EP0300159A1 - Method and device for lining a tunnel with concrete cast in situ - Google Patents
Method and device for lining a tunnel with concrete cast in situ Download PDFInfo
- Publication number
- EP0300159A1 EP0300159A1 EP88108179A EP88108179A EP0300159A1 EP 0300159 A1 EP0300159 A1 EP 0300159A1 EP 88108179 A EP88108179 A EP 88108179A EP 88108179 A EP88108179 A EP 88108179A EP 0300159 A1 EP0300159 A1 EP 0300159A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formwork
- situ concrete
- jacket
- shield
- frictional forces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000009415 formwork Methods 0.000 claims abstract description 89
- 210000001061 forehead Anatomy 0.000 claims abstract description 15
- 230000005641 tunneling Effects 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002689 soil Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/06—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
- E21D9/0607—Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering
Definitions
- the invention relates to a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete through a front formwork which is longitudinally movable relative to the shield jacket and to the inner formwork and which is adjacent to the inner jacket surface of the shield jacket and to the inner formwork while simultaneously advancing the Forehead formwork is pressed against the inner formwork between the mountains and the inner formwork, the forehead formwork being advanced solely by the pressure of the supplied in-situ concrete while compensating for the frictional forces occurring between the forehead formwork and the shield casing and the inner formwork.
- the invention relates to a device for carrying out such a method, in which the front formwork has an outer jacket seal that is in contact with the inner jacket surface of the shield jacket and an inner jacket seal that is in contact with the outer jacket surface of the inner boarding, is connected to the in-situ concrete pump via a movable in-situ concrete delivery line and via an adjustable , the frictional force compensating hydraulic spring arrangement is coupled to the shield casing and the face formwork and the shield casing is assigned a position measuring device as an integral part of a control device.
- the control device merely serves to hold the face formwork in a predetermined area of the shield jacket and consequently has a cylinder piston arrangement, via which the shield jacket is coupled to a propulsion unit of the tunneling machine, and the in-situ concrete pump up as actuators.
- these measures do not meet the requirements.
- Experience with jacking shields in the diameter range of 6 to 7 m has shown that the required compensation forces can fluctuate between 400 and 1400 kN.
- the invention is therefore based on the object to reduce the amount of harmful pressure fluctuations when feeding the in-situ concrete as part of the measures described above.
- this object is achieved according to the invention in that the frictional forces between concreting sections of a predetermined length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted.
- the device-based solution is characterized in that the hydraulic spring arrangement is connected as an actuator to the control device and the control device is set up for storing the installation of the hydraulic spring arrangement when determining the frictional forces.
- the invention is based on experiences gained in the course of lining tunnels with in-situ concrete.
- the variable frictional forces acting on the movable face formwork cannot be determined practically during operation.
- To ensure pressure-stable concrete paving with only slight fluctuations in the concrete pressure it is therefore necessary to record the frictional forces at regular intervals and to change a supporting force that acts continuously when feeding the in-situ concrete so that the change in supporting force corresponds to the amount of the frictional force, but in the opposite direction in the direction of action is directed.
- This adjustment of the supporting force causes the front formwork to be moved forward in the driving direction solely by the concrete compressive force of the in-situ concrete that exceeds the supporting force, and any frictional forces that occur are eliminated in their effect by the compensation forces additionally introduced into the system.
- the face formwork is preferred by an amount for determining the frictional forces at which the face formwork does not detach from the last-placed in-situ concrete; this is easily possible when the soil is brown, ie flexible. on the other hand, this is the only way to determine the frictional forces. Otherwise, there is the possibility of determining the frictional forces along the circumference of the face formwork independently at several points; Accordingly, it is also possible to apply different compensation forces to the front formwork in the circumferential direction.
- the hydraulic spring arrangement consists of parallel hydraulic cylinder piston arrangements, the cylinder chambers facing away from the end formwork are connected via a hydraulic line to a gas pressure accumulator arrangement and whose cylinder chambers facing the end formwork are connected via a hydraulic line to a proportional pressure valve arrangement;
- the gas pressure accumulator arrangement is provided for the spring action and the specification of a specific supporting force, while the proportional pressure valve arrangement is used in connection with the determination and setting of the forces compensating the frictional forces.
- the single figure shows a device for lining a tunnel with in-situ concrete behind a tunnel boring machine with a trailing shield jacket 1.
- a front formwork 2 is used, which has an outer jacket seal 3 lying against the inner surface of the shield jacket 1 and an inner jacket lying against the outer jacket surface of an inner formwork 4 Has jacket seal 5.
- the front formwork 2 is coupled to the shield casing 1 via an adjustable hydraulic spring arrangement 8 that compensates for the frictional forces.
- the face formwork 2 and the shield casing 1 are assigned a displacement measuring device 9 as an input element of an electrical control device 10.
- Said hydraulic spring arrangement 8 is connected as an actuator to the control device 10 and the control device 10 is set up for storing the setting of the hydraulic spring arrangement 8 when determining the frictional forces; this will be explained in more detail below.
- the hydraulic spring arrangement 8 consists of several parallel hydraulic cylinder piston arrangements 11, only one of which is shown.
- the cylinder chamber 12 facing away from the front formwork 2 is connected to a gas pressure accumulator arrangement 14 via a hydraulic line 13. This is designed so that practically the same pressure is always exerted on the piston of the hydraulic cylinder piston assembly 11 regardless of its position.
- the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 facing the face formwork 2 is connected via a hydraulic line 16 to a proportional pressure valve arrangement 17 with a hydraulic pump 18.
- the in-situ concrete pump 7 is connected as a further actuator to the control device 10 in order to control the concrete volume flow as a function of the path.
- the concrete volume flow to be introduced through the front formwork 2 is reduced, when the Xm direction is deflected in the -x direction, the concrete volume flow is increased, and when the front formwork 2 is not deflected, the supplied concrete volume flow rate is reduced kept constant or not changed.
- the working point can be provided with a path tolerance.
