kann man die Dichtheit der Flachrohre gegen den Sammler und die Sicherheit der Verlötung verbessern.
  • Die Merkmale des Verfahrensanspruchs 22 übertragen diese Möglichkeit nunmehr auch auf solche erfindungsgemäße Flachrohre, welche zwischen ihren Flachseiten Zwischenversteifungen, insbesondere Querstege, aufweisen. Die entsprechende Verformung der Enden der in die Schlitze eingesteckten Flachrohre läßt sich nämlich besonders gut bei Wärmetauschern mit den Merkmalen der Ansprüche 20 und 21 gemäß der Erfindung vornehmen. Insbesondere ist dabei das Verfahren nach Anspruch 23 vorgesehen, welches zu einem Wärmetauscher mit den Merkmalen von Anspruch 9 führt.
  • Die erfindungsgemäßen bzw. erfindungsgemäß hergestellten Wärmetauscher finden ihre Hauptanwendungsgebiete als Massenartikel in den Anwendungsfällen der Ansprüche 24 und 25. Daneben kommen aber auch andere bekannte Anwendungen, wie beispielsweise als Kühler oder als Verdampfer, in Frage. Wegen der in Frage kommenden Stückzahlen sind auch dabei Anwendungsfälle im Kraftfahrzeugbau bevorzugt, ohne daß Anwendungsbereiche in anderen Anwendungsfeldern, gegebenenfalls auch stationären Anordnungen, ausgeschlossen sein sollen.
  • Die Erfindung bezieht sich gemäß Anspruch 26 auch auf Flachrohre zum Einbau in einen erfindungsgemäßen Flachrohrwärmetauscher.
  • Die langgestreckte Ausbildung der gerundeten Schmalseiten der Flachrohre des erfindungsgemäßen Flachrohrwärmetauschers ergibt dann, wenn man gleichartige Flachrohre eng nebeneinander anordnet, relativ stetige Übergangskonturen.
  • Der Weiterbildungsidee der Ansprüche 26 bis 29 liegt die Aufgabe zugrunde, Flachrohre für den erfindungsgemäßen Flachrohrwärmetauscher in für Massenfertigung geeigneter Weise schnell und einfach herstellen und bereitstellen zu können.
  • Diese Aufgabe wird bei Flachrohren mit den Merkmalen des Anspruchs 26 gelöst.
  • Bei einer solchen erfindungsgemäßen verketteten Anordnung der Flachrohre läßt sich eine Vielzahl derselben gleichzeitig und vorzugsweise zunächst mit unbestimmter Länge herstellen. Dabei kommt neben Spritz- und Gießverfahren insbesondere die einheitliche Herstellung im Strangpreßverfahren in Frage, nachdem sich ein Erzeugnis gemäß Anspruch 27 ergibt.
  • Zur Verkettung der einzelnen Flachrohrelemente zunächst unbestimmter Länge - gegebenenfalls aber auch schon auf eine bestimmte Länge eingestellt, wie etwa bei Herstellung durch Gießen oder Spritzen - reicht es aus, wenn die Materialbrücken die in Anspruch 28 angegebenen geringen Maße hinsichtlich Materialstärke und/oder Länge der jeweiligen Materialbrücken haben. Daraus ergibt sich z.B. die Möglichkeit, die verkettete Anordnung der Flachrohre gemäß Anspruch 29 zwischenzuspeichern und gegebenenfalls zu transportieren, da große Biegeflexibilität an den gelenkartigen Verbindungen an den Materialbrücken zwischen den einzelnen Flachrohren gegeben ist. Auch lassen sich verkettete Flachrohre wesentlich besser und platzsparender aufrollen als einzelne Flachrohre.
  • Die Erfindung wird im folgenden anhand schematischer Zeichnungen an mehreren Ausführungsbeispielen noch näher erläutert. Es zeigen:
    • Fig. 1 eine Draufsicht auf einen Flachrohrwärmetauscher gemäß der Erfindung in Strömungsrichtung des äußeren Wärmetauschmediums, insbesondere von Luft;
    • Fig. 2 eine Seitenansicht des Flachrohrwärmetauschers gemäß Fig. 1 in Erstreckungsrichtung der Sammler;
    • Fig. 3 eine Darstellung des Profils eines Flachrohres, wie es in der Ausführungsform nach den Fig. 1 und 2 Verwendung findet;
    • Fig. 4 in vergrößerter Darstellung eine Teilansicht von Fig. 3 mit angelöteter Lamelle;
    • Fig. 5 einen vergrößerten Teilschnitt nach der Linie V-V in Fig. 1;
    • Fig. 6 einen vergrößerten Teilschnitt nach der Linie VI-VI in Fig. 1 durch einen Sammler und ein Endstück eines in den Sammler eingesteckten Flachrohres;
    • Fig. 7a in vergrößerter Darstellung einen Profilabschnitt eines Flachrohres unter Einschluß einer gerundeten Schmalseite sowie die
    • Fig. 7b und 7c zwei alternative Stauchungszustände des Flachrohrabschnittes nach Fig. 7a; sowie
    • Fig. 8 einen Querschnitt durch ein vereinzeltes Glied einer verketteten Anordnung von Flachrohren.
