EP0322761B1 - Verfahren zur Herstellung von Dialkylaminoethylaminen - Google Patents
Verfahren zur Herstellung von Dialkylaminoethylaminen Download PDFInfo
- Publication number
- EP0322761B1 EP0322761B1 EP88121485A EP88121485A EP0322761B1 EP 0322761 B1 EP0322761 B1 EP 0322761B1 EP 88121485 A EP88121485 A EP 88121485A EP 88121485 A EP88121485 A EP 88121485A EP 0322761 B1 EP0322761 B1 EP 0322761B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- cobalt
- hydrogenation
- weight
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 24
- 230000008569 process Effects 0.000 title claims description 24
- 238000002360 preparation method Methods 0.000 title claims description 8
- -1 dialkylamino ethyl amines Chemical class 0.000 title description 4
- 239000003054 catalyst Substances 0.000 claims abstract description 37
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 22
- 239000010941 cobalt Substances 0.000 claims abstract description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 13
- 239000000243 solution Substances 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 15
- 150000001868 cobalt Chemical class 0.000 claims description 10
- 229910021446 cobalt carbonate Inorganic materials 0.000 claims description 10
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 3
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 150000004677 hydrates Chemical class 0.000 claims description 3
- 150000004679 hydroxides Chemical class 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 239000012442 inert solvent Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 9
- 239000003513 alkali Substances 0.000 description 9
- 150000002825 nitriles Chemical class 0.000 description 9
- LVPZSMIBSMMLPI-UHFFFAOYSA-N 2-(diethylamino)acetonitrile Chemical compound CCN(CC)CC#N LVPZSMIBSMMLPI-UHFFFAOYSA-N 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- UDGSVBYJWHOHNN-UHFFFAOYSA-N n',n'-diethylethane-1,2-diamine Chemical compound CCN(CC)CCN UDGSVBYJWHOHNN-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 125000005265 dialkylamine group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- FYRHIOVKTDQVFC-UHFFFAOYSA-M potassium phthalimide Chemical compound [K+].C1=CC=C2C(=O)[N-]C(=O)C2=C1 FYRHIOVKTDQVFC-UHFFFAOYSA-M 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 238000006683 Mannich reaction Methods 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229960004302 ambenonium chloride Drugs 0.000 description 1
- DXUUXWKFVDVHIK-UHFFFAOYSA-N ambenonium chloride Chemical compound [Cl-].[Cl-].C=1C=CC=C(Cl)C=1C[N+](CC)(CC)CCNC(=O)C(=O)NCC[N+](CC)(CC)CC1=CC=CC=C1Cl DXUUXWKFVDVHIK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZJRWDIJRKKXMNW-UHFFFAOYSA-N carbonic acid;cobalt Chemical compound [Co].OC(O)=O ZJRWDIJRKKXMNW-UHFFFAOYSA-N 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000001 cobalt(II) carbonate Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 235000006748 manganese carbonate Nutrition 0.000 description 1
- 239000011656 manganese carbonate Substances 0.000 description 1
- 229940093474 manganese carbonate Drugs 0.000 description 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 description 1
- 229960004503 metoclopramide Drugs 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 description 1
- 229960000244 procainamide Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/232—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/44—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
- C07C209/48—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
Definitions
- the present invention relates to a process for the preparation of dialkylaminoethylamines by hydrogenating dialkylaminoacetonitriles over cobalt catalysts.
- Dialkylaminoethylamines are sought-after intermediates in the chemical industry for the manufacture of a range of drugs.
- the diethylaminoethylamine compound is an important starting material for the synthesis of procainamide, ambenonium chloride, metoclopramide and chinchocaine.
- Dialkylaminoethylamines are accessible in several ways.
- a process described in various variants in the literature is the reaction of potassium phthalimide with dialkylaminoethyl halides.
- the reaction can also be carried out with ammonia or hexamethylenetetramine instead of potassium phthalimide.
- Disadvantages of this process are the high chemical expenditure and the pollution of the waste water caused by the reaction products. There are therefore limits to the use of these processes on an industrial scale.
- dialkylaminoethylamines Another route leading to dialkylaminoethylamines is the Mannich reaction of dialkylamines, formaldehyde and alkali cyanide, which gives dialkylaminoacetonitriles.
- the desired diamine is finally obtained from the acetonitriles by hydrogenation.
- the nitrile group can be converted into the amino group using sodium or lithium aluminum hydride. These processes are not of industrial importance. In industry, hydrogenation is carried out with hydrogen in the presence of catalysts.
- GB-PS 745 684 describes a process for the preparation of N, N-dialkylaminoethylamine by catalytic hydrogenation of N, N-dialkylaminoacetonitrile at superatmospheric pressure and at temperatures below 110.degree. This process gives a yield of 92%, but requires the use of liquid ammonia and Raney cobalt, the production of which is expensive. In addition, Raney catalysts cannot be arranged as a fixed bed, but can only be used in suspension.
- the object was therefore to develop a process which overcomes the disadvantages of the prior art and enables the hydrogenation of dialkylaminoacetonitriles in high yield with justifiable technical means.
