EP0300159A1 - Method and device for lining a tunnel with concrete cast in situ - Google Patents

Method and device for lining a tunnel with concrete cast in situ Download PDF

Info

Publication number
EP0300159A1
EP0300159A1 EP88108179A EP88108179A EP0300159A1 EP 0300159 A1 EP0300159 A1 EP 0300159A1 EP 88108179 A EP88108179 A EP 88108179A EP 88108179 A EP88108179 A EP 88108179A EP 0300159 A1 EP0300159 A1 EP 0300159A1
Authority
EP
European Patent Office
Prior art keywords
formwork
situ concrete
jacket
shield
frictional forces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88108179A
Other languages
German (de)
French (fr)
Other versions
EP0300159B1 (en
Inventor
Volker Hentschel
Olaf Mahmens
Clemens Versteegen
Siegmund Dr. Babendererde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochtief AG
Original Assignee
Hochtief AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochtief AG filed Critical Hochtief AG
Publication of EP0300159A1 publication Critical patent/EP0300159A1/en
Application granted granted Critical
Publication of EP0300159B1 publication Critical patent/EP0300159B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0607Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering

Definitions

  • the invention relates to a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete through a front formwork which is longitudinally movable relative to the shield jacket and to the inner formwork and which is adjacent to the inner jacket surface of the shield jacket and to the inner formwork while simultaneously advancing the Forehead formwork is pressed against the inner formwork between the mountains and the inner formwork, the forehead formwork being advanced solely by the pressure of the supplied in-situ concrete while compensating for the frictional forces occurring between the forehead formwork and the shield casing and the inner formwork.
  • the invention relates to a device for carrying out such a method, in which the front formwork has an outer jacket seal that is in contact with the inner jacket surface of the shield jacket and an inner jacket seal that is in contact with the outer jacket surface of the inner boarding, is connected to the in-situ concrete pump via a movable in-situ concrete delivery line and via an adjustable , the frictional force compensating hydraulic spring arrangement is coupled to the shield casing and the face formwork and the shield casing is assigned a position measuring device as an integral part of a control device.
  • the control device merely serves to hold the face formwork in a predetermined area of the shield jacket and consequently has a cylinder piston arrangement, via which the shield jacket is coupled to a propulsion unit of the tunneling machine, and the in-situ concrete pump up as actuators.
  • these measures do not meet the requirements.
  • Experience with jacking shields in the diameter range of 6 to 7 m has shown that the required compensation forces can fluctuate between 400 and 1400 kN.
  • the invention is therefore based on the object to reduce the amount of harmful pressure fluctuations when feeding the in-situ concrete as part of the measures described above.
  • this object is achieved according to the invention in that the frictional forces between concreting sections of a predetermined length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted.
  • the device-based solution is characterized in that the hydraulic spring arrangement is connected as an actuator to the control device and the control device is set up for storing the installation of the hydraulic spring arrangement when determining the frictional forces.
  • the invention is based on experiences gained in the course of lining tunnels with in-situ concrete.
  • the variable frictional forces acting on the movable face formwork cannot be determined practically during operation.
  • To ensure pressure-stable concrete paving with only slight fluctuations in the concrete pressure it is therefore necessary to record the frictional forces at regular intervals and to change a supporting force that acts continuously when feeding the in-situ concrete so that the change in supporting force corresponds to the amount of the frictional force, but in the opposite direction in the direction of action is directed.
  • This adjustment of the supporting force causes the front formwork to be moved forward in the driving direction solely by the concrete compressive force of the in-situ concrete that exceeds the supporting force, and any frictional forces that occur are eliminated in their effect by the compensation forces additionally introduced into the system.
  • the face formwork is preferred by an amount for determining the frictional forces at which the face formwork does not detach from the last-placed in-situ concrete; this is easily possible when the soil is brown, ie flexible. on the other hand, this is the only way to determine the frictional forces. Otherwise, there is the possibility of determining the frictional forces along the circumference of the face formwork independently at several points; Accordingly, it is also possible to apply different compensation forces to the front formwork in the circumferential direction.
  • the hydraulic spring arrangement consists of parallel hydraulic cylinder piston arrangements, the cylinder chambers facing away from the end formwork are connected via a hydraulic line to a gas pressure accumulator arrangement and whose cylinder chambers facing the end formwork are connected via a hydraulic line to a proportional pressure valve arrangement;
  • the gas pressure accumulator arrangement is provided for the spring action and the specification of a specific supporting force, while the proportional pressure valve arrangement is used in connection with the determination and setting of the forces compensating the frictional forces.
  • the single figure shows a device for lining a tunnel with in-situ concrete behind a tunnel boring machine with a trailing shield jacket 1.
  • a front formwork 2 is used, which has an outer jacket seal 3 lying against the inner surface of the shield jacket 1 and an inner jacket lying against the outer jacket surface of an inner formwork 4 Has jacket seal 5.
  • the front formwork 2 is coupled to the shield casing 1 via an adjustable hydraulic spring arrangement 8 that compensates for the frictional forces.
  • the face formwork 2 and the shield casing 1 are assigned a displacement measuring device 9 as an input element of an electrical control device 10.
  • Said hydraulic spring arrangement 8 is connected as an actuator to the control device 10 and the control device 10 is set up for storing the setting of the hydraulic spring arrangement 8 when determining the frictional forces; this will be explained in more detail below.
  • the hydraulic spring arrangement 8 consists of several parallel hydraulic cylinder piston arrangements 11, only one of which is shown.
  • the cylinder chamber 12 facing away from the front formwork 2 is connected to a gas pressure accumulator arrangement 14 via a hydraulic line 13. This is designed so that practically the same pressure is always exerted on the piston of the hydraulic cylinder piston assembly 11 regardless of its position.
  • the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 facing the face formwork 2 is connected via a hydraulic line 16 to a proportional pressure valve arrangement 17 with a hydraulic pump 18.
  • the in-situ concrete pump 7 is connected as a further actuator to the control device 10 in order to control the concrete volume flow as a function of the path.
  • the concrete volume flow to be introduced through the front formwork 2 is reduced, when the Xm direction is deflected in the -x direction, the concrete volume flow is increased, and when the front formwork 2 is not deflected, the supplied concrete volume flow rate is reduced kept constant or not changed.
  • the working point can be provided with a path tolerance.
  • the unpressurized cylinder chambers 15 of the hydraulic cylinder piston arrangement 11 are continuously pressurized with increasing pressure in that hydraulic fluid is released from the hydraulic lik pump 18 is pumped into the cylinder chamber 15.
  • the concrete flow control and the concrete supply are interrupted.
  • the hydraulic quantity fed in is dimensioned such that, after a certain pressure is exceeded, the front formwork 2 is pulled off at a low speed in the + x direction.
  • the displacement measuring device 9 registers a change in displacement, from which the electronic control device 10 determines a change in speed of the front formwork 2. This change in speed is the signal for the end of the hydraulic feed.
  • the resulting pressure is stored in the control device and optionally provided with a correction factor to be determined by calibration.
  • the proportional pressure valve arrangement 17 is brought to a setting corresponding to the last measured and corrected value and the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 is pressurized.
  • F compensation is chosen so that a slight under compensation of F friction is achieved. This means that the concrete pressure is set too high. If the concrete pressure is now increased by a certain value dF b , the face formwork 2 starts to move in the direction of the concrete pressure force acting on it, since an imbalance of the forces arises.
  • the forces which inhibit the movement are approximately optimally compensated for.
  • the compensation force remains constant until a certain distance, e.g. B. 20 cm, is concreted.
  • the control device 10 is equipped with all path information required for determining the concreting path.
  • the compensation operation is terminated and a new friction force determination is carried out automatically.
  • a higher reserve of the concrete pressure than would be necessary according to the static framework conditions serves as a safety reserve as well as the low undercompensation of the friction force, as a result of which an increase in the concrete pressure is necessary.
  • the deflection of the face formwork 2 leads to the onset of the concrete volume flow control.
  • the concrete volume flow is reduced.
  • the working point X m can be provided with a tolerance field x 1> x m > x o . If the face formwork is within this distance, the concrete volume flow remains constant.
  • the displacement measuring device 9 registers a deflection in the -x direction.
  • the concrete volume flow is increased.
  • the increased concrete volume flow leads to an increase in pressure in the annular space and finally to a movement of the front formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1.
  • the frictional force acting on the front formwork 2 between the shield casing 1 and the front formwork 2 changes direction and possibly their amount. In order to take into account the resulting change in the resulting frictional force, the compensating force is reduced until the relative speed between the front formwork 2 and the shield jacket 1 is no longer negative.
  • the concrete volume flow is increased.
  • the increased concrete volume flow leads to an increase in pressure in the formwork and finally to a movement of the face formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1.
  • Failure to achieve the relative movement between the shield casing 1 and the front formwork 2 does not lead to a substantial incorrect compensation as long as the direction of the frictional forces between the inner formwork 4 and the front formwork 2 and the shield casing 1 and the front formwork 2 have the same direction. If the direction of the frictional force between the shield casing 1 and the front formwork 2 is reversed, the total frictional force is reduced and can, in extreme cases, reverse its direction.
  • control device 10 provides that the operator is made aware of the case described; the operator can then take appropriate steps to "troubleshoot" if necessary. If the front formwork 2 stops, the control device 10 is designed such that that the operation is interrupted immediately with a friction compensation, ie the cylinder chamber 15 of the hydraulic cylinder piston assembly 11 is vented. It is possible to restart the compensation operation after the fault has been rectified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