  • Der Flachrohrwärmetauscher 2 gemäß Fig. 1 weist zwei parallele Sammler 4 auf, welche ohne Beschränkung der Allgemeinheit die Bauart des deutschen Gebrauchsmusters G 90 15 090.2 haben. Die Sammler haben zueinander parallele Rohrböden 6, die in äquidistanten Abständen und bei den beiden Sammlern einander gegenüberliegend mit Schlitzen 8 versehen sind. In diese Schlitze 8 greifen Enden 10 jeweils eines Flachrohres 12 ein. Die Flachrohre 12 sind dabei mit den Sammlern 4 gasdicht und damit auch flüssigkeitsdicht verlötet. Die Anordnung ist dabei so getroffen, daß die zueinander parallelen Flachseiten 14 der Flachrohre 12 in Längsrichtung L des Flachrohrprofils in Strömungsrichtung (Pfeil A) des äußeren Wärmetauschmediums verlaufen. Die Flachrohre 12 sind mit einer Wärmetauschverrippung in Gestalt von Zickzacklamellen 16, oder der sandwichartigen Einbauart Flachrohr - Lamelle - Flachrohr - Lamelle - etc. nach mit solchen Zickzacklamellen äquivalenten anderen Lamellen, versehen, die an ihren den Flachseiten 14 der Flachrohre 12 benachbarten Rändern 18 mit den Flachseiten 14 der Flachrohre 12 verlötet sind.
  • Der Umfang des jeweiligen Sammlers 4 ist aus zwei Bauteilen 20 und 22 zusammengesetzt, von denen das Bauteil 20 den Rohrboden bildet. Der Rohrboden 20 weist die Schlitze 8 für die Aufnahme der in sie eingesteckten Flachrohrenden 10 auf, von denen im Querschnitt nach Fig. 6 nur eines zu sehen ist. Das zweite Bauteil 22 ergänzt zusammen mit dem ersten Bauteil 20 den Umfang des Sammlers 4. Stirnseitig sind meist gesonderte Kappen am Sammler 4 aufgesteckt; man könnte jedoch auch diese Kappen integral an eines der Bauteile 20 oder 22 anformen. Gesonderte Kappen sind jedoch sinnvoll vorzusehen, wenn in bevorzugter Weise das zweite Bauteil 22 ein Strangpreßprofil ist.
  • Das erste Bauteil 20 ist zweckmäßig beidseitig hartlotbeschichtet. Das zweite Bauteil 22 ist zweckmäßig lotfrei ausgebildet.
  • Beide Bauteile 20 und 22 überlappen sich in zwei sich längs des Sammlers 4 erstreckenden Verbindungszonen 24 in drei Lagen, wobei in der Überlappungszone insbesondere eine Hartlotverbindung unter Verwendung der Hartlotbeschichtung des ersten Bauteils 20 vorhanden ist.
  • Man erkennt aus Fig. 6, daß das Flachrohrende 10 so tief in den Sammler durch den jeweiligen Einsteckschlitz 8 eingesteckt ist, daß noch etwa parallele Wandstege 26 über die innenliegende Stirnseite 28 der Flachrohre 12 hinausragen. Das hat zur Folge, daß auch die beiden Verbindungszonen 24 über den Stirnseiten 28 gelegen sind. Die Wandstege 26 werden jeweils von einer gabelförmigen Ausbildung 30 an den beiden Rändern des zweiten Bauteils 22 umfaßt und bilden im dreilagigen Verbindungsbereich die jeweilige Verbindungszone 24.
  • Der jeweils innenliegende Arm 32 der gabelförmigen Ausbildung 30 ist bei dieser Anordnung bereits weiter innen als die Schmalseiten der Mündung 28 der Flachrohre 12 angeordnet, so daß die Wandstärke des innenliegenden Arms 32 der gabelförmigen Ausbildung 30 zu der Bautiefe nichts mehr beiträgt, andererseits entsprechend den Festigkeitsverhältnissen ungeschwächt ausgebildet werden kann. Der jeweils außenliegende Arm 34 der gabelförmigen Ausbildung 30 kann dann, wie bereits erwähnt, mit geringerer Wandstärke ausgebildet sein, wie dies auch in Fig. 6 dargestellt ist. Mit dem Grund der gabelförmigen Ausbildung 30 ist dabei der jeweils außenliegende Arm 34 über eine Sollbiegelinie in Form einer Längsnut 36 an der Innenseite des außenliegenden Arms 34 am Grund der gabelförmigen Ausbildung 30 zusammenhängend, so daß der außenliegende Arm 34 leicht auswärts gespreizt werden kann. Dies fördert eine an sich angestrebte Klemmverbindung zwischen den beiden Armen 32 und 34 der gabelförmigen Ausbildung 30 einerseits und den Wandstegen 26 andererseits.
  • Das erste Bauteil 20 wird vorteilhaft mit seinen Schlitzen 8 als Flachteil gefertigt und von vornherein mit der beidseitigen Lotbeschichtung 38 versehen und dann erst aufgewölbt. Anschließend werden zweckmäßig die Flachrohre 12 in die Aufnahmeschlitze 8 eingesteckt und in diesen mechanisch aufgeweitet. Dann wird, wie dies weiter unten noch mehr im einzelnen erläutert ist, das zweite Bauteil 22 mit seinen gabelförmigen Ausbildungen 30 auf die Wandstege 26 des ersten Bauteils 20 aufgeschoben. Schließlich werden die erforderlichen Hartlotverbindungen einerseits in den Verbindungszonen 24 und andererseits zwischen den Flachrohren 12 und den Aufnahmeschlitzen 8 in einem Lötofen gebildet.