- the invention consists in a process for the preparation of dialkylaminoethylamines by hydrogenation of dialkylaminoacetonitriles in the presence of cobalt catalysts. It is characterized in that the hydrogenation takes place at 40 to 120 ° C and at 4 to 15 MPa on catalysts which obtained by precipitating cobalt carbonate from the aqueous solution of a cobalt salt with an aqueous alkali carbonate solution at 20 to 95 ° C., filtering, washing out, if necessary shaping the catalyst mass and then reducing it with hydrogen at temperatures between 200 and 300 ° C., preferably 220 and 280 ° C. were.
- the new process enables dialkylaminoacetonitriles to be converted into dialkylaminoethylamines in a simple manner with high yield and high selectivity.
- An essential feature of the invention is the use of cobalt catalysts produced in a certain way for the hydrogenation of the nitriles.
- these catalysts consist of cobalt. According to a preferred embodiment, they also contain 0.25 to 15 wt .-% SiO2, MnO2, ZrO2, Al2O3 or MgO in the form of the oxides, hydroxides or oxide hydrates. These additives are used individually or as a combination of two or more of the substances. Their proportion is preferably 1 to 8 and in particular 2 to 5% by weight. All of the above data in percent by weight relate to the total catalyst mass in the anhydrous state before the reduction.
- cobalt carbonate is precipitated from the aqueous solution of a cobalt salt with an aqueous alkali metal carbonate solution at 20 to 95 ° C.
- cobalt carbonate is simply understood to mean the reaction product of cobalt salt and alkali carbonate under the chosen reaction conditions, which does not have to correspond to the formula CoCO3, but e.g. can also include basic cobalt carbonates.
- Suitable cobalt salts are e.g. Cobalt nitrate, chloride, sulfate, acetate.
- the alkali metal carbonates in particular are the sodium or the potassium compound.
- the solutions of the starting materials each contain cobalt salt or alkali carbonate in concentrations of 25 to 150 g Co or alkali carbonate / l solution.
- Cobalt salt and alkali carbonate can be reacted with one another in equimolar amounts, but it is more expedient to work with an excess of alkali carbonate. It has proven useful to use 1.1 to 1.5 and in particular 1.2 to 1.3 moles of alkali carbonate per mole of cobalt salt.
- the corresponding substances can be suspended in the cobalt salt solution or in the alkali carbonate solution.
- a soluble salt of the additive can be added to the cobalt salt solution before the precipitation and cobalt carbonate and additive precipitate out together.
- Hydrogen is used as the reducing agent. It is at a space velocity of 200 to 2000 l H2 1 catalyst per hour (200 to 2000 V H / V cat . H), preferably 300 to 1000 V H / V cat . h and in particular 400 to 700 V H / V cat . h passed at normal pressure over the catalyst bed.
- the reduced catalyst is pyrophoric and self-igniting in air. For better handling, it is therefore treated with oxygen, which is greatly diluted by an inert gas. For example, an N2 stream is allowed to act on it, which contains oxygen in a concentration of about 0.5 to about 1 vol .-%. This treatment oxidizes the surface of the catalyst; in this state it is stable in air up to about 80 ° C and is not self-igniting.
- the new process allows dialkylaminoacetonitriles to be converted very selectively and in high yield into the corresponding dialkylaminoethylamines.
- the nitriles can be used in the commercial technical form, a special pretreatment, e.g. to remove contaminants from manufacturing is not required.
- the hydrogenation itself is carried out at temperatures from 40 to 120 ° C and at pressures from 4 to 15 MPa. It has proven particularly useful to work at 45 to 100 ° C., preferably 50 to 80 ° C. and at 6 to 12, preferably 8 to 10 MPa.
- the dialkylaminoacetonitriles can be used in bulk. However, it is expedient to feed them to the hydrogenation reactor, dissolved in an inert solvent. Aliphatic, cycloaliphatic and aromatic hydrocarbons and aliphatic alcohols can be used as solvents. Suitable solvents are e.g. Cyclohexane, toluene, butanol, 2-ethylhexanol. Cyclohexane has proven particularly useful.
- the concentration of the dialkylaminoacetonitrile in the solution is (in each case based on the solution) between 5 and 50% by weight, preferably 10 to 40 and in particular 15 to 30% by weight.
- ammonia is added to the nitrile. This increases the selectivity of the hydrogenation to dialkylaminoethylamines to over 90%. It has proven useful to use 1 to 20 moles of ammonia per mole of nitrile. Particularly good results are obtained if 1.5 to 15 and in particular 2 to 10 moles of ammonia are contained in the starting mixture per mole of nitrile.
- the new process allows dialkylaminoacetonitriles of the general formula wherein R1 and R2 are the same or different and each represent unbranched or branched alkyl radicals having 1 to 9 carbon atoms to hydrogenate to the corresponding diamines. It is particularly suitable for the hydrogenation of alkylaminoacetonitriles in which R1 and R2 are the same and each represent unbranched or branched alkyl radicals having 1 to 6 carbon atoms, in particular unbranched or branched alkyl radicals each having 2 to 4 carbon atoms.
- the hydrogenation of the dialkylaminoacetonitriles can be carried out batchwise or, in particular, continuously.
- the catalyst is arranged in a tube to which the starting mixture is fed at the bottom. Adequate preheating of the feed materials must be provided. It is advisable to set the space velocity to values between 0.05 and 1.0, in particular 0.1 to 0.5 volume of dialkylaminoacetonitrile or dialkylaminoacetonitrile solution per volume of catalyst and hour.
