EP0300410B1 - Photopolymerizable composition - Google Patents
Photopolymerizable composition Download PDFInfo
- Publication number
- EP0300410B1 EP0300410B1 EP88111530A EP88111530A EP0300410B1 EP 0300410 B1 EP0300410 B1 EP 0300410B1 EP 88111530 A EP88111530 A EP 88111530A EP 88111530 A EP88111530 A EP 88111530A EP 0300410 B1 EP0300410 B1 EP 0300410B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- compound
- sensitizer
- formula
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 53
- -1 thiol compound Chemical class 0.000 claims description 50
- 239000012190 activator Substances 0.000 claims description 19
- 239000003999 initiator Substances 0.000 claims description 12
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 125000001624 naphthyl group Chemical group 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- 125000005520 diaryliodonium group Chemical group 0.000 claims description 4
- 150000008282 halocarbons Chemical class 0.000 claims description 4
- 150000001451 organic peroxides Chemical class 0.000 claims description 4
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 3
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000004414 alkyl thio group Chemical group 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 claims description 2
- 238000000034 method Methods 0.000 description 19
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 0 CCCCC(C[C@@](CC1CC*)*(C)=*C(C)=*c(cccc2)c2S)C1I Chemical compound CCCCC(C[C@@](CC1CC*)*(C)=*C(C)=*c(cccc2)c2S)C1I 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical class OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical class C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012719 thermal polymerization Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 244000028419 Styrax benzoin Species 0.000 description 2
- 235000000126 Styrax benzoin Nutrition 0.000 description 2
- 235000008411 Sumatra benzointree Nutrition 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- 229960002130 benzoin Drugs 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 235000019382 gum benzoic Nutrition 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 2
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000016 photochemical curing Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 229940079877 pyrogallol Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- SKCKRZWCOYHBEC-UHFFFAOYSA-N (3-oxobutan-2-ylideneamino) benzoate Chemical compound CC(=O)C(C)=NOC(=O)C1=CC=CC=C1 SKCKRZWCOYHBEC-UHFFFAOYSA-N 0.000 description 1
- YLCILCNDLBSOIO-UHFFFAOYSA-N (3-prop-2-enoyloxyphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC(OC(=O)C=C)=C1 YLCILCNDLBSOIO-UHFFFAOYSA-N 0.000 description 1
- JMMVHMOAIMOMOF-UHFFFAOYSA-N (4-prop-2-enoyloxyphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=C(OC(=O)C=C)C=C1 JMMVHMOAIMOMOF-UHFFFAOYSA-N 0.000 description 1
- XBKVBPZGRMBIEB-UHFFFAOYSA-N (diphenyl-lambda3-iodanyl) 4-methylbenzenesulfonate Chemical compound Cc1ccc(cc1)S(=O)(=O)O[I](c1ccccc1)c1ccccc1 XBKVBPZGRMBIEB-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical compound ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- HUDYANRNMZDQGA-UHFFFAOYSA-N 1-[4-(dimethylamino)phenyl]ethanone Chemical compound CN(C)C1=CC=C(C(C)=O)C=C1 HUDYANRNMZDQGA-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- GYHJFWZSCIYJKD-UHFFFAOYSA-M 2,3-dimethyl-1,3-benzothiazol-3-ium;4-methylbenzenesulfonate Chemical compound C1=CC=C2[N+](C)=C(C)SC2=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 GYHJFWZSCIYJKD-UHFFFAOYSA-M 0.000 description 1
- URJAUSYMVIZTHC-UHFFFAOYSA-N 2,4,6-tris(tribromomethyl)-1,3,5-triazine Chemical compound BrC(Br)(Br)C1=NC(C(Br)(Br)Br)=NC(C(Br)(Br)Br)=N1 URJAUSYMVIZTHC-UHFFFAOYSA-N 0.000 description 1
- DXUMYHZTYVPBEZ-UHFFFAOYSA-N 2,4,6-tris(trichloromethyl)-1,3,5-triazine Chemical compound ClC(Cl)(Cl)C1=NC(C(Cl)(Cl)Cl)=NC(C(Cl)(Cl)Cl)=N1 DXUMYHZTYVPBEZ-UHFFFAOYSA-N 0.000 description 1
- BQDBORJXHYJUIV-UHFFFAOYSA-N 2-(2-bromophenyl)-2-[2-(2-bromophenyl)-4,5-diphenylimidazol-2-yl]-4,5-diphenylimidazole Chemical compound BrC1=CC=CC=C1C1(C2(N=C(C(=N2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C(=CC=CC=2)Br)N=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=N1 BQDBORJXHYJUIV-UHFFFAOYSA-N 0.000 description 1
- MYSSRTPFZFYMLM-UHFFFAOYSA-N 2-(2-chlorophenyl)-2-[2-(2-chlorophenyl)-4,5-bis(3-methoxyphenyl)imidazol-2-yl]-4,5-bis(3-methoxyphenyl)imidazole Chemical compound COC1=CC=CC(C=2C(=NC(N=2)(C=2C(=CC=CC=2)Cl)C2(N=C(C(=N2)C=2C=C(OC)C=CC=2)C=2C=C(OC)C=CC=2)C=2C(=CC=CC=2)Cl)C=2C=C(OC)C=CC=2)=C1 MYSSRTPFZFYMLM-UHFFFAOYSA-N 0.000 description 1
- GBOJZXLCJZDBKO-UHFFFAOYSA-N 2-(2-chlorophenyl)-2-[2-(2-chlorophenyl)-4,5-diphenylimidazol-2-yl]-4,5-diphenylimidazole Chemical compound ClC1=CC=CC=C1C1(C2(N=C(C(=N2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C(=CC=CC=2)Cl)N=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=N1 GBOJZXLCJZDBKO-UHFFFAOYSA-N 0.000 description 1
- GYQVIILSLSOFDA-UHFFFAOYSA-N 2-(2-methylphenyl)-2-[2-(2-methylphenyl)-4,5-diphenylimidazol-2-yl]-4,5-diphenylimidazole Chemical compound CC1=CC=CC=C1C1(C2(N=C(C(=N2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C(=CC=CC=2)C)N=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=N1 GYQVIILSLSOFDA-UHFFFAOYSA-N 0.000 description 1
- FNHQLSVILKHZNI-UHFFFAOYSA-N 2-(2-nitrophenyl)-2-[2-(2-nitrophenyl)-4,5-diphenylimidazol-2-yl]-4,5-diphenylimidazole Chemical compound [O-][N+](=O)C1=CC=CC=C1C1(C2(N=C(C(=N2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C(=CC=CC=2)[N+]([O-])=O)N=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=N1 FNHQLSVILKHZNI-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QRHHZFRCJDAUNA-UHFFFAOYSA-N 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine Chemical compound C1=CC(OC)=CC=C1C1=NC(C(Cl)(Cl)Cl)=NC(C(Cl)(Cl)Cl)=N1 QRHHZFRCJDAUNA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- RFCQDOVPMUSZMN-UHFFFAOYSA-N 2-Naphthalenethiol Chemical compound C1=CC=CC2=CC(S)=CC=C21 RFCQDOVPMUSZMN-UHFFFAOYSA-N 0.000 description 1
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 1
- JIKJXWFVPDDJNU-UHFFFAOYSA-N 2-[2-(4-methoxyphenyl)ethenyl]-5-(trichloromethyl)-1,3,4-oxadiazole Chemical compound C1=CC(OC)=CC=C1C=CC1=NN=C(C(Cl)(Cl)Cl)O1 JIKJXWFVPDDJNU-UHFFFAOYSA-N 0.000 description 1
- 125000004174 2-benzimidazolyl group Chemical group [H]N1C(*)=NC2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QAGHEHQMRFEQMB-UHFFFAOYSA-N 2-ethylidenepropanedioic acid Chemical compound CC=C(C(O)=O)C(O)=O QAGHEHQMRFEQMB-UHFFFAOYSA-N 0.000 description 1
- FLFWJIBUZQARMD-UHFFFAOYSA-N 2-mercapto-1,3-benzoxazole Chemical compound C1=CC=C2OC(S)=NC2=C1 FLFWJIBUZQARMD-UHFFFAOYSA-N 0.000 description 1
- OUXMJRMYZCEVKO-UHFFFAOYSA-N 2-methylbenzo[e][1,3]benzothiazole Chemical compound C1=CC=C2C(N=C(S3)C)=C3C=CC2=C1 OUXMJRMYZCEVKO-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- VRBUPQGTJAXZAE-UHFFFAOYSA-N 2-propylidenebutanedioic acid Chemical compound CCC=C(C(O)=O)CC(O)=O VRBUPQGTJAXZAE-UHFFFAOYSA-N 0.000 description 1
- PUPFOFVEHDNUJU-UHFFFAOYSA-N 2-sulfanylidene-1h-quinazolin-4-one Chemical compound C1=CC=C2C(=O)NC(S)=NC2=C1 PUPFOFVEHDNUJU-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- VOGMUJBKJVSTGJ-UHFFFAOYSA-N 3-chloro-2,2-bis(chloromethyl)-1-phenylpropan-1-one Chemical compound ClCC(CCl)(CCl)C(=O)C1=CC=CC=C1 VOGMUJBKJVSTGJ-UHFFFAOYSA-N 0.000 description 1
- XIIVBURSIWWDEO-UHFFFAOYSA-N 33985-71-6 Chemical compound C1CCC2=CC(C=O)=CC3=C2N1CCC3 XIIVBURSIWWDEO-UHFFFAOYSA-N 0.000 description 1
- KOKPBCHLPVDQTK-UHFFFAOYSA-N 4-methoxy-4-methylpentan-2-one Chemical compound COC(C)(C)CC(C)=O KOKPBCHLPVDQTK-UHFFFAOYSA-N 0.000 description 1
- CDSULTPOCMWJCM-UHFFFAOYSA-N 4h-chromene-2,3-dione Chemical compound C1=CC=C2OC(=O)C(=O)CC2=C1 CDSULTPOCMWJCM-UHFFFAOYSA-N 0.000 description 1
- NRZXBDYODHLZBF-UHFFFAOYSA-N 63149-33-7 Chemical compound C1CCN2CCCC3=C2C1=CC(C=O)=C3O NRZXBDYODHLZBF-UHFFFAOYSA-N 0.000 description 1