  • Der eine Sammler 4 ist mit mindestens einer Trennwand 52 sowie an einer Seite der Trennwand mit einem Einlaß 54 und an der anderen Seite der Trennwand mit einem Auslaß 56 für ein inneres Wärmetauschmedium versehen. Wenn dann der andere Sammler ohne eine derartige Trennwand ausgebildet ist, fließt das innere Wärmetauschmedium vom Einlaß 54 durch den angeschlossenen Teil des Sammlers und die daran angeschlossenen Flachrohre 12 bis zum gegenüberliegenden Sammler und dann durch die anderen Flachrohre 12 zurück in die andere Abteilung des erstgenannten Sammlers und aus diesem aus dem Auslaß 56 heraus. In bekannter Modifikation kann man auch den erstgenannten Sammler mit mehr als einer Trennwand und den anderen Sammler dann ebenfalls mit mindestens einer Trennwand, im allgemeinen dann einer um eins verminderten Anzahl von Trennwänden, so versehen, daß das innere Wärmetauschmedium mehrfach durch kleinere Gruppen von Flachrohren hin und her zwischen den Sammlern gelenkt wird. Schließlich kann man auch bei Verwendung einer hinreichenden Anzahl von Trennwänden in einem Sammler, der mit Einlaß 54 und Auslaß 56 versehen ist, auf den zweiten Sammler ganz verzichten und diesen gegebenenfalls durch Haarnadelumleitungen ersetzen.
  • Das Profil der Flachrohre 12 ist aus Fig. 3 in Verbindung mit den Fig. 4 und 5 ersichtlich.
  • In der Schnittebene der Fig. 3 hat das Profil eine Profillänge L. Das Profil ist dabei spiegelbildlich zur gedachten Längsmittelebene B-B ausgebildet, zu deren beiden Seiten sich parallele Profilwände 40 erstrecken, die außen die beiden zueinander parallelen Flachseiten 14 bilden. Die parallelen Wände 40 sind dabei durch senkrecht zu ihnen stehende Zwischenstege 42 gegeneinander versteift, wobei hier ohne Beschränkung der Allgemeinheit im ganzen vier äquidistante Zwischenstege vorgesehen sind. Die parallelen Wände 40 setzen sich in gerundeten Wänden 44 fort, die in einem Scheitel 46 des Profils enden und gemeinsam gerundete Schmalseiten 50 des Profils ergeben. Die Längserstreckung einer dieser gerundeten Schmalseiten in Richtung des Maßes L hat hier jeweils das Maß 1. Bei dem Ausführungsbeispiel der Fig. 3 schließen die gerundeten Schmalseiten 50 an den am weitesten außenliegenden Zwischensteg 42 an. Dies ergibt sich hier aus der Konstruktion des Bereichs des Scheitels 46 mit einem äußeren Kreisbogen mit dem Radius r1 und jeweils zu beiden Seiten des Scheitels anschließenden Kreisbögen mit einem äußeren Radius r2, der tangential in die Flachseiten 14 einmündet. Bei dieser Konstruktion ergibt sich ein Innenradius r3, welcher bei stranggepreßten Flachrohren aus praktischen Herstellungsgründen nicht kleiner als 0,2 mm gewählt ist. Über die Wandstärke ergibt sich dabei der Radius r1 mit r3 zuzüglich der Wandstärke, hier r1 = 0,6 mm (Wandstärke des Flachrohres 0,4 mm), während r2 = 7 mm gewählt ist.
  • Die Darstellung von Fig. 3 ist dabei etwa im Verhältnis 1 : 8 maßstabgetreu.
  • Wie besonders deutlich aus Fig. 3 wird, sind die Lamellen 16 nicht nur mit den Flachseiten 14 der Flachrohre 12, sondern auch noch mit den Bereichen 58 der gerundeten Schmalseiten verlötet, und zwar bei der in Fig. 3 gewählten Konstruktion aus zwei Kreisbögen r1 und r2 längs der gesamten Länge der beiden Kreisbögen mit Radius r2.
  • Aus den Fig. 4 und 5 ist in Strichelung eine gedachte Tangentialebene C an die nebeneinander liegenden Scheitel 46 benachbarter Flachrohre 12 zu entnehmen. Aus Fig. 3 ersieht man ferner, daß sich die Lamellen 16 zu beiden Seiten der gerundeten Schmalseite 50 in Nachbarschaft des Kreisbogens mit dem Radius r1 mit dem Radius r2 frei weiter erstreckt, und zwar nicht nur bis zur Tangentialebene C, sondern noch über diese hinaus. Dabei bilden die an der Stirnseite des Wärmetauschers geradlinig miteinander fluchtenden Kanten 60 der Lamellen 16 zwischen sich nur noch einen kleinen Spalt 62 gegenüber dem Scheitel 46 des Flachrohres.
  • Im Anschluß an die Kanten 60 ist die Lamelle 16 mit einer Wellung 64 versehen, die gegenüber der sonst im wesentlichen ebenen Lamellenebene beidseitig vorspringt und den frei von den Flachrohren hervorspringenden Lamellenbereich steift. Dieser Bereich ist sowieso relativ klein, da ja gemäß Fig. 3 die Lamelle bis nahe an ihren Scheitel 46, d.h. im Bereich des ganzen Kreisbogens mit dem Radius r2, verlötet ist.
  • Gemäß Fig. 6 ist ferner die Länge S des jeweiligen Schlitzes 8 im Sammler 4 kleiner als die Länge L des Profils gemäß Fig. 3 des Flachrohres im Bereich der Verrippung mit den Lamellen 16. Die Enden 10 der Flachrohre können trotzdem in die Schlitze 8 eingesteckt werden, weil sie gegenüber dem sonstigen Profil gemäß Fig. 3 der Flachrohre 12 eingezogen sind. Die Enden 10 der Flachrohre 12 gehen dabei über eine außerhalb des Sammlers gelegene Übergangszone 66 in das normale Profil der Flachrohre gemäß Fig. 3 über.
  • Die Möglichkeit der Einziehung der Enden 10 der Flachrohre beruht auf der gewählten Gestalt der gerundeten Schmalseiten 50 der Flachrohrprofile. Wenn diese in Längsrichtung ihres Profilquerschnittes gemäß Fig. 7b oder Fig. 7c gestaucht werden - was in praktisch verwertbarer Weise nur aufgrund der relativ langgestreckten Gestalt der gerundeten Schmalseiten 50 der Profile möglich ist -, erhalten die Rohrenden 10 eine verkleinerte wirksame Länge, die ein Einstecken in die Schlitze 8 ermöglicht.