- Example 1 Preparation of a cobalt catalyst without additives
- Example 2 Preparation of a cobalt catalyst with additive.
- the still moist catalyst precursor is resuspended in deionized water and then spray dried.
- the mass contains about 52 wt .-% Co and about 4.1 wt .-% MnO2.
- the catalyst is reduced as described in Example 1.
- 1.8 l of the cobalt catalyst described in Example 1 are arranged in the form of tablets with a diameter of 6 mm as a fixed bed in a heatable double-jacket tube of 28 mm internal diameter and 3 m long.
- the mixture is heated to 70 ° C. and hydrogen is continuously fed under a pressure of 8 MPa and 600 ml of a solution of diethylaminoactonitrile in cyclohexane (15% by weight of nitrile, based on the solution) to the bottom of the reaction tube per hour via a piston pump.
- the product emerging at the reactor head contains no diethylaminoacetonitrile.
- 11% diethylaminoethylamine is detected by gas chromatography.
- Example 3 In the reactor of Example 3 using 1.8 l of the catalyst from Example 2 at 60 ° C and an H2 pressure of 8 MPa H2 diethylaminoacetonitrile in the form of a 30 wt .-% Solution (based on the solution) implemented in cyclohexane. At the same time, 2.5 moles of NH 3 / mole of nitrile are passed to the reactor and the throughput is increased to 900 ml / h. The diethylaminoacetonitrile is completely implemented. According to gas chromatographic evaluation, the reaction product contains 73.2% cyclohexane and 25.1% of diethylaminoethylamine.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
- Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Dialkylaminoethylaminen durch Hydrieren von Dialkylaminoacetonitrilen an Kobaltkatalysatoren.
- Dialkylaminoethylamine sind gefragte Zwischenprodukte in der chemischen Industrie für die Herstellung einer Reihe von Arzneimitteln. So ist die Diethylaminoethylamin-Verbindung ein wichtiges Ausgangsmaterial für die Synthesen von Procainamid, Ambenoniumchlorid, Metoclopramid und Chinchocain.
- Dialkylaminoethylamine sind auf mehreren Wegen zugänglich. Ein in verschiedenen Varianten in der Literatur beschriebenes Verfahren ist die Umsetzung von Kalium-Phthalsäureimid mit Dialkylaminoethylhalogeniden. Alternativ kann die Reaktion auch mit Ammoniak oder Hexamethylentetramin statt Kalium-Phthalsäureimid durchgeführt werden. Nachteile dieses Prozesse sind der hohe Chemikalienaufwand und die durch die Umsetzungsprodukte verursachte Belastung der Abwässer. Einer Anwendung dieser Verfahren im technischen Maßstab sind daher Grenzen gesetzt.
- Sehr kostengünstig ist die Umsetzung von Ethylenimin mit Dialkylaminen. Sie ist jedoch an das Vorhandensein des hochtoxischen Ethylenimins gebunden.
- Ein weiterer Weg, der zu Dialkylaminoethylaminen führt, ist die Mannich-Reaktion von Dialkylaminen, Formaldehyd und Alkalicyanid, die Dialkylaminoacetonitrile ergibt. Durch Hydrieren erhält man aus den Acetonitrilen schließlich das gewünschte Diamin.
- Die Umwandlung der Nitrilgruppe in die Aminogruppe kann mit Natrium oder Lithiumaluminiumhydrid erfolgen. Industrielle Bedeutung besitzen diese Verfahren nicht. In der Technik führt man die Hydrierung mit Wasserstoff in Gegenwart von Katalysatoren durch.
- So läßt sich Diethylaminoacetonitril nach Winans und Adkins (Am.Soc. 55, 4167 (1933)) an Raney-Nickel mit 37 %iger Ausbeute zum Diamin hydrieren. Abgesehen davon, daß eine solche Ausbeute für ein technisches Verfahren zu gering ist, konnten die Angaben von Winans und Adkins nicht ohne weiteres reproduziert werden (vgl. Houben-Weyl 11/1, Seite 563).
- In der GB-PS 745 684 ist ein Verfahren zur Herstellung von N,N-Dialkylaminoethylamin durch katalytisches Hydrieren von N,N-Dialkylaminoacetonitril bei überatmosphärischem Druck und bei Temperaturen unterhalb 110°C beschrieben. Dieser Prozeß erbringt eine Ausbeute von 92 %, erfordert aber den Einsatz von flüssigem Ammoniak und von Raney-Kobalt, dessen Herstellung aufwendig ist. Überdies können Raney-Katalysatoren nicht als Festbett angeordnet, sondern nur in Suspension eingesetzt werden.
- Es bestand daher die Aufgabe, ein Verfahren zu entwickeln, das die geschilderten Nachteile des Standes der Technik überwindet und die Hydrierung von Dialkylaminoacetonitrilen mit vertretbaren technischen Mitteln in hoher Ausbeute ermöglicht.
- Die Erfindung besteht in einem Verfahren zur Herstellung von Dialkylaminoethylaminen durch Hydrierung von Dialkylaminoacetonitrilen in Gegenwart von Kobaltkatalysatoren. Es ist dadurch gekennzeichnet, daß die Hydrierung bei 40 bis 120°C und bei 4 bis 15 MPa an Katalysatoren erfolgt, die durch Ausfällen von Kobaltcarbonat aus der wäßrigen Lösung eines Kobaltsalzes mit einer wäßrigen Alkalicarbonatlösung bei 20 bis 95°C, Filtrieren, Auswaschen, gegebenenfalls Formen der Katalysatormasse und anschließende Reduktion mit Wasserstoff bei Temperaturen zwischen 200 und 300°C, vorzugsweise 220 und 280°C erhalten wurden.
