EP0309862B1 - Stilbene synthase gene - Google Patents

Stilbene synthase gene Download PDF

Info

Publication number
EP0309862B1
EP0309862B1 EP88115368A EP88115368A EP0309862B1 EP 0309862 B1 EP0309862 B1 EP 0309862B1 EP 88115368 A EP88115368 A EP 88115368A EP 88115368 A EP88115368 A EP 88115368A EP 0309862 B1 EP0309862 B1 EP 0309862B1
Authority
EP
European Patent Office
Prior art keywords
gene
dna
plants
stilbene synthase
plant cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88115368A
Other languages
German (de)
French (fr)
Other versions
EP0309862A1 (en
Inventor
Gudrun Dr. Schröder
Joachim Prof. Dr. Schröder
Rüdiger Dr. Hain
Peter Helmut Dr. Schreier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0309862A1 publication Critical patent/EP0309862A1/en
Application granted granted Critical
Publication of EP0309862B1 publication Critical patent/EP0309862B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Definitions

  • the present invention relates to the gene for stilbene synthase isolated from plants and its use for transforming vectors, host organisms and plants and for producing plants which have increased resistance to pests.
  • stilbene describes a group of chemical substances that occur in plants and contain the stilbene framework (trans-1,2-diphenylethylene) as a common basic structure. This basic structure can be supplemented by adding further groups.
  • stilbenes Two important stilbenes are the 3,5-dihydroxy-stilbene (Pinosylvin) and the 3,3 ′, 5-trihydroxy-stilbene (resveratrol).
  • Stilbenes were found in certain trees (angiosperms, gymnosperms), but also in some herbaceous plants (in species from the Myrtaceae, Vitaceae and Leguminosae families). Stilbenes are toxic to pests, in particular for fungi, bacteria and insects and are suitable to ward off these pests. Their greatest biological importance is also seen in this function. Particularly in herbaceous plants, it is often the case that stilbenes are only present in very low concentrations in healthy tissue, but that a very large amount of stilbenes is newly formed at the site of infection after infection or wounding. This increased concentration correlates with the increased resistance of the plants that stilbene can synthesize to the pests. The ability to synthesize these substances is seen as an important defense mechanism. Unfortunately, only a few useful plants have the ability to form stilbenes or to produce them to a degree that gives them sufficient resistance to pests.
  • Stilbene synthases use malonyl-CoA and cinnamoyl-CoA or coumaroyl-CoA as substrates, i.e. substances that occur in every plant because they are also used in the biosynthesis of other important plant ingredients (e.g. flavonoids, flower pigments).
  • substrates i.e. substances that occur in every plant because they are also used in the biosynthesis of other important plant ingredients (e.g. flavonoids, flower pigments).
  • Other important plant ingredients e.g. flavonoids, flower pigments.
  • stilbene synthase gene The new gene for stilbene synthase (“stilbene synthase gene”) has now been isolated, which can be incorporated into the genetic material (the genome) of plants which do not produce a stilbene or only inadequately stilbene, which causes increased resistance of these plants to pests can.
  • the stilbene synthesis genes according to the invention correspond to the stilbene synthase gene which is contained in the plasmid pGS 828.1 and include the DNA sequences derived therefrom with stilbene synthase activity.
  • Stilbene synthase gene should be understood to mean any nucleic acid (DNA) which, after its transcription in RNA and translation in protein (in a suitable environment), causes the formation of an enzyme which has the properties of a stilbene synthase (enzymatic synthesis of stilbene in a suitable environment) has, wherein this nucleic acid is isolated from its natural environment or is integrated into a vector or is contained in a prokaryotic or eukaryotic DNA as "foreign" DNA or as "additional" DNA.
  • DNA nucleic acid
  • the term “gene unit” is also used below. These gene units arise, e.g. by cutting out with restriction enzymes (e.g. partial cleavage with EcoR I and Hind III), since there are no interfaces for conventional restriction enzymes exactly at the beginning and at the end of the gene.
  • restriction enzymes e.g. partial cleavage with EcoR I and Hind III
  • the stilbene synthase gene (or the gene unit) can be in the form as it is contained in the genome of plants ("genomic” form, including non-stilbene synthase-coding and / or non-regulatory sequences (such as introns) or in one Form that corresponds to the cDNA ("copy" DNA) that can be obtained via mRNA with the aid of reverse transcriptase / polymerase (and no longer contains introns).
  • DNA segments can be replaced by other DNA segments which have essentially the same effect. It can also carry those DNA sequences at the ends that are adapted to the handling of the gene (or the gene unit) in each case (e.g. "linker").
  • foreign DNA is to be understood as DNA that does not occur naturally in a specific prokaryotic or eukaryotic genome, but is only incorporated into this genome by human intervention.
  • Additional DNA should be DNA that occurs naturally in the respective prokaryotic or eukaryotic genome, but is added to this genome by human intervention.
  • the “foreign” DNA or “additional” DNA can be incorporated in one or more copies, depending on the needs and type of the present case.
  • Stilbene synthase which is formed in plants or plant cells with the cooperation of the stilbene synthase gene (or the gene unit) according to the invention, means any enzyme which brings about the formation of such plant antibodies against pests (phytoalexins) which have the stilbene framework.
  • Preferred stilbenes are pinosylvin (3,5-dihydroxy-stilbene), pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) and resveratrol (3,3 ', 5-trihydroxy-stilbene), with pinosylvin and resveratrol being particularly preferred and Resveratrol is very particularly preferred.
  • stilbenes are found in certain tree species as well as in a number of other, preferably dicotyledonous (dicotyledonous) plants.
  • the stilbene synthase gene according to the invention which is preferred is the stilbene synthase gene, which can be isolated from gymnosperms, preferably Pinus, from angiosperms, preferably dicotyledonous (dicotyledonous) plants, in particular from peanut (Arachis hypogaea) and wine (Vitis) and very particularly preferably from peanut .
  • stilbene synthase gene is the stilbene synthase gene, which is present as a gene unit in the plasmid pGS 828.1 (which is described in more detail below), and the essentially identical DNA sequences.
  • the stilbene synthase gene consists of the 5'- and 3'- untranslated regions and a coding region and is located on a DNA fragment of (ca) 6.7 kbp (gene unit).
  • the gene unit has (3) EcoRI, (3) HindIII and (1) PstI cleavage sites. It can be obtained from the plasmid pGS 828.1 by partial cleavage with EcoRI and HindIII.
  • the 5′-regulatory part lies next to the first 7 codons of the protein coding region on an approximately 3.3 kbp EcoRI fragment and precedes the rest of the coding region.
  • This region consists of 1540 bp and contains an intron of 369bp and a HindIII interface.
  • the downstream 3'-untranslated region is completely present and is by an EcoRI interface (see Fig. 1) limited.
  • the gene unit in which vector pSP 65 cloned contains two internal EcoRIs, one PstI and two HindIII cleavage sites and is in the polylinker of the pSP65 plasmid through the SstI cleavage site (directly next to the EcoRI site towards the stilbene synthase gene) delimited at the 5'-end and by the HindIII interface at the 3'-end.
  • the gene unit can be removed from pGS 828.1 particularly advantageously with the aid of SstI and PvuII (FIG. 2), since both interfaces occur only once.
  • the PvuII interface lies outside the actual gene unit. However, this has no influence on the expression of the gene in transgenic plants and the section up to the HindIII site can, if desired, be removed using the customary methods.
  • DSM German Collection of Microorganisms
  • the plasmid pGS 828.1 deposited in this host can in the usual Ways can easily be obtained in the required amounts by multiplying the strain.
  • the stilbene synthase gene or the gene unit which contains the DNA sequence coding (below) (proposed) (proposed) ("DNA sequence" (protein-coding region and intron) of the stilbene synthase gene unit from pGS 828.1 "), which is also listed below, is particularly preferred or without the intron or contains essentially equivalent sequences of this DNA sequence It is also part of the present invention which contains essentially equivalent DNA sequences, part of the present invention.
  • Sequences having essentially the same effect means that DNA or DNA sequences are replaced by other DNA or DNA sequences at one or more locations, but these do not significantly change the result.
  • stilbene synthase gene consist of a regulatory part (in particular promoter) and the structural gene which codes for the stilbene synthase protein.
  • Both gene parts can be used independently. It is thus possible to add a different DNA sequence (which differs from the stilbene synthase gene) to the regulatory part, which is to be expressed after incorporation into the plant genome. Since only a few isolated promoters are known which can develop their action in plants or plant cells, the promoter of the stilbene synthase gene which is part of the present invention is a valuable aid in the production of transformed plants or plant cells With the help of the SstI interface and the EcoRI interface at the beginning of the coding region isolated and connected to another gene using the usual methods.
  • the stilbene synthase structural gene (preferably the DNA sequence coding below for stilbene synthase, with or without the intron sequences, and their essentially equivalent sequences) thus represents a valuable, independently usable unit and, as already explained, is likewise Part of the present invention.
  • the stilbene synthase gene according to the invention can be separated into the regulatory part and the structural gene by the usual methods.
  • the complete stilbene synthase gene according to the invention or the gene unit is preferably used.
  • the stilbene synthase gene or the gene unit and / or its parts and the modified DNA can be used as “foreign” or “additional” DNA in vectors (in particular plasmids, cosmids or phages), in transformed microorganisms (preferably bacteria, in particular Gram). negative bacteria, such as E. coli) as well as in transformed plant cells and plants or in their DNA.
  • vectors in particular plasmids, cosmids or phages
  • transformed microorganisms preferably bacteria, in particular Gram).
  • negative bacteria such as E. coli
  • Such vectors, transformed microorganisms (which may also contain these vectors) and the transformed plant cells and plants and their DNA are constituents of the present invention.
  • Pests against which resistance or increased resistance can be achieved with the aid of the stilbene synthase gene according to the invention include animal pests such as insects, mites and nematodes and microbial pests such as phytopathogenic fungi and bacteria. Microbial pests, especially phytopathogenic fungi, are particularly emphasized.
  • the harmful insects include in particular insects of the orders: Orthoptera, Dermaptera, Isoptera, Thysanoptera, Heteroptera, Homoptera, Lepidoptera, Coleoptera, Hymenoptera and Diptera.
  • the harmful mites include in particular: Tarsonemus spp., Panonychus spp. and Tetranychus spp.
  • the harmful nematodes include in particular: Pratylenchus spp., Heterodera spp. and Meloidogyne spp.
  • the microbial pests include in particular the phytopathogenic fungi: Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
  • the phytopathogenic bacteria include in particular the Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as, for example, Pseudomonas syringae pv.
  • Lachrymans Erwinia species, such as, for example, Erwinia amylovora; Pythium species, such as, for example, Pythium ultimum; Phytophthora species, such as, for example, Phytophthora infestans; Pseudoperonospora species, such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubense; Plasmopara species, such as, for example, Plasmopara viticola; Peronospora species, such as, for example, Peronospora pisi or P.
  • Erwinia species such as, for example, Erwinia amylovora
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Ps
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P.
  • Drechslera graminea
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae
  • Pellicularia species such as, for example, Pellicularia sasakii
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as
  • Plants to which resistance or increased resistance to the above pests can be conferred by incorporating (transforming) the stilbene synthase gene or the gene unit according to the invention include virtually all plants.
  • crop plants such as forest plants, for example spruce, fir, Douglas fir, pine, larch, beech and oak, and plants that supply food and raw materials, for example cereals (in particular wheat, rye, barley, oats, millet, rice) and corn), potatoes, leguminosa such as legumes and in particular alfalfa, soybeans, vegetables (in particular cabbages and tomatoes), fruit (in particular apples, pears, cherries, grapes, citrus, pineapples and bananas), oil palms, tea, cocoa and coffee bushes , Tobacco, sisal and cotton as well as medicinal plants such as Rauwolfia and Digitalis.
  • Potatoes, tomatoes, wine and legumes are particularly preferred.
  • the stilbene synthase gene or the gene unit is built into the natural plant genome one or more times (at the same or different locations in the genome).
  • the incorporation of one or more stilbene synthase genes according to the invention can lead to significantly improved resistance behavior.
  • only the structural gene according to the invention is used, with a regulatory gene possibly isolated from the respective plant being connected upstream.
  • the increased resistance of the transformed plant cells and plants according to the invention is important for agriculture and forestry, for growing ornamental plants, for growing medicinal plants and for growing plants. Also in the cultivation of plant cells, e.g. for the production of pharmaceutically usable substances, it is advantageous to have plant cells available which have increased resistance to attack by microbial pests, in particular fungi.
  • Process steps (a), (b) and (c) can be carried out in a conventional manner by known processes and methods.
  • Transformed plant cells including protoplasts and plants (including plant parts and seeds) which contain one or more stilbene synthase genes or gene units and / or parts of the stilbene synthase gene or gene units as "foreign” or “additional” DNA contain and such transformed plant cells and plants, which are obtainable by the above methods, also belong to the present invention.
  • the Ti plasmid from Agrobacterium tumefaciens is available as a particularly inexpensive and widely applicable vector for the transfer of foreign DNA into genomes of dicotyledonous and monocotyledonous plants.
  • the genetic material that codes for stilbene synthase is inserted into the T-DNA of suitable Ti pasmids (e.g. Zambryski et al. 1983) and by infection of the plant, infection of plant parts or plant tissues, such as, for example, leaf disks, stems, hypocotyls, cotyledons, meristems and tissues derived therefrom, such as, for example, secondary embryos and calli, or by coculturing protoplasts with Agrobacterium tumefaciens.
  • the DNA uptake can also be promoted by an electric field (electroporation) (e.g. Formm et al. 1986).
  • the plants are regenerated in a known manner using suitable nutrient media (e.g. Nagy and Maliga 1976).
  • suitable nutrient media e.g. Nagy and Maliga 1976.
  • the DNA unit consisting of (approx.) 6.7 kb is made from pGS 828.1, characterized by the corresponding internal EcoRI, HindIII or PstI interfaces (see 1) in a suitable intermediate E. coli vector, for example pGV700, pGV710, (see EP-A-116 718; Deblaere et al. 1986) or preferably derivatives thereof, which additionally contain a reporter gene such as nptII (Herrera-Estrella et al. 1983) or hpt (Van den Elzen et al 1986).
  • the DNA section extracted from pGS 828.1 using SstI and PvuII can also be used for this purpose.
  • the Escherichia coli strain AZ 4 which contains the vector pGV 710 in an easily isolable form, was obtained from the German Collection of Microorganisms (DSM), Grisebachstrasse 8, D-3400 Göttingen, Federal Republic of Germany in accordance with the provisions of the Budapest Treaty on international use Acknowledgment of the deposit of microorganisms for the purposes of patent proceedings and has the deposit number DSM 3164.
  • the plasmid so constructed is grown on Agrobacterium tumefaciens, e.g. contains pGV 3850 or derivatives thereof (Zambryski et al. 1983) by conventional methods (e.g. Van Haute et al. 1983).
  • the stilbene synthase gene unit can be cloned in a binary vector (e.g. Koncz and Schell 1986) and transferred to a suitable Agrobacterium strain (Koncz and Schell 1986) as described above.
  • the resulting Agrobacterium strain which contains the stilbene synthase gene unit in a form which can be transferred to plants, is subsequently used for plant transformation.
  • the isolated plasmid pGS 828.1 is optionally together with another plasmid which contains a reporter gene for plant cells, for example for kanamycin resistance (for example Herrera-Estrella et al. 1983) or a hydromycin resistance (van den Elzen, 1986), preferably pLGV neo 2103 (Hain et al. 1985) , pLGV 23 neo (Herrera-Estrella 1983), pMON 129 (Fraley RT et al., Proc. National Acad. Sci. USA 80 , 4803 (1983), pAK 1003, pAK 2004 (Velten J.
  • kanamycin resistance for example Herrera-Estrella et al. 1983
  • a hydromycin resistance van den Elzen, 1986
  • pLGV neo 2103 Hain et al. 1985
  • pLGV 23 neo Herrera-Estrella 1983
  • pMON 129 Fraley RT et
  • Transformed (transgenic) plants or plant cells are processed according to known methods, e.g. by leaf disc transformation (e.g. Horsch et al. 1985) by coculturing regenerative plant protoplasts or cell cultures with Agrobacterium tumefaciens (e.g. Marton et al. 1979, Hain et al. 1985) or generated by direct DNA transfection.
  • Resulting transformed plants are either selected by expression for the reporter gene, for example by phosphorylation of kanamycin sulfate in vitro ((Reiss et al. 1984; Schreier et al. 1985) or by expression of nopaline synthase (according to Aerts et al.
  • Stilbene synthase by Northern blot analysis and Western blot analysis proven.
  • the stilbene synthase and the stilbene can also be detected in a known manner with the aid of specific antibodies in transformed plants.
  • Stilbene synthase can also be detected by enzyme activity test (Rolfs et al., Plant Cell Reports 1 , 83-85, 1981).
  • the cultivation of the transformed plant cells and the regeneration to complete plants is carried out according to the generally customary methods with the aid of the appropriate nutrient media.
  • Both the transformed plant cells and the transformed plants which contain the stilbene synthase gene or the gene unit according to the invention and which are components of the present invention show a considerably higher resistance to pests, in particular phytopathogenic fungi.
  • plants means both whole plants and parts of plants, such as leaves, seeds, tubers, cuttings, etc.
  • Plant cells include protoplasts, cell lines, plant calli, etc.
  • Propagation material means plants and plant cells which can be used for propagation in transformed plants and plant cells and is therefore also part of the present invention.
  • the expression "essentially equivalent DNA sequences” means that the invention also encompasses those modifications in which the function of the stilbene synthase gene and its parts is not impaired in such a way that stilbene synthase is no longer formed or the regulatory gene part is not becomes more effective.
  • Corresponding modifications can be made by replacing, adding and / or removing DNA segments, individual codons and / or individual nucleic acids.
  • mutants and “variants” mean those modified microorganisms which still have the features which are essential for carrying out the invention, in particular contain the respective plasmids.
  • Cell cultures from nut plants contain the gene for stilbene synthase, which in particular causes the formation of resveratrol synthase (protein size 43,000 D; reaction with specific antiserum).
  • Genomic DNA from enriched cell nuclei (Bedbrook, J., Plant Molecular Biology Newsletter 2 , 24, 1981) is cut with the restriction enzyme SauIIIa so that DNA fragments with a Average length of 10,000-25,000 nucleotide pairs arise. These fragments are cloned into the BamHI site of lambda phage EMBL3 (Frischholz et al., J. Mol. Biol. 170 , 827-842, 1983) and the phages are grown in E. coli. The whole of the phage population contains, cloned in sections, the entire genomic DNA of the peanut cells, and thus also the gene for stilbene synthase.
  • the gene for stilbene synthase, its mRNA and the stilbene synthase cDNA contain the same nucleic acid sequences since they are derived from one another (gene ⁇ mRNA ⁇ cDNA). This means that the gene for stilbene synthase can be identified by specific hybridization with stilbene synthase cDNA or mRNA.
  • the phages with the gene are identified by hydridation, then isolated and propagated.
  • the genomic DNA from peanut cells cloned in this phage is further analyzed by analysis with various Restriction enzymes are mapped and the position of the stilbene synthase gene is determined by further hybridization experiments with the cDNA.
  • the gene unit is cut out of the phage by partial digestion with EcoRI and HindIII, cloned in the correspondingly cut plasmid vector pSP65 (from Amersham Buchler GmbH & Co. KG, Braunschweig, Federal Republic of Germany), and propagated as a recombinant plasmid.
  • This plasmid is referred to as pGS 828.1.
  • the plasmid carries a gene for ampicillin resistance and contains 9350 nucleotide pairs (9.35 kBp).
  • E. coli cells which contain pGS 828.1 (E. coli Nurdug 2010), they can be propagated in the usual way.
  • E. coli cells e.g. JA221, Nakamura, K., Inouye, M., EMBO J. 1 , 771-775, 1982
  • pGS 828.1 E. coli Nurdug 2010
  • Nicotiana tabacum (Petit Havanna SR1) is propagated as a sterile sprout culture on hormone-free LS medium (Linsmaier and Skoog 1965). At intervals of approx. 6-8 weeks, shoot sections are transferred to fresh LS medium. The shoot cultures are kept in a culture room at 24-26 ° C under 12 h light (1000-3000 lux).
  • leaf protoplasts For the isolation of leaf protoplasts, approx. 2 g of leaves (approx. 3-5 cm long) are cut into small pieces (0.5 cm x 1 cm) with a fresh razor blade.
  • the leaf material is in 20 ml enzyme solution, consisting of K3 medium (Nagy and Maliga 1976), 0.4 m sucrose, pH 5.6, 2% cellulase R10 (Serva), 0.5% Macerozym R10 (Serva) for 14- Incubated for 16 h at room temperature.
  • the protoplasts are then separated from cell residues by filtration through 0.30 mm and 0.1 mm steel sieves. The filtrate is centrifuged at 100 xg for 10 minutes.
  • the method of Marton et al. 1979 used with minor changes.
  • the protoplasts are isolated as described and in a density of 1-2 x 105 / ml in K3 medium (0.4 m sucrose, 0.1 mg / l NAA, 0.2 ml in K3 medium (0.4 m sucrose, 0.1 mg / l NAA, 0.2 mg kinetin) incubated for 2 days in the dark and for one to two days under low light (500 lux) at 26 ° C.
  • 30 ⁇ l of an agrobacterial suspension are added minimally A (Am) medium (density approx. 109 agrobacteria / ml) to 3 ml regenerating protoplasts.
  • Am minimally A
  • the coculture time is 3-4 days at 20 ° C in the dark.
  • the tobacco cells are filled in 12 ml centrifuge tubes, with sea water (600 mOsm / kg) diluted to 10 ml and pelleted at 60 xg for 10 minutes, this washing process is repeated 1-2 more times to remove most of the agrobacteria.
  • the cell suspension is in a density of 5 x 104 / ml in K3 medium (0.3 M sucrose) with 1 mg / l NAA (naphthyl-1-acetic acid), 0.2 ml / l kinetin and 500 mg / l of cephalospo rin antibiotic cefotaxime cultivated.
  • the cell suspension is diluted with fresh K3 medium every week and the osmotic value of the medium gradually reduced by 0.05 m sucrose (approx. 60 mOsm / kg) per week.
  • the selection with kanamycin 100 mg / l kanamycin sulfate (Sigma), 660 mg / g active km) is started 2-3 weeks after the coculture in agarose bead type culture (Shillito et al. 1983). Colonies resistant to kanamycin can be distinguished from the background of remaining colonies 3-4 weeks after the start of the selection.
  • the transformation can also be carried out without the addition of 0.5 ⁇ g / ⁇ l pLGV neo 2103. Since no reporter gene is used in this case, the resulting calli were checked for the presence of the stilbene synthase gene unit using dot-blot hybridization. An internal EcoRI-HindIII fragment from pGS 828.1 can be used as a hybridization sample. Of course, other detection methods, such as testing with antibodies or determining fungicide resistance, can also be used.
  • a modified "bead type culture” technique (Shillito et al. 1983) is used for the culture and selection of kanamycin-resistant colonies described below.
  • K3 medium 0.3 M sucrose + hormones; 1.2% (Seaplaque) LMT agarose (low melting agarose, marine colloids) in 5 cm petri dishes mixed.
  • agarose is dry autoclaved and briefly boiled in the microwave after adding K3 medium.
  • the agarose slices (beads) with the embedded tobacco microcalli are transferred to 10 cm petri dishes for further culture and selection Add 10 ml of K3 medium (0.3 M sucrose, 1 mg / l NAA, 0.2 mg / l kinetin) and 100 mg / l kanamycin sulfate (Sigma).
  • K3 medium 0.3 M sucrose, 1 mg / l NAA, 0.2 mg / l kinetin
  • 100 mg / l kanamycin sulfate Sigma.
  • the liquid medium is changed every week, whereby the osmotic value of the Medium gradually reduced.
  • the exchange medium (K3 + Km) is reduced by 0.05 m of sucrose (approx. 60 mOsm) per week.
  • kanamycin-resistant colonies have reached a diameter of approx. 0.5 cm, half is placed on regeneration medium (LS medium, 2% sucrose, 0.5 mg / l benzylaminopurine BAP) and exposed to 12 h light (3000-5000 lux ) and 24 ° C in the culture room.
  • the other half is called Callus culture propagated on LS medium with 1 mg / l NAA, 0.2 mg / l kinetin, 0.1 mg / l BAP and 100 mg / l kanamycin sulfate.
  • the regenerated shoots are approx. 1 cm in size, they are cut off and placed on 1/2 LS medium (1% sucrose, 0.8% agar) without growth regulators for rooting. The shoots are rooted on 1/2 MS medium with 100 mg / l kanamycin sulfate and later converted into soil.
  • leaves of approx. 2-3 cm in length are punched out of sterile shoot cultures into discs of 1 cm in diameter and with a suspension of appropriate Agrobacteria (approx. 109 / ml) (cf. b) in Incubate on medium, see below) for approx. 5 minutes.
  • the infected leaf pieces are kept on MS medium (see below) without hormones at 3-4 ° C for 3-4 days. During this time, Agrobacterium grows over the leaf pieces.
  • the leaf pieces are then washed in MS medium (0.5 mg / ml BAP, 0.1 mg / ml NAA) and on the same medium (0.8% agar) with 500 ⁇ g / ml cefotaxime and 100 ⁇ g / ml kanamycin sulfate (Sigma) placed.
  • the medium should be replaced after two weeks.
  • Transformed shoots become visible after another 2-3 weeks.
  • the regeneration of shoots should also be carried out in parallel without selection pressure.
  • the regenerated shoots must then go through biological Tests eg for nopaline synthase or stilbene synthase activity can be tested for transformation. In this way 1-10% transformed shoots are obtained.
  • the paper is soaked with the eluent (5% formic acid, 15% acetic acid, 80% H2O, pH 1.8) and electrophoresed at 400 V for 45 minutes. Nopalin runs towards the cathode.
  • the paper is then hot dried with an air stream and drawn in the direction of travel through phenanthrenequinone colorant (equal volume 0.02% phenanthrenequinone in ethanol and 10% NaOH in 60% ethanol).
  • the dried paper is viewed and photographed under long-wave UV light. Arginine and arginine derivatives are stained yellow fluorescent with the reagent.
  • Neomycin phosphotransferase (NPT II) enzyme test :
  • NPT II activity in plant tissue is determined by in situ phosphorylation of kanamycin, as described by Reiss et al. (1984) and by Schreier et al. (1985) modified as follows. 50 mg of plant tissue are homogenized in 50 .mu.l extraction buffer (10% glycerol, 5% 2-mercaptoethanol, 0.1% SDS, 0.025% bromophenol blue, 62.5 mM Tris pH 6.8) with the addition of glass powder on ice and for 10 minutes centrifuged in an Eppendorf centrifuge at 4 ° C.
  • 50 .mu.l extraction buffer (10% glycerol, 5% 2-mercaptoethanol, 0.1% SDS, 0.025% bromophenol blue, 62.5 mM Tris pH 6.8
  • the gel is placed on a glass plate of the same size and covered with 40 ml of 1% agarose in reaction buffer which contains the substrates kanamycin sulfate (20 ⁇ g / ml) and 20-200 ⁇ Ci 32P ATP (Amersham).
  • the sandwich gel is incubated for 30 minutes at room temperature and then a sheet of phosphocellulose paper P81 (Whatman) is placed on the agarose. Over it are four layers of filter paper 3 MM, (Whatman) and some paper towels stacked.
  • the transfer of in situ phosphorylated radioactive kanamycin phosphate to the P81 paper is stopped after 3-4 hours.
  • the P81 paper is for 30 min.
  • the Medicago sativa plant (Regen S, clone RA3 Walker et al, 1978) was cultivated as a sterile shoot culture on LS medium (Linsmaier and Skoog, 1965), in the long day (16 h light, 8 h dark) at 26 ⁇ 2 ° C.
  • the plants and tissue cultures were cultivated in culture rooms in the long day (16 h light, 8 h dark) at 26 ⁇ 2 ° C.
  • the fluorescent tubes had the light color Universal White (Osram L58W / 25).
  • the distance between the tubes and the cultures was 10-30 cm, which corresponds to 1500-4500 lux light intensity.
  • the air humidity remained unregulated.
  • the protoplasts were cultivated in culture cabinets at a maximum of 500 lux and 26 ° C.
  • the outer parts of the callus were cut off with a scalpel and subcultured on fresh medium.
  • Somatic embryogenesis was induced by incubation of callus tissue in liquid SH medium (Shenk and Hildebrandt, 1972) containing 50 ⁇ M (11 mg / l) 2.4D and 5 ⁇ M (1.07 mg / l) kinetin.
  • liquid SH medium Shield and Hildebrandt, 1972
  • 50 ⁇ M 11 mg / l
  • 5 ⁇ M (1.07 mg / l) kinetin.
  • 30 mg callus fresh weight
  • the induction was carried out for 3-4 days on a shaker (100 rpm) at 26 ° C in the plant culture room.
  • the callus path was then separated from the medium on a sieve (850 ⁇ m).
  • the cell clusters per 100 ml of induction medium were washed with 500 ml of SHJ medium without hormones (SH). The washing solution was removed by draining as far as possible (approx. 5 min). The fresh weight was determined and the cell clusters were resuspended in SH medium. 75 mg in 0.5 ml were applied in a pipette to approximately 10 ml of solid regeneration medium SHR.
  • the regeneration medium SHR consisted of SH medium with 25 mM NH4+ and 100 mM L-proline in 3% sucrose.
  • the table shows the composition of the media B5h, SHJ, SHR, 1/2 SH, LS.
  • the liquid medium SH corresponds to the SHJ medium without the hormones 2,4D and kinetin. The amounts are given in mg / l unless otherwise noted.
  • the media were sterilized by heating in an autoclave for 17 min at 121 ° C.
  • Kinetin, L-gluthathione and amino acids were sterilized with a filter and added to the medium at 60 ° C. after heating in an autoclave.
  • Callus was induced for embryogenesis using the method described under callus regeneration.
  • the callus material was washed on a sieve (mesh size 100 ⁇ m) with liquid SHR, which contained no agar and no L-proline. The callus material was then taken up in liquid SHR. Approx. 1 g of callus material was added to 10 ml of medium.
  • the callus material was incubated on a shaker (90 rpm) for 2-3 days at 26 ° C.
  • the material was then washed on a sieve (mesh size 100 ⁇ m 2) with liquid SHR.
  • the plating (75 mg callus / 10 ml medium) was carried out on the normal solid SHR with 100 mM L-proline.
  • the medium in the plates contained 500 ⁇ g / ml Claforan. After four weeks, the resistant structures were placed on fresh medium containing antibiotics and a further three weeks later they were divided and half was placed on fresh medium without selective antibiotics, the other half on medium containing antibiotics.
  • the transformation of embryos was carried out analogously to the transformation of the induced callus. Embryos 4-5 weeks old were used as starting material. They were finely cut in a Petri dish with a razor blade and then washed on a sieve (mesh size 100 ⁇ m) with liquid SHR. Approx. 1 g of cut embryos were taken up in 10 ml of liquid SHR. After the addition of agrobacteria (2 ⁇ 107 / ml final concentration), the incubation was carried out on a shaker (90 rpm) for 2-3 days at 26 ° C. The embryo pieces were then washed on a sieve (100 ⁇ m 2) with liquid SHR.
  • the plating was done with a spatula on plates that the normal solid SHR was using Contained 100 mM L-proline. Approx. 50-100 mg pieces of embryo were distributed per plate containing 10 ml medium. In addition to the selective antibiotics, the medium in the plates contained 500 ⁇ g / ml Claforan. Three weeks after plating, the secondary embryos were subcultured on fresh plates. Well-developed embryos were placed on antibiotic-free 1/2 SH medium (Stuart and Strickland, 1984, b) to enable further development into plants. Small plantlets with roots were then transferred to LS medium.
  • the DNA sequence (protein coding region and intron) of the stilbene synthase gene with a part of the 5′- and 3′- untranslated regions is listed, as it is present in the plasmid pGS 828.1.
  • the restriction sites for EcoRI, PstI and HindIII are given.
  • the corresponding protein sequence is given in the one-letter code.
  • Molec genet 199: 183-188 Shenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous cell cultures. Approx. J. Bot. 50, 199-204 Shillito RD, Paszkowski J.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