- FOFUWJNBAQJABO-UHFFFAOYSA-N 8-hydroxyjulolidine Chemical compound C1CCN2CCCC3=C2C1=CC=C3O FOFUWJNBAQJABO-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Nc1ccccc1 Chemical compound Nc1ccccc1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- CQHKDHVZYZUZMJ-UHFFFAOYSA-N [2,2-bis(hydroxymethyl)-3-prop-2-enoyloxypropyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(CO)COC(=O)C=C CQHKDHVZYZUZMJ-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- HSZUHSXXAOWGQY-UHFFFAOYSA-N [2-methyl-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(C)(COC(=O)C=C)COC(=O)C=C HSZUHSXXAOWGQY-UHFFFAOYSA-N 0.000 description 1
- CKDJMJKKDIIJNA-UHFFFAOYSA-N [3-(2-methylprop-2-enoyloxy)phenyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC(OC(=O)C(C)=C)=C1 CKDJMJKKDIIJNA-UHFFFAOYSA-N 0.000 description 1
- KNSXNCFKSZZHEA-UHFFFAOYSA-N [3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C KNSXNCFKSZZHEA-UHFFFAOYSA-N 0.000 description 1
- MDMKOESKPAVFJF-UHFFFAOYSA-N [4-(2-methylprop-2-enoyloxy)phenyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=C(OC(=O)C(C)=C)C=C1 MDMKOESKPAVFJF-UHFFFAOYSA-N 0.000 description 1
- FXXACINHVKSMDR-UHFFFAOYSA-N acetyl bromide Chemical compound CC(Br)=O FXXACINHVKSMDR-UHFFFAOYSA-N 0.000 description 1
- 230000000397 acetylating effect Effects 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000005529 alkyleneoxy group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- AMEDKBHURXXSQO-UHFFFAOYSA-N azonous acid Chemical group ONO AMEDKBHURXXSQO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- HSUIVCLOAAJSRE-UHFFFAOYSA-N bis(2-methoxyethyl) benzene-1,2-dicarboxylate Chemical compound COCCOC(=O)C1=CC=CC=C1C(=O)OCCOC HSUIVCLOAAJSRE-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- PIPBVABVQJZSAB-UHFFFAOYSA-N bis(ethenyl) benzene-1,2-dicarboxylate Chemical compound C=COC(=O)C1=CC=CC=C1C(=O)OC=C PIPBVABVQJZSAB-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- PUFGCEQWYLJYNJ-UHFFFAOYSA-N didodecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCC PUFGCEQWYLJYNJ-UHFFFAOYSA-N 0.000 description 1
- BADXJIPKFRBFOT-UHFFFAOYSA-N dimedone Chemical compound CC1(C)CC(=O)CC(=O)C1 BADXJIPKFRBFOT-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- RSJLWBUYLGJOBD-UHFFFAOYSA-M diphenyliodanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 RSJLWBUYLGJOBD-UHFFFAOYSA-M 0.000 description 1
- KGGOIDKBHYYNIC-UHFFFAOYSA-N ditert-butyl 4-[3,4-bis(tert-butylperoxycarbonyl)benzoyl]benzene-1,2-dicarboperoxoate Chemical compound C1=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=CC=C1C(=O)C1=CC=C(C(=O)OOC(C)(C)C)C(C(=O)OOC(C)(C)C)=C1 KGGOIDKBHYYNIC-UHFFFAOYSA-N 0.000 description 1
- IQIJRJNHZYUQSD-UHFFFAOYSA-N ethenyl(phenyl)diazene Chemical compound C=CN=NC1=CC=CC=C1 IQIJRJNHZYUQSD-UHFFFAOYSA-N 0.000 description 1
- JVICFMRAVNKDOE-UHFFFAOYSA-M ethyl violet Chemical compound [Cl-].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC)=C1C=CC(=[N+](CC)CC)C=C1 JVICFMRAVNKDOE-UHFFFAOYSA-M 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- DZFWNZJKBJOGFQ-UHFFFAOYSA-N julolidine Chemical compound C1CCC2=CC=CC3=C2N1CCC3 DZFWNZJKBJOGFQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical class [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- DWWMSEANWMWMCB-UHFFFAOYSA-N tribromomethylsulfonylbenzene Chemical compound BrC(Br)(Br)S(=O)(=O)C1=CC=CC=C1 DWWMSEANWMWMCB-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
- C08F2/50—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/031—Organic compounds not covered by group G03F7/029
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/114—Initiator containing
- Y10S430/117—Free radical
Definitions
- the present invention relates to a photopolymerizable composition. Particularly, it relates to a photopolymerizable composition showing a very high sensitivity to light rays in the visible light range.
- a number of image forming methods have been known in which a photopolymerizing system is utilized.
- a photopolymerizable composition comprising an addition polymerizable compound containing an ethylenic double bond and a photopolymerization initiator, and optionally as an additional component an organic polymer binder, is prepared, this photopolymerizable composition is coated on a substrate to obtain a photosensitive material provided with a layer of the photopolymerizable composition, exposure of a desired image is conducted so that the exposed portion is polymerized and cured, and the unexposed portion is then dissolved and removed to form a cured relief image; a method wherein the above-mentioned photosensitive material comprises a layer of the photopolymerizable composition sandwitched between a pair of substrates, at least one of which is transparent, exposure of an image is conducted from the transparent substrate side to induce a change in the bonding strength due to the radiation, and then the substrate is pe
- photopolymerization initiator of the photopolymerizable composition used in these methods benzoin, benzoin alkyl ether, benzil ketal, benzophenone, anthraquinone, benzil or Michler's ketone has been employed.
- these photopolymerization initiators are inferior in their ability to initiate photopolymerization with light rays in the visible light range of at least 400 nm as compared with their ability to initiate photopolymerization with light rays in the ultraviolet light range of at most 400 nm. Thus, they have restricted the range of application of the photopolymerizable compositions containing them.
- compositions comprising derivatives of aryl ketones and p-dialkylaminoaryl-aldehydes as sensitives for visible light.
- the compositions are useful in lithographic and letter press printing plantes, engineering drafting films, lithographic films, photoresists and solder masks.
- the present invention provides a photopolymerizable composition as defined in claim 1 comprising an addition polymerizable compound having at least one ethylenically unsaturated double bond and a photopolymerization initiator system, wherein the photopolymerization initiator system comprises:
- the addition polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter referred to simply as “ethylenic compound”) contained as a first essential component in the photopolymerizable composition of the present invention is a compound having an ethylenically unsaturated double bond, which is capable of undergoing addition polymerization and being cured by the action of the photopolymerization initiator system as a second essential component, when the photopolymerizable composition is irradiated with active light rays.
- it may be a monomer having such a double bond or a polymer having an ethylenically unsaturated double bond in its side chain or main chain.
- the monomer is meant for a substance as opposed to a so-called polymer substance and includes dimers, trimers and oligomers in addition to monomers in a narrow sense.
- the monomer having an ethylenically unsaturated double bond includes, for example, an unsaturated carboxylic acid, an ester of an unsaturated carboxylic acid with an aliphatic polyhydroxy compound, an ester of an unsaturated carboxylic acid with an aromatic polyhydroxy compound and an ester obtained by the esterification reaction of an unsaturated carboxylic acid and a polybasic carboxylic acid with a polyhydroxy compound such as the above-mentioned aliphatic polyhydroxy compound or aromatic polyhydroxy compound.
- ester of an unsaturated carboxylic acid with an aliphatic polyhydroxy compound is not particularly limited and includes, as specific examples, acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetracrylate, dipentaerythritol tetracrylate, dipentaerythritol pentacrylate, dipentaerythritol hexacrylate and glycerol acrylate; methacrylic acid esters corresponding to the above examples wherein "acrylate” is changed to "methacrylate”; itaconic acid esters corresponding to the above examples wherein "acrylate” is likewise changed to "itaconate”; crotonic acid esters corresponding to the above examples wherein "acrylate
- the ester of an unsaturated carboxylic acid with an aromatic polyhydroxy compound includes, for example, hydroquinone diacrylate, hydroquinone dimethacrylate, resorcinol diacrylate, resorcinol dimethacrylate and pyrogallol triacrylate.
- the ester obtained by the esterification reaction of an unsaturated carboxylic acid and a polybasic carboxylic acid with a polyhydroxy compound may not necessarily be a single compound.