- Überraschenderweise ermöglicht das neue Verfahren, Dialkylaminoacetonitrile in einfacher Weise mit hoher Ausbeute und hoher Selektivität in Dialkylaminoethylamine zu überführen.
- Ein wesentliches Merkmal der Erfindung ist der Einsatz auf bestimmtem Wege hergestellter Kobaltkatalysatoren für die Hydrierung der Nitrile.
- Diese Katalysatoren bestehen im reduzierten Zustand aus Kobalt. Nach einer bevorzugten Ausführungsform enthalten sie außerdem 0,25 bis 15 Gew.-% SiO₂, MnO₂, ZrO₂, Al₂O₃ oder MgO in Form der Oxide, Hydroxide oder Oxidhydrate. Diese Zusatzstoffe werden einzeln verwendet oder als Kombination von zwei oder mehreren der Substanzen. Bevorzugt beträgt ihr Anteil 1 bis 8 und insbesondere 2 bis 5 Gew.-%. Alle vorstehenden Angaben in Gewichtsprozent beziehen sich auf die gesamte Katalysatormasse im wasserfreien Zustand vor der Reduktion.
- Die oben aufgeführten Formeln dienen lediglich der Beschreibung der quantitativen Zusammensetzung der Katalysatormasse, sie geben nicht unbedingt die genaue chemische Struktur der Zusatzstoffe wieder. Außer als Oxide können sie im nichtreduzierten wie auch im reduzierten Katalysator als Hydroxide und insbesondere als Oxidhydrate enthalten sein.
- Die Wirkungsweise der Zusatzstoffe ist nicht in allen Einzelheiten geklärt. Versuchsergebnisse sprechen dafür, daß sie die Struktur des Katalysators, insbesondere seine Oberflächenstruktur gegenüber Sinterungseffekten bei hohen Temperaturen stabilisieren. Darüber hinaus erhöhen sie auch die mechanische Stabilität der aus der Katalysatormasse hergestellten Formkörper.
- Zur Herstellung der Kobaltkatalysatoren fällt man bei 20 bis 95°C Kobaltcarbonat aus der wäßrigen Lösung eines Kobaltsalzes mit einer wäßrigen Alkalicarbonatlösung. Unter dem Begriff Kobaltcarbonat wird vereinfacht das Umsetzungsprodukt aus Kobaltsalz und Alkalicarbonat unter den gewählten Reaktionsbedingungen verstanden, das nicht der Formel CoCO₃ entsprechen muß, sondern z.B. auch basische Kobaltcarbonate umfassen kann. Geeignete Kobaltsalze sind z.B. Kobaltnitrat, -chlorid, -sulfat, -acetat. Als Alkalicarbonate kommen insbesondere die Natrium- oder die Kaliumverbindung in Betracht. Die Lösungen der Ausgangsstoffe enthalten Kobaltsalz bzw. Alkalicarbonat jeweils in Konzentrationen von 25 bis 150 g Co bzw. Alkalicarbonat/l Lösung. Kobaltsalz und Alkalicarbonat können in äquimolaren Mengen miteinander umgesetzt werden, zweckmäßiger ist es jedoch, mit einem Alkalicarbonatüberschuß zu arbeiten. Bewährt hat es sich, 1,1 bis 1,5 und insbesondere 1,2 bis 1,3 Mol Alkalicarbonat je Mol Kobaltsalz zu verwenden.
- Zur Herstellung einen oder mehrere Zusatzstoffe enthaltender Kobaltkatalysatoren kann man die entsprechenden Substanzen in der Lösung des Kobaltsalzes oder in der Alkalicarbonatlösung suspendieren. Mit gleich gutem Erfolg kann man aber auch ein lösliches Salz des Zusatzstoffes vor der Fällung zur Kobaltsalzlösung geben und Kobaltcarbonat und Zusatzstoff gemeinsam ausfällen. Schließlich ist es auch möglich, die Kobaltcarbonatfällung getrennt vorzunehmen und anschließend den Zusatzstoff auf das Kobaltcarbonat aufzufällen.
- Von großer Bedeutung für die Leistungsfähigkeit des Katalysators ist die Durchführung seiner Reduktion und damit seiner Aktivierung. Sie erfolgt in einem Temperaturbereich, der bei 200°C, vorzugsweise 220°C beginnt und 300°C, bevorzugt 280°C nicht übersteigt. Besonders zweckmäßig ist es, in mindestens drei Stufen bei von Stufe zu Stufe ansteigender Temperatur zu reduzieren.
- Als Reduktionsmittel verwendet man Wasserstoff. Er wird mit einer Raumgeschwindigkeit von 200 bis 2000 l H₂ je 1 Katalysator und Stunde (200 bis 2000 VH /VKat . h), bevorzugt 300 bis 1000 VH /VKat . h und insbesondere 400 bis 700 VH /VKat . h bei Normaldruck über die Katalysatorschüttung geleitet.