Bei einem Verfahren zum Auskleiden eines Tunnels mit Ortbeton hinter einer einen nachlaufenden Schildmantel aufweisenden Vortriebsmaschine wird der Ortbeton durch eine an der Innenmantelfläche des Schildmantels sowie an der Außenmantelfläche einer Innenschalung anliegende und relativ zum Schildmantel sowie zur Innenschalung längs bewegbare Stirnschalung hindurch unter gleichzeitiger Vorbewegung der Stirnschalung gegenüber der Innenschalung zwischen das Gebirge und die Innenschalung Ortbeton gedrückt. Die Stirnschalung wird dabei unter gleichzeitiger Kompensierung der zwischen der Stirnschalung und dem Schildmantel sowie der Innenschalung auftretenden Reibungskräfte ausschließlich durch den Druck des zugeführten Ortbetons vorbewegt. Hierbei kommt man zu einwandfreien Ergebnissen, wenn die Reibungskräfte zwischen Betonierabschnitten vorgegebener Länge durch Vorziehen der Stirnschalung gegenüber dem stillstehenden Schildmantel und der Innenschalung bei unterbrochener Ortbetonzufuhr ermittelt werden.In a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete is opposed by a front formwork that is longitudinally movable relative to the shield jacket and to the inner formwork, and which is longitudinally movable relative to the shield jacket and to the inner formwork, while simultaneously advancing the forehead formwork the inner formwork between the mountains and the inner formwork pressed concrete. The forehead formwork is moved forward by simultaneously compensating the frictional forces occurring between the forehead formwork and the shield casing as well as the inner formwork exclusively by the pressure of the in-situ concrete supplied. This gives perfect results if the frictional forces between concreting sections of a given length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted.

Description

Die Erfindung betrifft ein Verfahren zum Auskleiden eines Tunnels mit Ortbeton hinter einer einen nachlaufenden Schildmantel aufweisen­den Vortriebsmaschine, wobei der Ortbeton durch eine an der Innen­mantelfläche des Schildmantels sowie an der Außenmantelfläche einer Innenschalung anliegende und relativ zum Schildmantel sowie zur Innenschalung längsbewegbare Stirnschalung hindurch unter gleich­zeitiger Vorbewegung der Stirnschalung gegenüber der Innenschalung zwischen das Gebirge und die Innenschalung gedrückt wird, wobei die Stirnschalung unter gleichzeitiger Kompensierung der zwischen der Stirnschalung und dem Schildmantel sowie der Innenschalung auf­tretenden Reibungskräfte ausschließlich durch den Druck des zuge­führten Ortbetons vorbewegt wird. Außerdem betrifft die Erfindung eine Vorrichtung zur Durchführung eines solchen Verfahrens, bei der die Stirnschalung eine an der Innenmantelfläche des Schildmantels an­liegende äußere Manteldichtung sowie eine an der Außenmantelfläche der Innenschalung anliegende innere Manteldichtung aufweist, über eine bewegliche Ortbetonförderleitung mit der Ortbetonpumpe verbunden ist sowie über eine einstellbare, die Reibungskräfte kompensierende hydraulische Federanordnung an den Schildmantel angekoppelt ist und der Stirnschalung sowie dem Schildmantel ein Wegmeßgerät als Ein­gebeglied einer Steuereinrichtung zugeordnet ist.The invention relates to a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete through a front formwork which is longitudinally movable relative to the shield jacket and to the inner formwork and which is adjacent to the inner jacket surface of the shield jacket and to the inner formwork while simultaneously advancing the Forehead formwork is pressed against the inner formwork between the mountains and the inner formwork, the forehead formwork being advanced solely by the pressure of the supplied in-situ concrete while compensating for the frictional forces occurring between the forehead formwork and the shield casing and the inner formwork. In addition, the invention relates to a device for carrying out such a method, in which the front formwork has an outer jacket seal that is in contact with the inner jacket surface of the shield jacket and an inner jacket seal that is in contact with the outer jacket surface of the inner boarding, is connected to the in-situ concrete pump via a movable in-situ concrete delivery line and via an adjustable , the frictional force compensating hydraulic spring arrangement is coupled to the shield casing and the face formwork and the shield casing is assigned a position measuring device as an integral part of a control device.