  • Die Fig. 7b und 7c veranschaulichen dabei zwei bevorzugte Möglichkeiten dieser Längsstauchung der Profile. Nach Fig. 7b erfolgt die Verformung unter Rohrstauchung an den gerundeten Schmalseiten 50 in Längsrichtung der Flachrohrprofile unter Beibehaltung der Länge der neutralen Faser 68 (strichpunktiert eingezeichnet). Nach Fig. 7c erfolgt demgegenüber die Verformung unter Rohrstauchung an den gerundeten Schmalseiten 50 in Längsrichtung der Flachrohrprofile bei gleichzeitiger Stauchung der Materialwandstärke, so daß die strichpunktiert eingezeichnete neutrale Faser sich verkürzt. Man erkennt dabei eine Materialansammlung insbesondere in den Eckbereichen der Stirnseiten des gestauchten Profils, wie dies etwa an einer Ecke mit dem Bezugszeichen 70 angedeutet ist. Diese Stauchungsart kann dabei so weit gehen, daß sich im Scheitelbereich des gestauchten gerundeten Abschnitts 50 eine zentrale Falte 72 bildet. Wenn man dann den nächstkommenden Zwischensteg 42 freischneidet, wie dies durch den gestrichelt eingezeichneten Einschnitt 74 in Fig. 7c dargestellt ist, kann man das in den Schlitz 8 eingreifende Ende 10 des Flachrohres durch einen Aufweitdorn gegen den in Fig. 7c gestrichelt eingezeichneten Rand des Schlitzes 8 aufweiten und dabei die zunächst gebildete Falte 72 wieder strecken und dabei in gerade Anlage an die Schmalseite des Randes des Schlitzes bringen. Die Länge der zunächst gebildeten Falte kann dabei nutzbar gemacht werden, um beim Aufweiten die sonst besonders kritischen Eckbereiche des Schlitzes zu füllen. Diese Art der Aufweittechnik setzt dabei eine zweiteilige Ausbildung des Sammlers aus den beiden Bauteilen 20 und 22 voraus, wobei dann das deckelartige Bauteil 22 nach dem Aufweiten auf das den Rohrboden bildende Bauteil 20 aufgesetzt wird.
  • Auch im Außenbereich ist die Schmalseite des Flachrohres bezüglich der Güte der Verlötung kritisch. Der Übergangsbereich 66 in das eingezogene Ende 10 bildet dabei mit dem Rohrboden 20 einen relativ spitzwinkligen Winkel, der zur Lotaufnahme besonders geeignet ist. Der Übergangsbereich 66 kann außerdem als toleranzausgleichender Anschlag zu einem formschlüssigen Einführen der Rohrenden 10 in die Schlitze 8 des Sammlers 4 dienen.
  • Gemäß Fig. 8 werden zunächst mehrere Flachrohre 12, z.B. beim Strangpressen, in einer Ebene nebeneinander angeordnet und miteinander an den Scheiteln 46 ihrer gerundeten Schmalseiten 50 jeweils durch eine Materialbrücke 80 miteinander verkettet, von der in Fig. 8 nur die nach Vereinzelung durch Durchtrennen der Materialbrücken verbliebenen Brückenreste dargestellt sind. Die jeweilige Materialbrücke 80 hat eine geringe Materialstärke und eine geringe Länge in der Erstreckungsebene der Flachrohre 12. Die Maße sind dabei abgesehen von der gewünschten Funktion der verketteten Anordnung der Flachrohre 12 so gewählt, daß die ganze verkettete Anordnung als integrales Strangpreßprofil unbestimmter Länge hergestellt werden kann. Dies betrifft insbesondere die Mindestmaße der Materialbrücken 80. Die Maximalstärke der Materialbrücke 80 ist dabei so gewählt, daß an der Trennlinie ein Abreißen, Abdrücken, Abscheren, Abschneiden oder dergleichen bekannter Trennvorgang stattfinden kann. Funktionell ist weiter bei der Bemessung folgendes zu berücksichtigen:
  • Zum einen soll die verkettete Anordnung der Flachrohre 12 mit zunächst noch unbestimmter Länge als integrales Strangpreßteil auf einem Kern aufgewickelt werden können, um es zwischenlagern und gegebenenfalls transportieren zu können.
  • Zum anderen sollen, wie dargestellt, nur geringe Reste vom Material der Materialbrücken 80 verbleiben, wenn man jeweils ein Paar benachbarter Flachrohre 12 längs einer einzigen Trennlinie 82 voneinander abtrennt.
  • Mit 58 sind noch diejenigen Abschnitte bezeichnet, an denen bei dem erfindungsgemäßen Flachrohrwärmetauscher die Verlötung mit den nicht dargestellten Lamellen des ebenfalls nicht dargestellten Flachrohrwärmetauschers erfolgt. Auch die Längserstreckung 1 der jeweiligen gerundeten Schmalseite 50 des jeweiligen Flachrohres 12 sowie der Abstand d der Flachseiten 14 des jeweiligen Flachrohres 12 entsprechen den Angaben bei der Beschreibung des erfindungsgemäßen Flachrohrwärmetauschers. Die Erstreckungsrichtung der Materialbrücken 80 ist dabei sinngemäß in Richtung der Längserstreckung 1 zu verstehen.