- Es hat sich bewährt, in der ersten Stufe eine Temperatur von 220 bis 250°C, vorzugsweise 230 bis 240°C einzustellen und 1 bis 4, insbesondere 2 bis 3 Stunden aufrechtzuerhalten. In der zweiten Stufe erfolgt die Reduktion während 1 bis 5, insbesondere 2 bis 3 Stunden bei 245 bis 260°C, vorzugsweise 250 bis 255°C. Anschließend wird die Reduktion weitere 1 bis 5, insbesondere 2 bis 3 Stunden bei 255 bis 280°C, vorzugsweise bei 260 bis 270°C zu Ende geführt.
- Der reduzierte Katalysator ist pyrophor und an der Luft selbstentzündlich. Zur besseren Handhabung behandelt man ihn daher mit Sauerstoff, der durch ein Inertgas stark verdünnt ist. Beispielsweise läßt man einen N₂-Strom auf ihn einwirken, der Sauerstoff in einer Konzentration von etwa 0,5 bis etwa 1 Vol.-%, enthält. Durch diese Behandlung wird der Katalysator oberflächlich oxidiert; er ist in diesem Zustand an der Luft bis etwa 80°C stabil und nicht selbstentzündlich.
- Das neue Verfahren erlaubt es, Dialkylaminoacetonitrile sehr selektiv und in hoher Ausbeute in die entsprechenden Dialkylaminoethylamine zu überführen. Zur Hydrierung können die Nitrile in der handelsüblichen technischen Form eingesetzt werden, eine besondere Vorbehandlung, z.B. um Verunreinigungen, die von Herstellung herrühren, zu beseitigen, ist nicht erforderlich. Die Hydrierung selbst wird bei Temperaturen von 40 bis 120°C und bei Drücken von 4 bis 15 MPa durchgeführt. Besonders bewährt hat es sich, bei 45 bis 100°C, vorzugsweise 50 bis 80°C und bei 6 bis 12, vorzugsweise 8 bis 10 MPa zu arbeiten.
- Die Dialkylaminoacetonitrile können in Substanz eingesetzt werden. Zweckmäßig ist es jedoch, sie in einem inerten Lösungsmittel gelöst dem Hydrierreaktor zuzuführen. Als Lösungsmittel können aliphatische, cycloaliphatische und aromatische Kohlenwasserstoffe und aliphatische Alkohole Anwendung finden. Geeignete Lösungsmittel sind z.B. Cyclohexan, Toluol, Butanol, 2-Ethylhexanol. Besonders bewährt hat sich Cyclohexan. Die Konzentration der Dialkylaminoacetonitrile in der Lösung beträgt (jeweils bezogen auf die Lösung) zwischen 5 und 50 Gew.-%, vorzugsweise 10 bis 40 und insbesondere 15 bis 30 Gew.-%.
- Nach einer bevorzugten Ausführungsform setzt man dem Nitril Ammoniak zu. Man erzielt dadurch eine Erhöhung der Selektivität der Hydrierung zu Dialkylaminoethylaminen auf über 90%. Es hat sich bewährt, je Mol Nitril 1 bis 20 Mol Ammoniak anzuwenden. Besonders gute Ergebnisse erzielt man, wenn je Mol Nitril 1,5 bis 15 und insbesondere 2 bis 10 Mol Ammoniak in dem Ausgangsgemisch enthalten ist.
- Das neue Verfahren erlaubt es, Dialkylaminoacetonitrile der allgemeinen Formel
wobei R₁ und R₂ gleich oder verschieden sind und jeweils unverzweigte oder verzweigte Alkylreste mit 1 bis 9 Kohlenstoffatomen bedeuten, zu den entsprechenden Diaminen zu hydrieren. Besonders geeignet ist es zur Hydrierung von Alkylaminoacetonitrilen, in denen R₁ und R₂ gleich sind und jeweils für unverzweigte oder verzweigte Alkylreste mit 1 bis 6 Kohlenstoffatome stehen, insbesondere für unverzweigte oder verzweigte Alkylreste mit jeweils 2 bis 4 Kohlenstoffatomen. - Die Hydrierung der Dialkylaminoacetonitrile kann sowohl diskontinuierlich als auch insbesondere kontinuierlich durchgeführt werden. Bei kontinuierlicher Durchführung ist der Katalysator in einem Rohr angeordnet, dem das Ausgangsgemisch am Boden zugeführt wird. Eine ausreichende Vorheizung der Einsatzstoffe ist vorzusehen. Es empfiehlt sich, die Raumgeschwindigkeit auf Werte zwischen 0,05 und 1,0, insbesondere 0,1 bis 0,5 Volumen Dialkylaminoacetonitril bzw. Dialkylaminoacetonitril-Lösung je Volumen Katalysator und Stunde einzustellen.
- In den folgenden Beispielen wird die Herstellung der erfindungsgemäß eingesetzten Katalysatoren und die Hydrierung von Dialkylaminoacetonitrilen beschrieben. Es ist nicht beabsichtigt, die Erfindung auf diese speziellen Ausführungsformen zu beschränken.