- the unpressurized cylinder chambers 15 of the hydraulic cylinder piston arrangement 11 are continuously pressurized with increasing pressure in that hydraulic fluid is released from the hydraulic lik pump 18 is pumped into the cylinder chamber 15.
- the concrete flow control and the concrete supply are interrupted.
- the hydraulic quantity fed in is dimensioned such that, after a certain pressure is exceeded, the front formwork 2 is pulled off at a low speed in the + x direction.
- the displacement measuring device 9 registers a change in displacement, from which the electronic control device 10 determines a change in speed of the front formwork 2. This change in speed is the signal for the end of the hydraulic feed.
- the resulting pressure is stored in the control device and optionally provided with a correction factor to be determined by calibration.
- the proportional pressure valve arrangement 17 is brought to a setting corresponding to the last measured and corrected value and the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 is pressurized.
- F compensation is chosen so that a slight under compensation of F friction is achieved. This means that the concrete pressure is set too high. If the concrete pressure is now increased by a certain value dF b , the face formwork 2 starts to move in the direction of the concrete pressure force acting on it, since an imbalance of the forces arises.
- the forces which inhibit the movement are approximately optimally compensated for.
- the compensation force remains constant until a certain distance, e.g. B. 20 cm, is concreted.
- the control device 10 is equipped with all path information required for determining the concreting path.
- the compensation operation is terminated and a new friction force determination is carried out automatically.
- a higher reserve of the concrete pressure than would be necessary according to the static framework conditions serves as a safety reserve as well as the low undercompensation of the friction force, as a result of which an increase in the concrete pressure is necessary.
- the deflection of the face formwork 2 leads to the onset of the concrete volume flow control.
- the concrete volume flow is reduced.
- the working point X m can be provided with a tolerance field x 1> x m > x o . If the face formwork is within this distance, the concrete volume flow remains constant.
- the displacement measuring device 9 registers a deflection in the -x direction.
- the concrete volume flow is increased.
- the increased concrete volume flow leads to an increase in pressure in the annular space and finally to a movement of the front formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1.
- the frictional force acting on the front formwork 2 between the shield casing 1 and the front formwork 2 changes direction and possibly their amount. In order to take into account the resulting change in the resulting frictional force, the compensating force is reduced until the relative speed between the front formwork 2 and the shield jacket 1 is no longer negative.
- the concrete volume flow is increased.
- the increased concrete volume flow leads to an increase in pressure in the formwork and finally to a movement of the face formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1.
- Failure to achieve the relative movement between the shield casing 1 and the front formwork 2 does not lead to a substantial incorrect compensation as long as the direction of the frictional forces between the inner formwork 4 and the front formwork 2 and the shield casing 1 and the front formwork 2 have the same direction. If the direction of the frictional force between the shield casing 1 and the front formwork 2 is reversed, the total frictional force is reduced and can, in extreme cases, reverse its direction.
- control device 10 provides that the operator is made aware of the case described; the operator can then take appropriate steps to "troubleshoot" if necessary. If the front formwork 2 stops, the control device 10 is designed such that that the operation is interrupted immediately with a friction compensation, ie the cylinder chamber 15 of the hydraulic cylinder piston assembly 11 is vented. It is possible to restart the compensation operation after the fault has been rectified.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Lining And Supports For Tunnels (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
Bei einem Verfahren zum Auskleiden eines Tunnels mit Ortbeton hinter einer einen nachlaufenden Schildmantel aufweisenden Vortriebsmaschine wird der Ortbeton durch eine an der Innenmantelfläche des Schildmantels sowie an der Außenmantelfläche einer Innenschalung anliegende und relativ zum Schildmantel sowie zur Innenschalung längs bewegbare Stirnschalung hindurch unter gleichzeitiger Vorbewegung der Stirnschalung gegenüber der Innenschalung zwischen das Gebirge und die Innenschalung Ortbeton gedrückt. Die Stirnschalung wird dabei unter gleichzeitiger Kompensierung der zwischen der Stirnschalung und dem Schildmantel sowie der Innenschalung auftretenden Reibungskräfte ausschließlich durch den Druck des zugeführten Ortbetons vorbewegt. Hierbei kommt man zu einwandfreien Ergebnissen, wenn die Reibungskräfte zwischen Betonierabschnitten vorgegebener Länge durch Vorziehen der Stirnschalung gegenüber dem stillstehenden Schildmantel und der Innenschalung bei unterbrochener Ortbetonzufuhr ermittelt werden.In a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete is opposed by a front formwork that is longitudinally movable relative to the shield jacket and to the inner formwork, and which is longitudinally movable relative to the shield jacket and to the inner formwork, while simultaneously advancing the forehead formwork the inner formwork between the mountains and the inner formwork pressed concrete. The forehead formwork is moved forward by simultaneously compensating the frictional forces occurring between the forehead formwork and the shield casing as well as the inner formwork exclusively by the pressure of the in-situ concrete supplied. This gives perfect results if the frictional forces between concreting sections of a given length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted.