- Typical specific examples include a condensation product of acrylic acid, phthalic acid and ethylene glycol, a condensation product of acrylic acid, maleic acid and diethylene glycol, a condensation product of methacrylic acid, terephthalic acid and pentaerythritol and a condensation product of acrylic acid, adipic acid, butane diol and glycerol.
- ethylenic compounds which may be used in the present invention include, for example, acryl amides such as ethylene bisacrylamide; allyl esters such as diallyl phthalate; and vinyl group-containing compounds such as divinyl phthalate.
- the polymer having an ethylenically unsaturated double bond on the main chain includes, for example, a polyester obtained by the polycondensation reaction of an unsaturated dibasic carboxylic acid with a dihydroxy compound, and a polyamide obtained by the polycondensation reaction of an unsaturated dibasic carboxylic acid with a diamine.
- the polymer having an ethylenically unsaturated double bond at the side chain may be a condensation polymer of a dibasic carboxylic acid having an unsaturated bond at the side chain such as itaconic acid, propylidenesuccinic acid or ethylidenemalonic acid with a dihydroxy or diamine compound.
- a polymer having a functional group having a reactivity such as a hydroxyl group or a halogenated methyl group in the side chain such as a polymer obtained by a polymer reaction of e.g. polyvinyl alcohol, poly(2-hydroxyethy] methacrylate) or polyepichlorohydorin with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid or crotonic acid, may also be suitable for use.
- monomers of acrylic acid esters or methacrylic acid esters are particularly suitable for use.
- the photopolymerization initiator system of the present invention is a combination of two components.
- the first component (a) is a new sensitizer represented by the formula I, II, III or IV.
- ring A is a substituted or unsubstituted benzene or naphthalene ring
- Ar is an aromatic group which includes a substituted or unsubstituted phenyl or naphthyl group such as 4-dimethylaminophenyl, 4-diethylaminophenyl, 9-julolidyl, 4-dimethylamino-1-naphthyl or 2-naphthyl; and a condensed or non-condensed nitrogen-containing hetero aromatic group such as 2-thiazolyl, 2-benzothiazolyl, 2-naphtho(1,2-d)thiazolyl, 8-bromo-2-naphtho(1,2-d)thiazolyl, 2-oxazolyl, 2-benzoxazolyl, 2-naphtho(2,1-d)oxazolyl or 2-benzimidazolyl.
- a substituted or unsubstituted phenyl or naphthyl group such as 4-dimethylaminophenyl, 4-diethylaminophenyl, 9-
- R4 is hydrogen, an acetyl group or wherein R1, R2, R3 and l are as defined above, and R5 is an alkyl group such as methyl, ethyl, propyl, hexyl or octyl.
- sensitizers have a tetrahydroquinoline structure in their molecules, and it has been found that the sensitivity to the visual light rays is thereby remarkably increased. This effect is remarkable particularly with the compounds represented by the above four types of formulas.
- an N,N-dialkylbenzene structure in a molecule By changing an N,N-dialkylbenzene structure in a molecule to a derivative of a tetrahydroquinoline structure, an increase of the sensitivity to a maximum of 6 times to light rays of 488 nm is observed.
- the usefulness of this effect indicates, as shown in Example 61, the applicability to a low output air cooled argon laser for an image-forming technique by argon ion laser scanning.
- sensitizers of the present invention are exemplified.
- particularly preferred are the following compounds.
- ring A is a benzene or naphthalene ring
- X is -S-, -O- or -NH-
- R1 and R2 bond to each other to form a 1,3-propylene group
- R3 is hydrogen and l is 1 or 2.
- R1 and R2 are as defined above, Ar is a p-dialkylaminophenyl group, a benzothiazolyl group or a naphthothiazolyl group, m is 0 and n is 0 or 1.
- ring A, R1, R2 and R3 are as defined above, X is -S- or l is 1, R4 is hydrogen and R5 is methyl or ethyl.
- R1, R2 and R3 are as defined above, l is 1 or 2 and X is -S- or -O-.
- the compounds of the formulas I-1, I-11, II-1, II-4 and III-1 are especially preferred.
- These compounds are usually prepared by a method wherein a heterocyclic compound is used as a starting material and a tetrahydroquinoline structure is introduced thereto, or a method wherein a derivative having a tetrahydroquinoline structure is used as an intermediate and a heterocyclic ring is formed by a ring closure reaction of the intermediate.
- Representative compounds of the sensitizers represented by the respective formulas may be prepared, for example, by the following methods.
- the compounds of the formula I or IV may be prepared by the dehydration condensation of a methyl-substituted derivative of a condensed heterocyclic ring and an aldehyde of a tetrahydroquinoline derivative in the presence of an acid or base catalyst.
- the compounds of the formula II may be obtained by the condensation of a monohalogenated methyl compound and an o-hydroxyaldehyde of a tetrahydroquinoline derivative.
- the compounds of the formula III may be obtained by acetylating a 2-methyl derivative of a condensed heterocyclic ring, followed by the dehydration condensation with an aldehyde of a tetrahydroquinoline derivative in the presence of an alkali catalyst.
- At least one type of the above-mentioned sensitizers is used.
- the second component (b) constituting the photopolymerization initiator system of the present invention is an activator which is capable of generating active radicals when irradiated in the presence of the above-mentioned sensitizer.
- Suitable activators include a hexaarylbiimidazole, a halogenated hydrocarbon derivative, an organic thiol compound and a diaryl iodonium salt. Especially when a hexaarylbiimidazole and an organic thiol compound are used in combination, the sensitivity is remarkably increased.
- the hexaarylbiimidazole includes, for example, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (hereinafter referred to simply as b-1), 2,2'-bis(o-bromophenyl)-4,4',5,5'-tetraphenylbiimidazole (hereinafter referred to simply as b-2), 2,2'-bis(o,p-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetra(m-methoxyphenyl)biimidazole (hereinafter referred to simply as b-3), 2,2'-bis(o,o'-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,
- the above halogenated hydrocarbon derivative includes, for example, 2,4,6-tris(trichloromethyl)-s-triazine (hereinafter referred to simply as b-4), 2,4,6-tris(tribromomethyl)-s-triazine, 2-mehtyl-4,6-di(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-di(trichloromethyl)-s-triazine, 2,2,2-trichloromethylacetophenone, tribromomethylphenylsulfone and 2-trichloromethyl-5-(p-methoxystyryl)-1,3,4-oxadiazole.
- b-4 2,4,6-tris(trichloromethyl)-s-triazine
- 2,4,6-tris(tribromomethyl)-s-triazine 2-mehtyl-4,6-di(trichloromethyl)-s-tria
- the organic thiol compound includes, for example, 2-mercaptobenzothiazole (hereinafter referred to simply as b-5), 2-mercaptobenzoxazole (hereinafter referred to simply as b-6), 2-mercaptobenzoimidazole (hereinafter referred to simply as b-7), 2-mercapto-4(3H)-quinazolinone and ⁇ -mercaptonaphthalene.
- the diaryl iodonium salt includes, for example, diphenyliodonium hexafluorophosphate (hereinafter referred to simply as b-8), diphenyliodonium tosylate, diphenyliodonium fluoroborate, diphenyliodonium hexafluoroarsenate, diphenyliodonium chloride, ditolyliodonium hexafluorophosphate, phenyl(p-anisyl)iodonium hexafluorophosphate and bis(m-nitrophenyl)iodonium hexafluorophosphate.
- diphenyliodonium hexafluorophosphate hereinafter referred to simply as b-8
- diphenyliodonium tosylate diphenyliodonium fluoroborate
- diphenyliodonium hexafluoroarsenate diphenyliodonium chloride
- ketoxime esters such as 3-benzoyloxyiminobutan-2-one
- organic peroxides such as 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone (hereinafter referred to simply as b-9)
- b-9 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone
- N-phenylglycine and dimedone may be used.
- the amounts of the sensitizer and the activator constituting the photopolymerization initiating system used for the photopolymerizable composition of the present invention are not particular restriction as to the amounts of the sensitizer and the activator constituting the photopolymerization initiating system used for the photopolymerizable composition of the present invention. However, it is preferred to employ from 0.05 to 20 parts by weight, preferably from 0.2 to 10 parts by weight, of the sensitizer and from 0.5 to 70 parts by weight, preferably from 1 to 30 parts by weight, of the activator relative to 100 parts by weight of the ethylenic compound.
- the photopolymerizable composition of the present invention preferably further contains an organic polymer substance as a binder for the modification of the composition or for the improvement of the physical properties after the photocuring, in addition to the above-mentioned essential components.
- a binder may be suitably selected depending upon the purpose for improvement such as compatibility, film-forming properties, developing or adhesive properties.
- an acrylic acid copolymer for the improvement of the developing properties of an aqueous system, an acrylic acid copolymer, a methacrylic acid copolymer, an itaconic acid copolymer, a partially esterified maleic acid copolymer, an acidic cellulose modified product having a carboxyl group in its side chain, a polyethyleneoxide and polyvinylpyrrolidone may be mentioned.