- In eine auf 90°C erhitzte Lösung von 800 g Na₂CO₃ in 7,5 l entionisiertem Wasser läßt man innerhalb von 2 min unter kräftigem Rühren eine auf 95°C erhitzte Lösung von 1852 g Co(NO₃)₂ . 6H₂O (≙ 375 g Co) in 7,5 l entionisiertem Wasser einfließen. Es entsteht eine Suspension von Kobaltcarbonat in Wasser mit einem pH-Wert von 8,2 bis 8,4. Das Fällungsprodukt wird abfiltriert und mit etwa 90 l Kondensat-Wasser (Temperatur: 70°C) intensiv gewaschen, so daß die Leitfähigkeit des Waschwassers nach Beendigung des Waschvorganges kleiner als 100 µS ist. Das noch feuchte Katalysatorvorprodukt wird erneut in entionisiertem Wasser suspendiert und darauf sprühgetrocknet. Die Masse enthält etwa 53,5 Gew.-% Kobalt.
- Zur Reduktion werden in einem Rohrreaktor (Durchmesser: 50 mm) über 0,5 l der getrockneten Katalysatormasse bei 240°C während 2 h 200 l H₂/h geleitet. Darauf erhöht man die Temperatur auf 250°C und reduziert weitere 2 h mit 200 l H₂/h und führt die Reduktion durch Behandlung des Katalysators während weiterer 2 h mit 200 l H₂/h bei 260°C zuende. Zur Stabilisierung behandelt man das Pulver bei 50 bis 70°C mit einem 0,7 Vol.-% O₂ enthaltenden N₂-Strom und preßt es anschließend zu Tabletten.
- In eine auf 90°C erhitzte Lösung von 840 g Na₂CO₃ in 7,5 l entionisiertem Wasser läßt man innerhalb von 2 min unter kräftigem Rühren eine auf 95°C erhitzte Lösung von 1852 g Co(NO₃)₂.6H₂O (≙ 375 g Co) und 85,73 g Mn (NO₃)₂.4H₂O in 7,5 l entionisiertem Wasser gleichmäßig einfließen. Es entsteht eine Suspension von Kobalt- und Mangancarbonat in Wasser mit einem pH-Wert von 8,2 bis 8,4. Das Fällungsprodukt wird abfiltriert und mit etwa 90 l 70°C heißem Kondensat-Wasser intensiv gewaschen, so daß die Leitfähigkeit des Waschwassers nach Beendigung des Waschvorganges kleiner als 100 µS ist.
- Das noch feuchte Katalysatorvorprodukt wird erneut in entionisiertem Wasser suspendiert und darauf sprühgetrocknet. Die Masse enthält etwa 52 Gew.-% Co und etwa 4,1 Gew.-% MnO₂.
- Die Reduktion des Katalysators erfolgt wie in Beispiel 1 beschrieben.
- In einem beheizbaren Doppelmantelrohr von 28 mm Innendurchmesser und 3 m Länge werden 1,8 l des in Beispiel 1 beschriebenen Kobalt-Katalysators in Form von Tabletten mit 6 mm Durchmesser als Festbett angeordnet. Man erhitzt auf 70°C und führt Wasserstoff unter einem Druck von 8 MPa sowie über eine Kolbenpumpe je Stunde kontinuierlich 600 ml einer Lösung von Diethylaminoactonitril in Cyclohexan (15 Gew.-% Nitril, bezogen auf die Lösung) am Boden des Reaktionsrohres zu. Das am Reaktorkopf austretende Produkt enthält kein Diethylaminoacetonitril. Gaschromatografisch werden neben 86,5 % Lösungsmittel 11 % Diethylaminoethylamin nachgewiesen.
- Im Reaktor des Beispiels 3 wird unter Verwendung von 1,8 l des Katalysators aus Beispiel 2 bei 60°C und einem H₂-Druck von 8 MPa H₂ Diethylaminoacetonitril in Form einer 30 Gew.-%igen Lösung (bezogen auf die Lösung) in Cyclohexan umgesetzt. Gleichzeitig leitet man dem Reaktor 2,5 Mol NH₃/Mol Nitril zu und erhöht den Durchsatz auf 900 ml/h. Das Diethylaminoacetonitril ist vollständig umgesetzt. Das Reaktionsprodukt enthält nach gaschromatografischer Auswertung 73,2 % Cyclohexan und 25,1 % des Diethylaminoethylamins.
- Im Reaktor des Beispiels 3 wird bei 50°C und einem H₂-Druck von 8 MPa unverdünntes Diethylaminoacetonitril umgesetzt. Je Mol Nitril führt man dem Reaktor 2,5 Mol NH₃ zu, der Durchsatz wird auf 180 ml/h ≙ V/Vh = 0,1 eingestellt. Das Nitril wird vollständig umsetzt, das Reaktionsprodukt enthält nach gaschromatographischer Analyse 89,7 % Diethylaminoethylamin, der Rest sind Spaltprodukte. Die Aufarbeitung des Reaktionsproduktes erfolgt in einer Kolonne mit 24 theoretischen Böden. Diethylaminoethylamin wird in mehr als 99 %iger Reinheit gewonnen.