Im Rahmen der bekannten Maßnahmen der genannten Art (DE-PS 34 06 980) ist offengelassen, wie die Einstellung der hydraulischen Federanordnung im einzelnen vorgenommen wird. Die Steuereinrichtung dient lediglich dazu, die Stirnschalung in einem vorgegebenen Be­reich des Schildmantels zu halten, und weist demzufolge eine Zylin­derkolbenanordnung, über die der Schildmantel an ein Vortriebs­aggregat der Vortriebsmaschine angekoppelt ist, und die Ortbeton­ pumpe als Stellglieder auf. Diese Maßnahmen werden den Erfordernis­sen aber nicht gerecht. Erfahrungen mit Vortriebsschilden im Durch­messerbereich von 6 bis 7 m haben nämlich gezeigt, daß die erfor­derlichen Kompensationskräfte zwischen 400 und 1400 kN schwanken können. Dies führt zu entsprechend großen Schwankungen des für die Vorwärtsbewegung der Stirnschalung notwendigen Betondruckes mit den entsprechend negativen Folgen für die Qualität der Tunnel­auskleidung, insbesondere im Lockerboden und unter dem Grundwas­serspiegel. Um eine qualitativ einwandfreie Ortbetonauskleidung zu erhalten, müssen die auftretenden Druckschwankungen vermindert wer­den. Der Betondruck in der Schalung muß dabei oberhalb des anste­henden Erd- und Wasserdruckes sowie eines Sicherheitswertes gehal­ten werden.As part of the known measures of the type mentioned (DE-PS 34 06 980) it is left open how the adjustment of the hydraulic spring arrangement is carried out in detail. The control device merely serves to hold the face formwork in a predetermined area of the shield jacket and consequently has a cylinder piston arrangement, via which the shield jacket is coupled to a propulsion unit of the tunneling machine, and the in-situ concrete pump up as actuators. However, these measures do not meet the requirements. Experience with jacking shields in the diameter range of 6 to 7 m has shown that the required compensation forces can fluctuate between 400 and 1400 kN. This leads to correspondingly large fluctuations in the concrete pressure required for the forward movement of the forehead formwork, with the correspondingly negative consequences for the quality of the tunnel lining, particularly in the loose soil and below the water table. The pressure fluctuations that occur must be reduced in order to obtain a qualitatively perfect in-situ concrete lining. The concrete pressure in the formwork must be kept above the existing earth and water pressure as well as a safety value.

Der Erfindung liegt daher die Aufgabe zugrunde, im Rahmen der ein­gangs geschilderten Maßnahmen die schädlichen Druckschwankungen beim Zuführen des Ortbetons der Höhe nach zu vermindern.The invention is therefore based on the object to reduce the amount of harmful pressure fluctuations when feeding the in-situ concrete as part of the measures described above.

In verfahrensmäßiger Hinsicht wird diese Aufgabe gemäß der Erfin­dung dadurch gelöst, daß die Reibungskräfte zwischen Betonierab­schnitten vorgegebener Länge durch Vorziehen der Stirnschalung gegenüber dem stillstehenden Schildmantel und der Innenschalung bei unterbrochener Ortbetonzufuhr ermittelt werden. Die vorrichtungsmäßige Lösung ist dadurch gekennzeichnet, daß die hydraulische Federanord­nung als Stellglied an die Steuereinrichtung angeschlossen ist und die Steuereinrichtung für eine Speicherung der Einstallung der hydrau­lischen Federanordnung bei der Ermittlung der Reibungskräfte einge­richtet ist.In procedural terms, this object is achieved according to the invention in that the frictional forces between concreting sections of a predetermined length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted. The device-based solution is characterized in that the hydraulic spring arrangement is connected as an actuator to the control device and the control device is set up for storing the installation of the hydraulic spring arrangement when determining the frictional forces.

Die Erfindung geht hierbei von Erfahrungen aus, die im Zuge des Auskleidens von Tunneln mit Ortbeton gewonnen worden sind. Die auf die bewegliche Stirnschalung wirkenden veränderlichen Reibungskräfte sind während des Betriebes praktisch nicht bestimmbar. Zur Sicher­stellung eines druckstabilen Betoneinbaus mit nur geringen Beton­druckschwankungen ist es deshalb erforderlich, die Reibungskräfte in regelmäßigen Abständen zu erfassen und eine beim Zuführen des Ortbetons kontinuierlich wirkende Stützkraft so zu verändern, daß die Stützkraftänderung dem Betrage nach der Reibungskraft entspricht, dieser jedoch in der Wirkungsrichtung entgegengesetzt gerichtet ist. Diese Anpassung der Stützkraft bewirkt, daß die Stirnschalung aus­schließlich durch die die Stützkraft übersteigende Betondruckkraft des zugeführten Ortbetons in Vortriebsrichtung vorwärts bewegt wird und auftretende Reibungskräfte durch die zusätzlich in das System eingebrachten Kompensationskräfte in ihrer Wirkung eliminiert werden.The invention is based on experiences gained in the course of lining tunnels with in-situ concrete. The variable frictional forces acting on the movable face formwork cannot be determined practically during operation. To ensure pressure-stable concrete paving with only slight fluctuations in the concrete pressure, it is therefore necessary to record the frictional forces at regular intervals and to change a supporting force that acts continuously when feeding the in-situ concrete so that the change in supporting force corresponds to the amount of the frictional force, but in the opposite direction in the direction of action is directed. This adjustment of the supporting force causes the front formwork to be moved forward in the driving direction solely by the concrete compressive force of the in-situ concrete that exceeds the supporting force, and any frictional forces that occur are eliminated in their effect by the compensation forces additionally introduced into the system.