- a polyether of epichlorohydrin and bisphenol A for the improvement of the coating film strength and the adhesive properties, a polyether of epichlorohydrin and bisphenol A; a soluble nylon; a polyalkylmethacrylate or polyalkylacrylate such as polymethylmethacrylate; a copolymer of an alkylmethacrylate with acrylonitrile, acrylic acid, methacrylic acid, vinyl chloride, vinyliden chloride or styrene; a copolymer of acrylonitrile with vinyl chloride or vinylidene chloride; a copolymer of a vinyl acetate with vinylidene chloride, a chlorinated polyolefin or vinylchloride; polyvinyl acetate; a copolymer of acrylonitrile with styrene; a copolymer of acrylonitrile with butadiene and styrene; a polyvinyl alkyl ether; a polyvin
- a thermal polymerization inhibitor a coloring agent, a plasticizer, a surface protecting agent, a lubricant, a coating aid and other additives may be incorporated as the case requires.
- the thermal polymerization inhibitor may be, for example, hydroquinone, p-methoxyphenol, pyrogallol, catechol, 2,6-di-t-butyl-p-cresol or ⁇ -naphthol.
- the coloring agent may be a pigment such as a phthalocyanine pigment, an azo pigment, carbon black or titanium oxide, or a dye such as ethyl violet, crystal violet, an azo dye, an anthraquinone dye or a cyanine dye.
- Such a thermal polymerization inhibitor or coloring agent may be used preferably in an amount of from 0.01 to 3% by weight and from 0.1 to 20% by weight, respectively, relative to the total amount of the ethylenic compound and the binder when the binder is used.
- the plasticizer includes, for example, dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricrezyl phosphate, dioctyl adipate, dibutyl sebacate and triacetyl glycerol.
- a binder When a binder is used, it may be incorporated in an amount of not more than 10% by weight relative to the total weight of the ethylenic compound and the binder.
- the photopolymerizable composition of the present invention may be used by forming it into a photosensitive material without using a solvent, or by dissolving it in a suitable solvent to form a solution and coating the solution on a substrate, followed by drying to obtain a photosensitive material.
- the solvent includes, for example, methyl ethyl ketone, cyclohexanone, butyl acetate, amyl acetate, ethyl propionate, toluene, xylene, monochlorobenzene, carbon tetrachloride, trichloroethylene, trichloroethane, dimethylformamide, methyl cellosolve, ethyl cellosolve, tetrahydrofuran and pentoxone.
- the substrate used for the preparation of a photosensitive material by using the photopolymerizable composition of the present invention may be any substrate which is commonly employed.
- it may be a sheet of a metal such as aluminum, magnesium, copper, zinc, chromium, nickel or iron or an alloy containing such a metal as the main component, a paper such as a high quality paper, art paper, releasing paper, an inorganic sheet such as a glass sheet or a ceramics sheet, or a sheet of a polymer such as polyethylene terephthalate, polyethylene, polymethyl methacrylate, polyvinyl chloride, a vinyl chloride-vinylidene chloride copolymer, polystyrene, 6-nylon, cellulose triacetate or cellulose acetatebutylate.
- a metal such as aluminum, magnesium, copper, zinc, chromium, nickel or iron or an alloy containing such a metal as the main component
- a paper such as a high quality paper, art paper, releasing paper
- a removable transparent cover sheet may be provided on the photosensitive layer, or a coating layer of e.g. wax substance or water-soluble polymer having low oxygen permiability, may be provided.
- a commonly employed light source containing visual light rays of at least 400 nm may suitably be used, such as a carbon arc, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, a fluorescent lamp, a tungsten lamp, a helium-cadminium laser or an argon ion laser.
- sensitizer I-1 was treated by column chromatography to obtain 1.9 g of sensitizer I-1 as a reddish brown solid (mp: 164-170°C). Elemental analysis: C H N Calculated values: 78.50 5.80 7.32 Analytical values: 78.47 6.01 7.09
- the sensitizers and the activators used in Examples are the same as used in the foregoing description. Further, the abbreviations for activators used in Comparative Examples and Reference Examples are the same as used before, but for the sensitizers, the following abbreviations will be used for the respective compounds.
- the sensitizers R-I-1 to R-IV-1 were used as they have structures similar to the sensitizers I-1 to IV-1 of the present invention
- Std is a sensitizer for the visible light as disclosed in Japanese Unexamined Patent Publication No. 2528/1972 and was used as the standard for the relative sensitivity.
- R-I-1 and R-III-1 are compounds covered by Japanese Unexamined Patent Publications No. 21401/1982 and No. 74551/1984, respectively.
- the relative sensitivity is the value obtained by the following procedure. Firstly, a photosensitive sample to be evaluated and a standard photosensitive sample (sensitizer Std was used) were exposed under the same exposure condition through ⁇ 2 step tablets (masking films whereby the amount of light decreases by 1/ ⁇ 2 every step, manufactured by Eastman Kodak Company) and developed to obtain the number of curing steps of the samples.
- the relative sensitivity is given by the following equation. where n is the number of curing steps for the photosensitive sample to be evaluated and n Std is the number of curing steps for the standard photosensitive sample.
- % means “% by weight” relative to the total weight of the ethylenic compound and the binder.
- Each photosensitive solution was whirl coated on a grained and anodized aluminum sheet so that the dried film thickness would be 2.5 ⁇ m, followed by drying at 70°C for 5 minutes.
- an aqueous polyvinyl alcohol solution was coated to form an overcoat layer having a dried film thickness of 3 ⁇ m, whereby a photosensitive test sample was obtained.
- it was secured in an exposure frame with the above-mentioned step tablet overlaid thereon, and exposure was conducted for 20 seconds through a glass filter L-42 (manufactured by Toshiba Glass K.K.) capable of completely cutting ultraviolet rays and permitting visible light rays to pass through.
- the same photosensitive material as used in Example 4 was scanned by a beam of an argon ion laser (GLG 3300 manufactured by Nippon Electric Company Limited).
- a laser beam of 488 nm was passed through a neutral density filter to reduce the amount of light and then focused to have a beam diameter of 15 ⁇ m at the surface of the photosensitive material, whereupon scanning was conducted with a beam intensity of 2.4 mW at a scanning speed of 50.6 m/sec, whereby a cured image line with a width of 15 mm was obtained.
- the photopolymerizable composition of the present invention has extremely high sensitivity to visible light rays, particularly to long wavelength light rays. Accordingly, the composition is useful in a wide range of application fields. For example, it is useful for the preparation of printing plates such as a lithographic plate, an intaglio and a letterpress, a photoresist for formation of printed circuits or integrated circuits, a dry film, an image forming material such as a relief image or image reproduction, a photocurable ink, coating material and adhesive. Thus, the composition of the present invention is very useful from the industrial point of view.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Polymerisation Methods In General (AREA)
- Materials For Photolithography (AREA)
Description
- The present invention relates to a photopolymerizable composition. Particularly, it relates to a photopolymerizable composition showing a very high sensitivity to light rays in the visible light range.
- Heretofore, a number of image forming methods have been known in which a photopolymerizing system is utilized. For example, there are a method wherein a photopolymerizable composition comprising an addition polymerizable compound containing an ethylenic double bond and a photopolymerization initiator, and optionally as an additional component an organic polymer binder, is prepared, this photopolymerizable composition is coated on a substrate to obtain a photosensitive material provided with a layer of the photopolymerizable composition, exposure of a desired image is conducted so that the exposed portion is polymerized and cured, and the unexposed portion is then dissolved and removed to form a cured relief image; a method wherein the above-mentioned photosensitive material comprises a layer of the photopolymerizable composition sandwitched between a pair of substrates, at least one of which is transparent, exposure of an image is conducted from the transparent substrate side to induce a change in the bonding strength due to the radiation, and then the substrate is peeled off to form the image; and a method wherein an image is formed by utilizing a change in the adhesion of a tonner caused by radiation to a layer of a photopolymerizable composition. As the photopolymerization initiator of the photopolymerizable composition used in these methods, benzoin, benzoin alkyl ether, benzil ketal, benzophenone, anthraquinone, benzil or Michler's ketone has been employed. However, these photopolymerization initiators are inferior in their ability to initiate photopolymerization with light rays in the visible light range of at least 400 nm as compared with their ability to initiate photopolymerization with light rays in the ultraviolet light range of at most 400 nm. Thus, they have restricted the range of application of the photopolymerizable compositions containing them. In recent years, with the progress of image-forming techniques, there has been a strong demand for photopolymers highly sensitive to light rays in the visible light range. For example, they are photosensitive materials suitable for non-contact type projection exposure plate making or laser plate making by a visible light laser. Among these techniques, a plate making system employing an oscillation beam of 488 nm of an argon ion laser is considered to be one of the most prospective techniques.
- Heretofore, there have been some proposals with respect to photosensitive materials for photopolymerization containing a photopolymerization initiator system sensitive to light rays in the visible light range. For example, a system comprising a hexaarylbiimidazole, a radical generating agent and a dye (Japanese Examined Patent Publication No. 37377/1970), a system comprising a hexaarylbiimidazole and a (p-dialkyl aminobenzylidene)ketone (Japanese Unexamined Patent Publications No. 2528/1972 and No. 155292/1979), a system comprising a cyclic cis-α-dicarbonyl compound and a dye (Japanese Unexamined Patent Publication No. 84183/1973), a system comprising a substituted triazine and merocyanine dye (Japanese Unexamined Patent Publication No. 151024/1979), a system comprising ketocoumarin and an activator (Japanese Unexamined Patent Publications No. 112681/1977, No. 15503/1983 and No. 88005/1985), a system comprising a substituted triazine and a sensitizer (Japanese Unexamined Patent Publications No. 29803/1983 and No. 40302/1983), a system comprising a biimidazole, a styrene derivative and thiol (Japanese Unexamined Patent Publication No. 56403/1984) and a system comprising an organic peroxide and a dye (Japanese Unexamined Patent Publications No. 140203/1984 and No. 189340/1984) may be mentioned.