Claims (10)
- Verfahren zur Herstellung von Dialkylaminoethylaminen durch Hydrierung von Dialkylaminoacetonitrilen in Gegenwart von Kobaltkatalysatoren, dadurch gekennzeichnet, daß die Hydrierung bei 40 bis 120°C und bei 4 bis 15 MPa an Katalysatoren erfolgt, die durch Ausfällen von Kobaltcarbonat aus der wäßrigen Lösung eines Kobaltsalzes mit einer wäßrigen Alkalicarbonatlösung bei 20 bis 95°C, Filtrieren, Auswaschen, gegebenenfalls Formen der Katalysatormasse und anschließende Reduktion mit Wasserstoff bei Temperaturen zwischen 200 und 300°C, vorzugsweise 220 und 280°C erhalten wurden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysator zusätzlich 0,25 bis 15 Gew.-%, bezogen auf die gesamte Katalysatormasse, SiO₂, MnO₂, ZrO₂, Al₂O₃ oder MgO einzeln oder als Kombination von zwei oder mehreren dieser Substanzen in Form der Oxide, Hydroxide oder Oxidhydrate enthält.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß SiO₂, MnO₂, ZrO₂, Al₂O₃ oder MgO in einer Menge von 1 bis 8 und insbesondere 2 bis 5 Gew.-%, bezogen auf die gesamte Katalysatormasse, im Katalysator enthalten sind.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Reduktion in mindestens drei Stufen bei von Stufe zu Stufe ansteigender Temperatur erfolgt.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Reduktion in der ersten Stufe bei einer Temperatur von 220 bis 250°C, vorzugsweise 230 bis 240°C, in der zweiten Stufe bei 245 bis 260°C, vorzugsweise 250 bis 255°C und in der dritten Stufe bei 255 bis 280°C, vorzugsweise 260 bis 270°C durchgeführt wird.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Hydrierung bei 45 bis 100°C, vorzugsweise 50 bis 80°C erfolgt.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Hydrierung bei 6 bis 12, vorzugsweise 8 bis 10 MPa erfolgt.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Dialkylaminoacetonitrile in einem inerten Lösungsmittel gelöst eingesetzt werden.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Konzentration des Dialkylaminoacetonitrils in der Lösung 5 bis 50 Gew.-%, vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 30 Gew.-% beträgt.
- Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Hydrierung in Gegenwart von Ammoniak erfolgt, wobei je Mol Dialkylaminoacetonitril 1 bis 20 Mol, vorzugsweise 1,5 bis 15 Mol und insbesondere 2 bis 10 Mol Ammoniak eingesetzt werden.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT88121485T ATE73125T1 (de) | 1987-12-30 | 1988-12-22 | Verfahren zur herstellung von dialkylaminoethylaminen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873744506 DE3744506A1 (de) | 1987-12-30 | 1987-12-30 | Verfahren zur herstellung von dialkylaminoethylaminen |
DE3744506 | 1987-12-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0322761A1 EP0322761A1 (de) | 1989-07-05 |
EP0322761B1 true EP0322761B1 (de) | 1992-03-04 |
Family
ID=6343834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88121485A Expired - Lifetime EP0322761B1 (de) | 1987-12-30 | 1988-12-22 | Verfahren zur Herstellung von Dialkylaminoethylaminen |
Country Status (7)
Country | Link |
---|---|
US (1) | US5124485A (de) |
EP (1) | EP0322761B1 (de) |
JP (1) | JPH02737A (de) |
AT (1) | ATE73125T1 (de) |
AU (1) | AU606244B2 (de) |
DE (2) | DE3744506A1 (de) |
ES (1) | ES2037191T3 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4962065A (en) * | 1989-02-13 | 1990-10-09 | The University Of Arkansas | Annealing process to stabilize PECVD silicon nitride for application as the gate dielectric in MOS devices |
US5874625A (en) * | 1996-11-04 | 1999-02-23 | Henkel Corporation | Process to hydrogenate organic nitriles to primary amines |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2436368A (en) * | 1944-06-27 | 1948-02-17 | Du Pont | Catalytic hydrogenation of aminoacetonitrile to ethylene diamine |
GB745684A (en) * | 1952-08-15 | 1956-02-29 | Union Carbide & Carbon Corp | Method of making n, n-dialkylaminoethylamines |
US3232888A (en) * | 1958-01-17 | 1966-02-01 | Basf Ag | Production of hydrogenation catalysts containing cobalt |
GB1125811A (en) * | 1966-01-28 | 1968-09-05 | Ici Ltd | Catalysts |
DE1543337A1 (de) * | 1966-03-22 | 1969-12-11 | Basf Ag | Verfahren zur Herstellung von 1,3-Propylendiaminen |
US4137267A (en) * | 1977-02-22 | 1979-01-30 | Texaco Inc. | Catalytic hydrogenation process |
US4140720A (en) * | 1977-05-19 | 1979-02-20 | Phillips Petroleum Company | Cobalt hydrogenation catalyst activation |
CA1140910A (en) * | 1979-01-02 | 1983-02-08 | James L. Carter | Supported cobalt-silica coprecipitated hydrogenation catalyst |
JPS5923857B2 (ja) * | 1980-04-03 | 1984-06-05 | 三菱瓦斯化学株式会社 | 触媒の製造法 |
DE3403377A1 (de) * | 1984-02-01 | 1985-08-01 | Basf Ag, 6700 Ludwigshafen | Geformte katalysatormassen, deren herstellung und verwendung |
NL8402096A (nl) * | 1984-07-02 | 1986-02-03 | Unilever Nv | Hydrogeneringskatalysatoren. |
-
1987
- 1987-12-30 DE DE19873744506 patent/DE3744506A1/de not_active Withdrawn
-
1988
- 1988-12-22 DE DE8888121485T patent/DE3868901D1/de not_active Revoked