Claims (29)

  1. Flachrohrwärmetauscher (2) mit mehreren Flachrohren (12), deren Schmalseiten (50) gerundet sind, und mit zwischen den Flachseiten (14) der Flachrohre (12) sandwichartig eingeschachtelten Zickzacklamellen (16), die an ihren den Flachseiten benachbartern Rändern (18) mit den Flachseiten der Flachrohre verlötet sind,
       dadurch gekennzeichnet,
       daß die Länge des gerundeten Teils des jeweiligen Flachrohres (12) in Richtung seiner Querschnittslänge (L) größer ist als die halbe Breite (d) des Flachrohres (12) und
       daß die Zickzacklamellen (16) auch mit Abschnitten (58) beider gerundeten Schmalseiten (50) des Flachrohres (12) verlötet sind.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Länge des gerundeten Teils des jeweiligen Flachrohres (12) in Richtung seiner Querschnittslänge (L) größer ist als die Breite (d) des Flachrohres (12).
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Rundung der Schmalseite (50) aus Kreisbögen verschiedener Radien, vorzugsweise Kreisbögen mit zwei verschiedenen Radien (r1,r2), zusammengesetzt ist, wobei ein Kreisbogen mit minimalem Radius (r1) den Scheitel (46) der Schmalseite (50) bildet und Kreisbögen jeweils zunehmenden Radius (r2) beidseitig anschließen.
  4. Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Zickzacklamellen (16) sich von den mit den gerundeten Schmalseiten (50) verlöteten Bereichen (58) frei mindestens bis an die beiden gedachten Tangentialebenen (C) an die Scheitelpunkte (16) der gerundeten Schmalseiten erstrecken.
  5. Wärmetauscher nach Anspruch 4, dadurch gekennzeichnet, daß die Zickzacklamellen (16) mindestens an einer Schmalseite (50) der Flachrohre (12) über die betreffende gedachte Tangentialebene (C) überstehen.
  6. Wärmetauscher nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der sich frei erstreckende Bereich der Zickzacklamelle (16) dem letzten Krümmungsradius (r2) im mit der gerundeten Schmalseite (50) verlöteten Bereich (58) folgt.
  7. Wärmetauscher nach einem der Ansprüche 1 bis 6 mit mindestens einem Sammler (4) mit Schlitzen (8), in die benachbarte Enden (10) der Flachrohre (12) unter dichter Verlötung eingesteckt sind, dadurch gekennzeichnet, daß die Schlitze (8) jeweils eine geringere Länge (S) als die Flachrohre (12 % Länge L) zwischen den Scheitelpunkten (46) ihrer gerundeten Schmalseiten (50) innerhalb ihrer Verrippung mit den Zickzacklamellen (16) haben und daß längs der Eingriffsstrecken der Enden (10) der Flachrohre (12) in dem Sammler (4) die im Bereich der Verrippung gerundeten Schmalseiten (50) der Flachrohre (12) derart verformt sind, daß die Flachrohre (12) jeweils eine der Schlitzlänge (S) entsprechende verringerte Länge haben.
  8. Wärmetauscher nach Anspruch 7, dadurch gekennzeichnet, daß die Verformung eine Rohrstauchung an den gerundeten Schmalseiten (50) in Längsrichtung der Flachrohrprofile unter Beibehaltung der Länge der neutralen Faser (68) darstellt (Fig. 7b).
  9. Wärmetauscher nach Anspruch 7, dadurch gekennzeichnet, daß die Verformung eine Rohrstauchung an den gerundeten Schmalseiten (50) in Längsrichtung der Flachrohrprofile bei gleichzeitiger Stauchung der Materialwandstärke darstellt, so daß sich die neutrale Faser (68) verkürzt (Fig. 7c).
  10. Wärmetauscher nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Bautiefe des Sammlers in Strömungsrichtung (A) des äußeren Wärmetauschmediums längs der Zickzacklamellen (16) höchstens um ein geringeres Maß als die doppelte seitliche Wandstärke des Sammlers (4) größer ist als die Bautiefe der Flachrohre (12) im Bereich deren Verrippung.
  11. Wärmetauscher nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Flachrohre (12), die Zickzacklamellen (16) und/oder der jeweilige Sammler (4) aus Al oder einer Al-Legierung, vorzugsweise AlMn1, bestehen.
  12. Wärmetauscher nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Flachrohre (12) Strangpreßprofile sind.
  13. Wärmetauscher nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Wandstärke der Flachrohre (12) im Bereich von 0,2 bis 0,6 mm liegt.
  14. Wärmetauscher nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Flachrohre (12) im Bereich ihrer Verrippung eine Querschnittslänge L von 12 bis 25 mm, vorzugsweise 15 bis 20 mm, haben.