Für die weitere Ausgestaltung bestehen im Rahmen der Erfindung mehrere Möglichkeiten. So ist in verfahrensmäßiger Hinsicht zunächst vorgesehen, daß die Stirnschalung für die Ermittlung der Reibungs­kräfte um ein Maß vorgezogen wird, bei dem sich die Stirnschalung nicht von dem zuletzt zugeführten Ortbeton löst; das ist bei ge­brächem, d. h. nachgiebigem Boden ohne weiteres möglich; auf der anderen Seite kommt man praktisch nur so zu einer eindeutigen Er­mittlung der Reibungskräfte. Im übrigen besteht ohne weiteres die Möglichkeit, die Reibungskräfte längs des Umfanges der Stirnschalung an mehreren Stellen unabhängig voneinander zu ermitteln; ent­sprechend ist es auch möglich, die Stirnschalung in Umfangsrichtung mit unterschiedlichen Kompensationskräften zu beaufschlagen. In vorichtungsmäßiger Hinsicht hat sich eine Ausführungsform bewährt, bei der die hydraulische Federanordnung aus parallelen Hydraulikzy­linderkolbenanordnungen besteht, deren der Stirnschalung abgewandte Zylinderkammern über eine Hydraulikleitung mit einer Gasdruck­speicheranordnung und deren der Stirnschalung zugewandte Zylinder­kammern über eine Hydraulikleitung mit einer Proportionaldruckventil­anordnung verbunden sind; die Gasdruckspeicheranordnung ist dabei für die Federwirkung und die Vorgabe einer bestimmten Stützkraft vor­gesehen, während die Proportionaldruckventilanordnung im Zusammen­hang mit der Ermittelung und Einstellung der die Reibungskräfte kom­pensierenden Kräfte eingesetzt wird. Im übrigen empfiehlt es sich, die Ortbetonpumpe als weiteres Stellglied an die Steuereinrichtung anzu­schließen.There are several possibilities for the further configuration within the scope of the invention. In procedural terms, it is initially provided that the face formwork is preferred by an amount for determining the frictional forces at which the face formwork does not detach from the last-placed in-situ concrete; this is easily possible when the soil is brown, ie flexible. on the other hand, this is the only way to determine the frictional forces. Otherwise, there is the possibility of determining the frictional forces along the circumference of the face formwork independently at several points; Accordingly, it is also possible to apply different compensation forces to the front formwork in the circumferential direction. In terms of the device, one embodiment has proven itself in which the hydraulic spring arrangement consists of parallel hydraulic cylinder piston arrangements, the cylinder chambers facing away from the end formwork are connected via a hydraulic line to a gas pressure accumulator arrangement and whose cylinder chambers facing the end formwork are connected via a hydraulic line to a proportional pressure valve arrangement; the gas pressure accumulator arrangement is provided for the spring action and the specification of a specific supporting force, while the proportional pressure valve arrangement is used in connection with the determination and setting of the forces compensating the frictional forces. For the rest, it is advisable to connect the in-situ concrete pump to the control device as an additional actuator.

Im folgenden wird die Erfindung anhand einer ein Ausführungsbei­spiel darstellenden Zeichnung näher erläutert.The invention is explained in more detail below with the aid of a drawing that represents an exemplary embodiment.

Die einzige Figur zeigt eine Vorrichtung zum Auskleiden eines Tun­nels mit Ortbeton hinter einer Vortriebsmaschine mit einem nachlau­fenden Schildmantel 1. Hierbei wird eine Stirnschalung 2 eingesetzt, die eine an der Innenfläche des Schildmantels 1 anliegende äußere Manteldichtung 3 sowie eine an der Außenmantelfläche einer Innen­schalung 4 anliegende innere Manteldichtung 5 aufweist. Durch die Stirnschalung 2 hindurch wird über eine bewegliche Ortbetonförder­leitung 6 mit einer Ortbetonpumpe 7 Ortbeton gedrückt; das ist in der Figur lediglich angedeutet. Die Stirnschalung 2 ist über eine einstell­bare, die Reibungskräfte kompensierende hydraulische Federanordnung 8 an den Schildmantel 1 angekoppelt. Außerdem ist der Stirnschalung 2 sowie dem Schildmantel 1 ein Wegmeßgerät 9 als Eingabeglied einer elektrischen Steuereinrichtung 10 zugeordnet.The single figure shows a device for lining a tunnel with in-situ concrete behind a tunnel boring machine with a trailing shield jacket 1. In this case, a front formwork 2 is used, which has an outer jacket seal 3 lying against the inner surface of the shield jacket 1 and an inner jacket lying against the outer jacket surface of an inner formwork 4 Has jacket seal 5. Through the face formwork 2, 7 in-situ concrete is pressed via a movable in-situ concrete delivery line 6 with an in-situ concrete pump; this is only hinted at in the figure. The front formwork 2 is coupled to the shield casing 1 via an adjustable hydraulic spring arrangement 8 that compensates for the frictional forces. In addition, the face formwork 2 and the shield casing 1 are assigned a displacement measuring device 9 as an input element of an electrical control device 10.