Die vorliegende Erfindung betrifft das aus Pflanzen isolierte Gen für Stilbensynthase und seine Verwendung zur Transformation von Vektoren, Wirtsorganismen und Pflanzen sowie zur Erzeugung von Pflanzen, welche eine erhöhte Resistenz gegenüber Schädlingen aufweisen.The present invention relates to the gene for stilbene synthase isolated from plants and its use for transforming vectors, host organisms and plants and for producing plants which have increased resistance to pests.

Der Begriff Stilbene beschreibt eine Gruppe von chemischen Substanzen, welche in Pflanzen vorkommen und als gemeinsame Grundstruktur das Stilbengerüst (trans-1,2-Diphenylethylen) enthalten. Dieses Grundgerüst kann durch die Addition weiterer Gruppen ergänzt werden. Zwei wichtige Stilbene sind das 3,5-Dihydroxy-stilben (Pinosylvin) und das 3,3′,5-Trihydroxy-stilben (Resveratrol).The term stilbene describes a group of chemical substances that occur in plants and contain the stilbene framework (trans-1,2-diphenylethylene) as a common basic structure. This basic structure can be supplemented by adding further groups. Two important stilbenes are the 3,5-dihydroxy-stilbene (Pinosylvin) and the 3,3 ′, 5-trihydroxy-stilbene (resveratrol).

Stilbene wurden in bestimmten Bäumen (Angiospermen, Gymnospermen), jedoch auch in einigen krautigen Pflanzen gefunden (in Arten der Familien Myrtaceae, Vitaceae und Leguminosae). Stilbene sind toxisch für Schädlinge, insbesondere für Pilze, Bakterien und Insekten und sind geeignet, diese Schädlinge abzuwehren. In dieser Funktion wird auch ihre größte biologische Bedeutung gesehen. Besonders in krautigen Pflanzen ist es häufig so, daß Stilbene in gesundem Gewebe nur in sehr geringen Konzentrationen vorliegen, daß aber nach Infektion oder Verwundung sehr hohe Menge an Stilbenen an der Infektions-Stelle neu gebildet werden. Diese erhöhte Konzentration korreliert mit erhöhter Resistenz der Pflanzen, die Stilbene synthetisieren können, gegen die Schädlinge. Die Fähigkeit der Synthese dieser Substanzen wird als wichtiger Abwehrmechanismus angesehen. Leider haben nur wenige Nutzpflanzen die Fähigkeit Stilbene zu bilden, bzw. in einem Maße zu erzeugen, welches ihnen eine ausreichende Resistenz gegen Schädlinge verleiht.Stilbenes were found in certain trees (angiosperms, gymnosperms), but also in some herbaceous plants (in species from the Myrtaceae, Vitaceae and Leguminosae families). Stilbenes are toxic to pests, in particular for fungi, bacteria and insects and are suitable to ward off these pests. Their greatest biological importance is also seen in this function. Particularly in herbaceous plants, it is often the case that stilbenes are only present in very low concentrations in healthy tissue, but that a very large amount of stilbenes is newly formed at the site of infection after infection or wounding. This increased concentration correlates with the increased resistance of the plants that stilbene can synthesize to the pests. The ability to synthesize these substances is seen as an important defense mechanism. Unfortunately, only a few useful plants have the ability to form stilbenes or to produce them to a degree that gives them sufficient resistance to pests.

Der Schlüssel für die Bildung aller Stilbene ist die Synthese des Grundgerüstes. Bisher wurden im wesentlichen zwei Enzym-Typen beschrieben (Resveratrolsynthase und Pinosylvinsynthase), die beide als Stilbensynthasen bezeichnet werden, da sie beide das Stilben-Grundgerüst synthetisieren. Am besten charakterisiert wurde bisher die Resveratrolsynthase aus Erdnuß (Arachis hypogea); die Eigenschaften dieses Enzymes sind weitgehend bekannt (Schöppner und Kindl, 1984). Sowohl Pinosylvin als auch Resveratrol, die einfachsten Stilbene, wirken generell toxisch, vorzugsweise mikrobizid, insbesondere fungistatisch, auf infizierende Schad-Organismen. Stilbensynthasen benutzen als Substrate Malonyl-CoA und Cinnamoyl-CoA oder Coumaroyl-CoA, also Substanzen, die in jeder Pflanze vorkommen, da sie auch in der Biosynthese anderer wichtiger Pflanzeninhaltsstoffe verwendet werden (z.B. Flavonoide, Blütenfarbstoffe). Zum Thema Stilbene und Stilbensynthase kann auf die folgende Literatur verwiesen werden: Hart, J.H. (1981) Annu. Rev. Phytopathology 19, 437-458; Hart, J.H., Shrimpton, D.M. (1979) Phytophathology 69, 1138-1143; Kindl, H. (1985) in: Biosynthesis and Biodegradation of Wood Components. Ed. Higuchi, T., Academic Press, Inc., pp. 349-377 und Schöppner, A.; Kindl, H. (1984) J. Biol. Chem. 259, 6806-6811.The key to the formation of all style levels is the synthesis of the basic framework. So far, essentially two types of enzymes have been described (resveratrol synthase and pinosylvine synthase), both of which are referred to as stilbene synthases, since they both synthesize the stilbene backbone. Resveratrol synthase from peanut (Arachis hypogea) has been best characterized so far; the properties of this enzyme are largely known (Schöppner and Kindl, 1984). Both Pinosylvin and Resveratrol, the simplest stilbenes, have a generally toxic, preferably microbicidal, in particular fungistatic, effect on infecting harmful organisms. Stilbene synthases use malonyl-CoA and cinnamoyl-CoA or coumaroyl-CoA as substrates, i.e. substances that occur in every plant because they are also used in the biosynthesis of other important plant ingredients (e.g. flavonoids, flower pigments). On the subject of stilbene and stilbene synthase, reference can be made to the following literature: Hart, JH (1981) Annu. Rev. Phytopathology 19 , 437-458; Hart, JH, Shrimpton, DM (1979) Phytophathology 69 , 1138-1143; Kindl, H. (1985) in: Biosynthesis and Biodegradation of Wood Components. Ed. Higuchi, T., Academic Press, Inc., pp. 349-377 and Schöppner, A .; Kindl, H. (1984) J. Biol. Chem. 259 , 6806-6811.

Ein großer Teil der Welternte von Kulturpflanzen wird ständig durch Schädlinge vernichtet (1967 betrug der Verlust an potentieller Ernte 35 %; vgl. Chemistry of Pesticides, herausgegeben von K.H. Büchel, John Wiley & Sons, New York, 1983, Seite 6). Es besteht somit ein dringendes Bedürfnis alle Möglichkeiten zu erforschen und nutzbar zu machen, welche geeignet sind, den Schädlingsbefall bei Kulturpflanzen zu vermindern oder zu verhindern.A large part of the world crop of crops is constantly destroyed by pests (in 1967 the loss of potential harvest was 35%; see Chemistry of Pesticides, edited by K.H. Büchel, John Wiley & Sons, New York, 1983, page 6). There is therefore an urgent need to research and utilize all possibilities which are suitable for reducing or preventing pest infestation in crop plants.

Es wurde nun das neue Gen für Stilbensynthase ("Stilbensynthase-Gen") isoliert, welches in die Erbmasse (das Genom) von Pflanzen eingebaut werden kann, die keine Stilbene oder nur unzureichend Stilbene erzeugen, wodurch eine erhöhte Resistenz dieser Pflanzen gegen Schädlinge hervorgerufen werden kann.The new gene for stilbene synthase ("stilbene synthase gene") has now been isolated, which can be incorporated into the genetic material (the genome) of plants which do not produce a stilbene or only inadequately stilbene, which causes increased resistance of these plants to pests can.

Die erfindungsgemäßen Stilbensynthese-Gene entsprechen dem Stilbensynthase-Gen, welches im Plasmid pGS 828.1 enthalten ist und schließen die davon abgeleiteten DNA-Sequenzen mit Stilbensynthase-Aktivität ein.The stilbene synthesis genes according to the invention correspond to the stilbene synthase gene which is contained in the plasmid pGS 828.1 and include the DNA sequences derived therefrom with stilbene synthase activity.

Unter Stilbensynthase-Gen soll jede Nukleinsäure (DNA) verstanden werden, die nach ihrer Transkription in RNA und Translation in Protein (in einer geeigneten Umgebung) die Bildung eines Enzyms bewirkt, welches die Eigenschaften einer Stilbensynthase (enzymatische Synthese von Stilben in einer geeigneten Umgebung) besitzt, wobei diese Nukleinsäure aus ihrer natürlichen Umgebung isoliert vorliegt oder in einen Vektor integriert ist oder in einer prokaryontischen oder eukaryontischen DNA als "fremde" DNA oder als "zusätzliche" DNA enthalten ist.Stilbene synthase gene should be understood to mean any nucleic acid (DNA) which, after its transcription in RNA and translation in protein (in a suitable environment), causes the formation of an enzyme which has the properties of a stilbene synthase (enzymatic synthesis of stilbene in a suitable environment) has, wherein this nucleic acid is isolated from its natural environment or is integrated into a vector or is contained in a prokaryotic or eukaryotic DNA as "foreign" DNA or as "additional" DNA.

Wenn das Stilbensynthase-Gen an seinem Anfang und/oder Ende noch DNA-Sequenzen enthält, die die Funktion des Gens nicht oder nicht wesentlich behindern, wird im folgenden auch von "Gen-Einheit" gesprochen. Diese Gen-Einheiten entstehen, z.B. durch das Herausschneiden mit Restriktionsenzymen (z.B. partielle Spaltung mit EcoR I und Hind III), da keine Schnittstellen für übliche Restriktionsenzyme exakt am Beginn und am Ende des Gens vorliegen.If the stilbene synthase gene still contains DNA sequences at its beginning and / or end which do not or not significantly hinder the function of the gene, the term “gene unit” is also used below. These gene units arise, e.g. by cutting out with restriction enzymes (e.g. partial cleavage with EcoR I and Hind III), since there are no interfaces for conventional restriction enzymes exactly at the beginning and at the end of the gene.

Das Stilbensynthase-Gen (bzw. die Gen-Einheit) kann in der Form vorliegen, wie es im Genom von Pflanzen enthalten ist ("genomische" Form, einschließlich nicht Stilbensynthase kodierender und/oder nicht regulatorisch wirkender Sequenzen (wie Introns) oder in einer Form, welche der cDNA ("copy" DNA) entspricht, die über mRNA mit Hilfe von Reverse-Transkriptase/Polymerase erhältlich ist (und keine Introns mehr enthält).The stilbene synthase gene (or the gene unit) can be in the form as it is contained in the genome of plants ("genomic" form, including non-stilbene synthase-coding and / or non-regulatory sequences (such as introns) or in one Form that corresponds to the cDNA ("copy" DNA) that can be obtained via mRNA with the aid of reverse transcriptase / polymerase (and no longer contains introns).

Im erfindungsgemäßen Stilbensynthase-Gen bzw. der Gen-Einheit) können DNA-Abschnitte durch im wesentlichen gleichwirkende andere DNA-Abschnitte ersetzt sein. Auch kann es an den Enden solche DNA-Sequenzen tragen, welche für die Handhabung des Gens (bzw. der Gen-Einheit) jeweils angepaßt sind (z.B. "Linker").In the stilbene synthase gene according to the invention or the gene unit), DNA segments can be replaced by other DNA segments which have essentially the same effect. It can also carry those DNA sequences at the ends that are adapted to the handling of the gene (or the gene unit) in each case (e.g. "linker").

Im vorliegenden Zusammenhang soll unter "fremder" DNA, solche DNA verstanden werden, welche in einem bestimmten prokaryontischen oder eukaryontischen Genom nicht natürlich vorkommt, sondern erst durch Eingriffe durch den Menschen in dieses Genom aufgenommen wird. "Zusätzliche" DNA soll solche DNA sein, welche in dem jeweiligen prokaryontischen oder eukaryontischen Genom zwar natürlich vorkommt, jedoch in zusätzlicher Menge durch Eingriffe durch den Menschen in dieses Genom aufgenommen wird. Die "fremde" DNA oder "zusätzliche" DNA kann je nach Bedarf und Art des vorliegenden Falles in einem oder mehreren Exemplaren eingebaut werden.In the present context, “foreign” DNA is to be understood as DNA that does not occur naturally in a specific prokaryotic or eukaryotic genome, but is only incorporated into this genome by human intervention. "Additional" DNA should be DNA that occurs naturally in the respective prokaryotic or eukaryotic genome, but is added to this genome by human intervention. The "foreign" DNA or "additional" DNA can be incorporated in one or more copies, depending on the needs and type of the present case.

Stilbensynthase, welche unter Mitwirkung des erfindungsgemäßen Stilbensynthase-Gens (bzw. der Gen-Einheit) in Pflanzen oder Pflanzenzellen gebildet wird, bedeutet jedes Enzym, welches die Bildung von solchen pflanzlichen Abwehrstoffen gegen Schädlinge (Phytoalexine) bewirkt, die das Stilbengegerüst aufweisen.Stilbene synthase, which is formed in plants or plant cells with the cooperation of the stilbene synthase gene (or the gene unit) according to the invention, means any enzyme which brings about the formation of such plant antibodies against pests (phytoalexins) which have the stilbene framework.

Bevorzugte Stilbene sind Pinosylvin (3,5-Dihydroxy-stilben), Pterostilben (3,5-Dimethoxy-4′-hydroxystilben) und Resveratrol (3,3′,5-Trihydroxy-stilben), wobei Pinosylvin und Resveratrol besonders bevorzugt sind und Resveratrol ganz besonders bevorzugt ist.Preferred stilbenes are pinosylvin (3,5-dihydroxy-stilbene), pterostilbene (3,5-dimethoxy-4'-hydroxystilbene) and resveratrol (3,3 ', 5-trihydroxy-stilbene), with pinosylvin and resveratrol being particularly preferred and Resveratrol is very particularly preferred.

Wie bereits erwähnt, werden Stilbene in bestimmten Baumarten sowie in einer Reihe von weiteren, vorzugsweise dikotyledonen (zweikeimblättrigen), Pflanzen gefunden. Als erfindungsgemäßes Stilbenzynthase-Gen wird das Stilbensynthase-Gen bevorzugt, welches aus Gymnospermen, vorzugsweise Pinus, aus Angiospermen, vorzugsweise dikotylen (zweikeimblättrigen) Pflanzen, insbesondere aus Erdnuß (Arachis hypogaea) und Wein (Vitis) und ganz besonders bevorzugt aus Erdnuß isoliert werden kann.As already mentioned, stilbenes are found in certain tree species as well as in a number of other, preferably dicotyledonous (dicotyledonous) plants. The stilbene synthase gene according to the invention which is preferred is the stilbene synthase gene, which can be isolated from gymnosperms, preferably Pinus, from angiosperms, preferably dicotyledonous (dicotyledonous) plants, in particular from peanut (Arachis hypogaea) and wine (Vitis) and very particularly preferably from peanut .

Besonders bevorzugt wird als erfindungsgemäßes Stilbensynthase-Gen das Stilbensynthase-Gen, welches als Gen-Einheit im Plasmid pGS 828.1 (welches weiter unten näher beschrieben wird) vorliegt, sowie die im wesentlichen gleichwirkenden DNA-Sequenzen.Particularly preferred as the stilbene synthase gene according to the invention is the stilbene synthase gene, which is present as a gene unit in the plasmid pGS 828.1 (which is described in more detail below), and the essentially identical DNA sequences.

Das Stilbensynthase Gen besteht aus den 5′- und 3′- untranslatierten Regionen und einer kodierenden Region und liegt auf einem DNA-Fragment von (ca) 6.7 kbp (Gen- Einheit). Die Gen-Einheit weist (3) EcoRI, (3) HindIII und (1) PstI Schnittstellen auf. Sie kann durch partielle Spaltung mit EcoRI und HindIII aus dem Plasmid pGS 828.1 gewonnen werden.The stilbene synthase gene consists of the 5'- and 3'- untranslated regions and a coding region and is located on a DNA fragment of (ca) 6.7 kbp (gene unit). The gene unit has (3) EcoRI, (3) HindIII and (1) PstI cleavage sites. It can be obtained from the plasmid pGS 828.1 by partial cleavage with EcoRI and HindIII.

Der 5′- regulatorische Teil liegt neben den ersten 7 Kodonen der Protein kodierenden Region auf einem ca. 3.3kbp großen EcoRI Fragment und geht dem Rest der kodierenden Region voraus. Diese Region besteht aus 1540 bp und enthält ein Intron von 369bp und eine HindIII Schnittstelle. Die nachgeschaltete 3′-untranslatierte Region ist vollständig vorhanden und wird durch eine EcoRI Schnittstelle (siehe Fig. 1) begrenzt. Die Gen-Einheit, in dem Vektor pSP 65 kloniert (Plasmid pGS 821.1), enthält zwei interne EcoRI eine PstI und zwei HindIII Schnittstellen und ist durch die SstI Schnittstelle (unmittelbar neben der EcoRI Schnittstelle in Richtung Stilbensynthase-Gen) im Polylinker des pSP65 Plasmids am 5′-Ende und durch die HindIII Schnittstelle am 3′-Ende begrenzt. Die Gen-Einheit kann besonders günstig mit Hilfe von SstI und PvuII aus pGS 828.1 entnommen werden (Fig. 2), da beide Schnittstellen nur je einmal vorkommen. Die PvuII Schnittstelle liegt außerhalb der eigentlichen Gen-Einheit. Dies hat aber auf die Expression des Gens in transgenen Pflanzen keinen Einfluß und der Abschnitt bis zur HindIII-Schnittstelle kann wenn gewünscht mit den üblichen Methoden entfernt werden.The 5′-regulatory part lies next to the first 7 codons of the protein coding region on an approximately 3.3 kbp EcoRI fragment and precedes the rest of the coding region. This region consists of 1540 bp and contains an intron of 369bp and a HindIII interface. The downstream 3'-untranslated region is completely present and is by an EcoRI interface (see Fig. 1) limited. The gene unit in which vector pSP 65 cloned (plasmid pGS 821.1) contains two internal EcoRIs, one PstI and two HindIII cleavage sites and is in the polylinker of the pSP65 plasmid through the SstI cleavage site (directly next to the EcoRI site towards the stilbene synthase gene) delimited at the 5'-end and by the HindIII interface at the 3'-end. The gene unit can be removed from pGS 828.1 particularly advantageously with the aid of SstI and PvuII (FIG. 2), since both interfaces occur only once. The PvuII interface lies outside the actual gene unit. However, this has no influence on the expression of the gene in transgenic plants and the section up to the HindIII site can, if desired, be removed using the customary methods.