  15. Wärmetauscher nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß beide gerundeten Schmalseiten (50) der Flachrohre (12) zusammen 40 bis 50 % von deren Querschnittslänge L ausmachen.
  16. Wärmetauscher nach nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Abstand d der Flachseiten (14) des jeweiligen Flachrohres (12) 2 bis 4 mm beträgt.
  17. Wärmetauscher nach nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß am Scheitelpunkt (46) der gerundeten Schmalseite des jeweiligen stranggepreßten Flachrohres (12) der Innenradius mindestens 0,2 mm und der Außenradius mindestens 0,6 mm beträgt.
  18. Wärmetauscher nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Zickzacklamellendicke 0,12 bis 0,2 mm beträgt.
  19. Wärmetauscher nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die freien Ränder der Zickzacklamellen (16) eine aus der sonstigen Zickzacklamellenebene beidseitig herausragende Wellung (64) aufweisen.
  20. Wärmetauscher nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Flachrohre (12) mit Zwischenversteifungen (Querstege 42) zwischen ihren Flachseiten (14) ausgebildet sind.
  21. Wärmetauscher nach Anspruch 20, dadurch gekennzeichnet, daß die Zwischenversteifungen Querstege (42) sind, vorzugsweise in gegenseitigem Abstandsmaß von 1 bis 2 d.
  22. Verfahren zum Herstellen eines Flachrohrwärmetauschers (12) nach Anspruch 20 oder 21, wobei zunächst die Enden (10) der Flachrohre (12), die eine Zwischenversteifung zwischen ihren Flachseiten aufweisen, in Schlitze (8) eines Sammlers (4) eingesteckt werden, dann die Enden (10) der Flachrohre (12) von ihrer Zwischenversteifung (42) freigeschnitten werden, danach die freigeschnittenen Enden gegen den Schlitzumfang des Sammlers (4) aufgeweitet werden und schließlich die aufgeweiteten Enden (10) der Flachrohre (12) mit dem Sammler (4) durch Erhitzen einer als Bindemittel dienenden Lotbeschichtung des Sammlers (4, 20) dicht verbunden werden.
  23. Verfahren nach Anspruch 22 zum Herstellen eines Wärmetauschers nach Anspruch 9, dadurch gekennzeichnet, daß zunächst die gerundeten Schmalseiten (50) der in den Sammler (4) eingreifenden Enden (10) der Flachrohre (12) so weit gestaucht werden, daß sich im Scheitelbereich (46) des gestauchten gerundeten Abschnittes (50) eine zentrale Falte (72) bildet und daß dann die Aufweitung gegen den Schlitzumfang des Sammlers unter Streckung der zentralen Falte (72) vorgenommen wird.
  24. Anwendung eines Wärmetauschers nach einem der Ansprüche 1 bis 21 oder eines nach dem Verfahren der Ansprüche 22 oder 23 hergestellten Wärmetauschers (2) als Verflüssiger einer Fahrzeugklimaanlage.
  25. Anwendung eines Wärmetauschers nach einem der Ansprüche 1 bis 21 oder eines nach dem Verfahren der Ansprüche 22 oder 23 hergestellten Wärmetauschers (2) als Motor-, Getriebe-oder Hydraulik-Ölkühler eines Kraftfahrzeugs.
  26. Flachrohre zum Einbau in einen Flachrohrwärmetauscher nach einem der Ansprüche 1-21, wobei die Schmalseiten (50) der Flachrohre gerundet sind und die Länge des gerundeten Teiles der Flachrohre (12) in Richtung seiner Querschnittslänge (L) größer ist als die halbe Breite (d) der Flachrohre (12),
    dadurch gekennzeichnet, daß die Flachrohre (12), die aus gleichem Material bestehen, über Materialbrücken (80) aus ihrem Material an den Scheiteln (46) ihrer gerundeten Schmalseiten (50) miteinander verkettet sind.
  27. Flachrohre nach Anspruch 26, dadurch gekennzeichnet, daß die miteinander über die Materialbrücken (80) verketteten Flachrohre ein integrales Strangpreßprofil bilden.
  28. Flachrohre nach Anspruch 26 oder 27, dadurch gekennzeichnet, daß die Materialbrücken (80) eine Materialdicke von 0,05 bis 0,3 mm, vorzugsweise von 0,15 mm, und/oder eine Länge von 0,05 bis 0,3 mm, vorzugsweise von 0,2 mm, haben.
  29. Flachrohre nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, daß sie auf einem Kern in miteinander verketteter Anordnung aufgewickelt sind.
EP92109870A 1991-06-20 1992-06-11 Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher Expired - Lifetime EP0519334B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4120442A DE4120442A1 (de) 1991-06-20 1991-06-20 Flachrohrwaermetauscher, herstellungsverfahren desselben und anwendungen
DE4120442 1991-06-20
DE4201791 1992-01-23
DE4201791A DE4201791A1 (de) 1991-06-20 1992-01-23 Flachrohre zum einbau in einen flachrohrwaermetauscher und verfahren zum vereinzeln der flachrohre