- 1988-12-22 AT AT88121485T patent/ATE73125T1/de not_active IP Right Cessation
- 1988-12-22 EP EP88121485A patent/EP0322761B1/de not_active Expired - Lifetime
- 1988-12-22 ES ES198888121485T patent/ES2037191T3/es not_active Expired - Lifetime
- 1988-12-23 AU AU27496/88A patent/AU606244B2/en not_active Ceased
- 1988-12-26 JP JP63326405A patent/JPH02737A/ja active Granted
-
1990
- 1990-07-26 US US07/560,021 patent/US5124485A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02737A (ja) | 1990-01-05 |
JPH05377B2 (de) | 1993-01-05 |
ATE73125T1 (de) | 1992-03-15 |
DE3744506A1 (de) | 1989-07-13 |
EP0322761A1 (de) | 1989-07-05 |
ES2037191T3 (es) | 1993-06-16 |
AU606244B2 (en) | 1991-01-31 |
AU2749688A (en) | 1989-07-06 |
US5124485A (en) | 1992-06-23 |
DE3868901D1 (de) | 1992-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2907869C2 (de) | ||
EP0324983B1 (de) | Ruthenium-Trägerkatalysator, seine Herstellung und sein Einsatz bei der Herstellung von gegebenenfalls substituiertem Cyclohexylamin und gegebenenfalls substituiertem Dicyclohexylamin | |
DE3689555T2 (de) | Herstellung von aliphatischen Polyaminen. | |
EP0351661B1 (de) | Ruthenium-Trägerkatalysator, seine Herstellung und sein Einsatz bei der Herstellung von gegebenenfalls substituiertem Cyclohexylamin und gegebenenfalls substituiertem Dicyclohexylamin | |
EP0324984A1 (de) | Verfahren zur Herstellung eines Gemisches aus Cyclohexylamin und Dicyclohexylamin unter Einsatz eines Ruthenium-Katalysators | |
EP2046721A1 (de) | Direktaminierung von kohlenwasserstoffen | |
DE2620554C3 (de) | Verfahren zur Herstellung eines Kupfer-Nickel-Siliciumoxid-Katalysators und seine Verwendung | |
DE2502894C3 (de) | Ruthenium-Trägerkatalysator | |
DE69003570T2 (de) | Hydrierung aromatischer Amine unter Benützung von Rhodium auf Titandioxyd- oder Zirkoniumdioxydträger. | |
EP0322760B2 (de) | Verfahren zur Herstellung von Kobaltkatalysatoren | |
DE2952061A1 (de) | Nickel-kobalt-siliciumdioxid- katalysatoren und ihre verwendung | |
DE69107164T2 (de) | Synthesis von Ethylamine. | |
EP0322761B1 (de) | Verfahren zur Herstellung von Dialkylaminoethylaminen | |
EP0503347B1 (de) | Verfahren zur Herstellung eines Gemisches von, gegebenenfalls substituiertem, Cyclohexylamin und gegebenenfalls substituiertem Dicyclohexylamin unter Ver- wendung eines Palladium/Al2O3 Katalysators. | |
DE3003730C2 (de) | ||
DE69837423T2 (de) | Verfahren zur herstellung von cyanoarylmethylamin | |
DE3724239A1 (de) | Verfahren zur herstellung von aliphatischen n,n-dialkylsubstituierten aminoalkoholen | |
DE60035696T2 (de) | Verfahren zur Umsetzung von 1,4-Butindiol in 1,4-Butendiol | |
DE69208385T2 (de) | Verfahren zur Herstellung von N-Alkyl-N-Methylamin oder N-Alkenyl-N-Methylamin | |
EP0142070B1 (de) | Verfahren zur Herstellung von N-Methylhomoveratrylamin | |
DE2121325A1 (en) | Methoxypropionitrile prepn - from acrylonitrile and methanol using triethanolamine and ethylene oxide reaction prod as catalyst | |
DE1014547B (de) | Verfahren zur reduktiven Alkylierung von Amino- und Nitroverbindungen | |
DE19633609A1 (de) | Verfahren zur Herstellung von Carbazol | |
DE2362781B2 (de) | Verfahren zur herstellung von loesungen der 4,4'-diaminostilben-2,2'- disulfonsaeure in form ihrer alkalisalze | |
DE19754571A1 (de) | Verfahren zur Herstellung von variablen Gemischen aus Cyclohexylamin und Dicyclohexylamin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19890720 |
|
17Q | First examination report despatched |
Effective date: 19910116 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 73125 Country of ref document: AT Date of ref document: 19920315 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3868901 Country of ref document: DE Date of ref document: 19920409 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921127 Year of fee payment: 5 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921204 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921207 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921214 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19921215 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19921221 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19921230 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19921231 Year of fee payment: 5 |
|
26 | Opposition filed |
Opponent name: BASF AKTIENGESELLSCHAFT, LUDWIGSHAFEN Effective date: 19921130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930127 Year of fee payment: 5 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BASF AG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2037191 Country of ref document: ES Kind code of ref document: T3 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19930724 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 930724 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLR2 | Nl: decision of opposition | ||
EUG | Se: european patent has lapsed |
Ref document number: 88121485.2 Effective date: 19931208 |