Der Escherichia coli Stamm Nurdug 2010, der das Plasmid pGS 828.1 enthält, wurde bei der Deutschen Sammlung von Mikroorganismen (DSM), Mascheroder Weg 1b, D-3300 Braunschweig, Bundesrepublik Deutschland in Übereinstimmung mit den Bestimmungen des Budapester Vertrages über die internationale Anerkennung der Hinterlegung von Mikroorganismen für die Zwecke von Patentverfahren hinterlegt und hat die Hinterlegungsnummer DSM 4243 (Hinterlegungsdatum: 17. September 1987).The Escherichia coli strain Nurdug 2010, which contains the plasmid pGS 828.1, was obtained from the German Collection of Microorganisms (DSM), Mascheroder Weg 1b, D-3300 Braunschweig, Federal Republic of Germany in accordance with the provisions of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent proceedings and has the deposit number DSM 4243 (filing date: September 17, 1987).

Dieser Stamm sowie seine Mutanten und Varianten sind ebenfalls Teil der vorliegenden Erfindung. Das in diesem Wirt hinterlegte Plasmid pGS 828.1 kann in üblicher Weise durch die Vermehrung des Stammes leicht in den benötigten Mengen gewonnen werden.This strain as well as its mutants and variants are also part of the present invention. The plasmid pGS 828.1 deposited in this host can in the usual Ways can easily be obtained in the required amounts by multiplying the strain.

Erfindungsgemäß besonders bevorzugt wird das Stilbensynthase-Gen bzw. die Gen-Einheit, welche die weiter unter aufgeführte (vorgeschlagene) Stilbensynthase codierende DNA-Sequenz ("DNA-Sequenz" (proteinkodierende Region und Intron) des Stilbensynthase-Geneinheit aus pGS 828.1") mit oder ohne das Intron oder im wesentlichen gleichwirkende Sequenzen dieser DNA-Sequenz enthält. Sie ist ebenfalls ein Teil der vorliegenden Erfindung. Darüber hinaus ist auch jede DNA, welche künstlich also nicht im wesentlichen biologisch erzeugt ist, und diese DNA-Sequenz ganz oder teilweise oder die im wesentlichen gleichwirkenden DNA-Sequenzen enthält, Teil der vorliegenden Erfindung.According to the invention, the stilbene synthase gene or the gene unit which contains the DNA sequence coding (below) (proposed) (proposed) ("DNA sequence" (protein-coding region and intron) of the stilbene synthase gene unit from pGS 828.1 "), which is also listed below, is particularly preferred or without the intron or contains essentially equivalent sequences of this DNA sequence It is also part of the present invention which contains essentially equivalent DNA sequences, part of the present invention.

Im wesentlichen gleichwirkende Sequenzen bedeutet, daß an einer oder mehreren Stellen DNA oder DNA-Sequenzen durch andere DNA oder DNA-Sequenzen ausgetauscht sind, welche jedoch das Ergebnis nicht wesentlich verändern.Sequences having essentially the same effect means that DNA or DNA sequences are replaced by other DNA or DNA sequences at one or more locations, but these do not significantly change the result.

Funktionell vollständige Gene, wie das erfindungsgemäße Stilbensynthase-Gen, bestehen aus einem regulatorisch wirkenden Teil (insbesondere Promotor) und dem Strukturgen, welches das Protein Stilbensynthase kodiert.Functionally complete genes, such as the stilbene synthase gene according to the invention, consist of a regulatory part (in particular promoter) and the structural gene which codes for the stilbene synthase protein.

Beide Genteile können unabhängig voneinader verwendet werden. So ist es möglich, dem regulativ wirkenden Teil eine (vom Stilbensynthase-Gen abweichende) andere DNA-Sequenz nachzuschalten, welche nach dem Einbau in das Pflanzengenom exprimiert werden soll. Da nur wenige isolierte Promotoren bekannt sind, welche ihre Wirkung in Pflanzen bzw. Pflanzenzellen entfalten können, stellt der Promoter des Stilbensynthase-Gens, welcher Bestandteil der vorliegenden Erfindung ist, ein wertvolles Hilfsmittel bei der Erzeugung transformierter Pflanzen bzw. Pflanzenzellen dar. Er kann mit Hilfe der SstI Schnittstelle und der EcoRI Schnittstelle am Beginn der codierenden Region isoliert und mit den üblichen Methoden einem anderen Gen vorgeschaltet werden.Both gene parts can be used independently. It is thus possible to add a different DNA sequence (which differs from the stilbene synthase gene) to the regulatory part, which is to be expressed after incorporation into the plant genome. Since only a few isolated promoters are known which can develop their action in plants or plant cells, the promoter of the stilbene synthase gene which is part of the present invention is a valuable aid in the production of transformed plants or plant cells With the help of the SstI interface and the EcoRI interface at the beginning of the coding region isolated and connected to another gene using the usual methods.

Ebenso ist es möglich, dem Stilbensynthase-Struktur-Gen einen "fremden" regulatorisch wirkenden Teil vorzuschalten. Dies könnte vorteilhaft sein, wenn bei bestimmten Pflanzen nur bestimmte (z.B. pflanzeneigene) regulatorisch wirkende Gene ausreichend wirksam werden können. Das Stilbensynthase-Struktur-Gen (vorzugsweise die weiter unten aufgeführte Stilbensynthase codierende DNA-Sequenz, mit oder ohne die Intron-Sequenzen, und deren im wesentlichen gleichwirkende Sequenzen) stellt somit eine wertvolle, selbstständig einsetzbare Einheit dar und ist, wie bereits dargelegt, ebenfalls Teil der vorliegenden Erfindung. Das erfindungsgemäße Stilbensynthase-Gen kann nach den üblichen Methoden in den regulatorisch wirkenden Teil und das Struktur-Gen getrennt werden. Bevorzugt wird das vollständige erfindungsgemäße Stilbensynthase-Gen bzw. die Gen-Einheit verwendet.It is also possible to precede the stilbene synthase structure gene with a "foreign" regulatory part. This could be advantageous if only certain (eg plant-specific) regulatory genes can be sufficiently effective in certain plants. The stilbene synthase structural gene (preferably the DNA sequence coding below for stilbene synthase, with or without the intron sequences, and their essentially equivalent sequences) thus represents a valuable, independently usable unit and, as already explained, is likewise Part of the present invention. The stilbene synthase gene according to the invention can be separated into the regulatory part and the structural gene by the usual methods. The complete stilbene synthase gene according to the invention or the gene unit is preferably used.

Mit Hilfe der üblichen Methoden ist es möglich, das Stilbensynthase-Gen bzw. die Gen-Einheit oder seine Teile ein oder mehrfach (z.B. Tandemanordnung), vorzugsweise einfach, in beliebige prokaryontische (vorzugsweise bakterielle) oder eukaryontische (vorzugsweise pflanzliche) DNA als "fremde" oder "zusätzliche" DNA einzubauen. Die so "modifizierte" DNA, welche z.B. zur Transformation von Pflanzen bzw. Pflanzenzellen verwendet werden kann und nach der Transformation in Pflanzen bzw. Pflanzenzellen enthalten ist, ist Bestandteil der vorliegenden Erfindung.With the help of the usual methods, it is possible to convert the stilbene synthase gene or the gene unit or its parts one or more times (eg tandem arrangement), preferably simply, into any prokaryotic (preferably bacterial) or eukaryotic (preferably vegetable) DNA as "foreign" "or" additional "DNA. The "modified" DNA, which e.g. can be used for the transformation of plants or plant cells and is contained in plants or plant cells after the transformation, is part of the present invention.

Das Stilbensynthase-Gen bzw. die Gen-Einheit und/oder seine Teile sowie die modifizierte DNA können als "fremde" oder "zusätzliche" DNA in Vektoren (insbesondere Plasmiden, Cosmiden oder Phagen), in transformierten Mikroorganismen (vorzugsweise Bakterien, insbesondere Gram-negativen Bakterien, wie E. coli) sowie in transformierten Pflanzenzellen und Pflanzen bzw. in deren DNA enthalten sein. Solche Vektoren, transformierte Mikroorganismen (die auch diese Vektoren enthalten können) sowie die transformierten Pflanzenzellen und Pflanzen und deren DNA stellen Bestandteile der vorliegenden Erfindung dar.The stilbene synthase gene or the gene unit and / or its parts and the modified DNA can be used as “foreign” or “additional” DNA in vectors (in particular plasmids, cosmids or phages), in transformed microorganisms (preferably bacteria, in particular Gram). negative bacteria, such as E. coli) as well as in transformed plant cells and plants or in their DNA. Such vectors, transformed microorganisms (which may also contain these vectors) and the transformed plant cells and plants and their DNA are constituents of the present invention.

Als Schädlinge, gegen welche mit Hilfe des erfindungsgemäßen Stilbensynthase-Gens Resistenzen, bzw. erhöhte Resistenzen erzielt werden können, seien tierische Schädlinge, wie Insekten, Milben und Nematoden sowie mikrobielle Schädlinge, wie phytopathogene Pilze und Bakterien genannt. Besonders hervorgehoben werden mikrobielle Schädlinge, insbesondere phytopathogene Pilze.Pests against which resistance or increased resistance can be achieved with the aid of the stilbene synthase gene according to the invention include animal pests such as insects, mites and nematodes and microbial pests such as phytopathogenic fungi and bacteria. Microbial pests, especially phytopathogenic fungi, are particularly emphasized.

Zu den schädlichen Insekten gehören insbesondere Insekten der Ordnungen:
Orthoptera, Dermaptera, Isoptera, Thysanoptera, Heteroptera, Homoptera, Lepidoptera, Coleoptera, Hymenoptera und Diptera.
The harmful insects include in particular insects of the orders:
Orthoptera, Dermaptera, Isoptera, Thysanoptera, Heteroptera, Homoptera, Lepidoptera, Coleoptera, Hymenoptera and Diptera.

Zu den schädlichen Milben gehören insbesondere:
Tarsonemus spp., Panonychus spp. und Tetranychus spp.
The harmful mites include in particular:
Tarsonemus spp., Panonychus spp. and Tetranychus spp.

Zu den schädlichen Nematoden gehören insbesondere:
Pratylenchus spp., Heterodera spp. und Meloidogyne spp.
The harmful nematodes include in particular:
Pratylenchus spp., Heterodera spp. and Meloidogyne spp.

Zu den mikrobiellen Schädlingen gehören insbesondere die phytopathogenen Pilze:
Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
The microbial pests include in particular the phytopathogenic fungi:
Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

Zu den phytopathogenen Bakterien gehören insbesondere die Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae.The phytopathogenic bacteria include in particular the Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubense;
Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea
(Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocerco sporella herpotrichoides. Weiterhin sei Helminthosporium carbonum aufgeführt.
Some pathogens of fungal and bacterial diseases that fall under the generic names listed above may be mentioned as examples, but not by way of limitation:
Xanthomonas species, such as, for example, Xanthomonas campestris pv. Oryzae;
Pseudomonas species, such as, for example, Pseudomonas syringae pv. Lachrymans;
Erwinia species, such as, for example, Erwinia amylovora;
Pythium species, such as, for example, Pythium ultimum;
Phytophthora species, such as, for example, Phytophthora infestans;
Pseudoperonospora species, such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubense;
Plasmopara species, such as, for example, Plasmopara viticola;
Peronospora species, such as, for example, Peronospora pisi or P. brassicae;
Erysiphe species, such as, for example, Erysiphe graminis;
Sphaerotheca species, such as, for example, Sphaerotheca fuliginea;
Podosphaera species, such as, for example, Podosphaera leucotricha;
Venturia species, such as, for example, Venturia inaequalis;
Pyrenophora species, such as, for example, Pyrenophora teres or P. graminea
(Conidial form: Drechslera, Syn: Helminthosporium);
Cochliobolus species, such as, for example, Cochliobolus sativus
(Conidial form: Drechslera, Syn: Helminthosporium);
Uromyces species, such as, for example, Uromyces appendiculatus;
Puccinia species, such as, for example, Puccinia recondita;
Tilletia species, such as, for example, Tilletia caries;
Ustilago species, such as, for example, Ustilago nuda or Ustilago avenae;
Pellicularia species, such as, for example, Pellicularia sasakii;
Pyricularia species, such as, for example, Pyricularia oryzae;
Fusarium species, such as, for example, Fusarium culmorum;
Botrytis species, such as, for example, Botrytis cinerea;
Septoria species, such as, for example, Septoria nodorum;
Leptosphaeria species, such as, for example, Leptosphaeria nodorum;
Cercospora species, such as, for example, Cercospora canescens;
Alternaria species, such as, for example, Alternaria brassicae;
Pseudocercosporella species, such as, for example, Pseudocerco sporella herpotrichoides. Helminthosporium carbonum is also listed.

Zu den Pflanzen, welchen durch den Einbau (Transformation) des erfindungsgemäßen Stilbensynthase-Gens bzw. der Gen-Einheit Resistenz bzw. eine erhöhte Resistenz gegenüber den obigen Schädlingen verliehen werden kann, gehören praktisch alle Pflanzen. Ein besonderes Bedürfnis zur Resistenzerzeugung besteht naturgemäß bei den Kulturpflanzen, wie Forstpflanzen, z.B. Fichten, Tannen, Douglasien, Kiefern, Lärchen, Buchen und Eichen sowie Nahrungsmittel und Rohstoffe liefernde Pflanzen, z.B. Getreide (insbesondere Weizen, Roggen, Gerste, Hafer, Hirse, Reis und Mais), Kartoffel, Leguminosa wie Hülsenfrüchte und insbesondere Alfalfa, Sojabohnen, Gemüse (insbesondere Kohlarten und Tomaten), Obst (insbesondere Äpfel, Birnen, Kirschen, Weintrauben, Citrus, Ananas und Bananen), Ölpalmen, Tee-, Kakao- und Kaffeesträucher, Tabak, Sisal und Baumwolle sowie bei Heilpflanzen, wie Rauwolfia und Digitalis. Besonders bevorzugt seien Kartoffel, Tomaten, Wein und Leguminosen genannt.Plants to which resistance or increased resistance to the above pests can be conferred by incorporating (transforming) the stilbene synthase gene or the gene unit according to the invention include virtually all plants. Naturally, there is a particular need for producing resistance in crop plants such as forest plants, for example spruce, fir, Douglas fir, pine, larch, beech and oak, and plants that supply food and raw materials, for example cereals (in particular wheat, rye, barley, oats, millet, rice) and corn), potatoes, leguminosa such as legumes and in particular alfalfa, soybeans, vegetables (in particular cabbages and tomatoes), fruit (in particular apples, pears, cherries, grapes, citrus, pineapples and bananas), oil palms, tea, cocoa and coffee bushes , Tobacco, sisal and cotton as well as medicinal plants such as Rauwolfia and Digitalis. Potatoes, tomatoes, wine and legumes are particularly preferred.

Wie bereits angedeutet, wird erfindungsgemäß das Stilbensynthase-Gen bzw. die Gen-Einheit ein- oder mehrfach (an gleichen oder verschiedenen Stellen des Genoms) in das natürliche pflanzliche Genom eingebaut. Bei Pflanzen, welche bereits über die Fähigkeit der Stilbensynthese verfügen, kann der Einbau eines oder mehrerer erfindungsgemäßer Stilbensynthasegene zu einem erheblich verbesserten Resistenzverhalten führen. Gegebenenfalls wird nur das erfindungsgemäße Strukturgen verwendet, wobei ein evtl. aus der jeweiligen Pflanze isoliertes regulatorisches Gen vorgeschaltet wird.As already indicated, according to the invention the stilbene synthase gene or the gene unit is built into the natural plant genome one or more times (at the same or different locations in the genome). In plants which already have the ability to synthesize stilbene, the incorporation of one or more stilbene synthase genes according to the invention can lead to significantly improved resistance behavior. If necessary, only the structural gene according to the invention is used, with a regulatory gene possibly isolated from the respective plant being connected upstream.

Die erhöhte Resistenz der erfindungsgemäßen transformierten Pflanzenzellen und Pflanzen ist von Bedeutung für Landwirtschaft und Forsten, für den Zierpflanzenanbau, den Heilpflanzenanbau und die Pflanzenzucht. Auch bei der Kultivierung von Pflanzenzellen, z.B. zur Gewinnung von pharmazeutisch brauchbaren Stoffen, ist es von Vorteil, Pflanzenzellen verfügbar zu haben, welche gegen den Befall durch mikrobielle Schädlinge, insbesondere Pilze, erhöhte Resistenzen aufweisen.The increased resistance of the transformed plant cells and plants according to the invention is important for agriculture and forestry, for growing ornamental plants, for growing medicinal plants and for growing plants. Also in the cultivation of plant cells, e.g. for the production of pharmaceutically usable substances, it is advantageous to have plant cells available which have increased resistance to attack by microbial pests, in particular fungi.

Die vorliegende Erfindung betrifft somit auch ein Verfahren zur Herstellung transformierter Pflanzenzellen (einschließlich Protoplasten) und Pflanzen (einschließlich Pflanzenteile und Samen), welches dadurch gekennzeichnet, ist daß man

  • (a) ein oder mehrere Stilbensynthase-Gene bzw. Gen-Einheiten und/oder Teile des Stilbensynthase-Gens bzw. der Gen-Einheit und/oder erfindungsgemäß modifizierte DNA in den Genom von Pflanzenzellen (einschließlich Protoplasten) einsetzt und gegebenenfalls
  • (b) aus den transformierten Pflanzenzellen (einschließlich Protoplasten) vollständige transformierte Pflanzen regeneriert und gegebenenfalls
  • (c) von den so erhaltenen transformierten Pflanzen die gewünschten Pflanzenteile (einschließlich Samen) gewinnt.
The present invention thus also relates to a process for the production of transformed plant cells (including protoplasts) and plants (including plant parts and seeds), which is characterized in that:
  • (a) one or more stilbene synthase genes or gene units and / or parts of the stilbene synthase gene or gene unit and / or DNA modified according to the invention are used in the genome of plant cells (including protoplasts) and, if appropriate
  • (b) regenerated complete transformed plants from the transformed plant cells (including protoplasts) and, if appropriate
  • (c) the desired plant parts (including seeds) are obtained from the transformed plants thus obtained.

Die Verfahrensschritte (a), (b) und (c) können nach bekannten Verfahren und Methoden in üblicher Weise durchgeführt werden.Process steps (a), (b) and (c) can be carried out in a conventional manner by known processes and methods.

Transformierte Pflanzenzellen (einschließlich Protoplasten) und Pflanzen (einschließlich Pflanzenteile und Samen), welche ein oder mehrere Stilbensynthase-Gene bzw. Gen-Einheiten und/oder Teile des Stilbensynthase-Gens bzw. der Gen-Einheiten als "fremde" oder "zusätzliche" DNA enthalten sowie solche transformierte Pflanzenzellen und Pflanzen, welche nach den obigen Verfahren erhältlich sind, gehören ebenfalls zur vorliegenden Erfindung.Transformed plant cells (including protoplasts) and plants (including plant parts and seeds) which contain one or more stilbene synthase genes or gene units and / or parts of the stilbene synthase gene or gene units as "foreign" or "additional" DNA contain and such transformed plant cells and plants, which are obtainable by the above methods, also belong to the present invention.

Teile der vorliegenden Erfindung sind auch die:

  • (a) Verwendung des Stilbensynthase-Gens bzw. der Gen-Einheit und/oder seiner Teile und/oder der erfindungsgemäß modifizierten DNA und/oder der erfindungsgemäßen Vektoren und/oder der erfindungsgemäßen transformierten Mikroorganismen zur Transformation von Pflanzenzellen (einschließlich Protoplasten) und Pflanzen (einschließlich Pflanzenteilen und Samen) sowie die
  • (b) Verwendung der erfindungsgemäßen transformierten Pflanzenzellen (einschließlich Protoplasten) und Pflanzen (einschließlich Pflanzenteilen und Samen) zur Erzeugung von Vermehrungsmaterial sowie zur Erzeugung neuer Pflanzen und deren Vermehrungsmaterial und allgemein die
  • (c) Verwendung des erfindungsgemäßen Stilbensynthase-Gens bzw. der Gen-Einheit und/oder seiner Teile und/oder der erfindungsgemäßen modifizierten DNA zur Bekämpfung von Schädlingen.
Parts of the present invention are also:
  • (a) Use of the stilbene synthase gene or the gene unit and / or its parts and / or the DNA modified according to the invention and / or the vectors according to the invention and / or the transformed microorganisms according to the invention for the transformation of plant cells (including protoplasts) and plants (including plant parts and seeds) and the
  • (b) Use of the transformed plant cells (including protoplasts) and plants (including plant parts and seeds) according to the invention for the production of propagation material and for the production of new plants and their propagation material and generally the
  • (c) Use of the stilbene synthase gene according to the invention or the gene unit and / or its parts and / or the modified DNA according to the invention for controlling pests.

Eine Anzahl verschiedener Methoden steht zur Verfügung, das Stilbensynthase-Gen bzw. die Gen-Einheit oder seine Teile als "fremde" oder "zusätzliche" DNA in das genetische Material von Pflanzen bzw. Pflanzenzellen einzusetzen. Der Gentransfer kann nach den allgemein üblichen bekannten Methoden erfolgen, wobei der Fachmann die jeweils geeignete Methode ohne Schwierigkeiten ermitteln kann.A number of different methods are available for inserting the stilbene synthase gene or the gene unit or its parts as “foreign” or “additional” DNA into the genetic material of plants or plant cells. The gene transfer can be carried out according to the generally known methods, the person skilled in the art being able to determine the appropriate method in each case without difficulty.

Das Ti-Plasmid von Agrobacterium tumefaciens steht als besonders günstiger und breit einsetzbarer Vektor zur Übertragung von fremder DNA in Genome dikotyler und monokotyler Pflanzen zur Verfügung. Das genetische Material, welches für Stilbensynthase kodiert, wird in die T-DNA von geeigneten Ti-Pasmiden eingesetzt (z.B. Zambryski et al. 1983) und durch Infektion der Pflanze, Infektion von Pflanzenteilen oder Pflanzengeweben, wie z.B. von Blattscheiben, Stengeln, Hypokotylen, Kotyledonen, Meristemen und davon ableitenden Geweben, wie z.B. sekundären Embryonen und Kalli oder durch Kokultur von Protoplasten mit Agrobacterium tumefaciens übertragen.The Ti plasmid from Agrobacterium tumefaciens is available as a particularly inexpensive and widely applicable vector for the transfer of foreign DNA into genomes of dicotyledonous and monocotyledonous plants. The genetic material that codes for stilbene synthase is inserted into the T-DNA of suitable Ti pasmids (e.g. Zambryski et al. 1983) and by infection of the plant, infection of plant parts or plant tissues, such as, for example, leaf disks, stems, hypocotyls, cotyledons, meristems and tissues derived therefrom, such as, for example, secondary embryos and calli, or by coculturing protoplasts with Agrobacterium tumefaciens.

Eine Alternative ist die Inkubation von gereinigter DNA, die das gewünschte Gen enthält und Pflanzenprotoplasten (z.B. Davey et al. 1980; Hain et al., 1985; Krens et al., 1982; Paszkowski et al., 1984) in Gegenwart von Polykationen oder Calziumsalzen und Polyethylenglykol.An alternative is the incubation of purified DNA containing the desired gene and plant protoplasts (e.g. Davey et al. 1980; Hain et al., 1985; Krens et al., 1982; Paszkowski et al., 1984) in the presence of polycations or Calcium salts and polyethylene glycol.

Die DNA-Aufnahme kann auch zusätzlich durch ein elektrisches Feld (Elektroporation) begünstigt werden (z.B. Formm et al. 1986).The DNA uptake can also be promoted by an electric field (electroporation) (e.g. Formm et al. 1986).

Die Regeneration der Pflanzen erfolgt in bekannter Weise mit Hilfe geeigneter Nährmedien (z.B. Nagy und Maliga 1976).The plants are regenerated in a known manner using suitable nutrient media (e.g. Nagy and Maliga 1976).

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens (gemäß der Methode aus EP-A 116 718) wird die aus (ca) 6,7 kb bestehende DNA-Einheit aus pGS 828.1, charakterisiert durch die entsprechenden internen EcoRI, HindIII bzw. PstI Schnittstellen (siehe Figur 1) in einen geeigneten intermediaeren E.coli Vektor z.B. pGV700, pGV710, (vergl. EP-A-116 718; Deblaere et al. 1986) bzw. vorzugsweise Derivaten davon, die zusätzlich ein Reportergen wie z.B. nptII (Herrera-Estrella et al. 1983) oder hpt (Van den Elzen et al 1986) enthalten, kloniert. Hierzu kann auch der mit Hilfe von SstI und PvuII aus pGS 828.1 entnommene DNA-Abschnitt verwendet werden.In a preferred embodiment of the method according to the invention (according to the method from EP-A 116 718) the DNA unit consisting of (approx.) 6.7 kb is made from pGS 828.1, characterized by the corresponding internal EcoRI, HindIII or PstI interfaces (see 1) in a suitable intermediate E. coli vector, for example pGV700, pGV710, (see EP-A-116 718; Deblaere et al. 1986) or preferably derivatives thereof, which additionally contain a reporter gene such as nptII (Herrera-Estrella et al. 1983) or hpt (Van den Elzen et al 1986). The DNA section extracted from pGS 828.1 using SstI and PvuII can also be used for this purpose.