Publications (3)

Publication Number Publication Date
EP0519334A2 EP0519334A2 (de) 1992-12-23
EP0519334A3 EP0519334A3 (en) 1993-04-21
EP0519334B1 true EP0519334B1 (de) 1995-10-18

Family

ID=25904734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109870A Expired - Lifetime EP0519334B1 (de) 1991-06-20 1992-06-11 Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher

Country Status (4)

Country Link
US (1) US5251692A (de)
EP (1) EP0519334B1 (de)
DE (2) DE4201791A1 (de)
ES (1) ES2078590T3 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113100B2 (ja) * 1992-11-05 2000-11-27 株式会社デンソー 多穴管押出用ダイス及び多穴管
US5511613A (en) * 1994-12-12 1996-04-30 Hudson Products Corporation Elongated heat exchanger tubes having internal stiffening structure
JP3449897B2 (ja) * 1997-01-20 2003-09-22 株式会社ゼクセルヴァレオクライメートコントロール 熱交換器及びその製造方法
JPH1144498A (ja) * 1997-05-30 1999-02-16 Showa Alum Corp 熱交換器用偏平多孔チューブ及び同チューブを用いた熱交換器
US5967228A (en) * 1997-06-05 1999-10-19 American Standard Inc. Heat exchanger having microchannel tubing and spine fin heat transfer surface
DE19729496A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager in Serpentinenbauweise
US6024086A (en) * 1998-07-22 2000-02-15 Rich; Albert Clark Solar energy collector having oval absorption tubes
WO2000045102A1 (en) * 1999-01-28 2000-08-03 Norsk Hydro Asa Flat oval tube
US6192978B1 (en) * 1999-10-27 2001-02-27 Brazeway, Inc. Micro-multiport (MMP) tubing with improved metallurgical strength and method for making said tubing
JP2001165532A (ja) * 1999-12-09 2001-06-22 Denso Corp 冷媒凝縮器
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
DE60100617T2 (de) 2000-10-06 2004-06-09 Visteon Global Technologies, Inc., Dearborn Herstellung eines Rohres für einen Wärmetauscher
US6536255B2 (en) 2000-12-07 2003-03-25 Brazeway, Inc. Multivoid heat exchanger tubing with ultra small voids and method for making the tubing
JP4767408B2 (ja) * 2000-12-26 2011-09-07 株式会社ヴァレオジャパン 熱交換器
US6929059B2 (en) * 2001-04-09 2005-08-16 Halla Climate Control Corporation Aluminum radiator and method of manufacturing tank thereof
US20020195240A1 (en) * 2001-06-14 2002-12-26 Kraay Michael L. Condenser for air cooled chillers
US20030131976A1 (en) * 2002-01-11 2003-07-17 Krause Paul E. Gravity fed heat exchanger
US6675883B1 (en) 2002-07-08 2004-01-13 Modine Manufacturing Company Manifold for heat exchanger
CN1228591C (zh) * 2002-07-12 2005-11-23 株式会社电装 用于冷却空气的制冷剂循环系统
US20040112572A1 (en) * 2002-12-17 2004-06-17 Moon Seok Hwan Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing
US20070130769A1 (en) * 2002-09-03 2007-06-14 Moon Seok H Micro heat pipe with pligonal cross-section manufactured via extrusion or drawing
WO2004031676A1 (en) * 2002-10-02 2004-04-15 Showa Denko K.K. Heat exchanging tube and heat exchanger
JP4124136B2 (ja) * 2003-04-21 2008-07-23 株式会社デンソー 冷媒蒸発器
US7624788B2 (en) * 2004-04-22 2009-12-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Heat exchanger
US6991026B2 (en) * 2004-06-21 2006-01-31 Ingersoll-Rand Energy Systems Heat exchanger with header tubes
ES2302089T3 (es) * 2005-03-31 2008-07-01 Frape Behr S.A. Intercambiador de calor, en particular condensador para instalacion de climatizacion.
WO2008064199A1 (en) 2006-11-22 2008-05-29 Johnson Controls Technology Company Multichannel evaporator with flow separating manifold
KR101518205B1 (ko) 2006-11-22 2015-05-08 존슨 컨트롤스 테크놀러지 컴퍼니 다른 멀티채널 튜브를 갖는 멀티채널 열 교환기
US8376034B2 (en) * 2007-09-26 2013-02-19 General Electric Company Radiant coolers and methods for assembling same
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
US8234881B2 (en) * 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
US20120198882A1 (en) * 2009-10-19 2012-08-09 Showa Denko K.K. Evaporator
US9267737B2 (en) 2010-06-29 2016-02-23 Johnson Controls Technology Company Multichannel heat exchangers employing flow distribution manifolds
US9151540B2 (en) 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
JP5655676B2 (ja) * 2010-08-03 2015-01-21 株式会社デンソー 凝縮器
KR101224071B1 (ko) * 2012-07-05 2013-01-21 문은국 튜브형 열교환기
AU2015100762B4 (en) * 2012-09-14 2015-08-13 Revent International Ab Hot air oven
JP6194700B2 (ja) * 2013-08-30 2017-09-13 富士通株式会社 放熱器および放熱器の製造方法
EP3091323B1 (de) * 2013-12-21 2020-07-29 Kyocera Corporation Wärmetauscherelement und wärmetauscher
EP2975349A1 (de) * 2014-07-14 2016-01-20 MAHLE International GmbH Rohr
US10175003B2 (en) 2017-02-28 2019-01-08 General Electric Company Additively manufactured heat exchanger
KR102400223B1 (ko) * 2017-12-21 2022-05-23 한온시스템 주식회사 열교환기
US10962306B2 (en) * 2018-03-23 2021-03-30 Raytheon Technologies Corporation Shaped leading edge of cast plate fin heat exchanger
US11732970B2 (en) 2018-06-29 2023-08-22 National University Of Singapore Heat exchange unit and method of manufacture thereof
CN111366013A (zh) * 2018-12-26 2020-07-03 浙江盾安热工科技有限公司 扁管及换热器
CN110544803A (zh) * 2019-06-21 2019-12-06 宁波利维能储能系统有限公司 一种水冷流道的制造方法
DE102019217368A1 (de) * 2019-11-11 2021-05-12 Mahle International Gmbh Rohrkörper für einen Wärmeübertrager sowie Wärmeübertrager
US11988461B2 (en) * 2021-12-13 2024-05-21 Hamilton Sundstrand Corporation Additive airfoil heat exchanger