- In EP-A-0 005 274 photopolymerisable compositions are described, comprising derivatives of aryl ketones and p-dialkylaminoaryl-aldehydes as sensitives for visible light. The compositions are useful in lithographic and letter press printing plantes, engineering drafting films, lithographic films, photoresists and solder masks.
- These conventional techniques are certainly effective to the visual light rays. However, from the practical viewpoint, they are still not adequate. A system having a higher sensitivity has been desired, because, for example, in the case of laser plate making by means of an argon ion laser, if it is possible to conduct the plate making at a high speed by using a lower output laser such as an air cooled argon laser, substantial merits can be brought about from the viewpoint of costs and required time. The present inventors have conducted a study from such a viewpoint and, as a result, have arrived at the present invention.
- Accordingly, it is an object of the present invention to provide a photopolymerization initiating system having a higher sensitivity to the visible light rays, particularly to light rays of a long wavelength at a level of 488 nm.
- The present invention provides a photopolymerizable composition as defined in claim 1 comprising an addition polymerizable compound having at least one ethylenically unsaturated double bond and a photopolymerization initiator system, wherein the photopolymerization initiator system comprises:
- (a) at least one sensitizer selected from the group consisting of a compound of the formula:
- (b) at least one activator capable or generating active radicals when irradiated in the presence of said sensitizer and
wherein the activator is at least one member selected from the group consisting of a hexaarylbiimidazole, a halogenated hydrocarbon derivative, an organic thiol compound, a diaryl iodonium salt and an organic peroxide. - Now, the present invention will be described in detail with reference to the preferred embodiments.
- The addition polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter referred to simply as "ethylenic compound") contained as a first essential component in the photopolymerizable composition of the present invention is a compound having an ethylenically unsaturated double bond, which is capable of undergoing addition polymerization and being cured by the action of the photopolymerization initiator system as a second essential component, when the photopolymerizable composition is irradiated with active light rays. For example, it may be a monomer having such a double bond or a polymer having an ethylenically unsaturated double bond in its side chain or main chain. In the present invention, the monomer is meant for a substance as opposed to a so-called polymer substance and includes dimers, trimers and oligomers in addition to monomers in a narrow sense.
- The monomer having an ethylenically unsaturated double bond includes, for example, an unsaturated carboxylic acid, an ester of an unsaturated carboxylic acid with an aliphatic polyhydroxy compound, an ester of an unsaturated carboxylic acid with an aromatic polyhydroxy compound and an ester obtained by the esterification reaction of an unsaturated carboxylic acid and a polybasic carboxylic acid with a polyhydroxy compound such as the above-mentioned aliphatic polyhydroxy compound or aromatic polyhydroxy compound.
- The above-mentioned ester of an unsaturated carboxylic acid with an aliphatic polyhydroxy compound is not particularly limited and includes, as specific examples, acrylic acid esters such as ethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetracrylate, dipentaerythritol tetracrylate, dipentaerythritol pentacrylate, dipentaerythritol hexacrylate and glycerol acrylate; methacrylic acid esters corresponding to the above examples wherein "acrylate" is changed to "methacrylate"; itaconic acid esters corresponding to the above examples wherein "acrylate" is likewise changed to "itaconate"; crotonic acid esters corresponding to the above examples wherein "acrylate" is likewise changed to "crotonate"; and maleic acid esters corresponding to the above examples wherein "acrylate" is likewise changed to "maleate".
- The ester of an unsaturated carboxylic acid with an aromatic polyhydroxy compound includes, for example, hydroquinone diacrylate, hydroquinone dimethacrylate, resorcinol diacrylate, resorcinol dimethacrylate and pyrogallol triacrylate.
- The ester obtained by the esterification reaction of an unsaturated carboxylic acid and a polybasic carboxylic acid with a polyhydroxy compound may not necessarily be a single compound. Typical specific examples include a condensation product of acrylic acid, phthalic acid and ethylene glycol, a condensation product of acrylic acid, maleic acid and diethylene glycol, a condensation product of methacrylic acid, terephthalic acid and pentaerythritol and a condensation product of acrylic acid, adipic acid, butane diol and glycerol.
- Other ethylenic compounds which may be used in the present invention include, for example, acryl amides such as ethylene bisacrylamide; allyl esters such as diallyl phthalate; and vinyl group-containing compounds such as divinyl phthalate.
- The polymer having an ethylenically unsaturated double bond on the main chain includes, for example, a polyester obtained by the polycondensation reaction of an unsaturated dibasic carboxylic acid with a dihydroxy compound, and a polyamide obtained by the polycondensation reaction of an unsaturated dibasic carboxylic acid with a diamine. The polymer having an ethylenically unsaturated double bond at the side chain may be a condensation polymer of a dibasic carboxylic acid having an unsaturated bond at the side chain such as itaconic acid, propylidenesuccinic acid or ethylidenemalonic acid with a dihydroxy or diamine compound. Further, a polymer having a functional group having a reactivity such as a hydroxyl group or a halogenated methyl group in the side chain, such as a polymer obtained by a polymer reaction of e.g. polyvinyl alcohol, poly(2-hydroxyethy] methacrylate) or polyepichlorohydorin with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid or crotonic acid, may also be suitable for use.
- Among the above-mentioned ethylenic compounds, monomers of acrylic acid esters or methacrylic acid esters are particularly suitable for use.
- Now, the photopolymerization initiator system as a second essential component of the photopolymerizable composition of the present invention will be described.
- The photopolymerization initiator system of the present invention is a combination of two components. The first component (a) is a new sensitizer represented by the formula I, II, III or IV.
- Specifically, in these formulas, ring A is a substituted or unsubstituted benzene or naphthalene ring, X is a bivalent atom or a bivalent group such as -S-, -O-,
wherein R is a hydrogen atom, an alkyl group, an aryl group or an acyl group, -CH=CH-, -N=CH- or
R¹ is an alkyl group such as methyl, ethyl, n-propyl, iso-propyl, n-butyl or n-octyl, and each of R² and R³ is hydrogen; an alkyl group such as methyl, ethyl, propyl or butyl; an alkoxy group such as methoxy, ethoxy or propoxy; propoxy; or an alkylthio group such as methylthio, ethylthio or propylthio, or R¹ and R² may bond to each other to form a bivalent group, for example, an alkylene group such as ethylene, 1,3-propylene or 1,4-butylene; an alkyleneoxy group such as trimethylene monoxy; or an alkylenethio group such as trimethylene monothio. - Ar is an aromatic group which includes a substituted or unsubstituted phenyl or naphthyl group such as 4-dimethylaminophenyl, 4-diethylaminophenyl, 9-julolidyl, 4-dimethylamino-1-naphthyl or 2-naphthyl; and a condensed or non-condensed nitrogen-containing hetero aromatic group such as 2-thiazolyl, 2-benzothiazolyl, 2-naphtho(1,2-d)thiazolyl, 8-bromo-2-naphtho(1,2-d)thiazolyl, 2-oxazolyl, 2-benzoxazolyl, 2-naphtho(2,1-d)oxazolyl or 2-benzimidazolyl. R⁴ is hydrogen, an acetyl group or
wherein R¹, R², R³ and ℓ are as defined above, and R⁵ is an alkyl group such as methyl, ethyl, propyl, hexyl or octyl. - These sensitizers have a tetrahydroquinoline structure in their molecules, and it has been found that the sensitivity to the visual light rays is thereby remarkably increased. This effect is remarkable particularly with the compounds represented by the above four types of formulas. By changing an N,N-dialkylbenzene structure in a molecule to a derivative of a tetrahydroquinoline structure, an increase of the sensitivity to a maximum of 6 times to light rays of 488 nm is observed. The usefulness of this effect indicates, as shown in Example 61, the applicability to a low output air cooled argon laser for an image-forming technique by argon ion laser scanning.
-
- Among the compounds of the formula I, particularly preferred are those wherein ring A is a benzene or naphthalene ring, X is -S-, -O- or -NH-, R¹ and R² bond to each other to form a 1,3-propylene group, R³ is hydrogen and ℓ is 1 or 2.
- Among the compounds of the formula II, particularly preferred are those wherein R¹ and R² are as defined above, Ar is a p-dialkylaminophenyl group, a benzothiazolyl group or a naphthothiazolyl group, m is 0 and n is 0 or 1.
-
- Among the compounds of the formula IV, particularly preferred are those wherein R¹, R² and R³ are as defined above, ℓ is 1 or 2 and X is -S- or -O-.
- Especially preferred are the compounds of the formulas I-1, I-11, II-1, II-4 and III-1. Now, a method for preparing the above exemplified series of sensitizers will be described. These compounds are usually prepared by a method wherein a heterocyclic compound is used as a starting material and a tetrahydroquinoline structure is introduced thereto, or a method wherein a derivative having a tetrahydroquinoline structure is used as an intermediate and a heterocyclic ring is formed by a ring closure reaction of the intermediate. Representative compounds of the sensitizers represented by the respective formulas may be prepared, for example, by the following methods.