Die genannte hydraulische Federanordnung 8 ist als Stellglied an die Steuereinrichtung 10 angeschlossen und die Steuereinrichtung 10 ist für eine Speicherung der Einstellung der hydraulischen Federanordnung 8 bei der Ermittlung der Reibungskräfte eingerichtet; das wird weiter unten noch eingehend erläutert. Die hydraulische Federanordnung 8 besteht aus mehreren parallelen Hydraulikzylinderkolbenanordnungen 11, von denen nur eine dargestellt ist. Die der Stirnschalung 2 abge­wandte Zylinderkammer 12 ist über eine Hydraulikleitung 13 mit einer Gasdruckspeicheranordnung 14 verbunden. Diese ist so ausgelegt, daß auf den Kolben der Hydraulikzylinderkolbenanordnung 11 unabhängig von dessen Stellung praktisch immer derselbe Druck ausgeübt wird. Die der Stirnschalung 2 zugewandte Zylinderkammer 15 der Hydraulik­zylinderkolbenanordnung 11 ist über eine Hydraulikleitung 16 mit einer Proportionaldruckventilanordnung 17 mit Hydraulikpumpe 18 verbunden. Mit Hilfe der Proportionaldruckventilanordnung 17 kann ein konstanter Hydraulikdruck in der Zylinderkammer 15 aufrechterhalten werden. Die Ortbetonpumpe 7 ist als weiteres Stellglied an die Steuereinrichtung 10 angeschlossen, um den Betonvolumenstrom wegabhängig zu steuern. Hierzu wird bei der Auslenkung der Stirnschalung 2 relativ zum Schildmantel 1 um den Arbeitspunkt Xm in Richtung+x der durch die Stirnschalung 2 einzubringende Betonvolumenstrom vermindert, bei einer Auslenkung um Xm in Richtung -x der Betonvolumenstrom erhöht und bei Nichtauslenkung der Stirnschalung 2 der zugeführte Beton­volumenstrom konstant gehalten bzw. nicht geändert. Der Arbeitspunkt kann mit einer Wegtoleranz versehen werden.Said hydraulic spring arrangement 8 is connected as an actuator to the control device 10 and the control device 10 is set up for storing the setting of the hydraulic spring arrangement 8 when determining the frictional forces; this will be explained in more detail below. The hydraulic spring arrangement 8 consists of several parallel hydraulic cylinder piston arrangements 11, only one of which is shown. The cylinder chamber 12 facing away from the front formwork 2 is connected to a gas pressure accumulator arrangement 14 via a hydraulic line 13. This is designed so that practically the same pressure is always exerted on the piston of the hydraulic cylinder piston assembly 11 regardless of its position. The cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 facing the face formwork 2 is connected via a hydraulic line 16 to a proportional pressure valve arrangement 17 with a hydraulic pump 18. With the aid of the proportional pressure valve arrangement 17, a constant hydraulic pressure can be maintained in the cylinder chamber 15. The in-situ concrete pump 7 is connected as a further actuator to the control device 10 in order to control the concrete volume flow as a function of the path. For this purpose, when the front formwork 2 is deflected relative to the shield casing 1 around the operating point Xm in the + x direction, the concrete volume flow to be introduced through the front formwork 2 is reduced, when the Xm direction is deflected in the -x direction, the concrete volume flow is increased, and when the front formwork 2 is not deflected, the supplied concrete volume flow rate is reduced kept constant or not changed. The working point can be provided with a path tolerance.

Bei eingeschalteter Stützung, stehender Stirnschalung 2 sowie stehen­dem Schildmantel 1 werden die drucklosen Zylinderkammern 15 der Hydraulikzylinderkolbenanordnung 11 kontinuierlich mit steigendem Druck dadurch beaufschlagt, daß Hydraulikflüssigkeit von der Hydrau­ likpumpe 18 in die Zylinderkammer 15 gepumpt wird. Dabei wird die Betonstromregelung und die Betonzufuhr unterbrochen. Die eingespeiste Hydraulikmenge ist so bemessen, daß es nach Überschreiten eines be­stimmten Druckes zu einem Abziehen der Stirnschalung 2 mit geringer Geschwindigkeit in Richtung +x kommt. Das Wegmeßgerät 9 registriert eine Wegänderung, aus der die elektronische Steuereinrichtung 10 eine Geschwindigkeitsänderung der Stirnschalung 2 ermittelt. Diese Ge­schwindigkeitsänderung ist das Signal für die Beendigung der hy­draulischen Einspeisung. Der sich ergebende Druck wird in der Steuer­einrichtung gespeichert und gegebenenfalls mit einem durch Eichung zu ermittelnden Korrekturfaktor versehen. Die dargestellten Kräfte (Stützkraft Fs , Betondruckkraft Fb , Erd- und Wasserdruckkraft) be­finden sich im Gleichgewicht. Bei einem geringfügigen und hinrei­chend langsamen Bewegen der Stirnschalung 2 ändern sich die Druck­verhältnisse im Betonraum nur geringfügig, da die Volumenänderun­gen wie von einer elastischen Membran aufgenommen werden.When the support is switched on, standing face formwork 2 and standing shield casing 1, the unpressurized cylinder chambers 15 of the hydraulic cylinder piston arrangement 11 are continuously pressurized with increasing pressure in that hydraulic fluid is released from the hydraulic lik pump 18 is pumped into the cylinder chamber 15. The concrete flow control and the concrete supply are interrupted. The hydraulic quantity fed in is dimensioned such that, after a certain pressure is exceeded, the front formwork 2 is pulled off at a low speed in the + x direction. The displacement measuring device 9 registers a change in displacement, from which the electronic control device 10 determines a change in speed of the front formwork 2. This change in speed is the signal for the end of the hydraulic feed. The resulting pressure is stored in the control device and optionally provided with a correction factor to be determined by calibration. The forces shown (supporting force F s , concrete pressure force F b , earth and water pressure force) are in equilibrium. With a slight and sufficiently slow movement of the front formwork 2, the pressure conditions in the concrete room change only slightly, since the volume changes are absorbed as by an elastic membrane.

Für den Kompensationsbetrieb wird die Proportionaldruckventilanord­nung 17 auf eine dem letzten gemessenen und korrigierten Wert ent­sprechende Einstellung gebracht und die Zylinderkammer 15 der Hy­draulikzylinderkolbenanordnung 11 mit Druck beaufschlagt. Für den Gleichgewichtszustand gilt im Idealfall

FSpeicher ⁺ FReibung = FBeton ⁺ FKompensation,
wobei FSpeicher = FBeton und FReibung = FKompensation ist. Für den praktischen Einsatz wird FKompensation so gewählt, daß eine leichte Unterkompensation von FReibung erreicht wird. Dieses bedeutet, daß der Betondruck etwas überhöht angesetzt wird. Wird der Betondruck jetzt um einen gewissen Wert dFb gesteigert, so setzt sich die Stirn­schalung 2 in Richtung der auf sie einwirkende Betondruckkraft in Bewegung, da ein Ungleichgewicht der Kräfte entsteht.
For the compensation operation, the proportional pressure valve arrangement 17 is brought to a setting corresponding to the last measured and corrected value and the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 is pressurized. Ideally, the following applies to the state of equilibrium

F storage ⁺ F friction = F concrete ⁺ F compensation,
where F storage = F concrete and F friction = F compensation. For practical use, F compensation is chosen so that a slight under compensation of F friction is achieved. This means that the concrete pressure is set too high. If the concrete pressure is now increased by a certain value dF b , the face formwork 2 starts to move in the direction of the concrete pressure force acting on it, since an imbalance of the forces arises.

Bei einer Bewegung der Stirnschalung 2 in Richtung +x bei stehender Innenschalung 4 und einer gegenüber dem Schildmantel 1 höheren Stirnschalungsgeschwindigkeit werden die die Bewegung hemmenden Kräfte annähernd optimal kompensiert. Im Normalfall bleibt die einge­stellte Kompensationskraft solange konstant, bis eine bestimmte Weg­strecke, z. B. 20 cm, fertig betoniert ist. Die Steuereinrichtung 10 wird mit allen zur Bestimmung des Betonierweges erforderlichen Wegin­formationen ausgerüstet. Bei Erreichen der vorgesehenen Wegstrecke wird der Kompensationsbetrieb abgebrochen und automatisch eine neue Reibkraftbestimmung durchgeführt. Als Sicherheitsreserve dient eine höhere Festlegung des Betondruckes als es nach den statischen Rahmenbedingungen nötig wäre sowie die geringe Unterkompensation der Reibkraft, als deren Folge eine Betondrucküberhöhung notwendig ist. Die Auslenkung der Stirnschalung 2 führt zu einem Einsetzen der Betonvolumenstromregelung. Der Betonvolumenstrom wird vermindert. Aus praktischen Erwägungen heraus kann der Arbeitspunkt Xm mit einem Toleranzfeld x₁ > xm > xo versehen werden. Befindet sich die Stirn­schalung innerhalb dieser Strecke, so bleibt der Betonvolumenstrom konstant.When the forehead formwork 2 moves in the + x direction with the inner formwork 4 stationary and a higher forehead formwork speed than the shield casing 1, the forces which inhibit the movement are approximately optimally compensated for. In the normal case, the compensation force remains constant until a certain distance, e.g. B. 20 cm, is concreted. The control device 10 is equipped with all path information required for determining the concreting path. When the intended distance is reached, the compensation operation is terminated and a new friction force determination is carried out automatically. A higher reserve of the concrete pressure than would be necessary according to the static framework conditions serves as a safety reserve as well as the low undercompensation of the friction force, as a result of which an increase in the concrete pressure is necessary. The deflection of the face formwork 2 leads to the onset of the concrete volume flow control. The concrete volume flow is reduced. For practical reasons, the working point X m can be provided with a tolerance field x 1> x m > x o . If the face formwork is within this distance, the concrete volume flow remains constant.

Bei eiuner Bewegung der Stirnschalung in Richtung +x bei stehender Innenschalung 4 und einer gegenüber dem Schildmantel 1 geringeren Stirnschalungsgeschwindigkeit wird von dem Wegmeßgerät 9 eine Aus­lenkung in Richtung -x registriert. Als Folge davon wird der Beton­volumenstrom erhöht. Der erhöhte Betonvolumenstrom führt zu einem Druckanstieg im Ringraum und schließlich zu einer Bewegung der Stirnschalung 2 in Richtung +x mit einer Geschwindigkeit, die größer ist als die des Schildmantels 1. Die auf die Stirnschalung 2 wirkende Reibkraft zwischen Schildmantel 1 und Stirnschalung 2 verändert da­bei Richtung und unter Umständen auch ihren Betrag. Um der damit eintretenden Veränderung der resultierenden Reibkraft Rechnung zu tragen, wird die Kompensationskraft solange verringert, bis die Relativgeschwindigkeit zwischen Stirnschalung 2 und Schildmantel 1 nicht mehr negativ ist. Als Folge der Auslenkung wird der Beton­volumenstrom erhöht. Der erhöhte Betonvolumenstrom führt zu einem Druckanstieg in der Schalung und schließlich zu einer Bewegung der Stirnschalung 2 in Richtung +x mit einer Geschwindigkeit, die größer als die des Schildmantels 1 ist. Ein Ausbleiben der Relativbewegung zwischen Schildmantel 1 und Stirnschalung 2 führt solange nicht zu einer wesentlichen Fehlkompensation, solange die Richtung der Reib­kräfte zwischen Innenschalung 4 und Stirnschalung 2 sowie Schild­mantel 1 und Stirnschalung 2 die gleiche Richtung haben. Dreht sich die Richtung der Reibkraft zwischen Schildmantel 1 und Stirnschalung 2 um, so verringert sich die Gesamtreibkraft und kann im Extrem­falle ihre Richtung umkehren. Die Auslegung der Steuereinrichtung 10 sieht vor, daß der Bediener auf den geschilderten Fall aufmerksam gemacht wird; der Bediener kann dann gegebenenfalls geeignete Schritte zur "Störungsbeseitigung" unternehmen. Bei einem Stehen­bleiben der Stirnschalung 2 ist die Steuereinrichtung 10 so ausgelegt, daß der Betrieb mit einer Reibungskompensation sofort unterbrochen wird, d. h. die Zylinderkammer 15 der Hydraulikzylinderkolbenan­ordnung 11 entlüftet wird. Ein Neustart des Kompensationsbetriebes ist nach Störungsbeseitigung möglich.When the forehead formwork moves in the + x direction with the inner formwork 4 stationary and a lower forehead formwork speed compared to the shield casing 1, the displacement measuring device 9 registers a deflection in the -x direction. As a result, the concrete volume flow is increased. The increased concrete volume flow leads to an increase in pressure in the annular space and finally to a movement of the front formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1. The frictional force acting on the front formwork 2 between the shield casing 1 and the front formwork 2 changes direction and possibly their amount. In order to take into account the resulting change in the resulting frictional force, the compensating force is reduced until the relative speed between the front formwork 2 and the shield jacket 1 is no longer negative. As a result of the deflection, the concrete volume flow is increased. The increased concrete volume flow leads to an increase in pressure in the formwork and finally to a movement of the face formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1. Failure to achieve the relative movement between the shield casing 1 and the front formwork 2 does not lead to a substantial incorrect compensation as long as the direction of the frictional forces between the inner formwork 4 and the front formwork 2 and the shield casing 1 and the front formwork 2 have the same direction. If the direction of the frictional force between the shield casing 1 and the front formwork 2 is reversed, the total frictional force is reduced and can, in extreme cases, reverse its direction. The design of the control device 10 provides that the operator is made aware of the case described; the operator can then take appropriate steps to "troubleshoot" if necessary. If the front formwork 2 stops, the control device 10 is designed such that that the operation is interrupted immediately with a friction compensation, ie the cylinder chamber 15 of the hydraulic cylinder piston assembly 11 is vented. It is possible to restart the compensation operation after the fault has been rectified.

In Abwandlung der beschriebenen Ausführungsform ist es zur Ermitt­lung und Kompensation der Reibungskräfte selbstverständlich auch möglich, den Stützdruck in der Gasdruckspeicheranordnung 14 zu verändern. Ebenso ist es möglich, anstelle der dargestellten einzigen Proportionaldruckventilanordnung 17 weitere Proportionaldruckventilan­ordnungen zu verwenden, beispielsweise für jede Hydraulikzylinder­kolbenanordnung 11 eine eigene Proportionaldruckventilanordnung 17 einzusetzen.In a modification of the described embodiment, it is of course also possible to determine and compensate the frictional forces by changing the support pressure in the gas pressure accumulator arrangement 14. It is also possible to use further proportional pressure valve arrangements instead of the single proportional pressure valve arrangement 17 shown, for example to use a separate proportional pressure valve arrangement 17 for each hydraulic cylinder piston arrangement 11.

Claims (6)

1. Verfahren zum Auskleiden eines Tunnels mit Ortbeton hinter einer einen nachlaufenden Schildmantel aufweisenden Vortriebsmaschine, wo­bei der Ortbeton durch eine an der Innenmantelfläche des Schild­mantels sowie an der Außenmantelfläche einer Innenschalung anlie­gende und relativ zum Schildmantel sowie zur Innenschalung längs­bewegbare Stirnschalung hindurch unter gleichzeitiger Vorbewegung der Stirnschalung gegenüber der Innenschalung zwischen das Gebirge und die Innenschalung gedrückt wird, wobei die Stirnschalung unter gleichzeitiger Kompensierung der zwischen der Stirnschalung und dem Schildmantel sowie der Innenschalung auftretenden Reibungskräfte aus­schließlich durch den Druck des zugeführten Ortbetons vorbewegt wird, dadurch gekennzeichnet, daß die Rei­bungskräfte zwischen Betonierabschnitten vorgegebener Länge durch Vorziehen der Stirnschalung gegenüber dem stillstehenden Schildmantel und der Innenschalung bei unterbrochener Ortbetonzufuhr ermittelt werden.1.Method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete being opposed to a forehead formwork which is longitudinally movable relative to the shield jacket and to the inner formwork and which is adjacent to the inner jacket surface of the shield jacket and to the outer jacket surface, while simultaneously advancing the forehead formwork the inner formwork is pressed between the mountains and the inner formwork, the forehead formwork being advanced exclusively by the pressure of the in-situ concrete supplied, while compensating for the frictional forces occurring between the forehead formwork and the shield casing and the inner formwork, characterized in that the frictional forces between concreting sections of a predetermined length are characterized by Advancing the front formwork over the stationary shield casing and the inner formwork with interrupted in-situ concrete supply can be determined. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stirnschalung für die Ermittlung der Reibungskräfte um ein Maß vor­gezogen wird, bei dem sich die Stirnschalung nicht von dem zuletzt zugeführten Ortbeton löst.2. The method according to claim 1, characterized in that the face formwork is preferred for determining the frictional forces by an amount in which the face formwork does not detach from the last supplied in-situ concrete. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Reibungskräfte längs des Umfangs der Stirnschalung an mehreren Stellen unabhängig voneinander ermittelt werden.3. The method according to claim 1 or 2, characterized in that the frictional forces along the circumference of the face formwork are determined independently of one another at several locations. 4. Vorrichtung zur Durchführung des Verfahrens nach einem der An­sprüche 1 bis 3, bei der die Stirnschalung eine an der Innenman­telfläche des Schildmantels anliegende äußere Manteldichtung sowie eine an der Außenmantelfläche der Innenschalung anliegende innere Manteldichtung aufweist, über eine bewegliche Ortbetonförderleitung mit einer Ortbetonpumpe verbunden ist sowie über eine einstellbare, die Reibungskräfte kompensierende hydraulische Federanordnung an den Schildmantel angekoppelt ist und der Stirnschalung sowie dem Schildmantel ein Wegmeßgerät als Eingabeglied einer Steuereinrich­tung zugeordnet ist, dadurch gekennzeichnet, daß die hydraulische Federanordnung (8) als Stellglied an die Steuer­einrichtung (10) angeschlossen ist und die Steuereinrichtung (10) für eine Speicherung der Einstellung der hydraulischen Federanordnung (8) bei der Ermittlung der Reibungskräfte eingerichtet ist.4. Apparatus for carrying out the method according to one of claims 1 to 3, in which the front formwork is an outer jacket seal adjacent to the inner jacket surface of the shield jacket and has an inner jacket seal which is in contact with the outer jacket surface of the inner formwork, is connected to an in-situ concrete pump via a movable in-situ concrete delivery line and is coupled to the shield jacket via an adjustable hydraulic spring arrangement which compensates for the frictional forces, and a displacement measuring device is assigned to the front formwork and the shield jacket as an input element of a control device, characterized in that the hydraulic spring arrangement (8) is connected as an actuator to the control device (10) and the control device (10) is set up for storing the setting of the hydraulic spring arrangement (8) when determining the frictional forces. 5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die hydraulische Federanordnung (8) aus parallelen Hydraulikzylinderkol­benanordnungen (11) besteht, deren der Stirnschalung (2) abgewandte Zylinderkammern (12) über eine Hydraulikleitung (13) mit einer Gas­druckspeicheranordnung (14) und deren der Stirnschalung (2) zuge­wandte Zylinderkammern (15) über eine Hydraulikleitung (18) mit einer Proportionaldruckventilanordnung (17) verbunden sind.5. The device according to claim 1, characterized in that the hydraulic spring arrangement (8) consists of parallel hydraulic cylinder piston assemblies (11) whose the front formwork (2) facing away from the cylinder chambers (12) via a hydraulic line (13) with a gas pressure accumulator arrangement (14) and their the cylinder formwork (15) facing the face formwork (2) are connected to a proportional pressure valve arrangement (17) via a hydraulic line (18). 6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Ortbetonpumpe (7) als weiteres Stellglied an die Steuereinrich­tung (10) angeschlossen ist.6. The device according to claim 4 or 5, characterized in that the in-situ concrete pump (7) is connected as a further actuator to the control device (10).
EP88108179A 1987-07-17 1988-05-21 Method and device for lining a tunnel with concrete cast in situ Expired - Lifetime EP0300159B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873723625 DE3723625A1 (en) 1987-07-17 1987-07-17 METHOD AND DEVICE FOR LINING A TUNNEL WITH LOCAL CONCRETE
DE3723625 1987-07-17

Publications (2)

Publication Number Publication Date
EP0300159A1 true EP0300159A1 (en) 1989-01-25
EP0300159B1 EP0300159B1 (en) 1991-09-25

Family

ID=6331754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88108179A Expired - Lifetime EP0300159B1 (en) 1987-07-17 1988-05-21 Method and device for lining a tunnel with concrete cast in situ

Country Status (6)

Country Link
US (1) US4854776A (en)
EP (1) EP0300159B1 (en)
JP (1) JPH0776520B2 (en)
KR (1) KR970007348B1 (en)
DE (1) DE3723625A1 (en)
DK (1) DK397588A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260286A (en) * 1990-03-09 1991-11-20 Komatsu Ltd Bedrock breakdown prospecting method and device in shield method
CN1053030C (en) * 1995-10-05 2000-05-31 许宝根 Combined self-advancing shield of sliding retaining-plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2913091A1 (en) * 1979-04-02 1980-10-16 Gewerk Eisenhuette Westfalia Tunnel driving and concrete lining system - absorbs driving reaction forces by inner concrete shuttering
DE2932430A1 (en) * 1979-08-10 1981-02-19 Hochtief Ag Hoch Tiefbauten Tunnel tube concrete lining in loose rock - has fluid concrete pressed into annular gap at pressure above rock pressure
DE3025922A1 (en) * 1980-07-09 1982-01-28 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen DEVICE FOR CONTROLLING THE HYDRAULIC FORWARD SHUTTER CYLINDER WHEN INSTALLING A LOCAL CONCRETE LINING IN UNDERGROUND CONSTRUCTIONS, LIKE IN PARTICULAR TUNNELS, COUNTERS, UNDERGROUND ROUTES AND THE LIKE.
DE3127311C1 (en) * 1981-07-10 1983-02-03 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Apparatus for driving a tunnel
DE3406980C1 (en) * 1984-02-25 1985-04-04 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Method and device for continuously lining a tunnel with in-situ concrete

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433656A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Correction unit for lead bendign of electronic conponent
JPS60126495A (en) * 1983-12-13 1985-07-05 株式会社間組 Control apparatus and method of shield drilling machine
DE3529998A1 (en) * 1985-08-22 1987-02-26 Hochtief Ag Hoch Tiefbauten METHOD AND DEVICE FOR CONTINUOUSLY LINING A TUNNEL WITH EXTRUDED CONCRETE
DE3533425C1 (en) * 1985-09-19 1986-10-30 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Support fluid pressure control for a shield tunneling machine
JPS6260687U (en) * 1985-10-04 1987-04-15
US4798267A (en) * 1987-01-20 1989-01-17 Delaware Capital Formation, Inc. Elevator system having an improved selector
US4769192A (en) * 1987-03-27 1988-09-06 Blaw Knox Corporation Pulsating slip form apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2913091A1 (en) * 1979-04-02 1980-10-16 Gewerk Eisenhuette Westfalia Tunnel driving and concrete lining system - absorbs driving reaction forces by inner concrete shuttering
DE2932430A1 (en) * 1979-08-10 1981-02-19 Hochtief Ag Hoch Tiefbauten Tunnel tube concrete lining in loose rock - has fluid concrete pressed into annular gap at pressure above rock pressure
DE3025922A1 (en) * 1980-07-09 1982-01-28 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen DEVICE FOR CONTROLLING THE HYDRAULIC FORWARD SHUTTER CYLINDER WHEN INSTALLING A LOCAL CONCRETE LINING IN UNDERGROUND CONSTRUCTIONS, LIKE IN PARTICULAR TUNNELS, COUNTERS, UNDERGROUND ROUTES AND THE LIKE.
DE3127311C1 (en) * 1981-07-10 1983-02-03 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Apparatus for driving a tunnel
DE3406980C1 (en) * 1984-02-25 1985-04-04 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Method and device for continuously lining a tunnel with in-situ concrete

Also Published As

Publication number Publication date
DE3723625A1 (en) 1989-02-23
KR970007348B1 (en) 1997-05-07
US4854776A (en) 1989-08-08
JPH0776520B2 (en) 1995-08-16
DK397588A (en) 1989-01-18
KR890002521A (en) 1989-04-10
DE3723625C2 (en) 1990-04-19
JPH0227098A (en) 1990-01-29
EP0300159B1 (en) 1991-09-25
DK397588D0 (en) 1988-07-15

Similar Documents

Publication Publication Date Title
EP0558097B1 (en) Boring arm
WO2002055813A1 (en) Large manipulator having a vibration damping capacity
EP0052292B1 (en) Process and device for advancing a slidable shuttering
DE1477109A1 (en) Method and device for compensating for the deflection of the boom of machine tools or the like.
DE2836381A1 (en) HYDRAULICALLY OPERATED SAFETY VALVE, ESPECIALLY FOR UNDERWATER DRILL HOLES
DE2615597A1 (en) EARTH WORKING EQUIPMENT FOR A TUNNEL DRIVING MACHINE
EP0300159B1 (en) Method and device for lining a tunnel with concrete cast in situ
DE2420340A1 (en) TUNNEL DRILLING MACHINE
DE2544794A1 (en) Hydraulic press with accumulator - has stroke of moving press accurately adjusted using feedback circuit from sensor amplifier
DE2845055A1 (en) METHOD FOR QUICKLY SEPARATING THE ROLLS OF A CALENDAR AND DEVICE FOR CARRYING IT OUT
DE2547021A1 (en) SHOWING SIGN
DE3427962A1 (en) Supporting-arm adjusting device for mining machines, in particular for shearer-loaders and selective-cut heading machines
DE1103269B (en) Hydraulically operated support device for the hanging wall
DE3025922C2 (en)
DE3127927A1 (en) PRESSURE CONTROL VALVE FOR LIQUIDS
DE3127311C1 (en) Apparatus for driving a tunnel
EP3732350B1 (en) Device and method for continuously driving a tunnel
DE3203084A1 (en) Device for setting a prop of the hydraulic self-advancing powered support system in underground mining
EP0273104B1 (en) Joint pack ring
DE19744146C1 (en) Method for driving tunnel through ground
DE2807431C2 (en) Control device for the consumers of a support frame in underground mine support that can be acted upon by a hydraulic working medium
DE2432767C3 (en) Bracing device for conveyors in collapsing struts
DE2945936C2 (en) Load pressure control for the hydraulic support cylinders of an expandable blade
DE1533757A1 (en) Control device for a pit support to be moved under load
DE2844055C2 (en) Device for controlling the stroke delay of working cylinders, in particular of machine tools

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE FR GB IT NL

17Q First examination report despatched

Effective date: 19900402

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB IT NL

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970311

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980521

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000426

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

BERE Be: lapsed

Owner name: HOCHTIEF A.G. VORM. GEBR. HELFMANN

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050521