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR362825A (fr) * 1906-01-30 1906-07-10 Ramier & Mauberque Soc Radiateur
US1974595A (en) * 1930-06-02 1934-09-25 Fedders Mfg Co Inc Radiator
US2035403A (en) * 1933-11-17 1936-03-24 Fedders Mfg Co Inc Heat exchange device
US2063757A (en) * 1934-12-29 1936-12-08 Gen Motors Corp Radiator core
GB538018A (en) * 1939-12-15 1941-07-17 Morris Motors Ltd Improvements relating to water, oil or other liquid coolers
FR937383A (fr) * 1946-12-17 1948-08-16 Schneider & Cie Procédé et dispositif pour la fabrication des barres de petit diamètre en métaux relativement mous
GB633250A (en) * 1948-02-06 1949-12-12 Morris Motors Ltd Improvements relating to secondary surface heat exchangers
DE1000407B (de) * 1952-05-21 1957-01-10 Rudolf Schmitz Aus einem Stueck bestehendes Lamellenband
GB723398A (en) * 1952-11-20 1955-02-09 Coventry Radiator & Presswork Improvements relating to demountable heat-exchange tubes
FR1114983A (fr) * 1954-11-12 1956-04-18 Cie Francaise Othermo Faisceau tubulaire pour échangeur thermique et appareil en comportant application
US2970812A (en) * 1956-06-14 1961-02-07 Richard W Kritzer Drum type heat exchanger
US3298432A (en) * 1964-05-22 1967-01-17 Przyborowski Stanislaus Radiators
US3254400A (en) * 1964-06-30 1966-06-07 Alfred J Gordon Method and apparatus for forming extrusions
SU469039A1 (ru) * 1972-07-18 1975-04-30 Ордена Трудового Красного Знамени Предприятие П/Я А-1665 Коллектор трубчатого теплообменника
JPS5680698A (en) * 1979-11-30 1981-07-02 Nippon Denso Co Ltd Heat exchanger
JPS56155391A (en) * 1980-04-30 1981-12-01 Nippon Denso Co Ltd Corrugated fin type heat exchanger
DE3131155C2 (de) * 1981-08-06 1987-05-07 Julius & August Erbslöh GmbH + Co, 5620 Velbert Mehrfach-Strangpreßling aus Leichtmetall
JPS60243489A (ja) * 1984-05-17 1985-12-03 Nippon Denso Co Ltd 熱交換器
JPS611994A (ja) * 1984-06-13 1986-01-07 Mitsubishi Heavy Ind Ltd 偏平熱交換管の製造方法
DE3610618A1 (de) * 1986-03-29 1987-10-01 Mtu Muenchen Gmbh Profilroehrchen mit elliptischem oder lanzettfoermigem querschnitt fuer roehrchenwaermetauscher und verfahren zur herstellung
DE3720483C3 (de) * 1986-06-23 1994-07-14 Showa Aluminium Co Ltd Wärmetauscher
EP0480914A3 (en) * 1986-07-29 1992-05-13 Showa Aluminum Kabushiki Kaisha Condenser
DE3743293C2 (de) * 1987-12-19 1994-09-01 Laengerer & Reich Kuehler Wärmetauscherflachrohr
DE3918312A1 (de) * 1988-12-22 1990-12-06 Thermal Waerme Kaelte Klima Flachrohrverfluessiger, herstellungsverfahren und anwendung
DE3900744A1 (de) * 1989-01-12 1990-07-26 Sueddeutsche Kuehler Behr Waermetauscher
US5069277A (en) * 1990-03-13 1991-12-03 Diesel Kiki Co., Ltd. Vehicle-loaded heat exchanger of parallel flow type
DE9015090U1 (de) * 1990-11-02 1991-01-17 Thermal-Werke, Wärme-, Kälte-, Klimatechnik GmbH, 6832 Hockenheim Sammler für einen Flachrohrverflüssiger

Also Published As

Publication number Publication date
ES2078590T3 (es) 1995-12-16
EP0519334A3 (en) 1993-04-21
DE59204039D1 (de) 1995-11-23
DE4201791A1 (de) 1993-07-29
US5251692A (en) 1993-10-12
EP0519334A2 (de) 1992-12-23

Similar Documents

Publication Publication Date Title
EP0519334B1 (de) Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher
DE3752324T2 (de) Kondensator
EP1281923B1 (de) Flachrohr für Wärmetauscher und Herstellungsverfahren
DE3781651T2 (de) Verfahren zum herstellen einer waermetauschereinheit mit integrierten kuehlrippen.
EP0656517B1 (de) Wasser/Luft-Wärmetauscher aus Aluminium für Kraftfahrzeuge
DE60217515T2 (de) Metallplatte zur herstellung eines flachrohrs, flachrohr und verfahren zur herstellung des flachrohrs
DE68907282T2 (de) Herstellung von schweissbaren Rohren.
EP1774245B1 (de) Ganz-metall-wärmetauscher und verfahren zu seiner herstellung
DE69330803T2 (de) Kühlröhren für Wärmetauscher
EP0632245B1 (de) Wasser/Luft-Wärmetauscher aus Aluminium für Kraftfahrzeuge
EP1613916B1 (de) Wärmeübertrager
DE69503972T2 (de) Verstärkte Endplatte für Wärmetauscher
DE19644586C2 (de) Rippenrohrblock für einen Wärmeübertrager
EP3531055A1 (de) Plattenwärmetauscher und verfahren zu dessen herstellung
DE69203387T2 (de) Wärmeaustauscher mit rohrförmigen Endkammern mit Querwänden und Methode zu seiner Herstellung.
EP1555503A2 (de) Flachrohr für Wärmeübertrager, insbesondere Kondensatoren
EP1468235B1 (de) Geschweisstes mehrkammerrohr
DE69729836T2 (de) Verdampfer
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
EP0912869A1 (de) Mehr als zweiflutiger flachrohrwärmetauscher für kraftfahrzeuge mit umlenkboden sowie herstellungsverfahren
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE69406401T2 (de) Wärmetauscher
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
EP1640684A1 (de) Wärmeübertrager aus Flachrohren und Wellrippen
EP1567820B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES GB

17P Request for examination filed

Effective date: 19930603

17Q First examination report despatched

Effective date: 19940120

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951024

REF Corresponds to:

Ref document number: 59204039

Country of ref document: DE

Date of ref document: 19951123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2078590

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19951218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080613

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080605

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090612