- The compounds of the formula I or IV may be prepared by the dehydration condensation of a methyl-substituted derivative of a condensed heterocyclic ring and an aldehyde of a tetrahydroquinoline derivative in the presence of an acid or base catalyst. The compounds of the formula II may be obtained by the condensation of a monohalogenated methyl compound and an o-hydroxyaldehyde of a tetrahydroquinoline derivative. The compounds of the formula III may be obtained by acetylating a 2-methyl derivative of a condensed heterocyclic ring, followed by the dehydration condensation with an aldehyde of a tetrahydroquinoline derivative in the presence of an alkali catalyst. These methods are exemplified in Preparation Examples 1 to 3 given hereinafter. For the preparation of the above-mentioned sensitizers, other methods of preparation may be employed.
- In the present invention, at least one type of the above-mentioned sensitizers is used.
- The second component (b) constituting the photopolymerization initiator system of the present invention is an activator which is capable of generating active radicals when irradiated in the presence of the above-mentioned sensitizer. Suitable activators include a hexaarylbiimidazole, a halogenated hydrocarbon derivative, an organic thiol compound and a diaryl iodonium salt. Especially when a hexaarylbiimidazole and an organic thiol compound are used in combination, the sensitivity is remarkably increased.
- The hexaarylbiimidazole includes, for example, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (hereinafter referred to simply as b-1), 2,2'-bis(o-bromophenyl)-4,4',5,5'-tetraphenylbiimidazole (hereinafter referred to simply as b-2), 2,2'-bis(o,p-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetra(m-methoxyphenyl)biimidazole (hereinafter referred to simply as b-3), 2,2'-bis(o,o'-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-nitrophenyl)-4,4',5,5'-tetraphenylbiimidazole and 2,2'-bis(o-methylphenyl)-4,4',5,5'-tetraphenylbiimidazole.
- The above halogenated hydrocarbon derivative includes, for example, 2,4,6-tris(trichloromethyl)-s-triazine (hereinafter referred to simply as b-4), 2,4,6-tris(tribromomethyl)-s-triazine, 2-mehtyl-4,6-di(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-di(trichloromethyl)-s-triazine, 2,2,2-trichloromethylacetophenone, tribromomethylphenylsulfone and 2-trichloromethyl-5-(p-methoxystyryl)-1,3,4-oxadiazole.
- The organic thiol compound includes, for example, 2-mercaptobenzothiazole (hereinafter referred to simply as b-5), 2-mercaptobenzoxazole (hereinafter referred to simply as b-6), 2-mercaptobenzoimidazole (hereinafter referred to simply as b-7), 2-mercapto-4(3H)-quinazolinone and β-mercaptonaphthalene.
- The diaryl iodonium salt includes, for example, diphenyliodonium hexafluorophosphate (hereinafter referred to simply as b-8), diphenyliodonium tosylate, diphenyliodonium fluoroborate, diphenyliodonium hexafluoroarsenate, diphenyliodonium chloride, ditolyliodonium hexafluorophosphate, phenyl(p-anisyl)iodonium hexafluorophosphate and bis(m-nitrophenyl)iodonium hexafluorophosphate.
- As the activator in the present invention, in addition to those mentioned above, conventional activators, for example, ketoxime esters such as 3-benzoyloxyiminobutan-2-one, organic peroxides such as 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone (hereinafter referred to simply as b-9), and N-phenylglycine and dimedone, may be used.
- There is no particular restriction as to the amounts of the sensitizer and the activator constituting the photopolymerization initiating system used for the photopolymerizable composition of the present invention. However, it is preferred to employ from 0.05 to 20 parts by weight, preferably from 0.2 to 10 parts by weight, of the sensitizer and from 0.5 to 70 parts by weight, preferably from 1 to 30 parts by weight, of the activator relative to 100 parts by weight of the ethylenic compound.
- The photopolymerizable composition of the present invention preferably further contains an organic polymer substance as a binder for the modification of the composition or for the improvement of the physical properties after the photocuring, in addition to the above-mentioned essential components. Such a binder may be suitably selected depending upon the purpose for improvement such as compatibility, film-forming properties, developing or adhesive properties. Specifically, for example, for the improvement of the developing properties of an aqueous system, an acrylic acid copolymer, a methacrylic acid copolymer, an itaconic acid copolymer, a partially esterified maleic acid copolymer, an acidic cellulose modified product having a carboxyl group in its side chain, a polyethyleneoxide and polyvinylpyrrolidone may be mentioned. For the improvement of the coating film strength and the adhesive properties, a polyether of epichlorohydrin and bisphenol A; a soluble nylon; a polyalkylmethacrylate or polyalkylacrylate such as polymethylmethacrylate; a copolymer of an alkylmethacrylate with acrylonitrile, acrylic acid, methacrylic acid, vinyl chloride, vinyliden chloride or styrene; a copolymer of acrylonitrile with vinyl chloride or vinylidene chloride; a copolymer of a vinyl acetate with vinylidene chloride, a chlorinated polyolefin or vinylchloride; polyvinyl acetate; a copolymer of acrylonitrile with styrene; a copolymer of acrylonitrile with butadiene and styrene; a polyvinyl alkyl ether; a polyvinyl alkyl ketone; a polystyrene; a polyamide; a polyurethane; a polyethyleneterephthalateisophthalate; acetylcellulose and a polyvinyl butyral, may be mentioned. Such a binder may be incorporated in an amount within a range of not more than 500% by weight, preferably not more than 200%, relative to the ethylenic compound.
- To the photopolymerizable compound of the present invention, a thermal polymerization inhibitor, a coloring agent, a plasticizer, a surface protecting agent, a lubricant, a coating aid and other additives may be incorporated as the case requires.
- The thermal polymerization inhibitor may be, for example, hydroquinone, p-methoxyphenol, pyrogallol, catechol, 2,6-di-t-butyl-p-cresol or β-naphthol. The coloring agent may be a pigment such as a phthalocyanine pigment, an azo pigment, carbon black or titanium oxide, or a dye such as ethyl violet, crystal violet, an azo dye, an anthraquinone dye or a cyanine dye. Such a thermal polymerization inhibitor or coloring agent may be used preferably in an amount of from 0.01 to 3% by weight and from 0.1 to 20% by weight, respectively, relative to the total amount of the ethylenic compound and the binder when the binder is used.
- The plasticizer includes, for example, dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricrezyl phosphate, dioctyl adipate, dibutyl sebacate and triacetyl glycerol. When a binder is used, it may be incorporated in an amount of not more than 10% by weight relative to the total weight of the ethylenic compound and the binder.
- The photopolymerizable composition of the present invention may be used by forming it into a photosensitive material without using a solvent, or by dissolving it in a suitable solvent to form a solution and coating the solution on a substrate, followed by drying to obtain a photosensitive material. The solvent includes, for example, methyl ethyl ketone, cyclohexanone, butyl acetate, amyl acetate, ethyl propionate, toluene, xylene, monochlorobenzene, carbon tetrachloride, trichloroethylene, trichloroethane, dimethylformamide, methyl cellosolve, ethyl cellosolve, tetrahydrofuran and pentoxone.
- The substrate used for the preparation of a photosensitive material by using the photopolymerizable composition of the present invention, may be any substrate which is commonly employed. For example, it may be a sheet of a metal such as aluminum, magnesium, copper, zinc, chromium, nickel or iron or an alloy containing such a metal as the main component, a paper such as a high quality paper, art paper, releasing paper, an inorganic sheet such as a glass sheet or a ceramics sheet, or a sheet of a polymer such as polyethylene terephthalate, polyethylene, polymethyl methacrylate, polyvinyl chloride, a vinyl chloride-vinylidene chloride copolymer, polystyrene, 6-nylon, cellulose triacetate or cellulose acetatebutylate.
- Further, conventional techniques to prevent adverse effects such as the deterioration of the sensitivity or the deterioration of the storage stability due to oxygen may be applied to the photopolymerizable composition of the present invention. For example, a removable transparent cover sheet may be provided on the photosensitive layer, or a coating layer of e.g. wax substance or water-soluble polymer having low oxygen permiability, may be provided.
- There is no particular restriction as to the light source for radiation applicable to the composition of the present invention. A commonly employed light source containing visual light rays of at least 400 nm may suitably be used, such as a carbon arc, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, a fluorescent lamp, a tungsten lamp, a helium-cadminium laser or an argon ion laser.
- Now, the present invention will be described in further detail with reference to Preparation Examples, Composition Examples, Reference Examples and Comparative Examples. However, it should be understood that the present invention is by no means restricted by these specific Examples.
- 4.1 g of julolidine-9-carbaldehyde prepared from julolidine by using dimethylformamide and phosphorus oxychloride by a usual method, 3.2 g of 2-methylnaphtho(1,2-d)thiazole and 1 g of p-toluene sulfonic acid were reacted under a nitrogen atomosphere at 120°C for 9 hours. The reaction product was cooled to 80°C, and toluene and an aqueous sodium carbonate solution were added thereto, followed by stirring. The desired product thereby formed was extracted. The organic layer was treated by column chromatography to obtain 1.9 g of sensitizer I-1 as a reddish brown solid (mp: 164-170°C).