Description
Die Erfindung betrifft ein Verfahren zum Auskleiden eines Tunnels mit Ortbeton hinter einer einen nachlaufenden Schildmantel aufweisenden Vortriebsmaschine, wobei der Ortbeton durch eine an der Innenmantelfläche des Schildmantels sowie an der Außenmantelfläche einer Innenschalung anliegende und relativ zum Schildmantel sowie zur Innenschalung längsbewegbare Stirnschalung hindurch unter gleichzeitiger Vorbewegung der Stirnschalung gegenüber der Innenschalung zwischen das Gebirge und die Innenschalung gedrückt wird, wobei die Stirnschalung unter gleichzeitiger Kompensierung der zwischen der Stirnschalung und dem Schildmantel sowie der Innenschalung auftretenden Reibungskräfte ausschließlich durch den Druck des zugeführten Ortbetons vorbewegt wird. Außerdem betrifft die Erfindung eine Vorrichtung zur Durchführung eines solchen Verfahrens, bei der die Stirnschalung eine an der Innenmantelfläche des Schildmantels anliegende äußere Manteldichtung sowie eine an der Außenmantelfläche der Innenschalung anliegende innere Manteldichtung aufweist, über eine bewegliche Ortbetonförderleitung mit der Ortbetonpumpe verbunden ist sowie über eine einstellbare, die Reibungskräfte kompensierende hydraulische Federanordnung an den Schildmantel angekoppelt ist und der Stirnschalung sowie dem Schildmantel ein Wegmeßgerät als Eingebeglied einer Steuereinrichtung zugeordnet ist.The invention relates to a method for lining a tunnel with in-situ concrete behind a tunneling machine having a trailing shield jacket, the in-situ concrete through a front formwork which is longitudinally movable relative to the shield jacket and to the inner formwork and which is adjacent to the inner jacket surface of the shield jacket and to the inner formwork while simultaneously advancing the Forehead formwork is pressed against the inner formwork between the mountains and the inner formwork, the forehead formwork being advanced solely by the pressure of the supplied in-situ concrete while compensating for the frictional forces occurring between the forehead formwork and the shield casing and the inner formwork. In addition, the invention relates to a device for carrying out such a method, in which the front formwork has an outer jacket seal that is in contact with the inner jacket surface of the shield jacket and an inner jacket seal that is in contact with the outer jacket surface of the inner boarding, is connected to the in-situ concrete pump via a movable in-situ concrete delivery line and via an adjustable , the frictional force compensating hydraulic spring arrangement is coupled to the shield casing and the face formwork and the shield casing is assigned a position measuring device as an integral part of a control device.
Im Rahmen der bekannten Maßnahmen der genannten Art (DE-PS 34 06 980) ist offengelassen, wie die Einstellung der hydraulischen Federanordnung im einzelnen vorgenommen wird. Die Steuereinrichtung dient lediglich dazu, die Stirnschalung in einem vorgegebenen Bereich des Schildmantels zu halten, und weist demzufolge eine Zylinderkolbenanordnung, über die der Schildmantel an ein Vortriebsaggregat der Vortriebsmaschine angekoppelt ist, und die Ortbeton pumpe als Stellglieder auf. Diese Maßnahmen werden den Erfordernissen aber nicht gerecht. Erfahrungen mit Vortriebsschilden im Durchmesserbereich von 6 bis 7 m haben nämlich gezeigt, daß die erforderlichen Kompensationskräfte zwischen 400 und 1400 kN schwanken können. Dies führt zu entsprechend großen Schwankungen des für die Vorwärtsbewegung der Stirnschalung notwendigen Betondruckes mit den entsprechend negativen Folgen für die Qualität der Tunnelauskleidung, insbesondere im Lockerboden und unter dem Grundwasserspiegel. Um eine qualitativ einwandfreie Ortbetonauskleidung zu erhalten, müssen die auftretenden Druckschwankungen vermindert werden. Der Betondruck in der Schalung muß dabei oberhalb des anstehenden Erd- und Wasserdruckes sowie eines Sicherheitswertes gehalten werden.As part of the known measures of the type mentioned (DE-PS 34 06 980) it is left open how the adjustment of the hydraulic spring arrangement is carried out in detail. The control device merely serves to hold the face formwork in a predetermined area of the shield jacket and consequently has a cylinder piston arrangement, via which the shield jacket is coupled to a propulsion unit of the tunneling machine, and the in-situ concrete pump up as actuators. However, these measures do not meet the requirements. Experience with jacking shields in the diameter range of 6 to 7 m has shown that the required compensation forces can fluctuate between 400 and 1400 kN. This leads to correspondingly large fluctuations in the concrete pressure required for the forward movement of the forehead formwork, with the correspondingly negative consequences for the quality of the tunnel lining, particularly in the loose soil and below the water table. The pressure fluctuations that occur must be reduced in order to obtain a qualitatively perfect in-situ concrete lining. The concrete pressure in the formwork must be kept above the existing earth and water pressure as well as a safety value.
Der Erfindung liegt daher die Aufgabe zugrunde, im Rahmen der eingangs geschilderten Maßnahmen die schädlichen Druckschwankungen beim Zuführen des Ortbetons der Höhe nach zu vermindern.The invention is therefore based on the object to reduce the amount of harmful pressure fluctuations when feeding the in-situ concrete as part of the measures described above.
In verfahrensmäßiger Hinsicht wird diese Aufgabe gemäß der Erfindung dadurch gelöst, daß die Reibungskräfte zwischen Betonierabschnitten vorgegebener Länge durch Vorziehen der Stirnschalung gegenüber dem stillstehenden Schildmantel und der Innenschalung bei unterbrochener Ortbetonzufuhr ermittelt werden. Die vorrichtungsmäßige Lösung ist dadurch gekennzeichnet, daß die hydraulische Federanordnung als Stellglied an die Steuereinrichtung angeschlossen ist und die Steuereinrichtung für eine Speicherung der Einstallung der hydraulischen Federanordnung bei der Ermittlung der Reibungskräfte eingerichtet ist.In procedural terms, this object is achieved according to the invention in that the frictional forces between concreting sections of a predetermined length are determined by pulling the front formwork over the stationary shield casing and the inner formwork when the in-situ concrete supply is interrupted. The device-based solution is characterized in that the hydraulic spring arrangement is connected as an actuator to the control device and the control device is set up for storing the installation of the hydraulic spring arrangement when determining the frictional forces.
Die Erfindung geht hierbei von Erfahrungen aus, die im Zuge des Auskleidens von Tunneln mit Ortbeton gewonnen worden sind. Die auf die bewegliche Stirnschalung wirkenden veränderlichen Reibungskräfte sind während des Betriebes praktisch nicht bestimmbar. Zur Sicherstellung eines druckstabilen Betoneinbaus mit nur geringen Betondruckschwankungen ist es deshalb erforderlich, die Reibungskräfte in regelmäßigen Abständen zu erfassen und eine beim Zuführen des Ortbetons kontinuierlich wirkende Stützkraft so zu verändern, daß die Stützkraftänderung dem Betrage nach der Reibungskraft entspricht, dieser jedoch in der Wirkungsrichtung entgegengesetzt gerichtet ist. Diese Anpassung der Stützkraft bewirkt, daß die Stirnschalung ausschließlich durch die die Stützkraft übersteigende Betondruckkraft des zugeführten Ortbetons in Vortriebsrichtung vorwärts bewegt wird und auftretende Reibungskräfte durch die zusätzlich in das System eingebrachten Kompensationskräfte in ihrer Wirkung eliminiert werden.The invention is based on experiences gained in the course of lining tunnels with in-situ concrete. The variable frictional forces acting on the movable face formwork cannot be determined practically during operation. To ensure pressure-stable concrete paving with only slight fluctuations in the concrete pressure, it is therefore necessary to record the frictional forces at regular intervals and to change a supporting force that acts continuously when feeding the in-situ concrete so that the change in supporting force corresponds to the amount of the frictional force, but in the opposite direction in the direction of action is directed. This adjustment of the supporting force causes the front formwork to be moved forward in the driving direction solely by the concrete compressive force of the in-situ concrete that exceeds the supporting force, and any frictional forces that occur are eliminated in their effect by the compensation forces additionally introduced into the system.
Für die weitere Ausgestaltung bestehen im Rahmen der Erfindung mehrere Möglichkeiten. So ist in verfahrensmäßiger Hinsicht zunächst vorgesehen, daß die Stirnschalung für die Ermittlung der Reibungskräfte um ein Maß vorgezogen wird, bei dem sich die Stirnschalung nicht von dem zuletzt zugeführten Ortbeton löst; das ist bei gebrächem, d. h. nachgiebigem Boden ohne weiteres möglich; auf der anderen Seite kommt man praktisch nur so zu einer eindeutigen Ermittlung der Reibungskräfte. Im übrigen besteht ohne weiteres die Möglichkeit, die Reibungskräfte längs des Umfanges der Stirnschalung an mehreren Stellen unabhängig voneinander zu ermitteln; entsprechend ist es auch möglich, die Stirnschalung in Umfangsrichtung mit unterschiedlichen Kompensationskräften zu beaufschlagen. In vorichtungsmäßiger Hinsicht hat sich eine Ausführungsform bewährt, bei der die hydraulische Federanordnung aus parallelen Hydraulikzylinderkolbenanordnungen besteht, deren der Stirnschalung abgewandte Zylinderkammern über eine Hydraulikleitung mit einer Gasdruckspeicheranordnung und deren der Stirnschalung zugewandte Zylinderkammern über eine Hydraulikleitung mit einer Proportionaldruckventilanordnung verbunden sind; die Gasdruckspeicheranordnung ist dabei für die Federwirkung und die Vorgabe einer bestimmten Stützkraft vorgesehen, während die Proportionaldruckventilanordnung im Zusammenhang mit der Ermittelung und Einstellung der die Reibungskräfte kompensierenden Kräfte eingesetzt wird. Im übrigen empfiehlt es sich, die Ortbetonpumpe als weiteres Stellglied an die Steuereinrichtung anzuschließen.There are several possibilities for the further configuration within the scope of the invention. In procedural terms, it is initially provided that the face formwork is preferred by an amount for determining the frictional forces at which the face formwork does not detach from the last-placed in-situ concrete; this is easily possible when the soil is brown, ie flexible. on the other hand, this is the only way to determine the frictional forces. Otherwise, there is the possibility of determining the frictional forces along the circumference of the face formwork independently at several points; Accordingly, it is also possible to apply different compensation forces to the front formwork in the circumferential direction. In terms of the device, one embodiment has proven itself in which the hydraulic spring arrangement consists of parallel hydraulic cylinder piston arrangements, the cylinder chambers facing away from the end formwork are connected via a hydraulic line to a gas pressure accumulator arrangement and whose cylinder chambers facing the end formwork are connected via a hydraulic line to a proportional pressure valve arrangement; the gas pressure accumulator arrangement is provided for the spring action and the specification of a specific supporting force, while the proportional pressure valve arrangement is used in connection with the determination and setting of the forces compensating the frictional forces. For the rest, it is advisable to connect the in-situ concrete pump to the control device as an additional actuator.
Im folgenden wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert.The invention is explained in more detail below with the aid of a drawing that represents an exemplary embodiment.
Die einzige Figur zeigt eine Vorrichtung zum Auskleiden eines Tunnels mit Ortbeton hinter einer Vortriebsmaschine mit einem nachlaufenden Schildmantel 1. Hierbei wird eine Stirnschalung 2 eingesetzt, die eine an der Innenfläche des Schildmantels 1 anliegende äußere Manteldichtung 3 sowie eine an der Außenmantelfläche einer Innenschalung 4 anliegende innere Manteldichtung 5 aufweist. Durch die Stirnschalung 2 hindurch wird über eine bewegliche Ortbetonförderleitung 6 mit einer Ortbetonpumpe 7 Ortbeton gedrückt; das ist in der Figur lediglich angedeutet. Die Stirnschalung 2 ist über eine einstellbare, die Reibungskräfte kompensierende hydraulische Federanordnung 8 an den Schildmantel 1 angekoppelt. Außerdem ist der Stirnschalung 2 sowie dem Schildmantel 1 ein Wegmeßgerät 9 als Eingabeglied einer elektrischen Steuereinrichtung 10 zugeordnet.The single figure shows a device for lining a tunnel with in-situ concrete behind a tunnel boring machine with a trailing shield jacket 1. In this case, a front formwork 2 is used, which has an outer jacket seal 3 lying against the inner surface of the shield jacket 1 and an inner jacket lying against the outer jacket surface of an inner formwork 4 Has jacket seal 5. Through the face formwork 2, 7 in-situ concrete is pressed via a movable in-situ concrete delivery line 6 with an in-situ concrete pump; this is only hinted at in the figure. The front formwork 2 is coupled to the shield casing 1 via an adjustable hydraulic spring arrangement 8 that compensates for the frictional forces. In addition, the face formwork 2 and the shield casing 1 are assigned a displacement measuring device 9 as an input element of an electrical control device 10.
Die genannte hydraulische Federanordnung 8 ist als Stellglied an die Steuereinrichtung 10 angeschlossen und die Steuereinrichtung 10 ist für eine Speicherung der Einstellung der hydraulischen Federanordnung 8 bei der Ermittlung der Reibungskräfte eingerichtet; das wird weiter unten noch eingehend erläutert. Die hydraulische Federanordnung 8 besteht aus mehreren parallelen Hydraulikzylinderkolbenanordnungen 11, von denen nur eine dargestellt ist. Die der Stirnschalung 2 abgewandte Zylinderkammer 12 ist über eine Hydraulikleitung 13 mit einer Gasdruckspeicheranordnung 14 verbunden. Diese ist so ausgelegt, daß auf den Kolben der Hydraulikzylinderkolbenanordnung 11 unabhängig von dessen Stellung praktisch immer derselbe Druck ausgeübt wird. Die der Stirnschalung 2 zugewandte Zylinderkammer 15 der Hydraulikzylinderkolbenanordnung 11 ist über eine Hydraulikleitung 16 mit einer Proportionaldruckventilanordnung 17 mit Hydraulikpumpe 18 verbunden. Mit Hilfe der Proportionaldruckventilanordnung 17 kann ein konstanter Hydraulikdruck in der Zylinderkammer 15 aufrechterhalten werden. Die Ortbetonpumpe 7 ist als weiteres Stellglied an die Steuereinrichtung 10 angeschlossen, um den Betonvolumenstrom wegabhängig zu steuern. Hierzu wird bei der Auslenkung der Stirnschalung 2 relativ zum Schildmantel 1 um den Arbeitspunkt Xm in Richtung+x der durch die Stirnschalung 2 einzubringende Betonvolumenstrom vermindert, bei einer Auslenkung um Xm in Richtung -x der Betonvolumenstrom erhöht und bei Nichtauslenkung der Stirnschalung 2 der zugeführte Betonvolumenstrom konstant gehalten bzw. nicht geändert. Der Arbeitspunkt kann mit einer Wegtoleranz versehen werden.Said hydraulic spring arrangement 8 is connected as an actuator to the control device 10 and the control device 10 is set up for storing the setting of the hydraulic spring arrangement 8 when determining the frictional forces; this will be explained in more detail below. The hydraulic spring arrangement 8 consists of several parallel hydraulic cylinder piston arrangements 11, only one of which is shown. The cylinder chamber 12 facing away from the front formwork 2 is connected to a gas pressure accumulator arrangement 14 via a hydraulic line 13. This is designed so that practically the same pressure is always exerted on the piston of the hydraulic cylinder piston assembly 11 regardless of its position. The cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 facing the face formwork 2 is connected via a hydraulic line 16 to a proportional pressure valve arrangement 17 with a hydraulic pump 18. With the aid of the proportional pressure valve arrangement 17, a constant hydraulic pressure can be maintained in the cylinder chamber 15. The in-situ concrete pump 7 is connected as a further actuator to the control device 10 in order to control the concrete volume flow as a function of the path. For this purpose, when the front formwork 2 is deflected relative to the shield casing 1 around the operating point Xm in the + x direction, the concrete volume flow to be introduced through the front formwork 2 is reduced, when the Xm direction is deflected in the -x direction, the concrete volume flow is increased, and when the front formwork 2 is not deflected, the supplied concrete volume flow rate is reduced kept constant or not changed. The working point can be provided with a path tolerance.
Bei eingeschalteter Stützung, stehender Stirnschalung 2 sowie stehendem Schildmantel 1 werden die drucklosen Zylinderkammern 15 der Hydraulikzylinderkolbenanordnung 11 kontinuierlich mit steigendem Druck dadurch beaufschlagt, daß Hydraulikflüssigkeit von der Hydrau likpumpe 18 in die Zylinderkammer 15 gepumpt wird. Dabei wird die Betonstromregelung und die Betonzufuhr unterbrochen. Die eingespeiste Hydraulikmenge ist so bemessen, daß es nach Überschreiten eines bestimmten Druckes zu einem Abziehen der Stirnschalung 2 mit geringer Geschwindigkeit in Richtung +x kommt. Das Wegmeßgerät 9 registriert eine Wegänderung, aus der die elektronische Steuereinrichtung 10 eine Geschwindigkeitsänderung der Stirnschalung 2 ermittelt. Diese Geschwindigkeitsänderung ist das Signal für die Beendigung der hydraulischen Einspeisung. Der sich ergebende Druck wird in der Steuereinrichtung gespeichert und gegebenenfalls mit einem durch Eichung zu ermittelnden Korrekturfaktor versehen. Die dargestellten Kräfte (Stützkraft Fs , Betondruckkraft Fb , Erd- und Wasserdruckkraft) befinden sich im Gleichgewicht. Bei einem geringfügigen und hinreichend langsamen Bewegen der Stirnschalung 2 ändern sich die Druckverhältnisse im Betonraum nur geringfügig, da die Volumenänderungen wie von einer elastischen Membran aufgenommen werden.When the support is switched on, standing face formwork 2 and standing shield casing 1, the unpressurized cylinder chambers 15 of the hydraulic cylinder piston arrangement 11 are continuously pressurized with increasing pressure in that hydraulic fluid is released from the hydraulic lik pump 18 is pumped into the cylinder chamber 15. The concrete flow control and the concrete supply are interrupted. The hydraulic quantity fed in is dimensioned such that, after a certain pressure is exceeded, the front formwork 2 is pulled off at a low speed in the + x direction. The displacement measuring device 9 registers a change in displacement, from which the electronic control device 10 determines a change in speed of the front formwork 2. This change in speed is the signal for the end of the hydraulic feed. The resulting pressure is stored in the control device and optionally provided with a correction factor to be determined by calibration. The forces shown (supporting force F s , concrete pressure force F b , earth and water pressure force) are in equilibrium. With a slight and sufficiently slow movement of the front formwork 2, the pressure conditions in the concrete room change only slightly, since the volume changes are absorbed as by an elastic membrane.
Für den Kompensationsbetrieb wird die Proportionaldruckventilanordnung 17 auf eine dem letzten gemessenen und korrigierten Wert entsprechende Einstellung gebracht und die Zylinderkammer 15 der Hydraulikzylinderkolbenanordnung 11 mit Druck beaufschlagt. Für den Gleichgewichtszustand gilt im Idealfall
FSpeicher ⁺ FReibung = FBeton ⁺ FKompensation,
wobei FSpeicher = FBeton und FReibung = FKompensation ist. Für den praktischen Einsatz wird FKompensation so gewählt, daß eine leichte Unterkompensation von FReibung erreicht wird. Dieses bedeutet, daß der Betondruck etwas überhöht angesetzt wird. Wird der Betondruck jetzt um einen gewissen Wert dFb gesteigert, so setzt sich die Stirnschalung 2 in Richtung der auf sie einwirkende Betondruckkraft in Bewegung, da ein Ungleichgewicht der Kräfte entsteht.For the compensation operation, the proportional pressure valve arrangement 17 is brought to a setting corresponding to the last measured and corrected value and the cylinder chamber 15 of the hydraulic cylinder piston arrangement 11 is pressurized. Ideally, the following applies to the state of equilibrium
F storage ⁺ F friction = F concrete ⁺ F compensation,
where F storage = F concrete and F friction = F compensation. For practical use, F compensation is chosen so that a slight under compensation of F friction is achieved. This means that the concrete pressure is set too high. If the concrete pressure is now increased by a certain value dF b , the face formwork 2 starts to move in the direction of the concrete pressure force acting on it, since an imbalance of the forces arises.
Bei einer Bewegung der Stirnschalung 2 in Richtung +x bei stehender Innenschalung 4 und einer gegenüber dem Schildmantel 1 höheren Stirnschalungsgeschwindigkeit werden die die Bewegung hemmenden Kräfte annähernd optimal kompensiert. Im Normalfall bleibt die eingestellte Kompensationskraft solange konstant, bis eine bestimmte Wegstrecke, z. B. 20 cm, fertig betoniert ist. Die Steuereinrichtung 10 wird mit allen zur Bestimmung des Betonierweges erforderlichen Weginformationen ausgerüstet. Bei Erreichen der vorgesehenen Wegstrecke wird der Kompensationsbetrieb abgebrochen und automatisch eine neue Reibkraftbestimmung durchgeführt. Als Sicherheitsreserve dient eine höhere Festlegung des Betondruckes als es nach den statischen Rahmenbedingungen nötig wäre sowie die geringe Unterkompensation der Reibkraft, als deren Folge eine Betondrucküberhöhung notwendig ist. Die Auslenkung der Stirnschalung 2 führt zu einem Einsetzen der Betonvolumenstromregelung. Der Betonvolumenstrom wird vermindert. Aus praktischen Erwägungen heraus kann der Arbeitspunkt Xm mit einem Toleranzfeld x₁ > xm > xo versehen werden. Befindet sich die Stirnschalung innerhalb dieser Strecke, so bleibt der Betonvolumenstrom konstant.When the forehead formwork 2 moves in the + x direction with the inner formwork 4 stationary and a higher forehead formwork speed than the shield casing 1, the forces which inhibit the movement are approximately optimally compensated for. In the normal case, the compensation force remains constant until a certain distance, e.g. B. 20 cm, is concreted. The control device 10 is equipped with all path information required for determining the concreting path. When the intended distance is reached, the compensation operation is terminated and a new friction force determination is carried out automatically. A higher reserve of the concrete pressure than would be necessary according to the static framework conditions serves as a safety reserve as well as the low undercompensation of the friction force, as a result of which an increase in the concrete pressure is necessary. The deflection of the face formwork 2 leads to the onset of the concrete volume flow control. The concrete volume flow is reduced. For practical reasons, the working point X m can be provided with a tolerance field x 1> x m > x o . If the face formwork is within this distance, the concrete volume flow remains constant.
Bei eiuner Bewegung der Stirnschalung in Richtung +x bei stehender Innenschalung 4 und einer gegenüber dem Schildmantel 1 geringeren Stirnschalungsgeschwindigkeit wird von dem Wegmeßgerät 9 eine Auslenkung in Richtung -x registriert. Als Folge davon wird der Betonvolumenstrom erhöht. Der erhöhte Betonvolumenstrom führt zu einem Druckanstieg im Ringraum und schließlich zu einer Bewegung der Stirnschalung 2 in Richtung +x mit einer Geschwindigkeit, die größer ist als die des Schildmantels 1. Die auf die Stirnschalung 2 wirkende Reibkraft zwischen Schildmantel 1 und Stirnschalung 2 verändert dabei Richtung und unter Umständen auch ihren Betrag. Um der damit eintretenden Veränderung der resultierenden Reibkraft Rechnung zu tragen, wird die Kompensationskraft solange verringert, bis die Relativgeschwindigkeit zwischen Stirnschalung 2 und Schildmantel 1 nicht mehr negativ ist. Als Folge der Auslenkung wird der Betonvolumenstrom erhöht. Der erhöhte Betonvolumenstrom führt zu einem Druckanstieg in der Schalung und schließlich zu einer Bewegung der Stirnschalung 2 in Richtung +x mit einer Geschwindigkeit, die größer als die des Schildmantels 1 ist. Ein Ausbleiben der Relativbewegung zwischen Schildmantel 1 und Stirnschalung 2 führt solange nicht zu einer wesentlichen Fehlkompensation, solange die Richtung der Reibkräfte zwischen Innenschalung 4 und Stirnschalung 2 sowie Schildmantel 1 und Stirnschalung 2 die gleiche Richtung haben. Dreht sich die Richtung der Reibkraft zwischen Schildmantel 1 und Stirnschalung 2 um, so verringert sich die Gesamtreibkraft und kann im Extremfalle ihre Richtung umkehren. Die Auslegung der Steuereinrichtung 10 sieht vor, daß der Bediener auf den geschilderten Fall aufmerksam gemacht wird; der Bediener kann dann gegebenenfalls geeignete Schritte zur "Störungsbeseitigung" unternehmen. Bei einem Stehenbleiben der Stirnschalung 2 ist die Steuereinrichtung 10 so ausgelegt, daß der Betrieb mit einer Reibungskompensation sofort unterbrochen wird, d. h. die Zylinderkammer 15 der Hydraulikzylinderkolbenanordnung 11 entlüftet wird. Ein Neustart des Kompensationsbetriebes ist nach Störungsbeseitigung möglich.When the forehead formwork moves in the + x direction with the inner formwork 4 stationary and a lower forehead formwork speed compared to the shield casing 1, the displacement measuring device 9 registers a deflection in the -x direction. As a result, the concrete volume flow is increased. The increased concrete volume flow leads to an increase in pressure in the annular space and finally to a movement of the front formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1. The frictional force acting on the front formwork 2 between the shield casing 1 and the front formwork 2 changes direction and possibly their amount. In order to take into account the resulting change in the resulting frictional force, the compensating force is reduced until the relative speed between the front formwork 2 and the shield jacket 1 is no longer negative. As a result of the deflection, the concrete volume flow is increased. The increased concrete volume flow leads to an increase in pressure in the formwork and finally to a movement of the face formwork 2 in the direction + x at a speed which is greater than that of the shield casing 1. Failure to achieve the relative movement between the shield casing 1 and the front formwork 2 does not lead to a substantial incorrect compensation as long as the direction of the frictional forces between the inner formwork 4 and the front formwork 2 and the shield casing 1 and the front formwork 2 have the same direction. If the direction of the frictional force between the shield casing 1 and the front formwork 2 is reversed, the total frictional force is reduced and can, in extreme cases, reverse its direction. The design of the control device 10 provides that the operator is made aware of the case described; the operator can then take appropriate steps to "troubleshoot" if necessary. If the front formwork 2 stops, the control device 10 is designed such that that the operation is interrupted immediately with a friction compensation, ie the cylinder chamber 15 of the hydraulic cylinder piston assembly 11 is vented. It is possible to restart the compensation operation after the fault has been rectified.
In Abwandlung der beschriebenen Ausführungsform ist es zur Ermittlung und Kompensation der Reibungskräfte selbstverständlich auch möglich, den Stützdruck in der Gasdruckspeicheranordnung 14 zu verändern. Ebenso ist es möglich, anstelle der dargestellten einzigen Proportionaldruckventilanordnung 17 weitere Proportionaldruckventilanordnungen zu verwenden, beispielsweise für jede Hydraulikzylinderkolbenanordnung 11 eine eigene Proportionaldruckventilanordnung 17 einzusetzen.In a modification of the described embodiment, it is of course also possible to determine and compensate the frictional forces by changing the support pressure in the gas pressure accumulator arrangement 14. It is also possible to use further proportional pressure valve arrangements instead of the single proportional pressure valve arrangement 17 shown, for example to use a separate proportional pressure valve arrangement 17 for each hydraulic cylinder piston arrangement 11.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873723625 DE3723625A1 (en) | 1987-07-17 | 1987-07-17 | METHOD AND DEVICE FOR LINING A TUNNEL WITH LOCAL CONCRETE |
DE3723625 | 1987-07-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0300159A1 true EP0300159A1 (en) | 1989-01-25 |
EP0300159B1 EP0300159B1 (en) | 1991-09-25 |
Family
ID=6331754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88108179A Expired - Lifetime EP0300159B1 (en) | 1987-07-17 | 1988-05-21 | Method and device for lining a tunnel with concrete cast in situ |
Country Status (6)
Country | Link |
---|---|
US (1) | US4854776A (en) |
EP (1) | EP0300159B1 (en) |
JP (1) | JPH0776520B2 (en) |
KR (1) | KR970007348B1 (en) |
DE (1) | DE3723625A1 (en) |
DK (1) | DK397588A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03260286A (en) * | 1990-03-09 | 1991-11-20 | Komatsu Ltd | Bedrock breakdown prospecting method and device in shield method |
CN1053030C (en) * | 1995-10-05 | 2000-05-31 | 许宝根 | Combined self-advancing shield of sliding retaining-plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2913091A1 (en) * | 1979-04-02 | 1980-10-16 | Gewerk Eisenhuette Westfalia | Tunnel driving and concrete lining system - absorbs driving reaction forces by inner concrete shuttering |
DE2932430A1 (en) * | 1979-08-10 | 1981-02-19 | Hochtief Ag Hoch Tiefbauten | Tunnel tube concrete lining in loose rock - has fluid concrete pressed into annular gap at pressure above rock pressure |
DE3025922A1 (en) * | 1980-07-09 | 1982-01-28 | Gewerkschaft Eisenhütte Westfalia, 4670 Lünen | DEVICE FOR CONTROLLING THE HYDRAULIC FORWARD SHUTTER CYLINDER WHEN INSTALLING A LOCAL CONCRETE LINING IN UNDERGROUND CONSTRUCTIONS, LIKE IN PARTICULAR TUNNELS, COUNTERS, UNDERGROUND ROUTES AND THE LIKE. |
DE3127311C1 (en) * | 1981-07-10 | 1983-02-03 | Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen | Apparatus for driving a tunnel |
DE3406980C1 (en) * | 1984-02-25 | 1985-04-04 | Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen | Method and device for continuously lining a tunnel with in-situ concrete |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5433656A (en) * | 1977-08-22 | 1979-03-12 | Hitachi Ltd | Correction unit for lead bendign of electronic conponent |
JPS60126495A (en) * | 1983-12-13 | 1985-07-05 | 株式会社間組 | Control apparatus and method of shield drilling machine |
DE3529998A1 (en) * | 1985-08-22 | 1987-02-26 | Hochtief Ag Hoch Tiefbauten | METHOD AND DEVICE FOR CONTINUOUSLY LINING A TUNNEL WITH EXTRUDED CONCRETE |
DE3533425C1 (en) * | 1985-09-19 | 1986-10-30 | Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen | Support fluid pressure control for a shield tunneling machine |
JPS6260687U (en) * | 1985-10-04 | 1987-04-15 | ||
US4798267A (en) * | 1987-01-20 | 1989-01-17 | Delaware Capital Formation, Inc. | Elevator system having an improved selector |
US4769192A (en) * | 1987-03-27 | 1988-09-06 | Blaw Knox Corporation | Pulsating slip form apparatus and method |
-
1987
- 1987-07-17 DE DE19873723625 patent/DE3723625A1/en active Granted
-
1988
- 1988-05-21 EP EP88108179A patent/EP0300159B1/en not_active Expired - Lifetime
- 1988-07-12 US US07/218,240 patent/US4854776A/en not_active Expired - Fee Related
- 1988-07-15 JP JP63175286A patent/JPH0776520B2/en not_active Expired - Lifetime
- 1988-07-15 DK DK397588A patent/DK397588A/en not_active Application Discontinuation
- 1988-07-16 KR KR1019880008968A patent/KR970007348B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2913091A1 (en) * | 1979-04-02 | 1980-10-16 | Gewerk Eisenhuette Westfalia | Tunnel driving and concrete lining system - absorbs driving reaction forces by inner concrete shuttering |
DE2932430A1 (en) * | 1979-08-10 | 1981-02-19 | Hochtief Ag Hoch Tiefbauten | Tunnel tube concrete lining in loose rock - has fluid concrete pressed into annular gap at pressure above rock pressure |
DE3025922A1 (en) * | 1980-07-09 | 1982-01-28 | Gewerkschaft Eisenhütte Westfalia, 4670 Lünen | DEVICE FOR CONTROLLING THE HYDRAULIC FORWARD SHUTTER CYLINDER WHEN INSTALLING A LOCAL CONCRETE LINING IN UNDERGROUND CONSTRUCTIONS, LIKE IN PARTICULAR TUNNELS, COUNTERS, UNDERGROUND ROUTES AND THE LIKE. |
DE3127311C1 (en) * | 1981-07-10 | 1983-02-03 | Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen | Apparatus for driving a tunnel |
DE3406980C1 (en) * | 1984-02-25 | 1985-04-04 | Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen | Method and device for continuously lining a tunnel with in-situ concrete |
Also Published As
Publication number | Publication date |
---|---|
DE3723625A1 (en) | 1989-02-23 |
KR970007348B1 (en) | 1997-05-07 |
US4854776A (en) | 1989-08-08 |
JPH0776520B2 (en) | 1995-08-16 |
DK397588A (en) | 1989-01-18 |
KR890002521A (en) | 1989-04-10 |
DE3723625C2 (en) | 1990-04-19 |
JPH0227098A (en) | 1990-01-29 |
EP0300159B1 (en) | 1991-09-25 |
DK397588D0 (en) | 1988-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0558097B1 (en) | Boring arm | |
WO2002055813A1 (en) | Large manipulator having a vibration damping capacity | |
EP0052292B1 (en) | Process and device for advancing a slidable shuttering | |
DE1477109A1 (en) | Method and device for compensating for the deflection of the boom of machine tools or the like. | |
DE2836381A1 (en) | HYDRAULICALLY OPERATED SAFETY VALVE, ESPECIALLY FOR UNDERWATER DRILL HOLES | |
DE2615597A1 (en) | EARTH WORKING EQUIPMENT FOR A TUNNEL DRIVING MACHINE | |
EP0300159B1 (en) | Method and device for lining a tunnel with concrete cast in situ | |
DE2420340A1 (en) | TUNNEL DRILLING MACHINE | |
DE2544794A1 (en) | Hydraulic press with accumulator - has stroke of moving press accurately adjusted using feedback circuit from sensor amplifier | |
DE2845055A1 (en) | METHOD FOR QUICKLY SEPARATING THE ROLLS OF A CALENDAR AND DEVICE FOR CARRYING IT OUT | |
DE2547021A1 (en) | SHOWING SIGN | |
DE3427962A1 (en) | Supporting-arm adjusting device for mining machines, in particular for shearer-loaders and selective-cut heading machines | |
DE1103269B (en) | Hydraulically operated support device for the hanging wall | |
DE3025922C2 (en) | ||
DE3127927A1 (en) | PRESSURE CONTROL VALVE FOR LIQUIDS | |
DE3127311C1 (en) | Apparatus for driving a tunnel | |
EP3732350B1 (en) | Device and method for continuously driving a tunnel | |
DE3203084A1 (en) | Device for setting a prop of the hydraulic self-advancing powered support system in underground mining | |
EP0273104B1 (en) | Joint pack ring | |
DE19744146C1 (en) | Method for driving tunnel through ground | |
DE2807431C2 (en) | Control device for the consumers of a support frame in underground mine support that can be acted upon by a hydraulic working medium | |
DE2432767C3 (en) | Bracing device for conveyors in collapsing struts | |
DE2945936C2 (en) | Load pressure control for the hydraulic support cylinders of an expandable blade | |
DE1533757A1 (en) | Control device for a pit support to be moved under load | |
DE2844055C2 (en) | Device for controlling the stroke delay of working cylinders, in particular of machine tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19880616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19900402 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19921201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970311 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980521 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000320 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000426 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010531 |
|
BERE | Be: lapsed |
Owner name: HOCHTIEF A.G. VORM. GEBR. HELFMANN Effective date: 20010531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050521 |