Der Escherichia coli Stamm AZ 4, der den Vektor pGV 710 in leicht isolierbarer Form enthält, wurde bei der Deutschen Sammlung von Mikroorganismen (DSM), Grisebachstraße 8, D-3400 Göttingen, Bundesrepublik Deutschland in Übereinstimmung mit den Bestimmungen des Budapester Vertrages über die internationele Anerkennung der Hinterlegung von Mikroorganismen für die Zwecke von Patentverfahren hinterlegt und hat die Hinterlegungsnummer DSM 3164.The Escherichia coli strain AZ 4, which contains the vector pGV 710 in an easily isolable form, was obtained from the German Collection of Microorganisms (DSM), Grisebachstrasse 8, D-3400 Göttingen, Federal Republic of Germany in accordance with the provisions of the Budapest Treaty on international use Acknowledgment of the deposit of microorganisms for the purposes of patent proceedings and has the deposit number DSM 3164.

Das so konstruierte Plasmid wird auf Agrobacterium tumefaciens, das z.B. pGV 3850 bzw. Derivate davon enthält (Zambryski et al. 1983) mit üblichen Methoden (z.B. Van Haute et al. 1983) übertragen. Alternativ dazu kann die Stilbensynthase-Geneinheit in einem binaeren Vektor (z.B. Koncz und Schell 1986) kloniert und wie oben beschrieben in einen geeigneten Agrobakterium Stamm (Koncz und Schell 1986) transferiert werden. Der resultierende Agrobakterium Stamm, der die Stilbensynthase-Geneinheit in einer auf Pflanzen transferierbaren Form enthält wird im weiteren zur Pflanzentransformation verwendet.The plasmid so constructed is grown on Agrobacterium tumefaciens, e.g. contains pGV 3850 or derivatives thereof (Zambryski et al. 1983) by conventional methods (e.g. Van Haute et al. 1983). Alternatively, the stilbene synthase gene unit can be cloned in a binary vector (e.g. Koncz and Schell 1986) and transferred to a suitable Agrobacterium strain (Koncz and Schell 1986) as described above. The resulting Agrobacterium strain, which contains the stilbene synthase gene unit in a form which can be transferred to plants, is subsequently used for plant transformation.

In einer weiteren bevorzugten Ausführungsform wird das isolierte Plasmid pGS 828.1 gegebenenfalls zusammen mit einem anderen Plasmid, das ein Reportergen für Pflanzenzellen, z.B. für Kanamycin-Resistenz (z.B. Herrera-Estrella et al. 1983) oder eine Hydromycin-Resistenz (van den Elzen, 1986) enthält, vorzugsweise pLGV neo 2103 (Hain et al. 1985), pLGV 23 neo (Herrera-Estrella 1983), pMON 129 (Fraley R.T. et al., Proc. National Acad. Sci. USA 80, 4803 (1983), pAK 1003, pAK 2004 (Velten J. et al., EMBO Journ. Vol. 3, 2723 (1984) oder pGSST neo 3 (pGSST3) (EP-A-189 707), in üblicher Weise durch direkten Gentransfer auf Pflanzenprotoplasten übertragen (z.B. Hain et al 1985). Dabei können das bzw. die Plasmide in zirkulärer, vorzugsweise jedoch in linearer Form, vorliegen. Bei der Verwendung eines Plasmids mit Reportergen werden Kanamycin-resistente Protoplasten dann auf Expression von Stilbensynthase überprüft. Im anderen Fall (ohne Reportergen) werden die resultierenden Kalli auf die Expression des Stilbensynthase-Gens geprüft (Screening mit üblichen Methoden).In a further preferred embodiment, the isolated plasmid pGS 828.1 is optionally together with another plasmid which contains a reporter gene for plant cells, for example for kanamycin resistance (for example Herrera-Estrella et al. 1983) or a hydromycin resistance (van den Elzen, 1986), preferably pLGV neo 2103 (Hain et al. 1985) , pLGV 23 neo (Herrera-Estrella 1983), pMON 129 (Fraley RT et al., Proc. National Acad. Sci. USA 80 , 4803 (1983), pAK 1003, pAK 2004 (Velten J. et al., EMBO Journ 3, 2723 (1984) or pGSST neo 3 (pGSST3) (EP-A-189 707), in the usual way by direct gene transfer to plant protoplasts (eg Hain et al 1985) circular, but preferably in linear form, when using a plasmid with reporter gene, kanamycin-resistant protoplasts are then checked for expression of stilbene synthase, otherwise (without reporter gene) the resulting calli are checked for expression of the stilbene synthase gene (screening with usual methods).

Transformierte (transgene) Pflanzen bzw. Pflanzenzellen werden nach den bekannten Methoden, z.B. durch Blattscheiben Transformation (z.B. Horsch et al. 1985) durch Cokultur regenerierender Pflanzenprotoplasten oder Zellkulturen mit Agrobacterium tumefaciens (z.B. Marton et al. 1979, Hain et al. 1985) oder durch direkte DNA Transfektion erzeugt. Resultierende transformierte Pflanzen werden entweder durch Selektion auf die Expression des Reportergens, z.B. durch die Phosphorylierung von Kanamycin-sulfat in vitro ((Reiss et al. 1984; Schreier et al. 1985) oder durch die Expression der Nopalinsynthase (nach Aerts et al. 1983) oder Stilbensynthase durch Northern-Blot-Analyse und Western Blot-Analyse nachgewiesen. Die Stilbensynthase und die Stilbene können auch in bekannter Weise mit Hilfe spezifischer Antikörper in transformierten Pflanzen nachgewiesen werden. Stilbensynthase kann auch durch Enzymaktivitätstest nachgewiesen werden (Rolfs et al., Plant Cell Reports 1, 83-85, 1981).Transformed (transgenic) plants or plant cells are processed according to known methods, e.g. by leaf disc transformation (e.g. Horsch et al. 1985) by coculturing regenerative plant protoplasts or cell cultures with Agrobacterium tumefaciens (e.g. Marton et al. 1979, Hain et al. 1985) or generated by direct DNA transfection. Resulting transformed plants are either selected by expression for the reporter gene, for example by phosphorylation of kanamycin sulfate in vitro ((Reiss et al. 1984; Schreier et al. 1985) or by expression of nopaline synthase (according to Aerts et al. 1983 ) or stilbene synthase by Northern blot analysis and Western blot analysis proven. The stilbene synthase and the stilbene can also be detected in a known manner with the aid of specific antibodies in transformed plants. Stilbene synthase can also be detected by enzyme activity test (Rolfs et al., Plant Cell Reports 1 , 83-85, 1981).

Die Kultivierung der transformierten Pflanzenzellen sowie die Regeneration zu vollständigen Pflanzen erfolgt nach den allgemein üblichen Methoden mit Hilfe der jeweils geeigneten Nährmedien.The cultivation of the transformed plant cells and the regeneration to complete plants is carried out according to the generally customary methods with the aid of the appropriate nutrient media.

Sowohl die transformierten Pflanzenzellen als auch die transformierten Pflanzen, welche das erfindungsgemäße Stilbensynthase-Gen bzw. die Gen-Einheit enthalten und welche Bestandteile der vorliegenden Erfindung sind, zeigen eine erheblich höhere Resistenz gegen Schädlinge, insbesondere pflanzenpathogene Pilze.Both the transformed plant cells and the transformed plants which contain the stilbene synthase gene or the gene unit according to the invention and which are components of the present invention show a considerably higher resistance to pests, in particular phytopathogenic fungi.

Im Zusammenhang mit der vorliegenden Erfindung bedeutet der Ausdruck "Pflanzen" sowohl vollständige Pflanzen als auch Pflanzenteile, wie Blätter, Samen, Knollen, Stecklinge u.s.w. "Pflanzenzellen" schließen Protoplasten, Zelllinien, Pflanzenkalli usw. ein. "Vermehrungsmaterial" bedeutet Pflanzen und Pflanzenzellen, welche zur Vermehrung bei transformierten Pflanzen und Pflanzenzellen verwendet werden können und ist somit ebenfalls Teil der vorliegenden Erfindung.In the context of the present invention, the term "plants" means both whole plants and parts of plants, such as leaves, seeds, tubers, cuttings, etc. "Plant cells" include protoplasts, cell lines, plant calli, etc. "Propagation material" means plants and plant cells which can be used for propagation in transformed plants and plant cells and is therefore also part of the present invention.

Im vorliegenden Zusammenhang bedeutet der Ausdruck "im wesentlichen gleichwirkende DNA-Sequenzen", daß die Erfindung auch solche Modifikationen umfaßt, bei welchen die Funktion des Stilbensynthase-Gens und seiner Teile nicht derart beeinträchtigt ist, daß Stilbensynthase nicht mehr gebildet wird oder der regulatorische Genteil nicht mehr wirksam wird. Entsprechende Modifikationen können durch den Ersatz, die Hinzufügung und/oder die Entfernung von DNA-Abschnitten, einzelner Kodons und/oder einzelner Nukleinsäuren erfolgen.In the present context, the expression "essentially equivalent DNA sequences" means that the invention also encompasses those modifications in which the function of the stilbene synthase gene and its parts is not impaired in such a way that stilbene synthase is no longer formed or the regulatory gene part is not becomes more effective. Corresponding modifications can be made by replacing, adding and / or removing DNA segments, individual codons and / or individual nucleic acids.

Bei den erfindungsgemäß verwendbaren Mikroorganismen bedeutet "Mutanten" und "Varianten" solche modifizierten Mikroorganismen, welche noch die für die Ausführung der Erfindung wesentlichen Merkmale aufweisen, insbesondere die jeweiligen Plasmide enthalten.In the case of the microorganisms which can be used according to the invention, "mutants" and "variants" mean those modified microorganisms which still have the features which are essential for carrying out the invention, in particular contain the respective plasmids.

Die vorliegende Erfindung soll anhand der folgenden beispielhaften Ausführungen näher erläutert werden:The present invention will be explained in more detail using the following exemplary embodiments:

1. Isolierung des Gens für Stilbensynthase1. Isolation of the stilbene synthase gene

Zellkulturen aus Ernußpflanzen (Arachis hypogaea) enthalten das Gen für Stilbensynthase, welche insbesondere die Bildung von Resveratrol Synthase (Größe des Proteins 43 000 D; Reaktion mit spezifischem Antiserum) bewirkt.Cell cultures from nut plants (Arachis hypogaea) contain the gene for stilbene synthase, which in particular causes the formation of resveratrol synthase (protein size 43,000 D; reaction with specific antiserum).

Die Erdnuß-Zellkulturen, die Regulation und Eigenschaften der Stilbensynthase, das Antiserum gegen das Protein, und die Messung der Enzymaktivität sind beschrieben (Rolfs, C.H., Fritzemeier, K.H., Kindl, H., Plant Cell Reports 1, 83-85, 1981; Fritzemeier, K.H. Rolfs, C.H., Pfau, J., Kindl, H., Planta 159, 25-29, 1983; Schöppner, A., Kindl, H., J. Biol. Chem. 259, 6806-6811, 1984; siehe auch die Zusammenfassung: Kindl, H., in: biosynthesis and Biodegradation of Wood Components, Ed. Higuchi, T., Academic Press, Inc., pp. 349-377, 1985).The peanut cell cultures, the regulation and properties of stilbene synthase, the antiserum against the protein, and the measurement of the enzyme activity are described (Rolfs, CH, Fritzemeier, KH, Kindl, H., Plant Cell Reports 1 , 83-85, 1981; Fritzemeier, KH Rolfs, CH, Pfau, J., Kindl, H., Planta 159 , 25-29, 1983; Schöppner, A., Kindl, H., J. Biol. Chem. 259 , 6806-6811, 1984; see also the abstract: Kindl, H., in: biosynthesis and Biodegradation of Wood Components, Ed.Higuchi, T., Academic Press, Inc., pp. 349-377, 1985).

Das folgende Schema faßt die Expression des Gens und die Isolierung des Gens für Stilbensynthase zusammen. Bei der Durchführung wurden die bekannten Verfahren und Methoden der Molekularbiologie verwendet, wie sie beispielsweise in folgendem Handbuch detailliert beschrieben werden: Maniatis, T., Fritsch, E.F., Sambrook, J.: Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory, 1982.

Figure imgb0001
The following scheme summarizes the expression of the gene and the isolation of the gene for stilbene synthase. The known methods and methods of molecular biology were used for the implementation, as described in detail, for example, in the following manual: Maniatis, T., Fritsch, EF, Sambrook, J .: Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory, 1982.
Figure imgb0001

A. Isolierung und Identifizierung spezifischer cDNA-Klone für Stilbensynthase.A. Isolation and identification of specific cDNA clones for stilbene synthase.

Es wird zunächst Poly(A)-haltige RNA aus Erdnußzellkulturen isoliert, welche Stilbensynthase synthetisieren. Die mRNA wird dann mit Hilfe von Reverse-Transkriptase und E. coli DNA-Polymerase in DNA umgeschrieben; die DNA wird in Plasmid-Vektor pINIIA mit Hilfe von Linkern kloniert und in E. coli-Stamm JA221 vermehrt (Nakamura, K., Inouye, M., EMBO J. 1, 771-775, 1982). Dieser Prozeß ergibt eine "cDNA-Bibliothek": Sie repräsentiert, kloniert als DNA in E. coli-Plasmiden, die mRNA-Population der Erdnußzellen. Sie enthält die Nucleinsäure, die für Stilbensynthase kodiert, und diese wird durch folgende Schritte identifiert:

  • (i) die spezifische cDNA hybridisiert mit Stilbensynthase-mRNA,
  • (ii) durch Hybridisierung mit der cDNA wird eine mRNA isoliert, die bei in vitro-Übersetzung ein Protein ergibt, welches identisch ist mit Stilbensynthase (Proteingröße 43000 D; Reaktion des Proteins mit Antiserum, welches spezifisch mit Stilbensynthase-Protein reagiert).
First, poly (A) -containing RNA is isolated from peanut cell cultures which synthesize stilbene synthase. The mRNA is then transcribed into DNA using reverse transcriptase and E. coli DNA polymerase; the DNA is cloned into plasmid vector pINIIA with the aid of linkers and propagated in E. coli strain JA221 (Nakamura, K., Inouye, M., EMBO J. 1 , 771-775, 1982). This process results in a "cDNA library": it represents, cloned as DNA in E. coli plasmids, the mRNA population of the peanut cells. It contains the nucleic acid that codes for stilbene synthase, and this is identified by the following steps:
  • (i) the specific cDNA hybridizes with stilbene synthase mRNA,
  • (ii) hybridization with the cDNA isolates an mRNA which, when translated in vitro, yields a protein which is identical to stilbene synthase (protein size 43000 D; reaction of the protein with antiserum which reacts specifically with stilbene synthase protein).

Diese Kriterien definieren auf der cDNA-Ebene eindeutig die Nucleinsäure, welche für das Stilbensynthase-Protein kodiert.At the cDNA level, these criteria clearly define the nucleic acid which codes for the stilbene synthase protein.

B. Isolierung des Gens für Stilbensynthase.B. Isolation of the stilbene synthase gene.

Es wird zunächst eine "Gen-Bibliothek" für Ernußzellen angelegt: Genomische DNA aus angereicherten Zellkernen (Bedbrook, J., Plant Molecular Biology Newsletter 2, 24, 1981) wird mit dem Restriktions-Enzym SauIIIa so geschnitten, daß DNA-Fragmente mit einer Durchschnittslänge von 10 000-25 000 Nukleotidpaaren entstehen. Diese Fragmente werden in die BamHI-Stelle von Lambda-Phage EMBL3 kloniert (Frischauf et al., J. Mol. Biol. 170, 827-842, 1983), und die Phagen werden in E. coli vermehrt. Die Gesamtheit der Phagen-Population enthält, kloniert in Teilstücken, die gesamte genomische DNA der Erdnußzellen, und damit auch das Gen für Stilbensynthase.First, a "gene library" for nut cells is created: Genomic DNA from enriched cell nuclei (Bedbrook, J., Plant Molecular Biology Newsletter 2 , 24, 1981) is cut with the restriction enzyme SauIIIa so that DNA fragments with a Average length of 10,000-25,000 nucleotide pairs arise. These fragments are cloned into the BamHI site of lambda phage EMBL3 (Frischauf et al., J. Mol. Biol. 170 , 827-842, 1983) and the phages are grown in E. coli. The whole of the phage population contains, cloned in sections, the entire genomic DNA of the peanut cells, and thus also the gene for stilbene synthase.

Das Gen für Stilbensynthase, seine mRNA und die Stilbensynthase-cDNA enthalten gleiche Nucleinsäuresequenzen, da sie voneinander abgeleitet sind (Gen→mRNA→cDNA). Dies bedeutet, daß das Gen für Stilbensynthase durch spezifische Hybridisierung mit Stilbensynthase-cDNA oder -mRNA identifizierbar ist. Die Phagen mit dem Gen werden durch Hydridisierung identifiziert, dann isoliert und vermehrt. Die in diesem Phagen klonierte genomische DNA aus Erdnußzellen wird weiter durch Analyse mit verschiedenen Restriktionsenzymen kartiert, und die Position des Stilbensynthase-Gens wird durch weitere Hybridisierungs-Experimente mit der cDNA festgelegt. Schließlich wird die Gen-Einheit durch partiellen Verdau mit EcoRI und HindIII aus dem Phagen herausgeschnitten, im entsprechend geschnittenen Plasmid-Vektor pSP65 kloniert (Fa. Amersham Buchler GmbH & Co. KG, Braunschweig, Bundesrepublik Deutschland), und als rekombinantes Plasmid vermehrt. Dieses Plasmid wird als pGS 828.1 bezeichnet.The gene for stilbene synthase, its mRNA and the stilbene synthase cDNA contain the same nucleic acid sequences since they are derived from one another (gene → mRNA → cDNA). This means that the gene for stilbene synthase can be identified by specific hybridization with stilbene synthase cDNA or mRNA. The phages with the gene are identified by hydridation, then isolated and propagated. The genomic DNA from peanut cells cloned in this phage is further analyzed by analysis with various Restriction enzymes are mapped and the position of the stilbene synthase gene is determined by further hybridization experiments with the cDNA. Finally, the gene unit is cut out of the phage by partial digestion with EcoRI and HindIII, cloned in the correspondingly cut plasmid vector pSP65 (from Amersham Buchler GmbH & Co. KG, Braunschweig, Federal Republic of Germany), and propagated as a recombinant plasmid. This plasmid is referred to as pGS 828.1.

2. Beschreibung des Plasmids pGS 828.1 (vgl. Fig. 1 - Fig. 2)2. Description of the plasmid pGS 828.1 (see FIGS. 1-2)

Das Plasmid besteht aus zwei Komponenten:

  • (i) Gen-Einheit Stilbensynthase: Das gesamte Gen, bestehend aus Struktur-Gen und Regulator-Anteil (beide aus Erdnußzellen) befindet sich auf einer Nucleinsäure, die als DNA-Fragment von (ca) 6700 Nukleotidpaaren durch partielle Spaltung mit den Restriktionsenzymen EcoRI und HindIII aus dem Plasmid herausgeschnitten wird. Die Gen-Einheit enthält Schnittstellen für die Restriktionsenzyme EcoRI, HindIII, und PstI.
  • (ii) Vektor-Plasmid: Die Gen-Einheit ist in Vektor pSP65 kloniert. Die Größe des Vektors ist 3000 Nukleotidpaare. Er trägt das Gen für Ampicillin-Resistenz, d.h. E. coli-Zellen mit diesem Plasmid wachsen in Nährmedien, die das Antibiotikum Ampicillin enthalten. Ori: Bezeichnung für Sequenzen, die für die Vermehrung des Plasmids in E. coli notwendig sind.
The plasmid consists of two components:
  • (i) Gene unit stilbene synthase: The entire gene, consisting of the structural gene and regulator part (both from peanut cells) is located on a nucleic acid, which is a DNA fragment of (approx) 6700 nucleotide pairs by partial cleavage with the restriction enzymes EcoRI and HindIII is excised from the plasmid. The gene unit contains interfaces for the restriction enzymes EcoRI, HindIII, and PstI.
  • (ii) Vector plasmid: The gene unit is cloned into vector pSP65. The size of the vector is 3000 nucleotide pairs. It carries the gene for ampicillin resistance, ie E. coli cells with this plasmid grow in Culture media containing the antibiotic ampicillin. Ori: Name for sequences which are necessary for the multiplication of the plasmid in E. coli.

Das Plasmid trägt ein Gen für Ampicillin-Resistenz und enthält 9350 Nucleotidpaare (9,35 kBp). Es kann in E. coli Zellen, welche pGS 828.1 enthalten (E. coli Nurdug 2010, in üblicher Weise vermehrt werden.The plasmid carries a gene for ampicillin resistance and contains 9350 nucleotide pairs (9.35 kBp). In E. coli cells which contain pGS 828.1 (E. coli Nurdug 2010), they can be propagated in the usual way.

Bevorzugtes Nährmedium für E. coli-Zellen (z.B. JA221, Nakamura, K., Inouye, M., EMBO J. 1, 771-775, 1982) welche pGS 828.1 enthalten (E. coli Nurdug 2010): Bacto-Pepton* 10 g Hefeextrakt 5 g NaCl 5 g Agar 20 g H₂O 1 l pH 7,5 Fermentation: 37° C, aerob (* Bacto ist ein Warenzeichen der Fa. DIFCO Lab. Detroit, USA). Preferred nutrient medium for E. coli cells (e.g. JA221, Nakamura, K., Inouye, M., EMBO J. 1 , 771-775, 1982) which contain pGS 828.1 (E. coli Nurdug 2010): Bacto peptone * 10 g Yeast extract 5 g NaCl 5 g Agar 20 g H₂O 1 l pH 7.5 Fermentation: 37 ° C, aerobic (* Bacto is a trademark of DIFCO Lab. Detroit, USA).

3. Transformation von Tabak3. Tobacco transformation a) Kultur von Tabaksprossen und Isolierung von Tabakprotoplasten:a) Culture of tobacco sprouts and isolation of tobacco protoplasts:

Nicotiana tabacum (Petit Havanna SR1) wird als sterile Sproßkultur auf hormonfreiem LS Medium (Linsmaier und Skoog 1965) vermehrt. In Abständen von ca. 6-8 Wochen werden Sproßabschnitte auf frisches LS-Medium umgesetzt. Die Sproßkulturen werden bei 12 h Licht (1000-3000 Lux) in einem Kulturraum bei 24-26° C gehalten.Nicotiana tabacum (Petit Havanna SR1) is propagated as a sterile sprout culture on hormone-free LS medium (Linsmaier and Skoog 1965). At intervals of approx. 6-8 weeks, shoot sections are transferred to fresh LS medium. The shoot cultures are kept in a culture room at 24-26 ° C under 12 h light (1000-3000 lux).

Für die Isolierung von Blattprotoplasten werden ca. 2 g Blätter (ca. 3-5 cm lang) mit einer frischen Rasierklinge in kleine Stücke (0,5 cm x 1 cm) geschnitten. Das Blattmaterial wird in 20 ml Enzymlösung, bestehend aus K3 Medium (Nagy und Maliga 1976), 0,4 m Saccharose, pH 5,6, 2 % Zellulase R10 (Serva), 0,5 % Macerozym R10 (Serva) für 14-16 h bei Raumtemperatur inkubiert. Danach werden die Protoplasten durch Filtration über 0,30 mm und 0,1 mm Stahlsiebe von Zellresten getrennt. Das Filtrat wird 10 Minuten lang bei 100 x g zentrifugiert. Während dieser Zentrifugation flotieren intakte Protoplasten und sammeln sich in einer Bande am oberen Rand der Enzymlösung. Das Pellet aus Zellresten und die Enzymlösung werden mit einer Glaskapillare abgesaugt. Die vorgereinigten Protoplasten werden mit frischem K3 Medium (0,4 M Saccharose als Osmotikum) auf 10 ml aufgefüllt und erneut flotiert. Das Waschmedium wird abgesaugt und die Protoplasten werden für Kultur oder folgende Infektion mit Agrobakterien (Kokultur) auf 1-2 x 10⁵/ml verdünnt. Die Protoplastenkonzentration wird in einer Zählkammer bestimmt.For the isolation of leaf protoplasts, approx. 2 g of leaves (approx. 3-5 cm long) are cut into small pieces (0.5 cm x 1 cm) with a fresh razor blade. The leaf material is in 20 ml enzyme solution, consisting of K3 medium (Nagy and Maliga 1976), 0.4 m sucrose, pH 5.6, 2% cellulase R10 (Serva), 0.5% Macerozym R10 (Serva) for 14- Incubated for 16 h at room temperature. The protoplasts are then separated from cell residues by filtration through 0.30 mm and 0.1 mm steel sieves. The filtrate is centrifuged at 100 xg for 10 minutes. During this centrifugation, intact protoplasts float and collect in a band at the top of the enzyme solution. The pellet from cell residues and the enzyme solution are aspirated with a glass capillary. The pre-cleaned protoplasts are made up to 10 ml with fresh K3 medium (0.4 M sucrose as an osmotic agent) and floated again. The washing medium is suctioned off and the protoplasts are diluted to 1-2 x 10⁵ / ml for culture or subsequent infection with agrobacteria (coculture). The protoplast concentration is determined in a counting chamber.

b) Transformation von regenerierenden Tabakprotoplasten durch Kokultur mit Agrobacterium tumefaciens:b) Transformation of regenerating tobacco protoplasts by coculture with Agrobacterium tumefaciens:

Es wird im folgenden die Methode von Marton et al. 1979 mit kleinen Veränderungen benutzt. Die Protoplasten werden wie beschrieben isoliert und in einer Dichte von 1-2 x 10⁵/ml in K3 Medium (0,4 m Saccharose, 0,1 mg/l NAA, 0,2 ml in K3 Medium (0,4 m Saccharose, 0,1 mg/l NAA, 0,2 mg Kinetin) 2 Tage im Dunkeln und ein bis zwei Tage lang unter Schwachlicht (500 lux) bei 26° C inkubiert. Sobald die ersten Teilungen der Protoplasten auftreten, werden 30 µl einer Agrobakteriumsuspension in minimal A (Am) Medium (Dichte ca. 10⁹ Agrobakterien/ml) zu 3 ml regenerierenden Protoplasten gegeben. Die Kokulturdauer beträgt 3-4 Tage bei 20° C im Dunkeln. Danach werden die Tabakzellen in 12 ml Zentrifugenröhrchen gefüllt, mit Seewasser (600 mOsm/kg) auf 10 ml verdünnt und bei 60 x g 10 Minuten lang pelletiert. Dieser Waschvorgang wird noch 1-2 x wiederholt um den größten Teil der Agrobakterien zu entfernen. Die Zellsuspension wird in einer Dichte von 5 x 10⁴/ml in K3 Medium (0,3 m Saccharose) mit 1 mg/l NAA (Naphthyl-1-essigsäure), 0,2 ml/l Kinetin und 500 mg/l des Cephalosporin-Antibiotikums Cefotaxim kultiviert. Die Zellsuspension wird jede Woche mit frischem K3 Medium verdünnt und der osmotische Wert des Mediums graduell um 0,05 m Saccharose (ca. 60 mOsm/kg) pro Woche reduziert. Die Selektion mit Kanamycin (100 mg/l Kanamycinsulfat (Sigma), 660 mg/g aktives Km) wird 2-3 Wochen nach der Kokultur in Agarose Bead Typ Kultur (Shillito et al. 1983) gestartet. Kanamycinresistente Kolonien können 3-4 Wochen nach Beginn der Selektion vom Hintergrund zurückgebliebender Kolonien unterschieden werden.The method of Marton et al. 1979 used with minor changes. The protoplasts are isolated as described and in a density of 1-2 x 10⁵ / ml in K3 medium (0.4 m sucrose, 0.1 mg / l NAA, 0.2 ml in K3 medium (0.4 m sucrose, 0.1 mg / l NAA, 0.2 mg kinetin) incubated for 2 days in the dark and for one to two days under low light (500 lux) at 26 ° C. As soon as the first division of the protoplasts occurs, 30 µl of an agrobacterial suspension are added minimally A (Am) medium (density approx. 10⁹ agrobacteria / ml) to 3 ml regenerating protoplasts. The coculture time is 3-4 days at 20 ° C in the dark. Then the tobacco cells are filled in 12 ml centrifuge tubes, with sea water (600 mOsm / kg) diluted to 10 ml and pelleted at 60 xg for 10 minutes, this washing process is repeated 1-2 more times to remove most of the agrobacteria. The cell suspension is in a density of 5 x 10⁴ / ml in K3 medium (0.3 M sucrose) with 1 mg / l NAA (naphthyl-1-acetic acid), 0.2 ml / l kinetin and 500 mg / l of cephalospo rin antibiotic cefotaxime cultivated. The cell suspension is diluted with fresh K3 medium every week and the osmotic value of the medium gradually reduced by 0.05 m sucrose (approx. 60 mOsm / kg) per week. The selection with kanamycin (100 mg / l kanamycin sulfate (Sigma), 660 mg / g active km) is started 2-3 weeks after the coculture in agarose bead type culture (Shillito et al. 1983). Colonies resistant to kanamycin can be distinguished from the background of remaining colonies 3-4 weeks after the start of the selection.

c) Direkte Transformation von Tabakprotoplasten mit DNA. Calciumnitrat-PEG Transformation.c) Direct transformation of tobacco protoplasts with DNA. Calcium nitrate-PEG transformation.

In einer Petrischale werden ca. 10⁶ Protoplasten in 180 µl K3 Medium mit 20 µl wäßriger DNA Lösung welche 0,5 µg/µl pGS 828.1 und 0,5 µg/µl pLGV neo 2103 (Hain et al. 1985) enthält, vorsichtig gemischt. Anschließend werden 200 µl Fusionslösung (0,1 m Calciumnitrat, 0,45 M Mannit, 25 % Polyethylenglykol (PEG 6000), pH 9) vorsichtig zugegeben. Nach 15 Minuten werden 5 ml Waschlösung (0,275 M Calciumnitrat pH 6) addiert und nach weiteren 5 Minuten werden die Protoplasten in ein Zentrifugenröhrchen transferiert und bei 60 x g pelliert. Das Pellet wird in einer kleiner Menge K3 Medium aufgenommen und wie im nächsten Abschnitt beschrieben kultiviert. Alternativ können die Protoplasten nach Hain et al. 1985 tranformiert werden.Approximately 10⁶ protoplasts in 180 µl K3 medium with 20 µl aqueous DNA solution containing 0.5 µg / µl pGS 828.1 and 0.5 µg / µl pLGV neo 2103 (Hain et al. 1985) are carefully mixed in a Petri dish. Then 200 μl of fusion solution (0.1 m calcium nitrate, 0.45 M mannitol, 25% polyethylene glycol (PEG 6000), pH 9) are carefully added. After 15 minutes, 5 ml of washing solution (0.275 M calcium nitrate pH 6) are added and after a further 5 minutes the protoplasts are transferred into a centrifuge tube and pelleted at 60 x g. The pellet is taken up in a small amount of K3 medium and cultivated as described in the next section. Alternatively, the protoplasts according to Hain et al. 1985 transformed.

Die Transformation kann auch ohne den Zusatz der 0,5 µg/µl pLGV neo 2103 durchgeführt werden. Da in diesem Fall kein Reportergen eingesetzt wird, werden die resultierenden Kalli auf das Vorhandensein der Stilbensynthase-Gen-Einheit mit Hilfe einer Dot-Blot-Hybridisierung überprüft. Als Hybridisierungs-Probe ist ein internes EcoRI-HindIII-Fragment aus pGS 828.1 verwendbar. Selbstverständlich können auch andere Nachweismethoden, wie Test mit Antikörpern oder Feststellung einer Fungizid-Resistenz eingesetzt werden.The transformation can also be carried out without the addition of 0.5 µg / µl pLGV neo 2103. Since no reporter gene is used in this case, the resulting calli were checked for the presence of the stilbene synthase gene unit using dot-blot hybridization. An internal EcoRI-HindIII fragment from pGS 828.1 can be used as a hybridization sample. Of course, other detection methods, such as testing with antibodies or determining fungicide resistance, can also be used.

d) Kultur der mit DNA inkubierten Protoplasten und Selektion Kanamycin resistenter Kalli:d) Culture of protoplasts incubated with DNA and selection of kanamycin-resistant calli:

Für die im folgenden beschriebene Kultur und Selektion Kanamycin resistenter Kolonien wird eine modifizierte "Bead Type culture"-Technik (Shillito et al. 1983) verwendet. Eine Woche nach Behandlung der Protoplasten mit DNA (vgl. c) werden 1 ml der Zellsuspension mit 3 ml K3 Medium (0,3 M Saccharose + Hormone; 1,2 % (Seaplaque) LMT Agarose (low melting agarose, Marine Colloids) in 5 cm Petrischalen gemischt. Für diesen Zweck wird Agarose trocken autoklaviert und nach Zugabe von K3 Medium im Mikrowellenherd kurz aufgekocht. Nach Erstarren der Agarose werden die Agarosescheiben ("beads") mit den eingebetteten Tabakmikrokalli für weitere Kultur und Selektion in 10 cm Petrischalen transferiert und je 10 ml K3 Medium (0,3 M Saccharose, 1 mg/l NAA, 0,2 mg/l Kinetin) und 100 mg/l Kanamycinsulfat (Sigma) addiert. Das Flüssigmedium wird jede Woche gewechselt. Dabei wird der osmotische Wert des Mediums stufenweise herabgesetzt.A modified "bead type culture" technique (Shillito et al. 1983) is used for the culture and selection of kanamycin-resistant colonies described below. One week after treatment of the protoplasts with DNA (see c), 1 ml of the cell suspension with 3 ml of K3 medium (0.3 M sucrose + hormones; 1.2% (Seaplaque) LMT agarose (low melting agarose, marine colloids) in 5 cm petri dishes mixed. For this purpose, agarose is dry autoclaved and briefly boiled in the microwave after adding K3 medium. After the agarose has solidified, the agarose slices ("beads") with the embedded tobacco microcalli are transferred to 10 cm petri dishes for further culture and selection Add 10 ml of K3 medium (0.3 M sucrose, 1 mg / l NAA, 0.2 mg / l kinetin) and 100 mg / l kanamycin sulfate (Sigma). The liquid medium is changed every week, whereby the osmotic value of the Medium gradually reduced.

Pro Woche wird das Austauschmedium (K3 + Km) um 0,05 m an Saccharose (ca. 60 mOsm) reduziert.

Figure imgb0002
The exchange medium (K3 + Km) is reduced by 0.05 m of sucrose (approx. 60 mOsm) per week.
Figure imgb0002

e) Regeneration kanamycinresistenter Pflanzen:e) Regeneration of kanamycin-resistant plants:

Sobald die kanamycinresistenten Kolonien einen Durchmesser von ca. 0,5 cm erreicht haben, wird die Hälfte auf Regenerationsmedium (LS-Medium, 2 % Saccharose, 0,5 mg/l Benzylaminopurin BAP) gesetzt und bei 12 h Licht (3000-5000 lux) und 24° C im Kulturraum gehalten. Die andere Hälfte wird als Kalluskultur auf LS Medium mit 1 mg/l NAA, 0,2 mg/l Kinetin, 0,1 mg/l BAP und 100 mg/l Kanamycinsulfat propagiert. Wenn die regenerierten Sproße ca. 1 cm groß sind, werden sie abgeschnitten und auf 1/2 LS Medium (1 % Saccharose, 0,8 % Agar) ohne Wachstumsregulatoren zur Bewurzelung gesetzt. Die Sproße werden auf 1/2 MS-Medium mit 100 mg/l Kanamycinsulfat bewurzelt und später in Erde umgesetzt.As soon as the kanamycin-resistant colonies have reached a diameter of approx. 0.5 cm, half is placed on regeneration medium (LS medium, 2% sucrose, 0.5 mg / l benzylaminopurine BAP) and exposed to 12 h light (3000-5000 lux ) and 24 ° C in the culture room. The other half is called Callus culture propagated on LS medium with 1 mg / l NAA, 0.2 mg / l kinetin, 0.1 mg / l BAP and 100 mg / l kanamycin sulfate. When the regenerated shoots are approx. 1 cm in size, they are cut off and placed on 1/2 LS medium (1% sucrose, 0.8% agar) without growth regulators for rooting. The shoots are rooted on 1/2 MS medium with 100 mg / l kanamycin sulfate and later converted into soil.

f) Transformation von Blattscheiben durch Agrobacterium tumefaciensf) transformation of leaf disks by Agrobacterium tumefaciens

Für die Transformation von Blattscheiben (Horsch et al. 1985) werden ca. 2-3 cm lange Blätter von sterilen Sproßkulturen in Scheiben von 1 cm Durchmesser gestanzt und mit einer Suspension entsprechender Agrobacterien (ca. 10⁹/ml) (vgl. b) in Am-Medium, siehen unten) für ca. 5 Minuten inkubiert. Die infizierten Blattstücke werden auf MS-Medium (siehe unten) ohne Hormone für 3-4 Tage bei ca. 24° C gehalten. Während dieser Zeit überwächst Agrobakterium die Blattstücke. Die Blattstücke werden anschließend in MS-Medium (0,5 mg/ml BAP, 0,1 mg/ml NAA) gewaschen und auf das gleiche Medium (0,8 % Agar) mit 500 µg/ml Cefotaxim und 100 µg/ml Kanamycinsulfat (Sigma) gelegt. Nach zwei Wochen sollte das Medium erneuert werden. Transformierte Sproße werden nach weiteren 2-3 Wochen sichtbar. Die Regeneration von Sproßen sollte parallel auch ohne Selektionsdruck durchgeführt werden. Die regenerierten Sproße müssen dann durch biologische Tests z.B. auf Nopalinsynthase oder Stilbensynthase Aktivität auf Transformation getestet weren. Auf diese Weise werden 1-10 % transformierte Sproße erhalten.For the transformation of leaf discs (Horsch et al. 1985) leaves of approx. 2-3 cm in length are punched out of sterile shoot cultures into discs of 1 cm in diameter and with a suspension of appropriate Agrobacteria (approx. 10⁹ / ml) (cf. b) in Incubate on medium, see below) for approx. 5 minutes. The infected leaf pieces are kept on MS medium (see below) without hormones at 3-4 ° C for 3-4 days. During this time, Agrobacterium grows over the leaf pieces. The leaf pieces are then washed in MS medium (0.5 mg / ml BAP, 0.1 mg / ml NAA) and on the same medium (0.8% agar) with 500 μg / ml cefotaxime and 100 μg / ml kanamycin sulfate (Sigma) placed. The medium should be replaced after two weeks. Transformed shoots become visible after another 2-3 weeks. The regeneration of shoots should also be carried out in parallel without selection pressure. The regenerated shoots must then go through biological Tests eg for nopaline synthase or stilbene synthase activity can be tested for transformation. In this way 1-10% transformed shoots are obtained.

Biochemische Nachweismethode der TransformationBiochemical detection method of transformation Nachweis von Nopalin in Pflanzengeweben:Detection of nopaline in plant tissues:

Nopalin wird wie bei Otten und Schilperoort (1978) und Aerts et al. (1979) beschrieben, wie folgt, nachgewiesen. 50 mg Pflanzenmaterial (Kallus oder Blattstücke) werden über Nacht in LS Medium mit 0,1 M Arginin bei Raumtemperatur in einem Eppendorfgefäß inkubiert. Das Pflanzenmaterial wird danach auf saugfähigem Papier abgetupft, in einem frischen Eppendorfzentrifugengefäß mit einem Glasstab homogenisiert und 2 Min. in einer Eppendorfzentrifuge zentrifugiert. 2 µl des Überstandes werden auf ein für Elektrophorese geeignetes Papier (Whatman 3 MM Papier) (20 x 40 cm) punktförmig aufgetragen und getrocknet. Das Papier wird mit dem Laufmittel (5 % Ameisensäure, 15 % Essigsäure, 80 % H₂O, pH 1,8) getränkt und bei 400 V für 45 Minuten elektrophoretisiert. Nopalin läuft zur Kathode hin. Das Papier wird dann mit einem Luftstrom heiß getrocknet und durch Phenanthrenchinon-Färbemittel (gleiches Volumen 0,02 % Phenanthrenchinon in Ethanol und 10 % NaOH in 60 % Ethanol) in Laufrichtung gezogen. Das getrocknete Papier wird unter langwelligem UV-Licht betrachtet und fotografiert. Arginin und Argininderivate werden mit dem Reagenz gelb fluoreszierend gefärbt.As with Otten and Schilperoort (1978) and Aerts et al. (1979) as follows. 50 mg of plant material (callus or leaf pieces) are incubated overnight in LS medium with 0.1 M arginine at room temperature in an Eppendorf tube. The plant material is then dabbed onto absorbent paper, homogenized in a fresh Eppendorf centrifuge tube with a glass rod and centrifuged for 2 minutes in an Eppendorf centrifuge. 2 .mu.l of the supernatant are spotted on a paper suitable for electrophoresis (Whatman 3 MM paper) (20 x 40 cm) and dried. The paper is soaked with the eluent (5% formic acid, 15% acetic acid, 80% H₂O, pH 1.8) and electrophoresed at 400 V for 45 minutes. Nopalin runs towards the cathode. The paper is then hot dried with an air stream and drawn in the direction of travel through phenanthrenequinone colorant (equal volume 0.02% phenanthrenequinone in ethanol and 10% NaOH in 60% ethanol). The dried paper is viewed and photographed under long-wave UV light. Arginine and arginine derivatives are stained yellow fluorescent with the reagent.

Neomycin-Phosphotransferase (NPT II) Enzymtest:Neomycin phosphotransferase (NPT II) enzyme test:

NPT II Aktivität in Pflanzengewebe wird durch in situ Phosphorylierung von Kanamycin, wie bei Reiss et al. (1984) beschrieben und von Schreier et al. (1985) modifiziert, wie folgt, nachgeweisen. 50 mg Pflanzengewebe werden in 50 µl Extraktionspuffer (10 % Glycerin, 5 % 2-Mercaptoethanol, 0,1 % SDS, 0,025 % Bromphenolblau, 62,5 mM Tris pH 6,8) unter Zusatz von Glaspulver auf Eis homogenisiert und 10 Minuten lang in einer Eppendorfzentrifuge bei 4°C zentrifugiert. 50 µl des Überstandes werden auf ein natives Polyacrylamidgel (145 x 110 x 1,2 mm; Trenngel: 10 % Acrylamid, 0,33 % Bisacrylamid, 0,375 M Tris pH 8,8, Sammelgel: 5 % Acrylamid, 0,165 % Bisacrylamid, 0,125 M Tris pH 6,8) aufgetragen und über Nacht bei 4°C und 60 V elektrophoretisiert. Sobald der Bromphenolblau-Marker aus dem Gel herausläuft, wird das Gel zweimal mit destilliertem Wasser 10 Min. lang und einmal 30 Min. mit Reaktionspuffer gewaschen (67 mM Tris-Maleat, pH 7,1, 42 mM MgCl₂, 400 mM Ammoniumchlorid). Das Gel wird auf eine gleichgroße Glasplatte gelegt und mit 40 ml 1 %iger Agarose in Reaktionspuffer, der die Substrate Kanamycinsulfat (20 µg/ml) und 20-200 µCi ³²P ATP (Amersham) enthält, überschichtet. Das Sandwichgel wird 30 Min. bei Zimmertempreratur inkubiert und dann wird ein Blatt Phosphozellulosepapier P81 (Whatman) auf die Agarose gelegt. Darüber werden vier Filtrierpapierlagen 3 MM, (Whatman) und einige Papierhandtücher gestapelt. Der Transfer von in situ phosphoryliertem radioaktiven Kanamycinphosphat auf das P81 Papier wird nach 3-4 h gestoppt. Das P81 Papier wird für 30 min. in einer Lösung von Proteinase K und 1 % Natriumdodecyl sulfat (SDS) bei 60°C inkubiert und dann 3-4 mal in 250 ml 10 mM Phosphatpuffer pH 7,5 bei 80°C gewaschen, getrocknet und für 1-12 h lang bei -70°C autoradiografiert (XAR5 Film Kodak).NPT II activity in plant tissue is determined by in situ phosphorylation of kanamycin, as described by Reiss et al. (1984) and by Schreier et al. (1985) modified as follows. 50 mg of plant tissue are homogenized in 50 .mu.l extraction buffer (10% glycerol, 5% 2-mercaptoethanol, 0.1% SDS, 0.025% bromophenol blue, 62.5 mM Tris pH 6.8) with the addition of glass powder on ice and for 10 minutes centrifuged in an Eppendorf centrifuge at 4 ° C. 50 µl of the supernatant are placed on a native polyacrylamide gel (145 x 110 x 1.2 mm; separating gel: 10% acrylamide, 0.33% bisacrylamide, 0.375 M Tris pH 8.8, bulk gel: 5% acrylamide, 0.165% bisacrylamide, 0.125 M Tris pH 6.8) and electrophoresed overnight at 4 ° C and 60 V. As soon as the bromophenol blue marker runs out of the gel, the gel is washed twice with distilled water for 10 minutes and once for 30 minutes with reaction buffer (67 mM Tris-maleate, pH 7.1, 42 mM MgCl₂, 400 mM ammonium chloride). The gel is placed on a glass plate of the same size and covered with 40 ml of 1% agarose in reaction buffer which contains the substrates kanamycin sulfate (20 µg / ml) and 20-200 µCi ³²P ATP (Amersham). The sandwich gel is incubated for 30 minutes at room temperature and then a sheet of phosphocellulose paper P81 (Whatman) is placed on the agarose. Over it are four layers of filter paper 3 MM, (Whatman) and some paper towels stacked. The transfer of in situ phosphorylated radioactive kanamycin phosphate to the P81 paper is stopped after 3-4 hours. The P81 paper is for 30 min. incubated in a solution of Proteinase K and 1% sodium dodecyl sulfate (SDS) at 60 ° C and then washed 3-4 times in 250 ml of 10 mM phosphate buffer pH 7.5 at 80 ° C, dried and for 1-12 h at -70 ° C autoradiographed (XAR5 film Kodak).

4. Transformation von Medicago Sativa (Luzerne)4. Transformation of Medicago Sativa (alfalfa) a) Pflanzenmateriala) Plant material

Die Pflanze Medicago sativa (Regen S, Klon RA₃ Walker et al, 1978) wurde als sterile Sproßkultur auf LS Medium (Linsmaier und Skoog, 1965), im Langtag (16 h Licht, 8 h Dunkelheit) bei 26 ± 2°C kultiviert.The Medicago sativa plant (Regen S, clone RA₃ Walker et al, 1978) was cultivated as a sterile shoot culture on LS medium (Linsmaier and Skoog, 1965), in the long day (16 h light, 8 h dark) at 26 ± 2 ° C.

b) Kulturbedingungenb) Culture conditions

Als Kulturgefäße für Sproßkulturen dienten Glasgefäße (250 ml - 1,5 l) mit lose aufliegenden Glasdeckeln. Für alle anderen Pflanzenkulturen (Embryo, Kallus, Protoplasten) wurden Petrischalen aus Plastik benutzt.Glass jars (250 ml - 1.5 l) with loose glass lids served as culture jars for shoot cultures. Plastic petri dishes were used for all other plant cultures (embryo, callus, protoplasts).

Die Pflanzen und Gewebekulturen bis auf die Protoplasten wurden in Kulturräumen im Langtag (16 h Licht, 8 h Dunkelheit) bei 26 ± 2°C kultiviert. Die Leuchtstoffröhren hatten die Lichtfarbe Universal Weiß (Osram L58W/25). Der Abstand der Röhren von den Kulturen betrug 10-30 cm, das entspricht 1500-4500 Lux Lichtintensität. Die Luftfeuchtigkeit blieb unreguliert. Die Protoplasten wurden in Kulturschränken bei maximal 500 Lux und 26°C kultiviert.The plants and tissue cultures, with the exception of the protoplasts, were cultivated in culture rooms in the long day (16 h light, 8 h dark) at 26 ± 2 ° C. The fluorescent tubes had the light color Universal White (Osram L58W / 25). The distance between the tubes and the cultures was 10-30 cm, which corresponds to 1500-4500 lux light intensity. The air humidity remained unregulated. The protoplasts were cultivated in culture cabinets at a maximum of 500 lux and 26 ° C.

c) Kalluskulturc) Callus culture

Kallus wurde von Petiolen der Gewächshauspflanzen induziert. Ca. 5 cm lange Petiolenstücke wurden von den Gewächshauspflanzen mit einem Skalpell abgeschnitten. Die Petiolenstücke wurden zuerst oberflächensterilisiert:

  • 1 min in 70% Ethanol
  • 10 min in 10% handelsüblichem Desinfektionsmittel (z.B. Dan Klorix)
  • 3 Waschungen in sterilem Leitungswasser.
Callus was induced by petioles of the greenhouse plants. Approx. 5 cm petioles were cut from the greenhouse plants with a scalpel. The petioles were first surface sterilized:
  • 1 min in 70% ethanol
  • 10 min in 10% commercial disinfectant (e.g. Dan Klorix)
  • 3 washes in sterile tap water.

Nach der Sterilisation wurden die Petiolenstücke in 1-1,5 cm lange Stücke geschnitten und in Petrischalen auf festes Agarmedium ausgelegt. Drei verschiedene Medien wurden zur Kallusinduktion und Weiterkultur benutzt:

  • 1. B₅h (Atanassov und Brown, 1984)
  • 2. SHR: SH (Shenk und Hildebrandt, 1972) mit 25 µM (4,655 mg/l) NAA und 10 µM (2,15 mg/l) Kinetin (Walker und Sato, 1981)
  • 3. B₅H₃: B₅ (Gamborg et al., 1968) mit 2,6 µM (0,5 mg/l) NAA, 2,2 µM (0,5 mg/l) BAP, 2,2 µM (0,5 mg/l) 2,4D (Oelck, Dissertation 1984).
After sterilization, the petioles were cut into 1-1.5 cm long pieces and placed in petri dishes on solid agar medium. Three different media were used for callus induction and further culture:
  • 1. B₅h (Atanassov and Brown, 1984)
  • 2. SHR: SH (Shenk and Hildebrandt, 1972) with 25 µM (4.655 mg / l) NAA and 10 µM (2.15 mg / l) kinetin (Walker and Sato, 1981)
  • 3. B₅H₃: B₅ (Gamborg et al., 1968) with 2.6 µM (0.5 mg / l) NAA, 2.2 µM (0.5 mg / l) BAP, 2.2 µM (0.5 mg / l) 2.4D (Oelck, dissertation 1984).

Nach drei Wochen wurden jeweils die äußeren Teile des Kallus mit einem Skalpell abgeschnitten und auf frischem Medium subkultiviert.After three weeks, the outer parts of the callus were cut off with a scalpel and subcultured on fresh medium.

d) Kallusregenerationd) Callus regeneration

Die Regeneration von Pflanzen aus Kallus wurde nach dem Protokoll von Stuart und Strickland, 1984 a, b, mit Modifikationen durchgeführt.The regeneration of plants from callus was carried out according to the protocol of Stuart and Strickland, 1984 a, b, with modifications.

Die somatische Embryogenese wurde durch eine Inkubation von Kallusgewebe in flüssigem SH-Medium (Shenk und Hildebrandt, 1972), das 50 µM (11 mg/l) 2,4D und 5 µM (1,07 mg/l) Kinetin enthielt, induziert. In einem Erlenmeyerkolben (100 ml in einem 500 ml Kolben) wurden pro ml Medium 30 mg Kallus (Frischgewicht) zugegeben. Die Induktion erfolgte für 3-4 Tage auf einem Schüttler (100 Upm) bei 26°C im Pflanzenkulturraum. Anschließend wurde das Kallusgewege vom Medium auf einem Sieb (850 µm ) getrennt.Somatic embryogenesis was induced by incubation of callus tissue in liquid SH medium (Shenk and Hildebrandt, 1972) containing 50 µM (11 mg / l) 2.4D and 5 µM (1.07 mg / l) kinetin. In an Erlenmeyer flask (100 ml in a 500 ml flask) 30 mg callus (fresh weight) were added per ml medium. The induction was carried out for 3-4 days on a shaker (100 rpm) at 26 ° C in the plant culture room. The callus path was then separated from the medium on a sieve (850 μm).

Mit einem Spatel wurde es durch das Sieb gepreßt und kleine Zellhaufen wurden auf einem sich darunter befindenden Sieb mit der Maschenweite 250 µm² gesammelt. Pro 100 ml Induktionsmedium wurden die Zellhaufen mit 500 ml SHJ-Medium ohne Hormone (SH) gewaschen. Die Waschlösung wurde durch Abtropfen so weit wie möglich entfernt (ca. 5 min). Das Frischgewicht wurde bestimmt und die Zellhaufen wurden in SH-Medium resuspendiert. 75 mg in 0,5 ml wurden in einer Pipette auf ca. 10 ml festes Regenerationsmedium SHR aufgebracht. Das Regenerationsmedium SHR bestand aus SH-Medium mit 25 mM NH₄⁺ und 100 mM L-Prolin in 3% Saccharose.It was pressed through the sieve with a spatula and small clusters of cells were collected on a sieve underneath with a mesh size of 250 μm 2. The cell clusters per 100 ml of induction medium were washed with 500 ml of SHJ medium without hormones (SH). The washing solution was removed by draining as far as possible (approx. 5 min). The fresh weight was determined and the cell clusters were resuspended in SH medium. 75 mg in 0.5 ml were applied in a pipette to approximately 10 ml of solid regeneration medium SHR. The regeneration medium SHR consisted of SH medium with 25 mM NH₄⁺ and 100 mM L-proline in 3% sucrose.

Nach ca. vier Wochen wurden gut entwickelte Embryos mit einer deutlichen Polarität (Keimblattstadium, Dos Santos et al., 1983) auf festes 1/2SH-Medium mit 25 µM (8,6 mg/l) Gibberilinsäure (GA₃) und 0.25 µM (0,046 mg) NAA gesetzt. Nach der Bewurzelung und der Entwicklung eines Sprosses mit Blättern wurden die kleinen Pflänzchen auf LS-Medium umgesetzt.After approximately four weeks, well developed embryos with a clear polarity (cotyledon stage, Dos Santos et al., 1983) were placed on solid 1 / 2SH medium with 25 µM (8.6 mg / l) gibberilinic acid (GA₃) and 0.25 µM ( 0.046 mg) NAA. After rooting and developing a sprout with leaves, the small plants were transferred to LS medium.

Die Tabelle gibt die Zusammensetzung der Medien B₅h, SHJ, SHR, 1/2 SH, LS an. Das flüssige Medium SH entspricht dem SHJ-Medium ohne die Hormone 2,4D und Kinetin. Die Angabe der Mengen ist in mg/l, wenn nichts anderes vermerkt ist.

Figure imgb0003
Figure imgb0004
The table shows the composition of the media B₅h, SHJ, SHR, 1/2 SH, LS. The liquid medium SH corresponds to the SHJ medium without the hormones 2,4D and kinetin. The amounts are given in mg / l unless otherwise noted.
Figure imgb0003
Figure imgb0004

Die Medien wurden durch Erhitzen im Autoklaven für 17 min bei 121°C sterilisiert. Kinetin, L-Gluthathion und Aminosäuren wurden mit einem Filter sterilisiert und nach dem Erhitzen im Autoklaven dem 60°C warmem Medium zugegeben.The media were sterilized by heating in an autoclave for 17 min at 121 ° C. Kinetin, L-gluthathione and amino acids were sterilized with a filter and added to the medium at 60 ° C. after heating in an autoclave.

e) Protoplastenkulture) Protoplast culture

Als Ausgangsmaterial zur Isolierung von Protoplasten dienten die Blätter 2-3 Monate alter steriler Sproßkulturen. Die Ernte erfolgte 2-3 h nach dem Einschalten des Lichtes.

  • Zuerst wurden die Blätter in einer Petrischale mit EMI (Atanassov und Brown, 1984) befeuchtet und mit einer neuen Rasierklinge fein zerschnitten.
  • 1-1,5 g Blätter wurden dann mit 10 ml Enzymlösung in einer Petrischale (⌀ 10 cm) für 3-4 h inkubiert. Die Inkubation erfolgte bei 26°C und schwacher Beleuchtung. Die Freisetzung von Protoplasten aus den Blättern wurde unter dem Mikroskop verfolgt. Alle 30 min wurde die Schale 2-3 mal geschwenkt.
The leaves served as the starting material for the isolation of protoplasts, sterile shoot cultures 2-3 months old. The harvest took place 2-3 hours after the light was switched on.
  • First the leaves were moistened in a petri dish with EMI (Atanassov and Brown, 1984) and finely cut with a new razor blade.
  • 1-1.5 g of leaves were then incubated with 10 ml of enzyme solution in a petri dish (⌀ 10 cm) for 3-4 h. The incubation was carried out at 26 ° C and weak lighting. The release of protoplasts from the leaves was followed under the microscope. The bowl was swung 2-3 times every 30 minutes.

Die Enzymlösung bestand aus einer Mischung von 1:1 aus dem Protoplastenkulturmedium (AP) von Atanassov und Brown (1984) mit den Hormonen 0,2 mg/l 2,4D, 0,5 mg/l Zeatin und 1 mg/l NAA und einer Enzymlösung. Die Enzymlösung (Kao und Michayluk, 1979; modifiziert) bestand aus:

  • 200 mg Cellulose Onozuka R10
  • 80 mg Macerozyme R10      Serva
  • 10 mg Pectolyase Y-23      Sigma
  • 540 mg Sorbitol
The enzyme solution consisted of a 1: 1 mixture of the protoplast culture medium (AP) from Atanassov and Brown (1984) with the hormones 0.2 mg / l 2.4D, 0.5 mg / l zeatin and 1 mg / l NAA and an enzyme solution. The enzyme solution (Kao and Michayluk, 1979; modified) consisted of:
  • 200 mg cellulose Onozuka R10
  • 80 mg Macerozyme R10 Serva
  • 10 mg pectolyase Y-23 Sigma
  • 540 mg sorbitol

f) Transformation eines induzierten Kallusf) Transformation of an induced callus

Kallus wurde nach der Methode, die unter Kallusregneration beschrieben ist, zur Embryogenese induziert.Callus was induced for embryogenesis using the method described under callus regeneration.

Im Anschluß an die 3-4tägige Inkubation in flüssigem SHJ wurde das Kallusmaterial auf einem Sieb (Maschenweite 100 µm) mit flüssigem SHR, das keinen Agar und keinen L-Prolin enthielt, gewaschen. Danach wurde das Kallusmaterial in flüssigem SHR aufgenommen. Ca. 1 g Kallusmaterial wurde 10 ml Medium zugesetzt.Following the 3-4 day incubation in liquid SHJ, the callus material was washed on a sieve (mesh size 100 μm) with liquid SHR, which contained no agar and no L-proline. The callus material was then taken up in liquid SHR. Approx. 1 g of callus material was added to 10 ml of medium.

Nach der Zugabe der Agrobakterien, welche Stilbensynthase-Gen tragende Ti-Plasmide enthalten, (2x10⁷/ml Endkonzentration) wurde das Kallusmaterial auf einem Schüttler (90Upm) für 2-3 Tage bei 26°C inkubiert.After the addition of the agrobacteria which contained Ti plasmids carrying the stilbene synthase gene (2x10⁷ / ml final concentration), the callus material was incubated on a shaker (90 rpm) for 2-3 days at 26 ° C.

Danach wurde das Material auf einem Sieb (Maschenweite 100 µm²) mit flüssigem SHR gewaschen.The material was then washed on a sieve (mesh size 100 μm 2) with liquid SHR.

Die Plattierung (75 mg Kallus/10 ml Medium) erfolgte auf dem normalen festen SHR mit 100 mM L-Prolin. Das Medium in den Platten enthielt neben den selektiven Antibiotika 500 µg/ml Claforan. Nach vier Wochen wurden die resistenten Strukturen auf frisches antibiotikahaltiges Medium gesetzt, und weitere drei Wochen später wurden sie geteilt und eine Hälfte wurde auf frisches Medium ohne selektive Antibiotika, die andere Hälfte auf antibiotikahaltiges Medium gesetzt.The plating (75 mg callus / 10 ml medium) was carried out on the normal solid SHR with 100 mM L-proline. In addition to the selective antibiotics, the medium in the plates contained 500 µg / ml Claforan. After four weeks, the resistant structures were placed on fresh medium containing antibiotics and a further three weeks later they were divided and half was placed on fresh medium without selective antibiotics, the other half on medium containing antibiotics.

a) Transformation von Embryosa) Transformation of embryos

Die Tansformation von Embryos wurde analog zu der Transformation des induzierten Kallus durchgeführt. Als Ausgangsmaterial wurden 4-5 Wochen alte Embryos verwendet. Sie wurden in einer Petrischale mit einer Rasierklinge fein zerschnitten und dann auf einem Sieb (Maschenweite 100 µm) mit flüssigem SHR gewaschen. Ca. 1 g zerschnittene Embryos wurden in 10 ml flüssigem SHR aufgenommen. Nach der Zugabe von Agrobakterien (2 x 10⁷/ml Endkonzentration) erfolgte die Inkubation auf einem Schüttler (90 Upm) für 2-3 Tage bei 26°C. Danach wurden die Embryostücke auf einem Sieb (100 µm²) mit flüssigem SHR gewaschen. Die Plattierung erfolgte mit einem Spatel auf Platten, die das normale feste SHR mit 100 mM L-Prolin enthielten. Ca. 50-100 mg Embryostücke wurden pro Platte, die 10 ml Medium enthielt, verteilt. Das Medium in den Platten enthielt neben den selektiven Antibiotika 500 µg/ml Claforan. Drei Wochen nach der Plattierung wurden die sekundären Embryos auf frischen Platten subkultiviert. Gut entwickelte Embryos wurden auf antibiotikafreies 1/2 SH-Medium (Stuart und Strickland, 1984, b) gesetzt, um eine Weiterentwicklung zu Pflanzen zu ermöglichen. Kleine Pflänzchen mit Wurzeln wurden dann auf LS Medium umgesetzt.The transformation of embryos was carried out analogously to the transformation of the induced callus. Embryos 4-5 weeks old were used as starting material. They were finely cut in a Petri dish with a razor blade and then washed on a sieve (mesh size 100 µm) with liquid SHR. Approx. 1 g of cut embryos were taken up in 10 ml of liquid SHR. After the addition of agrobacteria (2 × 10⁷ / ml final concentration), the incubation was carried out on a shaker (90 rpm) for 2-3 days at 26 ° C. The embryo pieces were then washed on a sieve (100 μm 2) with liquid SHR. The plating was done with a spatula on plates that the normal solid SHR was using Contained 100 mM L-proline. Approx. 50-100 mg pieces of embryo were distributed per plate containing 10 ml medium. In addition to the selective antibiotics, the medium in the plates contained 500 µg / ml Claforan. Three weeks after plating, the secondary embryos were subcultured on fresh plates. Well-developed embryos were placed on antibiotic-free 1/2 SH medium (Stuart and Strickland, 1984, b) to enable further development into plants. Small plantlets with roots were then transferred to LS medium.

5. Transformation von Solanum tuberosum (Kartoffel)5. Transformation of Solanum tuberosum (potato)

Die Transformation wurde genau nach dem in der EP-A-0 242 246, Seiten 14 bis 15 angegebenen Weise transformiert, wobei die Agrobakterien Ti-Plasmide enthalten, die das Stilbensynthese-Gen tragen.The transformation was transformed exactly in the manner specified in EP-A-0 242 246, pages 14 to 15, the agrobacteria containing Ti plasmids which carry the stilbene synthesis gene.

Alle Prozentangaben in den obigen Beispielen beziehen sich auf Gewichtsprozente, wo nichts anderes angegeben wird.All percentages in the above examples relate to percentages by weight, unless stated otherwise.

In den gemäß den obigen Beispielen erhaltenen Pflanzenzellen und Pflanzen (Tabak) wurde die Anwesenheit des Stilbensynthase-Gens durch Southern Blot Analyse bestätigt. Die Expression des Stilbensynthase-Gens wurde durch Northern Blot Analyse, Stilbensynthase und Stilbene mit Hilfe von spezifischen Antikörpern nachgewiesen. Transformierte und nicht-transformierte Pflanzen (zum Vergleich) wurden mit einer Sporensuspension von Botrytis cinera besprüht und nach 1 Woche der Pilzbefall bonitiert. Die transformierten Pflanzen zeigten (gegenüber den nicht transformierten Vergleichspflanzen) eine erhöhte Resistenz gegen Pilzbefall. Entsprechende positive Befunde ergaben sich auch bei Medicago sativa und Kartoffel.In the plant cells and plants (tobacco) obtained according to the above examples, the presence of the stilbene synthase gene was confirmed by Southern blot analysis. Expression of the stilbene synthase gene was detected by Northern blot analysis, stilbene synthase and stilbene with the help of specific antibodies. Transformed and non-transformed plants (for comparison) were sprayed with a spore suspension of Botrytis cinera and the fungal infection was rated after 1 week. The transformed plants showed (compared to the non-transformed comparison plants) an increased resistance to fungal attack. Corresponding positive results were also found for Medicago sativa and potatoes.

Im Folgenden wird die DNA-Sequenz (Protein kodierende Region und Intron) des Stilbensynthase Gens mit einem Teil der 5′- und 3′- untranslatierten Regionen aufgeführt, wie sie im Plasmid pGS 828.1 vorliegt. Die Restriktionsschnittstellen für EcoRI, PstI und HindIII werden angegeben. Die entsprechende Proteinsequenz ist im Einbuchstabencode angegeben.

Figure imgb0005
Figure imgb0006
Figure imgb0007
In the following, the DNA sequence (protein coding region and intron) of the stilbene synthase gene with a part of the 5′- and 3′- untranslated regions is listed, as it is present in the plasmid pGS 828.1. The restriction sites for EcoRI, PstI and HindIII are given. The corresponding protein sequence is given in the one-letter code.
Figure imgb0005
Figure imgb0006
Figure imgb0007

Im folgenden werden einige der bei der Transformation von Pflanzen bzw. Pflanzenzellen eingesetzte Medien beschrieben:Some of the media used in the transformation of plants or plant cells are described below:

Am-MediumAm medium

3,5 g3.5 g K₂HPO₄K₂HPO₄ 1,5 g1.5 g KH₂PO₄KH₂PO₄ 0,5 g0.5 g Na₃ CitratNa₃ citrate 0,1 g0.1 g MgSO₄ x 7H₂OMgSO₄ x 7H₂O 1 g1 g (NH₄)₂SO₄(NH₄) ₂SO₄ 2 g2 g GlukoseGlucose ad 1 lad 1 l

Medium für sterile Sproßkultur von TabakMedium for sterile shoot culture of tobacco

Figure imgb0008
Figure imgb0008

K3-MediumK3 medium

Zur Kultur von Nicotiana tabacum petit Havana SR1, Nicotiana tabacum Wisconsin 38, und Nicotiana plumaginifolia Protoplasten (Nagy und Maliga, 1976) Macro-elemente NH₄NO₃ 250 mg/l KNO₃ 2500 mg/l CaCl₂·2H₂O 900 mg/l MgSO₄.7H₂O 250 mg/l NaH₂PO₄.1H₂O 150 mg/l (NH₄)₂SO₄ 134 mg/l CaHPO₄.1H₂O 50 mg/l Micro-elemente H₃BO₃ 3 mg/l MnSO₄.1H₂O 10 mg/l ZnSO₄.4H₂O 2 mg/l KI 0,75 mg/l Na₂MoO₄.2H₂O 0,25 mg/l CuSO₄.5H₂O 0,025 mg/l CoCl₂.6H₂O 0,025 mg/l Fe-EDTA Na₂EDTA 37,2 mg/l FeSO₄.7H₂O 27,8 mg/l Inosit 100 mg/l Sucrose 137 g/l (= 0,4 M) Xylose 250 mg/l Vitamine Nicotinsäure 1 mg/l Pyridoxin 1 mg/l Thiamin 10 mg/l Hormone NAA 1,0 mg/l Kinetin 0,2 mg/l pH 5,6 Filter sterilisieren On the culture of Nicotiana tabacum petit Havana SR1, Nicotiana tabacum Wisconsin 38, and Nicotiana plumaginifolia protoplasts (Nagy and Maliga, 1976) Macro elements NH₄NO₃ 250 mg / l KNO₃ 2500 mg / l CaCl₂ · 2H₂O 900 mg / l MgSO₄.7H₂O 250 mg / l NaH₂PO₄.1H₂O 150 mg / l (NH₄) ₂SO₄ 134 mg / l CaHPO₄.1H₂O 50 mg / l Micro elements H₃BO₃ 3 mg / l MnSO₄.1H₂O 10 mg / l ZnSO₄.4H₂O 2 mg / l AI 0.75 mg / l Na₂MoO₄.2H₂O 0.25 mg / l CuSO₄.5H₂O 0.025 mg / l CoCl₂.6H₂O 0.025 mg / l Fe-EDTA Na₂EDTA 37.2 mg / l FeSO₄.7H₂O 27.8 mg / l Inositol 100 mg / l Sucrose 137 g / l (= 0.4 M) Xylose 250 mg / l Vitamins Nicotinic acid 1 mg / l Pyridoxine 1 mg / l Thiamine 10 mg / l Hormones NAA 1.0 mg / l Kinetin 0.2 mg / l pH 5.6 Sterilize the filter

Linsemaier und Skoog Medium (Linsemaier und Skoog 1965) Linsemaier and Skoog Medium (Linsemaier and Skoog 1965)

Zur Kultur von regenerierenden Protoplasten und für Gewebekultur von Tabaktumoren und Kallus. Linsemaier und Skoog (LS) Medium ist Murashige und Skoog Medium (Murashige und Skoog, 1962) mit den folgenden Modifikationen:

  • Thiamin wird in höherer Konzentration eingewogen 0,4 mg/l anstatt 0,1 mg/l;
  • Glycin, Pyridoxin und Nicotinsäure fehlen.
Macro-elemente NH₄NO₃ 1650 mg/l KNO₃ 1900 mg/l CaCl₂.2H₂O 440 mg/l MgSO₄.7H₂O 370 mg/l KH₂PO₄ 170 mg/l Micro-elemente H₃BO₃ 6,2 mg/l MnSO₄.1H₂O 22,3 mg/l ZnSO₄.4H₂O 8,6 mg/l KI 0,83 mg/l Na₂MoO₄.2H₂O 0,25 mg/l CuSO₄.5H₂O 0,025 mg/l CoCl₂.6H₂O 0,025 mg/l Fe-EDTA Na₂EDTA 37,2 mg/l FeSO₄.7H₂O 27,8 mg/l Inosit Thiamin 100 mg/l Saccharose 30 g/l Agar 8 g/l Vitamine 0,4 mg/l Hormone: NAA 1 mg/l Kinetin 0,2 mg/l pH 5,7 vor dem Autoklavieren For the culture of regenerating protoplasts and for tissue culture of tobacco tumors and callus. Linsemaier and Skoog (LS) Medium is Murashige and Skoog Medium (Murashige and Skoog, 1962) with the following modifications:
  • Thiamine is weighed in a higher concentration 0.4 mg / l instead of 0.1 mg / l;
  • Glycine, pyridoxine and nicotinic acid are missing.
Macro elements NH₄NO₃ 1650 mg / l KNO₃ 1900 mg / l CaCl₂.2H₂O 440 mg / l MgSO₄.7H₂O 370 mg / l KH₂PO₄ 170 mg / l Micro elements H₃BO₃ 6.2 mg / l MnSO₄.1H₂O 22.3 mg / l ZnSO₄.4H₂O 8.6 mg / l AI 0.83 mg / l Na₂MoO₄.2H₂O 0.25 mg / l CuSO₄.5H₂O 0.025 mg / l CoCl₂.6H₂O 0.025 mg / l Fe-EDTA Na₂EDTA 37.2 mg / l FeSO₄.7H₂O 27.8 mg / l Inositol Thiamine 100 mg / l Sucrose 30 g / l Agar 8 g / l Vitamins 0.4 mg / l Hormones: NAA 1 mg / l Kinetin 0.2 mg / l pH 5.7 before autoclaving

Zur Transformation von Pflanzen bzw. Pflanzenzellen kann die folgende Literatur angeführt weren:
Aerts M, Jacobs M, Hernalsteens JP, Van Montagu M, Schell J (1983) Induction and in vitro culture of Arabidopsis thaliana crown gall tumours, Plant Sci Lett. 17: 43-50
Atamasov A, Brown DCW (1984) Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tiss Org. Cult. 3, 149-162
Czernilofsky et al. (1986) Studies of the Structure and Functional Organization of Foreign DNA Integrates into the Genome of Nicotiana tabacum. DNA, Vol. 5, No. 6 (1986), 473
Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of Petunia protoplasts by isolated Agrobacterium plasmid. Plant Sci Lett 18: 307-313
Deblaere R., Bytebier B., De Greve H, Deboeck F, Schell J, van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acid Research, Vol. 13, No. 13, 4777 (1985)
Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791-793
Hain, R., Stabel, P., Czernilofsky, A.Pp., Steinbiß, H.H., Herrera-Estrella, L., Schell, J. (1985) Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts. Molec Gen Genet 199: 161-168
Hernalsteens JP, Thia-Tong L, Schell J, Van Montagu M (1984) An Agrobacterium-transformed Cell culture from the monocot Asparagus officinalis. EMBO J 3:3039-3041
Herrera-Estrella L., De Block M., Messens E., Hernalsteens JP., van Montagu M., Schell J. (1983) EMBO J. 2: 987-995.
The following literature can be cited for the transformation of plants or plant cells:
Aerts M, Jacobs M, Hernalsteens JP, Van Montagu M, Schell J (1983) Induction and in vitro culture of Arabidopsis thaliana crown gall tumors, Plant Sci Lett. 17: 43-50
Atamasov A, Brown DCW (1984) Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tiss Org. Cult. 3, 149-162
Czernilofsky et al. (1986) Studies of the Structure and Functional Organization of Foreign DNA Integrates into the Genome of Nicotiana tabacum. DNA, Vol. 5, No. 6: 473 (1986)
Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of Petunia protoplasts by isolated Agrobacterium plasmid. Plant Sci Lett 18: 307-313
Deblaere R., Bytebier B., De Greve H, Deboeck F, Schell J, van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acid Research, Vol. 13, No. 13, 4777 (1985)
Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791-793
Hain, R., Stabel, P., Czernilofsky, A.Pp., Steinbiß, HH, Herrera-Estrella, L., Schell, J. (1985) Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts. Molec Gen Genet 199: 161-168
Hernalsteens JP, Thia-Tong L, Schell J, Van Montagu M (1984) An Agrobacterium-transformed Cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039-3041
Herrera-Estrella L., De Block M., Messens E., Hernalsteens JP., Van Montagu M., Schell J. (1983) EMBO J. 2 : 987-995.

Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti-plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens Nature 311: 763-764
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 277: 1229-1231
Kao KN, Michayluk MR (1980) Plant regeneration from Mesophyll protoplasts of Alfalfa. Z Pflanzenphysiol. 96, 135-141
Keller WA, Melchers G (1973) The effect of high pH and calcium on tobacco leaf protoplast fusion. Z Naturforschg 28c: 737-741
Krens FH, Molendijk L, Wullems GJ, Schilperoort RA (1982) in vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72-74
Koncz C, Schell J (1986) The promotor of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a noval type of Agrobacterium linary vector. Mol. Gen. Genet. (1986) 204: 338-396
Linsmaier DM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100-127
Marton L, Wullems GJ, Molendijk L, Schilperoort PR (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 1229-131
Nagy JI, Maliga P (1976) Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Z. Pflanzenphysiol 78: 453-455
Otten LABM, Schilperoort RA (1978) A rapid microscale method for the detection of Lysopin and Nopalin dehydrogenase activities. Biochim biophys acta 527: 497-500
Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3: 2717-2722
Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a gramineous monocot. Molec gen genet 199: 183-188
Shenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous cell cultures. Ca. J. Bot. 50, 199-204
Shillito RD, Paszkowski J. Potrykus I (1983) Agarose plating and Bead type culture technique enable and stimulate development of protoplast-derived colonies in an number of plant species. Pl Cell Rep 2: 244-247
Simons-Schreier A, Dissertation Universität Köln (1988) Studien zur Transformation von Medicago sativa und zur Expression eines Leghämoglobingens (1bc3) und eines chimären 1b-cat-Gens während der Symbiose in transgenen Pflanzen
Stuart DA, Strickland SG (1984) Somatic embryogenesis from cell cultures of Medicago sativa L. I. The role of amino acid additions to the regeneration medium. Plant Sci. Let. 34, 165-174
Stuart DA, Strickland SG (1984) Somatic embryogenesis from cell cultures of Medicago sativa L. II. The interaction of amino acids with ammonium. Plant Sci. Let. 34, 175-181
Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) Achimaeric resistance gen as a selectable marker in plant cells. Plant Mol. Biol. 5, 299-302.
Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti-plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens Nature 311: 763-764
Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 277: 1229-1231
Kao KN, Michayluk MR (1980) Plant regeneration from Mesophyll protoplasts of Alfalfa. Z plant physiol. 96, 135-141
Keller WA, Melchers G (1973) The effect of high pH and calcium on tobacco leaf protoplast fusion. Z Naturforschg 28c: 737-741
Krens FH, Molendijk L, Wullems GJ, Schilperoort RA (1982) in vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72-74
Koncz C, Schell J (1986) The promotor of T L -DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a noval type of Agrobacterium linary vector. Mol. Gen. Genet. (1986) 204: 338-396
Linsmaier DM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100-127
Marton L, Wullems GJ, Molendijk L, Schilperoort PR (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277: 1229-131
Nagy JI, Maliga P (1976) Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris. Z. Plant Physiol 78: 453-455
Otten LABM, Schilperoort RA (1978) A rapid microscale method for the detection of Lysopin and Nopalin dehydrogenase activities. Biochim biophys acta 527: 497-500
Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3: 2717-2722
Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a gramineous monocot. Molec genet 199: 183-188
Shenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous cell cultures. Approx. J. Bot. 50, 199-204
Shillito RD, Paszkowski J. Potrykus I (1983) Agarose plating and Bead type culture technique enable and stimulate development of protoplast-derived colonies in an number of plant species. Pl Cell Rep 2: 244-247
Simons-Schreier A, Dissertation University of Cologne (1988) Studies on the transformation of Medicago sativa and the expression of a leg hemoglobin gene (1bc3) and a chimeric 1b-cat gene during symbiosis in transgenic plants
Stuart DA, Strickland SG (1984) Somatic embryogenesis from cell cultures of Medicago sativa LI The role of amino acid additions to the regeneration medium. Plant Sci. Let. 34, 165-174
Stuart DA, Strickland SG (1984) Somatic embryogenesis from cell cultures of Medicago sativa L. II. The interaction of amino acids with ammonium. Plant Sci. Let. 34, 175-181
Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) Achimaeric resistance gen as a selectable marker in plant cells. Plant Mol. Biol. 5, 299-302.

Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promotor fragment from the Ti Plasmid of Agrobacterium tumefaciens. EMBO J 12: 2723-2730
Walker KA, Yu PC, Sato SJ, Jaworski EG (1978) The hormonal control of organ formation in callus of Medicago sativa L. cultured in vitro. Amer. J. Bot. 65(6), 654-659
Walker KA, Sato SJ (1981) Morphogenesis in callus tissue of Medicago sativa: The role of ammonium ion in somatic ambryogenesis. Plant Cell Tiss. Org. Cult. 1, 109-121
Wullems GJ, Molendijk L, Ooms G, Schilperoort RA (1981) Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens - induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum. Proc Natl Acad Sci 78: 4344-4348
Zambryski P, Joos H, Genetello C, van Montagu M, Schell J (1983) Ti-plasmid vector for the introduction of DNA into plant cells without altering their normal regeneration capacity, EMBO J 12: 2143-2150.
Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promotor fragment from the Ti Plasmid of Agrobacterium tumefaciens. EMBO J 12: 2723-2730
Walker KA, Yu PC, Sato SJ, Jaworski EG (1978) The hormonal control of organ formation in callus of Medicago sativa L. cultured in vitro. Amer. J. Bot. 65 (6), 654-659
Walker KA, Sato SJ (1981) Morphogenesis in callus tissue of Medicago sativa: The role of ammonium ion in somatic ambryogenesis. Plant Cell Tiss. Org. Cult. 1, 109-121
Wullems GJ, Molendijk L, Ooms G, Schilperoort RA (1981) Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens - induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum. Proc Natl Acad Sci 78: 4344-4348
Zambryski P, Joos H, Genetello C, van Montagu M, Schell J (1983) Ti-plasmid vector for the introduction of DNA into plant cells without altering their normal regeneration capacity, EMBO J 12: 2143-2150.

Bernd Reiss, Rolf Sprengel, Hans Will and Heinz Schaller (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell tracts, GENE 1081: 211-217
Peter H. Schreier, Elisabeth A. Seftor, Jozef Schell and Hans. J. Bohnert (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts, EMBO J Vol. 4, No. 1: 25-32
Gamborg O. L., Miller R. A. and Ojima K. (1968) Nutrient requirements of suspension cultures of soybean root cells, Experimental Cell Research 50: 151-158
Michael M. Oelck, Dissertation, 1984, University of Cologne, Federal Republic of Germany, Regeneration von Leguminosen aus Gewebe- und Zellkulturen
Weiterhin können die folgenden veröffentlichten Patentanmeldungen aufgeführt werden:
EP-A 116 718
EP-A 159 418
EP-A 120 515
EP-A-120 516
EP-A-172 112
EP-A-140 556
EP-A-174 166
EP-A-122 791
EP-A-126 546
EP-A-164 597
EP-A-175 966
WO 84/02913
WO 84/02919
WO 84/02920
WO 83/01176
Bernd Reiss, Rolf Sprengel, Hans Will and Heinz Schaller (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell tracts, GENE 1081: 211-217
Peter H. Schreier, Elisabeth A. Seftor, Jozef Schell and Hans. J. Bohnert (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts, EMBO J Vol. 4, No. 1: 25-32
Gamborg OL, Miller RA and Ojima K. (1968) Nutrient requirements of suspension cultures of soybean root cells, Experimental Cell Research 50: 151-158
Michael M. Oelck, dissertation, 1984, University of Cologne, Federal Republic of Germany, regeneration of legumes from tissue and cell cultures
The following published patent applications can also be listed:
EP-A 116 718
EP-A 159 418
EP-A 120 515
EP-A-120 516
EP-A-172 112
EP-A-140 556
EP-A-174 166
EP-A-122 791
EP-A-126 546
EP-A-164 597
EP-A-175 966
WO 84/02913
WO 84/02919
WO 84/02920
WO 83/01176

Erläuterungen zu Fig. 1 und Fig. 2Explanations to FIGS. 1 and 2

Fig. 1Fig. 1
stellt den durch partielle Spaltung mit EcoRI und HindIII aus dem Plasmid pGS 828.1 erhaltenen Nukleinsäureabschnitt mit 6700 Nukleotid-Paaren dar, der das Stilbensynthase-Gen enthält.
(1) und (2) deuten Anfang (1) und Ende (2) des Strukturgens an. Der Regulator-Teil des Gens befindet sich auf dem linken Abschnitt (links von (1)). Folgende Restriktionsenzymschnittstellen sind angegeben:
E: EcoRI
H: HindIII
P: PstI
S: SstI
represents the nucleic acid segment with 6700 nucleotide pairs obtained from the plasmid pGS 828.1 by partial cleavage with EcoRI and HindIII and which contains the stilbene synthase gene.
(1) and (2) indicate the beginning (1) and end (2) of the structural gene. The regulatory part of the gene is on the left section (left of (1)). The following restriction enzyme interfaces are indicated:
E: EcoRI
H: Hind III
P: PstI
S: SstI
Fig. 2Fig. 2
stellt die Gen-Einheit gemäß Fig. 1 im Vektor pSP 65 dar. Das gesamte Plasmid trägt die Bezeichnung pGS828.1.
"ORI" bedeutet Origin of Replication (die Sequenzen im Vektor pSP65, die für die Vermehrung des Plasmids in Escherichia coli wichtig sind). "AMPR" steht für das Gen welche die Resistenz von pSP65 enthaltenden Escherichia coli gegen Ampicillin bewirkt. Außer den in Fig. 1 angegebenen Restriktionsschnittstellen ist die als Pv bezeichnete PvuII Schnittstelle angegeben.
represents the gene unit according to FIG. 1 in the vector pSP 65. The entire plasmid is designated pGS828.1.
"ORI" means Origin of Replication (the sequences in the vector pSP65 which are important for the multiplication of the plasmid in Escherichia coli). "AMP R " stands for the gene which brings about the resistance of pSP65-containing Escherichia coli to ampicillin. In addition to the restriction interfaces shown in FIG. 1, the PvuII interface designated as Pv is indicated.

Claims (21)

  1. Stilbene synthase gene corresponding to the stilbene synthase gene which is contained in plasmid pGS 828.1 (obtainable from E. coli DSM 4243), and the DNA sequences derived therefrom with stilbene synthase activity.
  2. Stilbene synthase gene according to Claim 1, in which stilbene stynthase means resveratrol synthase and pinosylvine synthase.
  3. Stilbene synthase gene according to Claims 1 and 2, which can be obtained from groundnut (Arachis hypogaea), Pinus and vine.
  4. Stilbene synthase gene unit which consists of approximately 6,700 base pairs and exhibits 3 EcoRI, 3 HindIII and 1 PstI cleavage sites, and which can be obtained by partial cleavage of the plasmid pGS 828.1 (obtainable from E. coli DSM 4243) using EcoRI and HindIII, or from plasmid pGS 828.1 (obtainable from E. coli DSM 4243) with the aid of SstI and PvuII.
  5. Part, with regulatory activity, of the stilbene synthase gene according to Claims 1 to 4.
  6. Structural gene of the stilbene synthase gene according to Claims 1 to 4.
  7. DNA containing the following sequence, which can be present either with or without intron, and the DNA sequences derived therefrom with stilbene synthase activity:
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
  8. DNA consisting of or recombinant DNA containing the DNA sequence of the encoding DNA region according to Claim 7, including the DNA sequences derived therefrom with stilbene synthase activity.
  9. Stilbene synthase gene or gene unit containing the DNA according to Claim 7.
  10. Recombinant prokaryotic or eukaryotic DNA, which contains one or more stilbene synthase genes or gene units and/or their structural genes or their regulatory gene parts and/or the DNA according to Claims 1 to 9 as "foreign" DNA or as "additional" DNA.
  11. Recombinant DNA according to Claim 10, which is contained in plant cells (including protoplasts) or plants (including parts of plants and seeds).
  12. Vectors, which contain one or more stilbene synthase genes or gene units or their structural genes or their regulatory gene parts and/or the DNA according to Claims 1 to 9 and/or the recombinant DNA according to Claim 10.
  13. Vector plasmid pGS 828.1 (obtainable from E. coli DSM 4243).
  14. Transformed microorganisms, which contain one or more stilbene synthase genes or gene units and/or their structural genes or their regulatory gene parts and/or the DNA according to Claims 1 to 9 and/or the recombinant DNA according to Claim 10.
  15. Escherichia coli strain Nurdug 2010 (corresponding to E. coli DSM 4243) and its mutants and variants.
  16. Use of the stilbene synthase gene or the gene unit and/or its structural gene or its regulatory gene part and/or the DNA and/or the recombinant DNA and/or the vectors and/or the transformed microorganisms according to Claims 1 to 15 for the transformation of plant cells (including protoplasts) and plants (including parts of plants and seeds).
  17. Transformed plant cells (including protoplasts) and plants (including parts of plants and seeds), which contain one or more stilbene synthase genes or gene units and/or their structural genes or their regulatory gene parts and/or the DNA and/or the recombinant DNA according to Claims 1 to 10 as "foreign" or "additional" DNA.
  18. Process for the preparation of transformed plant cells (including protoplasts) and plants (including parts of plants and seeds) according to Claim 17, characterised in that
    (a) one or more stilbene synthase genes or gene units and/or their structural genes or their regulatory gene parts and/or the DNA and/or the recombinant DNA according to Claims 1 to 10 are introduced into the genome of plant cells (including protoplasts), and, if appropriate,
    (b) complete transformed plants are regenerated from the transformed plant cells (including protoplasts), and, if appropriate,
    (c) the desired parts of the plants (including seeds) are recovered from the transformed plants thus obtained.
  19. Use of transformed plant cells (including protoplasts) according to Claim 17 for the production of propagation material and for the production of novel plants and propagation material thereof.
  20. Propagation material, which can be obtained by the propagation of the transformed plant cells and plants according to Claim 17.
  21. Transformed plant cells (including protoplasts) and plants (including parts of plants and seeds) according to Claim 17, the process for their preparation according to Claim 18, and their use according to Claim 19, and also the propagation material according to Claim 20, in which the plant cells and plants are tobacco, lucerne or potato plant cells and tobacco, lucerne or potato plants.
EP88115368A 1987-09-30 1988-09-20 Stilbene synthase gene Expired - Lifetime EP0309862B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3733017 1987-09-30
DE19873733017 DE3733017A1 (en) 1987-09-30 1987-09-30 Stilbene synthase gene

Publications (2)

Publication Number Publication Date
EP0309862A1 EP0309862A1 (en) 1989-04-05
EP0309862B1 true EP0309862B1 (en) 1992-08-12

Family

ID=6337281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88115368A Expired - Lifetime EP0309862B1 (en) 1987-09-30 1988-09-20 Stilbene synthase gene

Country Status (4)

Country Link
US (1) US5985647A (en)
EP (1) EP0309862B1 (en)
JP (1) JP2812685B2 (en)
DE (2) DE3733017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946124B2 (en) 2011-02-17 2015-02-03 Bayer Intellectual Property Gmbh Substituted 3-(biphenyl-3-yl)-8,8-difluoro-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy and halogen-substituted spirocyclic ketoenols
US9049863B2 (en) 2011-03-18 2015-06-09 Bayer Intellectual Property Gmbh Substituted (3R,4R)-4-cyan-3,4-diphenylbutanoates, method for the production thereof and use thereof as herbicides and plant growth regulators

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3837752A1 (en) * 1988-11-07 1990-05-10 Max Planck Gesellschaft SPIRITUALIZED DNA SEQUENCE FROM SOLANUM TUBEROSUM AND ITS USE
WO1991018984A2 (en) * 1990-06-07 1991-12-12 Mogen International N.V. New antifungal preparations, process for making such preparations, process for obtaining plants with decreased susceptibility to fungi
DE4107396A1 (en) * 1990-06-29 1992-01-02 Bayer Ag STYLE SYNTHASE GENES FROM VINEYARD
US6262338B1 (en) 1990-10-06 2001-07-17 Bayer Aktiengesellschaft Resistance genes
DE4031758A1 (en) * 1990-10-06 1992-04-09 Bayer Ag RESISTANCE GENES
DE4130986A1 (en) * 1991-09-18 1993-03-25 Bayer Ag PINOSYLVIN SYNTHASE GENES
DE4334791A1 (en) * 1993-10-13 1995-04-20 Bayer Ag Bibenzyl synthase genes
CA2360365A1 (en) * 1999-01-29 2000-08-03 The Samuel Roberts Noble Foundation, Inc. Transgenic plants modified to contain resveratrol glucoside and uses thereof
US6974895B1 (en) 1999-01-29 2005-12-13 The Samuel Roberts Noble Foundation, Inc. Transgenic legume plants modified to produce resveratrol glucoside and uses thereof
EP1167528A1 (en) * 2000-06-23 2002-01-02 Wageningen University Botrytis cinerea laccase
EP2206703A1 (en) 2008-12-30 2010-07-14 Bayer CropScience AG Pyrimidine derivatives and use thereof for combating undesired plant growth
US7977049B2 (en) 2002-08-09 2011-07-12 President And Fellows Of Harvard College Methods and compositions for extending the life span and increasing the stress resistance of cells and organisms
AU2004253579B2 (en) 2003-07-01 2010-12-23 Biomol International L.P. Sirt1 modulators for manipulating cells/organism lifespan/stress response
AU2004312072B2 (en) * 2003-12-29 2011-06-23 President And Fellows Of Harvard College Compositions for treating or preventing obesity and insulin resistance disorders
US8017634B2 (en) 2003-12-29 2011-09-13 President And Fellows Of Harvard College Compositions for treating obesity and insulin resistance disorders
GB0503657D0 (en) 2005-02-22 2005-03-30 Fluxome Sciences As Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof
WO2006138418A2 (en) 2005-06-14 2006-12-28 President And Fellows Of Harvard College Improvement of cognitive performance with sirtuin activators
GB0614442D0 (en) 2006-07-20 2006-08-30 Fluxome Sciences As Metabolically engineered cells for the production of pinosylvin
EP2065373A1 (en) 2007-11-30 2009-06-03 Bayer CropScience AG Chiral 3-(benzylsulfinyl)-5,5-dimethyl-4,5-dihydroisoxazole and 5,5-dimethyl-3-[(1H-pyrazol-4-ylmethyl) sulfinyl]-4,5-dihydroisoxazole derivatives, methods for their preparation and their use as herbicides and plant growth regulators
EP2065374A1 (en) 2007-11-30 2009-06-03 Bayer CropScience AG 2-(benzyl- and 1H-pyrazol-4-ylmethyl)sulfinyl-thiazol-derivatives as herbicides and plant growth regulators
EP2072512A1 (en) 2007-12-20 2009-06-24 Bayer CropScience AG Herbicide compounds based on N-Azinyl-N'-pyridylsulfonyl-ureas
DE102008006005A1 (en) 2008-01-25 2009-07-30 Bayer Cropscience Ag New N-azinyl-N'-pyridylsulfonyl-urea compounds useful e.g. as herbicide, plant growth regulator and plant protection regulator and to combat undesirable plant growth e.g. Agrostis in special plant cultures e.g. wheat, barley and rye
EP2110019A1 (en) 2008-04-19 2009-10-21 Bayer CropScience AG Herbicidal compounds based on N-Azinyl-N'-phenylsulfonylureas
EP2112149A1 (en) 2008-04-22 2009-10-28 Bayer CropScience Aktiengesellschaft 2-[(1H-Pyrazol-4-ylmethyl)-sulfonyl]-oxazole derivatives, 2-[(1H-pyrazol-4-ylmethyl)-sulfanyl]-oxazole derivatives and chiral 2-[(1H-pyrazol-4-ylmethyl)-sulfinyl]-oxazole derivatives, method for production of same and their use as herbicides and plant growth regulators
EP2112143A1 (en) 2008-04-22 2009-10-28 Bayer CropScience AG 2-(benzylsulfonyl)-oxazol-derivatives, chiral 2-(benzylsulfinyl]-oxazol derivatives, 2-(benzylsulfanyl-oxazol) derivatives, process for their preparation, as well as their use as herbicide and plant growth regulators
EP2127521A1 (en) 2008-05-29 2009-12-02 Bayer CropScience Aktiengesellschaft 4-(3-Alkylsulfinylbenzoyl)pyrazoles as herbicides
EP2147919A1 (en) 2008-07-24 2010-01-27 Bayer CropScience Aktiengesellschaft Heterocyclic substituted amides, method for their manufacture and their use as herbicides
EP2191719A1 (en) 2008-11-29 2010-06-02 Bayer CropScience AG Herbicide safener combination
EP2210492A1 (en) 2008-11-29 2010-07-28 Bayer CropScience AG Herbicide safener combination
US8389443B2 (en) 2008-12-02 2013-03-05 Bayer Cropscience Ag Geminal alkoxy/alkylspirocyclic substituted tetramate derivatives
US8846946B2 (en) 2008-12-02 2014-09-30 Bayer Cropscience Ag Germinal alkoxy/alkylspirocyclic substituted tetramate derivatives
DE102008063561A1 (en) 2008-12-18 2010-08-19 Bayer Cropscience Ag Hydrazides, process for their preparation and their use as herbicides and insecticides
EP2210879A1 (en) 2008-12-30 2010-07-28 Bayer CropScience AG Pyrimidine derivatives and use thereof for combating undesired plant growth
CA2754847C (en) 2009-03-11 2017-07-11 Bayer Cropscience Ag Halogenalkylmethylenoxy-phenyl-substituted ketoenols
EP2229813A1 (en) 2009-03-21 2010-09-22 Bayer CropScience AG Pyrimidine-4-ylpropandinitrile derivatives, method for their manufacture and their use as herbicides and plant growth regulators
EP2245935A1 (en) 2009-05-02 2010-11-03 Bayer CropScience AG Herbicide compounds based on N-Azinyl-N-pyridylsulfonyl-uric substances
EP2432785B1 (en) 2009-05-19 2014-10-15 Bayer CropScience AG Herbicidal spiroheterocyclic tetronic acid derivatives
ES2879599T3 (en) 2009-06-08 2021-11-22 Nunhems Bv Drought tolerant plants
WO2011012248A2 (en) 2009-07-29 2011-02-03 Bayer Cropscience Ag 2-(3-aminobenzoyl)-3-cyclopropyl-3-oxopropane nitriles and use thereof as herbicides
WO2011035878A1 (en) 2009-09-25 2011-03-31 Bayer Cropscience Ag Herbicidally effective phenyl-substituted pyridazinones
EP2327700A1 (en) 2009-11-21 2011-06-01 Bayer CropScience AG Dialkyl triazinamines and use thereof for combating undesired plant growth
WO2011082954A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
WO2011082964A1 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
LT2515658T (en) 2009-12-17 2016-09-26 Bayer Intellectual Property Gmbh Herbicidal agents containing flufenacet
WO2011082956A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
WO2011082968A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
EP2512249B1 (en) 2009-12-17 2016-06-01 Bayer Intellectual Property GmbH Herbicides comprising flufenacet
WO2011082955A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents comprising flufenacet
WO2011082953A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents comprising flufenacet
EP2512248B1 (en) 2009-12-17 2016-08-10 Bayer Intellectual Property GmbH Herbicidal agents comprising flufenacet
WO2011082959A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
WO2011082957A2 (en) 2009-12-17 2011-07-14 Bayer Cropscience Ag Herbicidal agents containing flufenacet
UY33140A (en) 2009-12-23 2011-07-29 Bayer Cropscience Ag TOLERANT PLANTS TO INHIBITING HERBICIDES OF HPPD
CA2785211C (en) 2009-12-23 2018-12-11 Bayer Intellectual Property Gmbh Plants tolerant to hppd inhibitor herbicides
CN102762725A (en) 2009-12-23 2012-10-31 拜尔知识产权有限公司 Plants tolerant to hppd inhibitor herbicides
AR079972A1 (en) 2009-12-23 2012-03-07 Bayer Cropscience Ag TOLERANT PLANTS TO INHIBITING HERBICIDES OF HPPD
EA201290572A1 (en) 2009-12-23 2013-05-30 Байер Интеллектуэль Проперти Гмбх PLANTS RESISTANT TO HERBICIDES - HPPD INHIBITORS
EP2534147B1 (en) 2010-02-10 2015-06-17 Bayer Intellectual Property GmbH Spiroheterocyclic-substituted tetramic acid derivatives
BR112012020084B1 (en) 2010-02-10 2017-12-19 Bayer Intellectual Property Gmbh A process for the preparation of pesticides and / or herbicides and / or fungi and / or fungi and / or fungicides and / or fungicides and / or fungicides and / or fungicides. METHOD FOR INCREASING THE ACTION OF PESTICIDES AND / OR HERBICIDES AND / OR FUNGICIDES COMPREHENDING SUCH COMPOUNDS
WO2011117184A1 (en) 2010-03-24 2011-09-29 Bayer Cropscience Ag Fludioxonil derivates
EP2371823A1 (en) 2010-04-01 2011-10-05 Bayer CropScience AG Cyclopropyl-substituted phenylsulfonylamino(thio)carbonyltriazolinones, their production and use as herbicides and plant growth regulators
WO2011138280A2 (en) 2010-05-04 2011-11-10 Bayer Cropscience Ag Herbicide/safener combinations comprising arylpyridazinones and safener
EP2571363A1 (en) 2010-05-21 2013-03-27 Bayer Intellectual Property GmbH Herbicidal agents for tolerant or resistant rape cultures
CN103025167A (en) 2010-05-21 2013-04-03 拜耳知识产权有限责任公司 Herbicidal agents for tolerant or resistant rice cultures
CN103025168A (en) 2010-05-21 2013-04-03 拜耳知识产权有限责任公司 Herbicidal agents for tolerant or resistant corn cultures
EP2571365A1 (en) 2010-05-21 2013-03-27 Bayer Intellectual Property GmbH Herbicidal agents for tolerant or resistant grain cultures
GB201008826D0 (en) 2010-05-26 2010-07-14 Fluxome Sciences As Production of metabolites
JP2013537523A (en) 2010-07-21 2013-10-03 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー (4-Trifluoromethyl-3-thiobenzoyl) cyclohexanediones and their use as herbicides
MX2013000798A (en) 2010-07-21 2013-02-27 Bayer Ip Gmbh (4-halogenalkyl-3-thiobenzoyl)cyclohexanediones and use thereof as herbicides.
MX2013000589A (en) 2010-07-21 2013-03-05 Bayer Ip Gmbh 4-(4-halogenalkyl-3-thiobenzoyl)pyrazoles and use thereof as herbicides.
WO2012028582A1 (en) 2010-09-01 2012-03-08 Bayer Cropscience Ag Herbicidally active ketosultams and diketopyridines
KR101796483B1 (en) 2010-09-01 2017-11-10 바이엘 인텔렉쳐 프로퍼티 게엠베하 N-(tetrazol-5-yl)- and n-(triazol-5-yl)arylcarboxamides and use thereof as herbicides
EP2611815A1 (en) 2010-09-01 2013-07-10 Bayer Intellectual Property GmbH Herbicide-effective pyridyl ketosultams
AU2011317665A1 (en) 2010-10-22 2013-05-02 Bayer Intellectual Property Gmbh Novel substituted picolinic acids, salts and acid derivatives thereof, and use thereof as herbicides
AU2011325224A1 (en) 2010-11-02 2013-05-30 Bayer Intellectual Property Gmbh Phenyl-substituted bicyclooctane-1,3-dione-derivatives
BR112013014931A2 (en) 2010-12-16 2016-07-19 Bayer Ip Gmbh 6- (2-Aminophenyl) picolinates and their use as herbicides
EP2471776A1 (en) 2010-12-28 2012-07-04 Bayer CropScience AG Pyridin-2-ylpropandinitriles and their use as herbicides
US9204640B2 (en) 2011-03-01 2015-12-08 Bayer Intellectual Property Gmbh 2-acyloxy-pyrrolin-4-ones
CN103429578B (en) 2011-03-15 2016-06-01 拜耳知识产权有限责任公司 Herbicide-safener composition
ES2532486T3 (en) 2011-03-15 2015-03-27 Bayer Intellectual Property Gmbh N- (1,2,5-oxadiazol-3-yl) -, N- (tetrazol-5-yl) - and N- (triazol-5-yl) bicycloarylcarboxylic acid amides and their use as herbicides
EP2686296B1 (en) 2011-03-18 2018-09-26 Bayer CropScience AG Substituted 4-cyan-3-(2,6-difluorophenyl)-4-phenylbutanoates, method for the production thereof and use thereof as herbicides and plant growth regulators
CN103596946B (en) 2011-03-22 2016-05-11 拜耳知识产权有限责任公司 N-(1,3,4-oxadiazole-2-yl) aryl carboxamides and as the purposes of herbicide
JP5968999B2 (en) 2011-03-31 2016-08-10 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 3-phenylisoxazoline-5-carboxamide and 3-phenylisoxazoline-5-thioamide active as herbicides and fungicides
EP2524602A1 (en) 2011-05-20 2012-11-21 Bayer CropScience AG Herbicide agent for tolerant or resistant soya cultures
AU2012263060B2 (en) 2011-05-31 2016-11-03 Keygene N.V. Pest resistant plants
ES2561887T3 (en) 2011-07-27 2016-03-01 Bayer Intellectual Property Gmbh Picolinic acids and substituted pyridimine-4-carboxylic acids, process for their preparation and use as herbicides and plant growth regulators
DE102011080001A1 (en) 2011-07-28 2012-10-25 Bayer Cropscience Ag Use of seed treatment active substance comprising carbamate insecticides, e.g. as safeners for avoiding or reducing phytotoxic effects of herbicides on useful plants, preferably crop plants, and in crop plants protective agents
EP2486797A1 (en) 2011-07-28 2012-08-15 Bayer CropScience AG Use of seed treatment agents from the carbamate insecticide group as safeners for oxadiozole herbicides
DE102011080007A1 (en) 2011-07-28 2012-09-13 Bayer Cropscience Ag Use of seed treatment agents comprising conazole or triazole fungicides e.g. as safeners for avoiding or reducing phytotoxic effects of herbicides e.g. carbamate, thiocarbamate and haloacetanilide, on crops, preferably cultural crops
EP2486796A1 (en) 2011-07-28 2012-08-15 Bayer CropScience AG Use of seed treatment agents from the pyrazole insecticide group as safeners for oxadiozole herbicides
DE102011079997A1 (en) 2011-07-28 2012-09-13 Bayer Corpscience Ag Use of seed treatment agents comprising pyrazole insecticides e.g. as safeners for avoiding or reducing phytotoxic effects of herbicides e.g. carbamate, thiocarbamate and haloacetanilide, on crops, preferably cultural crops
DE102011080004A1 (en) 2011-07-28 2012-09-13 Bayer Cropscience Ag Use of seed treatment agents, comprising carbamate fungicides as safeners, for preventing or reducing phytotoxic effects of herbicides on useful plants, preferably cultivated plants
DE102011080010A1 (en) 2011-07-28 2012-10-25 Bayer Cropscience Ag Use of seed treatment agents comprising anilide and thiazole fungicides, e.g. as safeners for avoiding or reducing phytotoxic effects of herbicides e.g. carbamate, thiocarbamate and haloacetanilide, on crops, preferably cultural crops
DE102011080016A1 (en) 2011-07-28 2012-10-25 Bayer Cropscience Ag Use of seed treatment active substance comprising strobilurin fungicides, e.g. as safeners for avoiding or reducing phytotoxic effects of herbicides on useful plants, preferably crop plants, and in crop plants protective agents
EP2486795A1 (en) 2011-07-28 2012-08-15 Bayer Cropscience AG Use of seed treatment agents from the nicotinoid insecticide group as safeners for oxadiozole herbicides
DE102011079991A1 (en) 2011-07-28 2012-09-13 Bayer Crop Science Ag Use of seed treating-agent comprising nicotinoid insecticide as a safener for avoiding or reducing phytotoxic effects of herbicide on useful plants, preferably crop plants
DE102011080020A1 (en) 2011-07-28 2012-09-13 Bayer Cropscience Ag Use of seed treatment agents, comprising dicarboximide fungicides as safeners, for preventing or reducing phytotoxic effects of herbicides on useful plants, preferably cultivated plants
EP2739611B1 (en) 2011-08-03 2015-05-13 Bayer Intellectual Property GmbH N-(tetrazol-5-yl)- and n-(triazol-5-yl)aryl carboxamides and their use as hebicides
AU2012293611B2 (en) 2011-08-11 2017-02-09 Bayer Cropscience Ag 1,2,4-triazolyl-substituted keto-enols
US20150059018A1 (en) 2011-10-19 2015-02-26 Keygene N.V. Methods and compositions for producing drimenol
EP2589598A1 (en) 2011-11-03 2013-05-08 Bayer CropScience AG 5-phenyl substituted N-(Tetrazol-5-yl)- and N-(Triazol-5-yl)aryl carboxylic acid amides and use of same as herbicides
AU2012331283A1 (en) 2011-11-03 2014-05-22 Bayer Intellectual Property Gmbh Herbicidally active oxime-ether-substituted benzoylamides
EP2589293A1 (en) 2011-11-03 2013-05-08 Bayer CropScience AG Herbicide safener compounds containing N-(Tetrazol-5-yl)- and N-(Triazol-5-yl)aryl carboxylic acid amides
UA116532C2 (en) 2011-12-13 2018-04-10 Байєр Інтеллектуал Проперті Гмбх N-(1,2,5-oxadiazol-3-yl)-, n-(1,3,4-oxadiazol-2-yl)-, n-(tetrazol-5-yl)- und n-(triazol-5-yl)-arylcarbonsaureamide und ihre verwendung als herbizide
WO2013104705A1 (en) 2012-01-11 2013-07-18 Bayer Intellectual Property Gmbh Tetrazol-5-yl- and triazol-5-yl-aryl compounds and use thereof as herbicides
US9167819B2 (en) 2012-02-21 2015-10-27 Bayer Intellectual Property Gmbh Herbicidal 3-(sulfin-/sulfonimidoyl)-benzamides
BR112014020234B1 (en) 2012-02-21 2019-09-10 Bayer Ip Gmbh sulfinylaminobenzamides, their use, herbicidal composition, and method for controlling unwanted plants
JP2015508769A (en) 2012-02-21 2015-03-23 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 4-Nitro-substituted N- (tetrazol-5-yl) arylcarboxylic acid amides, 4-nitro-substituted N- (triazol-5-yl) arylcarboxylic acid amides and 4-nitro-substituted N having herbicidal activity -(1,3,4-oxadiazol-2-yl) arylcarboxylic amides
WO2013124246A1 (en) 2012-02-22 2013-08-29 Bayer Intellectual Property Gmbh Herbicidally active 4-dialkoxymethyl-2-phenylpyrimidines
JP6062528B2 (en) 2012-03-29 2017-01-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 5-Aminopyrimidine derivatives and their use to control unwanted plant growth
EP3121172B1 (en) 2012-05-03 2018-10-17 Bayer Cropscience AG Sodium salt of 2-chloro-3- (methylsulfanyl) -n- (1-methyl-1h-tetrazol-5-yl) -4- (trifluoromethyl) benzamide and its use as a herbicide
UA117810C2 (en) 2012-05-24 2018-10-10 Байєр Кропсайєнс Акцієнгезелльшафт Herbicidal compositions comprising n-(tetrazol-5-yl)- or n-(triazol-5-yl)arylcarboxamides
WO2014001361A1 (en) 2012-06-27 2014-01-03 Bayer Cropscience Ag Herbicidal agents containing flufenacet
WO2014001248A1 (en) 2012-06-27 2014-01-03 Bayer Cropscience Ag Herbicidal compositions comprising flufenacet
LT2866560T (en) 2012-06-27 2019-03-25 Bayer Cropscience Ag Herbicidal agents containing flufenacet
WO2014001357A1 (en) 2012-06-27 2014-01-03 Bayer Cropscience Ag Herbicidal agents containing flufenacet
CA2885692C (en) 2012-09-25 2018-05-22 Bayer Cropscience Ag Herbicidal and fungicidal 5-oxy-substituted 3-phenylisoxazoline-5-carboxamides and 5-oxy-substituted 3-phenylisoxazoline-5-thioamides
JP6182215B2 (en) 2012-10-04 2017-08-16 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 1,2,4-triazine-3,5-dione-6-carboxamide and its use as a herbicide
AR094006A1 (en) 2012-12-18 2015-07-01 Bayer Cropscience Ag HERBICIDE AGENTS CONTAINING ACLONIFEN
AR093997A1 (en) 2012-12-18 2015-07-01 Bayer Cropscience Ag HERBICIDE AGENTS CONTAINING ACLONIFEN
AR093998A1 (en) 2012-12-18 2015-07-01 Bayer Cropscience Ag HERBICIDE AGENTS CONTAINING ACLONIFEN
WO2014142647A1 (en) 2013-03-14 2014-09-18 Wageningen Universiteit Fungals strains with improved citric acid and itaconic acid production
AR096517A1 (en) 2013-06-07 2016-01-13 Bayer Cropscience Ag DERIVATIVES OF 5-HIDROXI-2,3-DIFENYLPENTANONITRILE REPLACED, PROCEDURES FOR THEIR PREPARATION AND ITS USE AS HERBICIDES AND / OR REGULATORS OF GROWTH OF PLANTS
MY174553A (en) 2013-10-25 2020-04-25 Bayer Cropscience Ag Herbicidal compositions containing n-(1,3,4-oxadiazol-2-yl)-aryl carboxylic acid amides
EP3068772A1 (en) 2013-11-15 2016-09-21 Bayer CropScience Aktiengesellschaft 2-hetaryl-pyridazinone derivatives and their use as herbicides
EP2918581A1 (en) 2014-03-11 2015-09-16 Bayer CropScience AG 2-(Azinedionyl)-pyridazinone derivatives and their use as herbicides
AR100448A1 (en) 2014-05-21 2016-10-05 Bayer Cropscience Ag 5- (HETERO) ARIL-PIRIDAZINONAS AND ITS USE AS A HERBICIDE
WO2017005567A1 (en) 2015-07-03 2017-01-12 Bayer Cropscience Aktiengesellschaft N-(tetrazole-5-yl)- and n-(triazole-5-yl)aryl carboxamide derivatives with herbicidal action
MX2018000306A (en) 2015-07-03 2018-03-14 Bayer Cropscience Ag N-(1,3,4-oxadiazol-2-yl)aryl carboxamide derivatives with herbicidal action.
WO2017032728A1 (en) 2015-08-25 2017-03-02 Bayer Cropscience Aktiengesellschaft Substituted ketoxime benzoylamides
CN108290846B (en) 2015-09-28 2021-10-15 拜耳作物科学股份公司 Acylated N- (1,2, 5-oxadiazol-3-yl) -, N- (1,3, 4-oxadiazol-2-yl) -, N- (tetrazol-5-yl) -and N- (triazol-5-yl) -arylcarboxamides and their use as herbicides
AU2017230660B2 (en) 2016-03-07 2021-05-13 Bayer Cropscience Aktiengesellschaft Herbicidal compositions containing active substances from the group comprising HPPD inhibitors, safeners and triazines
CN109415352B (en) 2016-06-24 2022-04-26 拜耳作物科学股份公司 3-amino-1, 2, 4-triazine derivatives and their use for controlling unwanted plant growth
CR20190279A (en) 2016-12-07 2019-08-14 Bayer Cropscience Ag Herbicidal combination containing triafamone and indaziflam
KR20190116987A (en) 2017-02-13 2019-10-15 바이엘 크롭사이언스 악티엔게젤샤프트 Substituted benzyl-4-aminopicolinic acid esters and pyrimidino-4-carboxylic acid esters, methods for their preparation, and their use as herbicides and plant growth regulators
EP3360872A1 (en) 2017-02-13 2018-08-15 Bayer CropScience Aktiengesellschaft Substituted benzyl-4-aminopicolinic acid esters and pyrimidin-4-carboxylic acid ester, process for their preparation and use as herbicides and regulators of plant growth
EP3378315A1 (en) 2017-03-24 2018-09-26 Bayer CropScience Aktiengesellschaft Herbicidal mixtures comprising 2-[2,4-dichlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone
EP3378316A1 (en) 2017-03-24 2018-09-26 Bayer Aktiengesellschaft Herbicidal mixtures
EP3601242A1 (en) 2017-03-30 2020-02-05 Bayer CropScience Aktiengesellschaft Substituted n-(-1,3,4-oxadiazole-2-yl)aryl carboxamides and the use thereof as herbicides
BR112019020877A2 (en) 2017-04-05 2020-05-12 Bayer Cropscience Aktiengesellschaft 2-AMINO-5-OXYALKYL-PYRIMIDINE DERIVATIVES AND THEIR USE TO CONTROL THE GROWTH OF UNWANTED PLANTS
AU2018262058B2 (en) 2017-05-04 2022-03-10 Bayer Cropscience Aktiengesellschaft 4-difluoromethyl benzoyl amides with herbicidal action
BR112019026261B1 (en) 2017-06-13 2023-12-19 Bayer Cropscience Aktiengesellschaft 3- PHENYLYSOXAZOLINE-5-CARBOXAMIDES AND ITS USES TO CONTROL UNWANTED PLANTS
AU2018285213B2 (en) 2017-06-13 2022-05-19 Bayer Aktiengesellschaft Herbicidally active 3-phenylisoxazoline-5-carboxamides of tetrahydro and dihydrofuran carboxamides
TWI771440B (en) 2017-08-04 2022-07-21 德商拜耳廠股份有限公司 3-acylbenzamides and their use as herbicides
EP3668845B1 (en) 2017-08-17 2024-06-26 Bayer Aktiengesellschaft Herbicidally active 3-phenyl-5-trifluormethylisoxazolin-5-carboxamides of cyclopentyl carboxylic acids and esters
EP3360417A1 (en) 2017-11-02 2018-08-15 Bayer CropScience Aktiengesellschaft Use of sulfonylindol as herbicide
US11897904B2 (en) 2017-11-20 2024-02-13 Bayer Aktiengesellschaft Herbicidally active bicyclic benzamides
EP3720853A1 (en) 2017-12-04 2020-10-14 Bayer CropScience Aktiengesellschaft 3-amino-[1,2,4]-triazole derivatives and their use for controlling undesired plant growth
JP7217751B2 (en) 2018-01-25 2023-02-03 バイエル・アクチエンゲゼルシヤフト 3-phenylisoxazoline-5-carboxamides of cyclopentenylcarboxylic acid derivatives exhibiting herbicidal activity
US20220106271A1 (en) 2018-05-15 2022-04-07 Bayer Aktiengesellschaft 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
AR115087A1 (en) 2018-05-15 2020-11-25 Bayer Ag 3- (4-ALKINYL-6-ALCOXI-2-CHLOROPHENIL) -3-PYRROLIN-2-ONAS, A METHOD FOR ITS PREPARATION AND ITS USE AS HERBICIDES
WO2019219588A1 (en) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
AR115088A1 (en) 2018-05-15 2020-11-25 Bayer Ag SPIROCICLOHEXYLPIRROLIN-2-ONAS AND ITS USE AS HERBICIDES
WO2019228787A1 (en) 2018-05-29 2019-12-05 Bayer Aktiengesellschaft Specifically substituted 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-ones and their use as herbicides
WO2019228788A1 (en) 2018-05-29 2019-12-05 Bayer Aktiengesellschaft 2-bromo-6-alkoxyphenyl-substituted pyrrolin-2-ones and their use as herbicides
EP3802521A1 (en) 2018-06-04 2021-04-14 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
WO2020016134A1 (en) 2018-07-16 2020-01-23 Bayer Aktiengesellschaft Herbicidal mixtures containing aclonifen and cinmethylin
JP7472109B2 (en) 2018-09-19 2024-04-22 バイエル・アクチエンゲゼルシヤフト Herbicidally active substituted phenylpyrimidine hydrazides.
DK3890488T3 (en) 2018-12-07 2023-04-03 Bayer Ag HERBICIDE COMPOSITIONS
WO2020114934A1 (en) 2018-12-07 2020-06-11 Bayer Aktiengesellschaft Herbicide compositions
JP7422772B2 (en) 2019-01-14 2024-01-26 バイエル アクチェンゲゼルシャフト Herbicidal substituted N-tetrazolylarylcarboxamides
WO2020169509A1 (en) 2019-02-20 2020-08-27 Bayer Aktiengesellschaft Herbicidally active 4-(4-trifluormethyl-6-cycloropylpyrazolyl)pyrimidines
WO2020182723A1 (en) 2019-03-12 2020-09-17 Bayer Aktiengesellschaft Herbicidally active 3-phenylisoxazoline-5-carboxamides of s-containing cyclopentenyl carboxylic acid esters
CN113557232A (en) 2019-03-15 2021-10-26 拜耳公司 Specific substituted 3- (2-alkoxy-6-alkyl-4-propynylphenyl) -3-pyrrolin-2-ones and their use as herbicides
BR112021013645A2 (en) 2019-03-15 2021-09-14 Bayer Aktiengesellschaft 3- (2-HALO-6-ALKYL-4-PROPYNYLPHENYL)-3-PYRROLIN-2-ONAS SPECIALLY SUBSTITUTED AND ITS APPLICATION AS A HERBICIDE
EA202192470A1 (en) 2019-03-15 2022-02-11 Байер Акциенгезельшафт NEW 3-(2-BROMO-4-ALKYNYL-6-ALKOXYPHENYL)-3-PIRROLIN-2-ONES AND THEIR APPLICATION AS HERBICIDES
US20220386606A1 (en) 2019-03-15 2022-12-08 Bayer Aktiengesellschaft Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
EP3938350A1 (en) 2019-03-15 2022-01-19 Bayer Aktiengesellschaft 3-(2-brom-4-alkynyl-6-alkoxyphenyl)-substituted 5-spirocyclohexyl-3-pyrrolin-2-ones and their use as herbicides
EP3975720A1 (en) 2019-06-03 2022-04-06 Bayer Aktiengesellschaft 1-phenyl-5-azinyl pyrazolyl-3-oxyalkyl acids and their use for controlling undesired plant growth
CA3142289A1 (en) 2019-06-03 2020-12-10 Bayer Aktiengesellschaft Adjuvant combinations as foliar uptake accelerators for herbicidal compositions
JP2022539536A (en) 2019-07-04 2022-09-12 バイエル・アクチエンゲゼルシヤフト herbicide composition
BR112022011766A2 (en) 2019-12-19 2022-08-30 Bayer Ag 1,5-DIPHENYLPYRAZOLYL-3-OXYALKYL ACIDS AND 1-PHENYL-5-THIENYLPIRAZOLYL-3-OXYALKYL ACIDS AND USE OF THEM TO CONTROL UNWANTED PLANT GROWTH
EP4132915B1 (en) 2020-04-07 2023-11-29 Bayer Aktiengesellschaft Substituted isophtalic acid diamides
US20230150953A1 (en) 2020-04-07 2023-05-18 Bayer Aktiengesellschaft Substituted isophthalic acid diamides
BR112022019738A2 (en) 2020-04-07 2022-11-16 Bayer Ag SUBSTITUTED ISOPHTHALAMIDES AND THEIR USE AS HERBICIDES
WO2021204884A1 (en) 2020-04-09 2021-10-14 Bayer Aktiengesellschaft 3-(4-alkenyl-phenyl)-3-pyrrolin-2-ones and their use as herbicides
WO2021209486A1 (en) 2020-04-15 2021-10-21 Bayer Aktiengesellschaft Specifically substituted pyrroline-2-ones and their use as herbicides
EP4143181A1 (en) 2020-04-29 2023-03-08 Bayer Aktiengesellschaft 1-pyrazinylpyrazolyl-3-oxyalkyl acids and their derivatives, and their use for control of undesired plant growth
JP2023528589A (en) 2020-05-27 2023-07-05 バイエル・アクチエンゲゼルシヤフト Substituted pyrrolin-2-ones and their use as herbicides
MX2023004617A (en) 2020-10-23 2023-05-09 Bayer Ag 1-(pyridyl)-5-azinylpyrazole derivatives, and their use for control of undesired plant growth.
EP4026833A1 (en) 2021-01-12 2022-07-13 Bayer Aktiengesellschaft Herbicidally active 2-(het)arylmethyl pyrimidines
AU2022232186A1 (en) 2021-03-12 2023-09-28 Bayer Aktiengesellschaft Chiral n-(1,3,4-oxadiazole-2-yl)phenyl carboxylic acid amides and their use as herbicides
WO2022253700A1 (en) 2021-06-01 2022-12-08 Bayer Aktiengesellschaft Specifically substituted pyrroline-2-ones and their use as herbicides
EP4358718A1 (en) 2021-06-25 2024-05-01 Bayer Aktiengesellschaft (1,4,5-trisubstituted-1h-pyrazole-3-yl)oxy-2-alkoxy alkyl acids and their derivatives, their salts and their use as herbicidal agents
WO2023274869A1 (en) 2021-06-29 2023-01-05 Bayer Aktiengesellschaft 3-(4-alkenyl-phenyl)-3-pyrrolino-2-ones and their use as herbicides
AR126252A1 (en) 2021-07-08 2023-10-04 Bayer Ag SUBSTITUTED BENZOIC ACID AMIDES
AU2022400175A1 (en) 2021-12-01 2024-07-18 Bayer Aktiengesellschaft (1,4,5-trisubstituted-1h-pyrazole-3-yl)oxy-2-alkoxythio alkyl acids and derivatives thereof, their salts and their use as herbicidal active agents
WO2024013016A1 (en) 2022-07-11 2024-01-18 Bayer Aktiengesellschaft Herbicidal compositions
WO2024041926A1 (en) 2022-08-25 2024-02-29 Bayer Aktiengesellschaft Herbicidal compositions
EP4353082A1 (en) 2022-10-14 2024-04-17 Bayer Aktiengesellschaft Herbicidal compositions
WO2024078871A1 (en) 2022-10-14 2024-04-18 Bayer Aktiengesellschaft 1-pyridyl-5-phenylpyrazolyl-3-oxy- and -3-thioalkyl acids and derivatives and their use for controlling undesired plant growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946124B2 (en) 2011-02-17 2015-02-03 Bayer Intellectual Property Gmbh Substituted 3-(biphenyl-3-yl)-8,8-difluoro-4-hydroxy-1-azaspiro[4.5]dec-3-en-2-ones for therapy and halogen-substituted spirocyclic ketoenols
US9049863B2 (en) 2011-03-18 2015-06-09 Bayer Intellectual Property Gmbh Substituted (3R,4R)-4-cyan-3,4-diphenylbutanoates, method for the production thereof and use thereof as herbicides and plant growth regulators

Also Published As

Publication number Publication date
EP0309862A1 (en) 1989-04-05
DE3873672D1 (en) 1992-09-17
US5985647A (en) 1999-11-16
JP2812685B2 (en) 1998-10-22
JPH01101888A (en) 1989-04-19
DE3733017A1 (en) 1989-04-13

Similar Documents

Publication Publication Date Title
EP0309862B1 (en) Stilbene synthase gene
EP0464461B1 (en) Stilbensynthase gene of grapevine
US5689046A (en) Stilbene synthase gene
DE69434312T2 (en) REGULATION OF PLANT GROWTH
EP0533010A2 (en) Pinosylvin-Synthase-Gene
DE3786898T2 (en) TRANSFORMATION AND EXPRESSION OF A FOREIGN GENE IN -i (BRASSICA) SPECIES.
EP0516958A2 (en) Caffeoyl-coA-3-O-methyltransferase gene
EP0331083A2 (en) Method for the production of transgenic plants
DE4317845A1 (en) Deoxyribonucleic acids
EP0412381B1 (en) Use of lysozyme gene constructions in plants for enhanced resistance
EP0298918A2 (en) Inducible virus resistance in plants
EP0462065B1 (en) New signal sequences
EP0787196A1 (en) Dna sequence and its use
DE19501840A1 (en) Deoxyribonucleic acid and its use
EP0648839A1 (en) Bibenzylsynthase gene
EP0480236A2 (en) Resistance gene
US6262338B1 (en) Resistance genes
DE19525034A1 (en) DNA sequences and their use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19911015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3873672

Country of ref document: DE

Date of ref document: 19920917

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060824

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060907

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060920

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060926

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060927

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061005

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAYER AKTIENGESELLSCHAFT

Free format text: BAYER AKTIENGESELLSCHAFT# #D-51368 LEVERKUSEN (DE) -TRANSFER TO- BAYER AKTIENGESELLSCHAFT# #D-51368 LEVERKUSEN (DE)

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070920