Elemental analysis: C H N Calculated values: 78.50 5.80 7.32 Analytical values: 78.47 6.01 7.09 - 5 g of p-dimethylaminoacetophenone was dissolved in 9 ml of 47 wt % hydrobromic acid, and the solution was maintained at 65°C. Then, a solution obtained by dissolving 5 g of bromine in 7.5 ml of the same hydrogen bromide as mentioned above, was dropwise added thereto, and the reaction was conducted at the same temperature for one hour. The reaction mixture was cooled to room temperature, and 100 ml of an aqueous solution containing 20 g of sodium hydrogen carbonate was added thereto for neutralization. Then, the mixture was extracted with chloroform to obtain 5.7 g of a brominated acetophenone compound (mp: 93°C). On the other hand, 4.6 g of 9-formyl-8-hydroxyjulolidine obtained by aldehyde-modifying 8-hydroxyjulolidine by using dimethylformamide and phosphorus oxychloride in accordance with a usual method and 1.4 g of potassium hydroxide were dissolved in 15 ml of ethanol. To this solution, the entire amount of the above-mentioned brominated acetophenone compound was added at 70°C, and the mixture was reacted at the same temperature for 3 hours. The reaction mixture was cooled to room temperature and then treated by column chromatography to obtain 2.2 g of sensitizer II-1 as orange red crystals (mp: 170-172°C).
Elemental analysis: C H N Calculated values: 76.64 6.71 7.77 Analytical values: 76.73 6.76 7.79 - 6.8 g of 2,N-dimethylbenzothiazolium tosylate was dispersed in 20 ml of dry pyridine and stirred. Then, 3.4 g of acetyl bromide was dropwise added thereto under cooling with ice, and the mixture was maintained at the same temperature for 30 minutes and at room temperature for 30 minutes and then reacted at 100°C for 30 minutes.
- Then, pyridine was distilled off under reduced pressure, and the reaction product was dispersed in water. Crystals were collected by filteration to obtain 2.7 g of N-methyl-2-acetylmethylenebenzothiazoline compound. On the other hand, 1.1 g of sodium hydroxide was dissolved in 18 ml of ethanol and 7 ml of water. To this solution, the entire amount of the above-mentioned benzothiazoline compound and 3.5 g of julolidine-9-carboaldehyde as used in Preparation Example 1 were added, and the mixture was reacted at 80°C for 12 hours. After the reaction, water was added to the reaction mixture, and the obtained solid was further treated by column chromatography to obtain orange crystals (mp: 254-258°C).
Elemental analysis: C H N Calculated values: 74.19 6.23 7.21 Analytical values: 73.82 6.51 7.03 - Now, Examples of the present invention wherein the sensitizers thus obtained are used will be described. The abbreviations for the sensitizers and the activators used in Examples are the same as used in the foregoing description. Further, the abbreviations for activators used in Comparative Examples and Reference Examples are the same as used before, but for the sensitizers, the following abbreviations will be used for the respective compounds.
Among them, the sensitizers R-I-1 to R-IV-1 were used as they have structures similar to the sensitizers I-1 to IV-1 of the present invention, and Std is a sensitizer for the visible light as disclosed in Japanese Unexamined Patent Publication No. 2528/1972 and was used as the standard for the relative sensitivity. R-I-1 and R-III-1 are compounds covered by Japanese Unexamined Patent Publications No. 21401/1982 and No. 74551/1984, respectively. - The relative sensitivity is the value obtained by the following procedure. Firstly, a photosensitive sample to be evaluated and a standard photosensitive sample (sensitizer Std was used) were exposed under the same exposure condition through √2 step tablets (masking films whereby the amount of light decreases by 1/√2 every step, manufactured by Eastman Kodak Company) and developed to obtain the number of curing steps of the samples. The relative sensitivity is given by the following equation.
where n is the number of curing steps for the photosensitive sample to be evaluated and nStd is the number of curing steps for the standard photosensitive sample. - The amounts of the sensitizers and the activators are shown hereinafter by "%" which means "% by weight" relative to the total weight of the ethylenic compound and the binder.
- 10 g of a methyl methacrylate/methacrylic acid copolymer (weight average molecular weight: 45,000, copolymerization ratio: 85/15), 10 g of trimethylolpropane triacrylate, 60 mg of methoxyphenol and 60 mg of Victoria Pure Blue-BOH were dissolved in 180 g of methyl ethyl ketone to obtain a photosensitive stock solution. This stock solution was divided, and to each divided solution, activators b-1 (amount: 5%) and b-5 (amount: 5%) as well as the sensitizer as identified in Table 1 (amount: 2%) were added and dissolved to obtain a photosensitive solution. Each photosensitive solution was whirl coated on a grained and anodized aluminum sheet so that the dried film thickness would be 2.5 µm, followed by drying at 70°C for 5 minutes. On its surface, an aqueous polyvinyl alcohol solution was coated to form an overcoat layer having a dried film thickness of 3 µm, whereby a photosensitive test sample was obtained. Then, it was secured in an exposure frame with the above-mentioned step tablet overlaid thereon, and exposure was conducted for 20 seconds through a glass filter L-42 (manufactured by Toshiba Glass K.K.) capable of completely cutting ultraviolet rays and permitting visible light rays to pass through. Then, developement was conducted by an aqueous solution containing 9% by weight of butyl cellosolve and 1% by weight of sodium silicate, and from the obtained number of photocuring steps, the relative sensitivity was determined in accordance with the above described procedure using Comparative Example 3 as the standard. The results are shown in Table 1.
- Except for the exposure condition, the measurements were conducted in the same manner as in Exmaple 1 by using the sensitizers as identified in Table 2 (amount: 2%).
- As the exposure condition, light rays having a wavelength of about 490 nm obtained by passing light rays from a xenone lamp through both a colored glass filter Y-47 and interference filter KL-49 (both manufactured by Toshiba Glass K.K.), were irradiated for 10 seconds. The results are shown in Table 2.
- Except for the exposure condition, the measurements were conducted in the same manner as in Example 1 by using the sensitizers as identified in Table 3.
-
-
-
- The same photosensitive material as used in Example 4 was scanned by a beam of an argon ion laser (GLG 3300 manufactured by Nippon Electric Company Limited). A laser beam of 488 nm was passed through a neutral density filter to reduce the amount of light and then focused to have a beam diameter of 15 µm at the surface of the photosensitive material, whereupon scanning was conducted with a beam intensity of 2.4 mW at a scanning speed of 50.6 m/sec, whereby a cured image line with a width of 15 mm was obtained.
- The same photosensitive material as used in Comparative Example 4 was scanned for exposure under the same condition as in Example 59, whereby no cured image line was formed.
- The photopolymerizable composition of the present invention has extremely high sensitivity to visible light rays, particularly to long wavelength light rays. Accordingly, the composition is useful in a wide range of application fields. For example, it is useful for the preparation of printing plates such as a lithographic plate, an intaglio and a letterpress, a photoresist for formation of printed circuits or integrated circuits, a dry film, an image forming material such as a relief image or image reproduction, a photocurable ink, coating material and adhesive. Thus, the composition of the present invention is very useful from the industrial point of view.
Claims (9)
- A photopolymerizable composition comprising an addition polymerizable compound having at least one ethylenically unsaturated double bond and a photopolymerization initiator system, wherein the photopolymerization initiator system comprises:(a) at least one sensitizer selected from the group consisting of a compound of the formula:(b) at least one activator capable of generating active radicals when irradiated in the presence of said sensitizer and
wherein the activator is at least one member selected from the group consisting of a hexaarylbiimidazole, a halogenated hydrocarbon derivative, an organic thiol compound, a diaryl iodonium salt and an organic peroxide. - The composition according to Claim 1, wherein the activator is a combination of a hexaarylbiimidazole and an organic thiol compound.
- The composition according to Claim 1, wherein the addition polymerizable compound having at least one ethylenically unsaturated double bond is an acrylate or a methacrylate.
- The composition according to Claim 1, which contains from 0.05 to 20 parts by weight of the sensitizer and from 0.5 to 70 parts by weight of the activator relative to 100 parts by weight of the addition polymerizable compound having at least one ethylenically unsaturated double bond.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP181317/87 | 1987-07-21 | ||
JP18131787 | 1987-07-21 | ||
JP4901788 | 1988-03-02 | ||
JP49017/88 | 1988-03-02 | ||
JP63145037A JP2538992B2 (en) | 1987-07-21 | 1988-06-13 | Photopolymerizable composition |
JP145037/88 | 1988-06-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0300410A2 EP0300410A2 (en) | 1989-01-25 |
EP0300410A3 EP0300410A3 (en) | 1990-12-05 |
EP0300410B1 true EP0300410B1 (en) | 1994-10-26 |
Family
ID=27293490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88111530A Expired - Lifetime EP0300410B1 (en) | 1987-07-21 | 1988-07-18 | Photopolymerizable composition |
Country Status (5)
Country | Link |
---|---|
US (1) | US4966830A (en) |
EP (1) | EP0300410B1 (en) |
JP (1) | JP2538992B2 (en) |
AU (1) | AU603235B2 (en) |
DE (1) | DE3851921T2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100291355A1 (en) * | 2006-02-08 | 2010-11-18 | Bernd Strehmel | Uv-sensitive lithographic printing plate precursor with benzoxazole derivative and analogues thereof as sensitizer |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4874685A (en) * | 1987-11-27 | 1989-10-17 | The Mead Corporation | Photocurable composition containing a photoreducible dye a thiol and an N,N'-dialkylaniline |
JP2571113B2 (en) * | 1988-12-29 | 1997-01-16 | 富士写真フイルム株式会社 | Photopolymerizable composition |
JP3070184B2 (en) * | 1991-10-18 | 2000-07-24 | 三菱化学株式会社 | Photopolymerizable composition and photosensitive material |
US5236808A (en) * | 1992-04-13 | 1993-08-17 | E. I. Du Pont De Nemours And Company | Visible photosensitizers for photopolymerizable compositions |
US5484927A (en) * | 1992-04-13 | 1996-01-16 | E. I. Du Pont De Nemours And Company | Visible dye photosensitizers derived from tropinone |
DE69620723T2 (en) | 1995-12-22 | 2002-12-05 | Mitsubishi Chemical Corp., Tokio/Tokyo | Photopolymerizable composition for a color filter, color filter and liquid crystal display device |
US5786127A (en) * | 1996-08-15 | 1998-07-28 | Western Litho Plate & Supply Co. | Photosensitive element having an overcoat which increases photo-speed and is substantially impermeable to oxygen |
US20020064728A1 (en) | 1996-09-05 | 2002-05-30 | Weed Gregory C. | Near IR sensitive photoimageable/photopolymerizable compositions, media, and associated processes |
DE69831774T2 (en) * | 1997-07-03 | 2006-07-13 | E.I. Dupont De Nemours And Co., Wilmington | Near-infrared sensitive imageable / photopolymerizable compositions, media and related processes |
EP2078978A3 (en) | 2004-04-26 | 2009-07-22 | Mitsubishi Chemical Corporation | LCD backlight containing a LED with adapted light emission and suitable colour filters |
JP2006071916A (en) * | 2004-09-01 | 2006-03-16 | Mitsubishi Chemicals Corp | Blue-violet laser photosensitive composition, and image forming material, imaging material and image forming method using the same |
CN101024920A (en) * | 2006-02-21 | 2007-08-29 | 罗门哈斯公司 | Treated articles and methods of making and using same |
TW200807104A (en) | 2006-04-19 | 2008-02-01 | Mitsubishi Chem Corp | Color image display device |
US20100039685A1 (en) * | 2006-09-05 | 2010-02-18 | Mitsubishi Chemical Corporation | Volume hologram optical recording medium, composition for forming volume hologram recording layer, volume hologram recording material, and volume hologram optical recording method |
KR20090074019A (en) | 2006-10-25 | 2009-07-03 | 미쓰비시 가가꾸 가부시키가이샤 | Volume hologram optical recording medium, composition for volume hologram recording layer formation, and volume hologram recording material |
US8491816B2 (en) | 2008-02-07 | 2013-07-23 | Mitsubishi Chemical Corporation | Semiconductor light emitting device, backlight, color image display device and phosphor to be used for them |
CN104447681B (en) * | 2013-09-17 | 2018-05-01 | 北京大学 | Compound for treating cancer and its preparation method and application |
EP3147335A1 (en) | 2015-09-23 | 2017-03-29 | BYK-Chemie GmbH | Colorant compositions containing wettting and/or dispersing agents with low amine number |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4147552A (en) * | 1976-05-21 | 1979-04-03 | Eastman Kodak Company | Light-sensitive compositions with 3-substituted coumarin compounds as spectral sensitizers |
US4162162A (en) * | 1978-05-08 | 1979-07-24 | E. I. Du Pont De Nemours And Company | Derivatives of aryl ketones and p-dialkyl-aminoarylaldehydes as visible sensitizers of photopolymerizable compositions |
CA1143081A (en) * | 1979-01-17 | 1983-03-15 | Kazumasa Kamada | Coating composition and process for producing synthetic resin moldings by using the same |
DE3164954D1 (en) * | 1980-03-04 | 1984-08-30 | Mitsubishi Rayon Co | Coating composition and process for preparing synthetic resin shaped articles by using same |
JPS56141309A (en) * | 1980-04-03 | 1981-11-05 | Mitsubishi Rayon Co Ltd | Coating composition and preparation of synthetic resin molded article using the same |
JPS5721401A (en) * | 1980-07-14 | 1982-02-04 | Mitsubishi Chem Ind Ltd | Photopolymerizable composition |
JPS5815503A (en) * | 1981-07-20 | 1983-01-28 | Fuji Photo Film Co Ltd | Photopolymerizable composition |
JPH0230321B2 (en) * | 1981-07-28 | 1990-07-05 | Mitsubishi Chem Ind | HIKARIJUGOSE ISOSEIBUTSU |
US4454218A (en) * | 1982-09-13 | 1984-06-12 | E. I. Du Pont De Nemours And Company | N-Alkylindolylidene and N-alkylbenzo-thiazolylidene alkanones as sensitizers for photopolymer compositions |
JPS5956403A (en) * | 1982-09-27 | 1984-03-31 | Mitsubishi Chem Ind Ltd | Photomerizable composition |
JPS5971048A (en) * | 1982-10-18 | 1984-04-21 | Mitsubishi Chem Ind Ltd | Photopolymerizable photosensitive composition |
DE3464921D1 (en) * | 1983-05-02 | 1987-08-27 | Du Pont | Constrained n-alkylamino aryl ketones as sensitizers for photopolymer compositions |
JPH0629285B2 (en) * | 1983-10-14 | 1994-04-20 | 三菱化成株式会社 | Photopolymerizable composition |
GB8525027D0 (en) * | 1985-10-10 | 1985-11-13 | Autotype Int Ltd | Water soluble photoinitiators |
CA1308852C (en) * | 1987-01-22 | 1992-10-13 | Masami Kawabata | Photopolymerizable composition |
-
1988
- 1988-06-13 JP JP63145037A patent/JP2538992B2/en not_active Expired - Fee Related
- 1988-07-12 US US07/217,981 patent/US4966830A/en not_active Expired - Lifetime
- 1988-07-18 DE DE3851921T patent/DE3851921T2/en not_active Expired - Fee Related
- 1988-07-18 EP EP88111530A patent/EP0300410B1/en not_active Expired - Lifetime
- 1988-07-19 AU AU19139/88A patent/AU603235B2/en not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100291355A1 (en) * | 2006-02-08 | 2010-11-18 | Bernd Strehmel | Uv-sensitive lithographic printing plate precursor with benzoxazole derivative and analogues thereof as sensitizer |
US8632937B2 (en) * | 2006-02-08 | 2014-01-21 | Eastman Kodak Company | UV-sensitive lithographic printing plate precursor with benzoxazole derivative and analogues thereof as sensitizer |
Also Published As
Publication number | Publication date |
---|---|
US4966830A (en) | 1990-10-30 |
AU603235B2 (en) | 1990-11-08 |
JPH0269A (en) | 1990-01-05 |
JP2538992B2 (en) | 1996-10-02 |
DE3851921T2 (en) | 1995-05-24 |
AU1913988A (en) | 1989-01-27 |
EP0300410A2 (en) | 1989-01-25 |
DE3851921D1 (en) | 1994-12-01 |
EP0300410A3 (en) | 1990-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0107792B1 (en) | Photopolymerizable compositions | |
EP0300410B1 (en) | Photopolymerizable composition | |
US4505793A (en) | Photopolymerizable compositions | |
US4772534A (en) | Light sensitive composition containing a light sensitive s-triazine compound | |
US4481276A (en) | Photopolymerizable composition containing a combination of photoinitiators | |
JPS5928203B2 (en) | Photopolymerizable composition | |
JPH023686A (en) | Heterocyclic compound, photosensitive composition and production of said compound | |
US4399211A (en) | Photopolymerizable compositions | |
EP0005274A1 (en) | Photopolymerisable compositions comprising derivatives of aryl ketones and p-dialkylaminoarylaldehydes as sensitisers for visible light | |
JPH0230321B2 (en) | HIKARIJUGOSE ISOSEIBUTSU | |
EP0704764A1 (en) | Photopolymerizable composition and photosensitive lithographic printing plate | |
US4356247A (en) | Light-sensitive compositions | |
US5057398A (en) | Photopolymerizable composition and photopolymerizable recording material containing same | |
US5219709A (en) | Photopolymerizable composition | |
JPH0230322B2 (en) | HIKARIJUGOSE ISOSEIBUTSU | |
US5607817A (en) | Photopolymerizable composition | |
JPH0255446B2 (en) | ||
JP3275439B2 (en) | Photopolymerizable composition | |
JPH05210240A (en) | Photopolymerizable composition | |
JP3324266B2 (en) | Photopolymerizable composition and photosensitive material | |
JPH05241338A (en) | Photopolymerizable composition | |
CA1331533C (en) | Photopolymerizable composition | |
JPH0643641A (en) | Photolymerizable composition | |
JPH0474172A (en) | New sensitizer | |
JPH08314139A (en) | Photopolymerizable composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19901212 |
|
17Q | First examination report despatched |
Effective date: 19920327 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3851921 Country of ref document: DE Date of ref document: 19941201 |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MITSUBISHI CHEMICAL CORPORATION |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: MITSUBISHI CHEMICAL CORPORATION TE TOKIO, JAPAN. |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19980619 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980624 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980730 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980930 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990718 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20000201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |