EP0277521B1 - Synchrotron radiation source with fixation of its curved coils - Google Patents
Synchrotron radiation source with fixation of its curved coils Download PDFInfo
- Publication number
- EP0277521B1 EP0277521B1 EP88100522A EP88100522A EP0277521B1 EP 0277521 B1 EP0277521 B1 EP 0277521B1 EP 88100522 A EP88100522 A EP 88100522A EP 88100522 A EP88100522 A EP 88100522A EP 0277521 B1 EP0277521 B1 EP 0277521B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- synchrotron radiation
- radiation source
- source according
- synchrotron
- coil windings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005469 synchrotron radiation Effects 0.000 title claims description 33
- 238000004804 winding Methods 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 15
- 230000005855 radiation Effects 0.000 claims description 10
- 239000006100 radiation absorber Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 description 6
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001015 X-ray lithography Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/04—Magnet systems, e.g. undulators, wigglers; Energisation thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
Definitions
- Such a synchrotron radiation source is known from DE-OS 35 30 446.
- synchrotron In a synchrotron, as is known, electrically charged particles such as electrons or protons can be accelerated to high energy by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity of an acceleration path.
- the electrons In the case of an electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency.
- Synchrotron radiation ie the relative radiation emission of the electrons, which circulate almost at the speed of light and are held on a circular path by deflection in a magnetic field of a magnetic device, provides X-rays with parallel radiation characteristics and great intensity.
- This synchrotron radiation can advantageously be used for an X-ray lithography, which is suitable in the manufacture of integrated circuits for producing structures that are smaller than 0.5 ⁇ m.
- an embodiment of an electron synchrotron of the so-called racetrack type which has a particle track with alternating straight and curved track sections.
- the radius of curvature is determined by the equilibrium between centrifugal force and Lorentz force in the magnetic field of dipole magnetic devices, which each contain curved superconducting coil windings on both sides of the particle path.
- the individual dipole coil windings are arranged together with a gradient coil in a cryostat, which also keeps the evacuated beam guiding chamber, in which the electrons circulate, at low temperature in the curved path section.
- the straight sections of the acceleration path are assigned an electron injector, with which the electrons are introduced into the acceleration path, and devices for electron acceleration.
- the beam guiding chamber is curved in each Each section of the particle track is provided with a slit-shaped exit opening for the synchrotron radiation.
- the Lorentz forces of the opposing superconducting coil windings which try to compress the slot-shaped outlet opening, must therefore be absorbed by the legs of a mechanical, C-shaped or U-shaped support structure. Since a change in the position of these superconducting coil windings under the action of the Lorentz forces with a corresponding field distortion must be practically ruled out, a correspondingly complex mechanical fixation of these windings is essential. However, this is extremely difficult in the slot area. For example, according to DE-PS 35 11 282, the forces compressing the slot are compensated for by particularly prestressed clamp and tensioning elements.
- the invention is therefore based on the object of improving the synchrotron radiation source of the type mentioned in such a way that a relatively simple fixation of the superconducting dipole coil windings of their magnetic devices is to be ensured in the exit region of the synchrotron radiation.
- the figure shows a cross section through the synchrotron radiation source according to the invention in the region of its particle path 2 curved by 180 ° with a corresponding magnet device 3.
- the radius of curvature is designated R.
- This magnetic device contains on both sides of the equatorial plane spanned by the particle path 2 and lying in the xy direction of a right-angled xyz coordinate system, a curved superconducting dipole coil winding 4 or 5 and possibly additional superconducting coil windings such as correction coil windings 4a and 5a.
- the superconducting windings are advantageously held in structurally identical upper and lower frame structures 7 and 8, which are joined together in the equatorial plane and thereby accommodate a beam guiding chamber 10 surrounding the particle path 2.
- the particle web 2 extends through an approximately rectangular aperture area 11, in which a dipole field B of sufficient quality is formed.
- the chamber 10 merges radially or tangentially outward into an equatorial outlet chamber 12 which is open on one side and has an outlet opening or opening 13 for the synchrotron radiation indicated by an arrow 14.
- the exit chamber with a vertical, i.e. Extension a pointing in the z direction can in particular be slit-shaped, the corresponding slit being able to make up the entire 180 ° arc of the curved particle path section. According to the illustrated embodiment, such an exit chamber is assumed.
- the individual superconducting dipole coil windings 4 and 5 are located in azimuth-rotating coil bodies 16, which are fitted into an upper or lower frame piece 17 or 18 of the respective frame structure 7 or 8 and in the z direction perpendicular to the equatorial xy plane with screws 19 being held.
- the winding structure can advantageously take place from the respective slot base of the coil body in the direction of the equatorial plane as well as in the opposite direction.
- a graduated bracket part 21 or 22 secures the exact distances between the respective winding edges to the equatorial plane on the one hand and on the other hand increases the rigidity of the entire construction with regard to the radially directed Lorentz forces by means of a positive connection with the coil formers 16 and the frame pieces 17 and 18.
- the clamp parts 21 and 22 can also compress the individual windings with the aid of screws 23 and 24 and thus conductor movements during the operation of the magnet device 3, which lead to a premature, undesirable transition of the superconducting material into the normal conducting state, ie to a so-called quenching of the windings can prevent.
- pressure strips 37 on the respective slot base also serve, which are to be pressed against the respective winding parts by means of screws 38.
- the frame pieces 17 and 18 of the frame structures 7 and 8 are fixed with the aid of dowel pins 25 and screws 26 on a respective upper or lower plate element 28 or 29 in grooves milled there. This ensures a very precise positioning of the individual superconducting coil windings 4, 5 and optionally 4a, 5a relative to the particle path 2.
- the non-positive assembly of the upper and lower frame structures 7 and 8 takes place in the area of direct mutual vertical force support with the aid of screws 31 and threaded rods 32.
- the upper and lower plate elements 28 and 29 of the frame structures 7 and 8 are clamped against ring-like, force-transmitting distributor pieces 34 and 35 with screws 36.
- the slot-like outlet chamber 12 extends with its outlet opening 13 to the outside between the mutually facing parts of these distributor pieces 34 and 35.
- the mutual distance and a force support between the distributor pieces 34 and 35 and thus also between the coil windings is ensured via at least one, in particular columnar, support element 40.
- this support element is to be located radially further outside in the insulating vacuum of a cryostat, not shown in the figure, than the mouth of the outlet opening 13. Since the distributor pieces 34 and 35 in the cryostat represent parts of a cold helium housing 42 for receiving liquid helium cooling the superconducting coil windings, the support element 40 running between them is also at this temperature.
- the force-transmitting distributor pieces 34 and 35 and the at least one Support element 40 designed mechanical fixing device is consequently to ensure a relatively simple and secure support and support of the superconducting coil windings lying on both sides of the equatorial plane.
- Vertical Lorentz forces of the windings can be introduced into the respective upper and lower plate elements 28 and 29 of the corresponding frame structures 7 and 8 via threaded rods 44. That is to say, in the configuration of the mechanical fixing device according to the invention, the vertical forces are absorbed in short ways via the at least one cold support element 40 located on the outside.
- a noticeable hindrance of the synchrotron radiation 14 emerging from the outlet opening 13 does not have to be accepted, since there is only a relatively small space requirement for sufficient support via the one support element 40 or a small number of such support elements.
- the power part of the synchrotron radiation to be dissipated in this way is therefore only a fraction of the total radiation.
- the portion of the synchrotron radiation 14 striking the at least one support element 40 is advantageously intercepted by a radiation absorber 46, which is expediently cooled.
- the preferred cryogenic refrigerant is liquid nitrogen, which is passed through a corresponding cooling channel 47 of the absorber.
- the absorber can surround the support element 40 in a ring shape.
- a radiation-absorbing shield wall 48 On its side facing the synchrotron radiation, it has a radiation-absorbing shield wall 48, which advantageously consists of a good heat-conducting material such as e.g. Copper is executed.
- the configuration of the mechanical fixing device according to the invention ensures a relatively small radial span w on the two plate elements 28 and 29 of the frame structures 7 and 8. This has the consequence that only correspondingly small plate thicknesses of these parts are required and thus the overall height of the magnet device 3 is limited.
- the mass of the magnetic device to be cooled is advantageously also to be kept correspondingly small.
- Another advantage of this construction is the possibility of attaching the suspension and positioning elements of the magnetic device (not shown in the figure) directly to the distribution pieces 34 and 35 within a vacuum housing (also not shown) and thus in close proximity to the superconducting coil windings. This brings a correspondingly high positioning accuracy of the windings to the particle path and allows the use of thin housing walls in the top and bottom area of the helium housing 42.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Particle Accelerators (AREA)
Description
Die Erfindung bezieht sich auf eine Synchrotronstrahlungsquelle mit mindestens einem gekrümmten Abschnitt ihrer Teilchenbahn, in dem vorgesehen sind
- eine Magneteinrichtung mit supraleitenden Spulenwicklungen, die zu beiden Seiten der von einer Strahlführungskammer umgebenen Teilchenbahn liegen und in mindestens einem Kryostaten mit einem Vakuumgehäuse angeordnet sind,
- mindestens eine radial oder tangential nach außen hin führende Austrittsöffnung der Strahlführungskammer für die Synchrontronstrahlung
- eine Vorrichtung zur mechanischen Fixierung der supraleitenden Spulenwicklungen.
- a magnetic device with superconducting coil windings which are located on both sides of the particle path surrounded by a beam guiding chamber and are arranged in at least one cryostat with a vacuum housing,
- at least one radially or tangentially outwardly leading exit opening of the beam guiding chamber for the synchronous tron radiation
- a device for mechanically fixing the superconducting coil windings.
Eine derartige Synchrotronstrahlungsquelle ist aus der DE-OS 35 30 446 bekannt.Such a synchrotron radiation source is known from DE-OS 35 30 446.
In einem Synchrotron können bekanntlich elektrisch geladene Teilchen wie Elektronen oder auch Protonen dadurch auf hohe Energie beschleunigt werden, daß sie auf einer gekrümmten Bahn in Umlauf gebracht und wiederholt durch einen Hochfrequenz-Beschleunigungshohlraum einer Beschleunigungsstrecke hindurchgeführt werden. Dabei werden bei einem Elektronen-Synchrotron die Elektronen bereits nahezu mit Lichtgeschwindigkeit in die Beschleunigungsstrecke eingeleitet; es ändert sich somit bei fester Umlauffrequenz nur noch ihre Energie. Die Synchrotronstrahlung, d.h. die relativische Strahlungsemission der Elektronen, die nahezu mit Lichtgeschwindigkeit umlaufen und durch Ablenkung in einem magnetischen Feld einer Magneteinrichtung auf einer Kreisbahn gehalten werden, liefert eine Röntgenstrahlung mit paralleler Strahlungscharakteristik und großer Intensität. Diese Synchrotronstrahlung kann vorteilhaft für eine Röntgenstrahl-Lithographie verwendet werden, welche bei einer Herstellung von integrierten Schaltkreisen zur Erzeugung von Strukturen, die kleiner als 0,5 µm sind, geeignet ist. Dabei trifft die parallele Röntgenstrahlung im nutzbaren Wellenbereich von etwa 2 = 0,2 bis 2 nm auf eine abzubildende Maske, hinter der sich in unmittelbarem Abstand eine zu belichtende Halbleiterfläche befindet.In a synchrotron, as is known, electrically charged particles such as electrons or protons can be accelerated to high energy by circulating them on a curved path and repeatedly passing them through a high-frequency acceleration cavity of an acceleration path. In the case of an electron synchrotron, the electrons are introduced into the acceleration path at almost the speed of light; it only changes their energy at a fixed frequency. Synchrotron radiation, ie the relative radiation emission of the electrons, which circulate almost at the speed of light and are held on a circular path by deflection in a magnetic field of a magnetic device, provides X-rays with parallel radiation characteristics and great intensity. This synchrotron radiation can advantageously be used for an X-ray lithography, which is suitable in the manufacture of integrated circuits for producing structures that are smaller than 0.5 μm. The parallel x-ray radiation in the usable wave range of approximately 2 = 0.2 to 2 nm strikes a mask to be imaged, behind which there is a semiconductor surface to be exposed at a direct distance.
Aus der eingangs genannten DE-OS ist eine Ausführungsform eines Elektronen-Synchrotrons vom sogenannten Rennbahn-Typ zu entnehmen, das eine Teilchenbahn mit abwechselnd geraden und gekrümmten Bahnabschnitten aufweist. Der Krümmungsradius ist dabei durch das Gleichgewicht zwischen Zentrifugalkraft und Lorentzkraft im Magnetfeld von Dipolmagneteinrichtungen festgelegt, die jeweils zu beiden Seiten der Teilchenbahn gekrümmte supraleitende Spulenwicklungen enthalten. In jeder dieser Magneteinrichtungen sind die einzelnen Dipolspulenwicklungen zusammen mit einer Gradientenspule in einem Kryostaten angeordnet, der im gekrümmten Bahnabschnitt auch die evakuierte Strahlführungskammer, in welcher die Elektronen umlaufen, auf Tieftemperatur hält. Den geraden Abschnitten der Beschleunigungsstrecke sind ein Elektroneninjektor, mit dem die Elektronen in die Beschleunigungsstrecke eingeleitet werden, sowie Einrichtungen zur Elektronenbeschleunigung zugeordnet.From the DE-OS mentioned at the outset, an embodiment of an electron synchrotron of the so-called racetrack type can be found which has a particle track with alternating straight and curved track sections. The radius of curvature is determined by the equilibrium between centrifugal force and Lorentz force in the magnetic field of dipole magnetic devices, which each contain curved superconducting coil windings on both sides of the particle path. In each of these magnetic devices, the individual dipole coil windings are arranged together with a gradient coil in a cryostat, which also keeps the evacuated beam guiding chamber, in which the electrons circulate, at low temperature in the curved path section. The straight sections of the acceleration path are assigned an electron injector, with which the electrons are introduced into the acceleration path, and devices for electron acceleration.
Bei dieser bekannten Ausführungsform einer Synchrotronstrahlungsquelle ist die Strahlführungskammer in jedem gekrümmten Bahnabschnitt der Teilchenbahn jeweils mit einer schlitzförmigen Austrittsöffnung für die Synchrotronstrahlung versehen. Die Lorentzkräfte der gegenüberliegenden supraleitenden Spulenwicklungen, welche die schlitzförmige Austrittsöffnung zusammmenzudrücken versuchen, müssen deshalb von den Schenkeln einer mechanischen, C- oder U-förmigen Tragkonstruktion aufgenommen werden. Da eine Lageänderung dieser supraleitenden Spulenwicklungen unter der Einwirkung der Lorentzkräfte mit einer entsprechenden Feldverzerrung praktisch ausgeschlossen werden muß, ist eine entsprechende aufwendige mechanische Fixierung dieser Wicklungen unumgänglich. Dies ist aber im Schlitzbereich außerordentlich schwierig. So werden beispielsweise gemäß der DE-PS 35 11 282 die den Schlitz zusammendrückenden Kräfte durch besonders vorgespannte Klammer- und Spannelemente kompensiert.In this known embodiment of a synchrotron radiation source, the beam guiding chamber is curved in each Each section of the particle track is provided with a slit-shaped exit opening for the synchrotron radiation. The Lorentz forces of the opposing superconducting coil windings, which try to compress the slot-shaped outlet opening, must therefore be absorbed by the legs of a mechanical, C-shaped or U-shaped support structure. Since a change in the position of these superconducting coil windings under the action of the Lorentz forces with a corresponding field distortion must be practically ruled out, a correspondingly complex mechanical fixation of these windings is essential. However, this is extremely difficult in the slot area. For example, according to DE-PS 35 11 282, the forces compressing the slot are compensated for by particularly prestressed clamp and tensioning elements.
Der Erfindung liegt deshalb die Aufgabe zugrunde, die Synchrotronstrahlungsquelle der eingangs genannten Art dahingehend zu verbessern, daß eine verhältnismäßig einfache Fixierung der supraleitenden Dipolspulenwicklungen ihrer Magneteinrichtungen im Austrittsbereich der Synchrotronstrahlung zu gewährleisten ist.The invention is therefore based on the object of improving the synchrotron radiation source of the type mentioned in such a way that a relatively simple fixation of the superconducting dipole coil windings of their magnetic devices is to be ensured in the exit region of the synchrotron radiation.
Diese Aufgabe wird erfindungsgemäß mit den im Kennzeichen des Anspruchs 1 angegebenen Maßnahmen gelöst.This object is achieved with the measures specified in the characterizing part of claim 1.
Die mit einer entsprechenden Ausgestaltung der Strahlungsquelle verbundenen Vorteile sind insbesondere darin zu sehen, daß auf aufwendige Tragstrukturen im Bereich der insbesondere schlitzförmig gestalteten Austrittsöffnung für die Strahlung bzw. ihres entsprechenden Austrittskanales verzichtet werden kann. Zugleich wird auf verhältnismäßig einfache Weise eine hohe mechanische Steifigkeit des gesamten Aufbaus einer Fixierungsvorrichtung zur Halterung und Abstützung der supraleitenden Wicklungen erreicht. Damit läßt sich auch die Bauhöhe, die abzukühlende Gewichtsmasse und das gespeicherte Volumen an kryogenem Kühlmittel reduzieren.The advantages associated with a corresponding configuration of the radiation source can be seen in particular in the fact that there is no need for complex support structures in the region of the particularly slot-shaped outlet opening for the radiation or its corresponding outlet channel. At the same time, a high degree of mechanical rigidity of the entire structure of a fixing device for holding and supporting the superconducting windings is achieved in a relatively simple manner. This also allows the overall height to be cooled Reduce the weight and the stored volume of cryogenic coolant.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Synchrotronstrahlungsquelle gehen aus den Unteransprüchen hervor.Advantageous refinements of the synchrotron radiation source according to the invention emerge from the subclaims.
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren Figur als Ausführungsbeispiel ein Teil einer Synchrotronstrahlungsquelle gemäß der Erfindung schematisch veranschaulicht ist.To further explain the invention, reference is made to the drawing, in the figure, in which an example of a part of a synchrotron radiation source according to the invention is schematically illustrated.
Beim Aufbau der erfindungsgemäßen Strahlungsquelle wird von bekannten Ausführungsformen, insbesondere vom Rennbahn-Typ, ausgegangen (vgl. z.B. DE-PS 35 11 282, DE-OS 35 30 446 oder die Veröffentlichung des "Institute for Solid State Physics" of the University of Tokyo, Japan, Sept. 1984, Ser. B., No. 21, Seiten 1 bis 29 mit dem Titel: "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation").When designing the radiation source according to the invention, known embodiments, in particular of the racetrack type, are assumed (cf. for example DE-PS 35 11 282, DE-OS 35 30 446 or the publication of the "Institute for Solid State Physics" of the University of Tokyo , Japan, Sept. 1984, Ser. B., No. 21, pages 1 to 29 with the title: "Superconducting Racetrack Electron Storage Ring and Coexistent Injector Microtron for Synchrotron Radiation").
In der Figur ist ein Querschnitt durch die erfindungsgemäße Synchrotronstrahlungsquelle im Bereich ihrer um 180° gekrümmten Teilchenbahn 2 mit einer entsprechenden Magneteinrichtung 3 dargestellt. Der Krümmungsradius ist dabei mit R bezeichnet. Diese Magneteinrichtung enthält zu beiden Seiten der durch die Teilchenbahn 2 aufgespannten, in x-y-Richtung eines rechtwinkligen x-y-z-Koordinatensystems liegenden Äquatorialebene je eine gekrümmte supraleitende Dipolspulenwicklung 4 bzw. 5 und gegebenenfalls noch zusätzliche supraleitende Spulenwicklungen wie z.B. Korrekturspulenwicklungen 4a und 5a. Die supraleitenden Wicklungen werden vorteilhaft in baugleichen oberen und unteren Rahmenstrukturen 7 bzw. 8 gehalten, die in der Äquatorialebene zusammengefügt werden und dabei eine die Teilchenbahn 2 umschließende Strahlführungskammer 10 aufnehmen.The figure shows a cross section through the synchrotron radiation source according to the invention in the region of its particle path 2 curved by 180 ° with a
Innerhalb dieser evakuierten Kammer 10 erstreckt sich die Teilchenbahn 2 durch eine etwa rechteckige Aperturfläche 11 hindurch, in der ein Dipolfeld B hinreichender Qualität ausgebildet ist. Die Kammer 10 geht radial oder tangential nach außen hin in eine äquatoriale, einseitig offene Austrittskammer 12 mit einer Austrittsöffnung oder -mündung 13 für die durch einen Pfeil 14 angedeutete Synchrotronstrahlung über. Die Austrittskammer mit einer senkrechten, d.h. in z-Richtung weisenden Ausdehnung a kann insbesondere schlitzförmig ausgebildet sein, wobei der entsprechende Schlitz den gesamten 180°-Bogen des gekrümmten Teilchenbahnabschnittes ausmachen kann. Gemäß dem dargestellten Ausführungsbeispiel ist eine derartige Austrittskammer angenommen.Within this
Die einzelnen supraleitenden Dipolspulenwicklungen 4 und 5 befinden sich in azimut umlaufenden Spulenkörpern 16, die in ein oberes bzw. unteres Rahmenstück 17 bzw. 18 der jeweiligen Rahmenstruktur 7 bzw. 8 eingepaßt sind und in z-Richtung senkrecht zur äquatorialen x-y-Ebene mit Schrauben 19 gehalten werden. Der Wicklungsaufbau kann dabei vorteilhaft von dem jeweiligen Nutengrund des Spulenkörpers in Richtung auf die Äquatorialebene hin als auch in umgekehrter Richtung erfolgen. Hierbei sichert je ein abgestuft ausgeführtes Klammerteil 21 bzw. 22 die exakten Abstände der jeweiligen Wicklungskanten zur Äquatorialebene einerseits und erhöht andererseits durch einen Formschluß mit den Spulenkörpern 16 und den Rahmenstücken 17 bzw. 18 die Steifigkeit der gesamten Konstruktion im Hinblick auf die radial gerichteten Lorentzkräfte. Die Klammerteile 21 und 22 können außerdem mit Hilfe von Schrauben 23 und 24 die einzelnen Wicklungen verdichten und somit Leiterbewegungen im Betrieb der Magneteinrichtung 3, die zu einem vorzeitigen, unerwünschten Übergang des supraleitenden Materials in den normalleitenden Zustand, d.h. zu einem sogenannten Quenchen der Wicklungen führen können, verhindern. Hierzu dienen auch Druckleisten 37 am jeweiligen Nutengrund, die über Schrauben 38 gegen die jeweiligen Wicklungsteile zu pressen sind.The individual superconducting dipole coil windings 4 and 5 are located in azimuth-rotating
Die Rahmenstücke 17 und 18 der Rahmenstrukturen 7 und 8 werden mit Hilfe von Paßstiften 25 und Schrauben 26 auf einem jeweiligen oberen bzw. unteren Plattenelement 28 bzw. 29 in dort eingefrästen Nuten fixiert. Damit ist eine sehr genaue Positionierung der einzelnen supraleitenden Spulenwicklungen 4, 5 sowie gegebenenfalls 4a, 5a zur Teilchenbahn 2 gewährleistet.The
Der kraftschlüssige Zusammenbau der oberen und unteren Rahmenstrukturen 7 und 8 erfolgt im Bereich einer direkten gegenseitigen vertikalen Kraftabstützung mit Hilfe von Schrauben 31 und Gewindestangen 32.The non-positive assembly of the upper and lower frame structures 7 and 8 takes place in the area of direct mutual vertical force support with the aid of
Am peripheren Außenrand der Magneteinrichtung 3 im Bereich der schlitzförmigen Austrittsöffnung 13 für die Synchrotronstrahlung 14 werden die oberen und unteren Plattenelemente 28 und 29 der Rahmenstrukturen 7 bzw. 8 gegen ringartige, kraftübertragende Verteilerstücke 34 und 35 mit Schrauben 36 verspannt. Zwischen den einander zugewandten Teilen dieser Verteilerstücke 34 und 35 hindurch erstreckt sich die schlitzartige Austrittskammer 12 mit ihrer Austrittsöffnung 13 nach außen. Dabei ist der gegenseitige Abstand und eine Kraftabstützung zwischen den Verteilerstücken 34 und 35 und somit auch zwischen den Spulenwicklungen über mindestens ein insbesondere säulenartiges Stützelement 40 gewährleistet. Dieses Stützelement soll sich erfindungsgemäß in dem isolierenden Vakuum eines in der Figur nicht dargestellten Kryostaten radial weiter außen als die Mündung der Austrittsöffnung 13 befinden. Da die Verteilerstücke 34 und 35 in dem Kryostaten Teile eines kalten Heliumgehäuses 42 zur Aufnahme von die supraleitenden Spulenwicklungen kühlendem flüssigen Helium darstellen, befindet sich auch das zwischen ihnen verlaufende Stützelement 40 etwa auf dieser Temperatur.At the peripheral outer edge of the
Mit der so aus den Rahmenstrukturen 7 und 8, den kraftübertragenden Verteilerstücken 34 und 35 sowie dem mindestens einen Stützelement 40 ausgebildeten mechanischen Fixierungsvorrichtung ist folglich eine verhältnismäßig einfache und sichere Abstützung und Halterung der zu beiden Seiten der Äquatorialebene liegenden supraleitenden Spulenwicklungen zu gewährleisten. Hierbei können vertikale Lorentzkräfte der Wicklungen über Gewindestangen 44 in das jeweilige obere und untere Plattenelement 28 bzw. 29 der entsprechenden Rahmenstrukturen 7 bzw. 8 eingeleitet werden. D.h., bei der erfindungsgemäßen Ausgestaltung der mechanischen Fixierungsvorrichtung werden die vertikalen Kräfte auf kurzen Wegen über das mindestens eine außen liegende kalte Stützelement 40 abgefangen.With the frame structures 7 and 8, the force-transmitting
Eine merkliche Behinderung der aus der Austrittsöffnung 13 austretenden Synchrotronstrahlung 14 muß dabei nicht in Kauf genommen werden, da für eine hinreichende Abstützung über das eine Stützelement 40 oder über eine geringe Anzahl derartiger Stützelemente nur ein verhältnismäßig kleiner Platzbedarf besteht. Der hierdurch abzuführende Leistungsteil der Synchrotronstrahlung beträgt demnach nur Bruchteile der Gesamtstrahlung.A noticeable hindrance of the
Vorteilhaft wird der auf das mindestens eine Stützelement 40 auftreffende Anteil der Synchrotronstrahlung 14 von einem Strahlungsabsorber 46 abgefangen, der zweckmäßig gekühlt wird. Als bevorzugtes kryogenes Kältemittel ist hierzu flüssiger Stickstoff anzusehen, der durch einen entsprechenden Kühlkanal 47 des Absorbers geleitet wird. Gemäß dem dargestellten Ausführungsbeispiel kann der Absorber das Stützelement 40 ringförmig umschließen. Er weist auf seiner der Synchrotronstrahlung zugewandten Seite eine strahlabsorbierende Schildwand 48 auf, die vorteilhaft aus einem gut wärmeleitenden Material wie z.B. Kupfer ausgeführt ist.The portion of the
Wie ferner aus der Figur hervorgeht, gewährleistet die erfindungsgemäße Ausgestaltung der mechanischen Fixierungsvorrichtung eine verhältnismäßig kleine radiale Stützweite w an den beiden Plattenelementen 28 und 29 der Rahmenstrukturen 7 und 8. Dies hat zur Folge, daß auch nur entsprechend geringe Plattendicken dieser Teile erforderlich sind und somit die gesamte Bauhöhe der Magneteinrichtung 3 begrenzt ist. Damit ist aber auch die abzukühlende Masse der Magneteinrichtung vorteilhaft entsprechend klein zu halten.As can also be seen from the figure, the configuration of the mechanical fixing device according to the invention ensures a relatively small radial span w on the two
Ein weiterer Vorteil dieser Konstruktion besteht in der Möglichkeit, die in der Figur nicht ausgeführten Aufhängungs- und Positionierelemente der Magneteinrichtung innerhalb eines ebenfalls nicht dargestellten Vakuumgehäuses direkt an den Verteilungsstücken 34 und 35 und damit in unmittelbarer Nähe zu den supraleitenden Spulenwicklungen anzusetzen. Dies bringt eine entsprechend hohe Positioniergenauigkeit der Wicklungen zur Teilchenbahn mit sich und erlaubt den Einsatz dünner Gehäusewände im Deckel- und Bodenbereich des Helium-Gehäuses 42.Another advantage of this construction is the possibility of attaching the suspension and positioning elements of the magnetic device (not shown in the figure) directly to the
Claims (10)
- A synchrotron radiation source with at least one curved section in its particle track, in which there are provided,- a magnetic device having superconducting coil windings, which lie on both sides of the particle track, the track being surrounded by a beam guiding chamber, and which are arranged in at least one cryostat with a vacuum housing,- at least one outlet opening of the beam guiding chamber, for the synchrotron beam, leading radially or tangentially outward
and- a device for mechanical fixing of the superconducting coil windings,characterised in that on the peripheral outer edge of the magnetic device (3) the fixing device has at least one supporting element (40) lying radially further outward than the outlet opening (13) for the synchrotron radiation (14) and acting substantially perpendicular to the radiation direction, which element is shielded from the synchrotron radiation (14) by a radiation absorber (46). - A synchrotron radiation source according to claim 1, characterised in that at least one supporting element (40) is arranged within the vacuum housing of the cryostat.
- A synchrotron radiation source according to claim 1 or 2, characterised in that at least one supporting element (40) is coupled thermally to a housing (42) for receiving the cryogenic medium cooling the superconducting coil windings (4,5,4a,5a).
- A synchrotron radiation source according to one of claims 1 to 3, characterised in that at least one supporting element (40) is formed in the shape of a column.
- A synchrotron radiation source according to one of claims 1 to 4, characterised in that the mechanical fixing device has two at least largely structurally similar frame structures (7,8) which are to be joined in a radiation plane, i.e. equatorial plane, determined by the synchrotron radiation (14).
- A synchrotron radiation source according to claim 5, characterised in that the frame structures (7,8) contain frame pieces (17 or 18), which have coil bodies (16) receiving the superconducting coil windings (4 or 5) as well as clamping parts (21,22) mechanically securing the coil windings there.
- A synchrotron radiation source according to one of claims 1 to 6, characterised in that the frame structures (7,8) are connected to respective plate elements (28 or 29), these plate elements (28,29) supporting themselves forcewise at their peripheral outer edges by means of the said at least one supporting element (40).
- A synchrotron radiation source according to one of claims 1 to 7, characterised in that the radiation absorber (46) consists at least in the region of the incident synchrotron radiation (14) of a shield wall 48 of a good thermally-conducting material.
- A synchrotron radiation source according to claim 8, characterised in that the radiation absorber (46) is cooled additionally.
- A synchrotron radiation source according to claim 9, characterised in that the radiation absorber (46) is formed as a tubular cooling channel (47) for a cryogenic medium, such as liquid nitrogen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3702388 | 1987-01-28 | ||
DE3702388 | 1987-01-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0277521A2 EP0277521A2 (en) | 1988-08-10 |
EP0277521A3 EP0277521A3 (en) | 1989-04-26 |
EP0277521B1 true EP0277521B1 (en) | 1991-11-06 |
Family
ID=6319640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88100522A Expired - Lifetime EP0277521B1 (en) | 1987-01-28 | 1988-01-15 | Synchrotron radiation source with fixation of its curved coils |
Country Status (4)
Country | Link |
---|---|
US (1) | US4843333A (en) |
EP (1) | EP0277521B1 (en) |
JP (1) | JPH0711998B2 (en) |
DE (1) | DE3865977D1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02138900U (en) * | 1989-04-25 | 1990-11-20 | ||
JPH06501334A (en) * | 1990-08-06 | 1994-02-10 | シーメンス アクチエンゲゼルシヤフト | synchrotron radiation source |
JP4732613B2 (en) * | 2000-10-31 | 2011-07-27 | スルーンインターナショナルサービス株式会社 | Desktop smoke generator |
EP1764132A1 (en) * | 2005-09-16 | 2007-03-21 | Siemens Aktiengesellschaft | Method and device for configuring a beam path in a particle beam therapy system |
ATE460071T1 (en) * | 2006-01-19 | 2010-03-15 | Massachusetts Inst Technology | MAGNETIC STRUCTURE FOR PARTICLE ACCELERATION |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8569717B2 (en) * | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
FR2962844B1 (en) * | 2010-07-16 | 2013-08-30 | Commissariat Energie Atomique | COMPACT SUPERCONDUCTING MAGNET DEVICE |
US8681939B2 (en) * | 2010-12-06 | 2014-03-25 | Lawrence Livermore National Security, Llc | Device for detection and identification of carbon- and nitrogen-containing materials |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9177707B2 (en) * | 2012-04-20 | 2015-11-03 | Mitsubishi Electric Corporation | Superconducting magnet and method for adjusting the same |
WO2014052709A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
CN105103662B (en) | 2012-09-28 | 2018-04-13 | 梅维昂医疗系统股份有限公司 | magnetic field regenerator |
US9681531B2 (en) | 2012-09-28 | 2017-06-13 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
CN109803723B (en) | 2016-07-08 | 2021-05-14 | 迈胜医疗设备有限公司 | Particle therapy system |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
WO2020185544A1 (en) | 2019-03-08 | 2020-09-17 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
CN115397087B (en) * | 2022-10-27 | 2023-03-14 | 合肥中科离子医学技术装备有限公司 | Coil adjusting device and cyclotron |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA966893A (en) * | 1973-06-19 | 1975-04-29 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Superconducting cyclotron |
DE3148100A1 (en) * | 1981-12-04 | 1983-06-09 | Uwe Hanno Dr. 8050 Freising Trinks | Synchrotron X-ray radiation source |
US4641104A (en) * | 1984-04-26 | 1987-02-03 | Board Of Trustees Operating Michigan State University | Superconducting medical cyclotron |
GB2165988B (en) * | 1984-08-29 | 1988-08-24 | Oxford Instr Ltd | Improvements in devices for accelerating electrons |
DE3511282C1 (en) * | 1985-03-28 | 1986-08-21 | Brown, Boveri & Cie Ag, 6800 Mannheim | Superconducting magnet system for particle accelerators of a synchrotron radiation source |
EP0208163B1 (en) * | 1985-06-24 | 1989-01-04 | Siemens Aktiengesellschaft | Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles |
DE3703938A1 (en) * | 1986-02-12 | 1987-09-10 | Mitsubishi Electric Corp | PARTICLE ACCELERATOR |
DE3704442A1 (en) * | 1986-02-12 | 1987-08-13 | Mitsubishi Electric Corp | CARRIER BEAM DEVICE |
US4808941A (en) * | 1986-10-29 | 1989-02-28 | Siemens Aktiengesellschaft | Synchrotron with radiation absorber |
-
1988
- 1988-01-15 DE DE8888100522T patent/DE3865977D1/en not_active Expired - Fee Related
- 1988-01-15 EP EP88100522A patent/EP0277521B1/en not_active Expired - Lifetime
- 1988-01-19 US US07/145,229 patent/US4843333A/en not_active Expired - Fee Related
- 1988-01-25 JP JP63015720A patent/JPH0711998B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8952634B2 (en) | 2004-07-21 | 2015-02-10 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US8344340B2 (en) | 2005-11-18 | 2013-01-01 | Mevion Medical Systems, Inc. | Inner gantry |
US9452301B2 (en) | 2005-11-18 | 2016-09-27 | Mevion Medical Systems, Inc. | Inner gantry |
US8907311B2 (en) | 2005-11-18 | 2014-12-09 | Mevion Medical Systems, Inc. | Charged particle radiation therapy |
US8916843B2 (en) | 2005-11-18 | 2014-12-23 | Mevion Medical Systems, Inc. | Inner gantry |
US7728311B2 (en) | 2005-11-18 | 2010-06-01 | Still River Systems Incorporated | Charged particle radiation therapy |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8941083B2 (en) | 2007-10-11 | 2015-01-27 | Mevion Medical Systems, Inc. | Applying a particle beam to a patient |
US8970137B2 (en) | 2007-11-30 | 2015-03-03 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US9155186B2 (en) | 2012-09-28 | 2015-10-06 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US9185789B2 (en) | 2012-09-28 | 2015-11-10 | Mevion Medical Systems, Inc. | Magnetic shims to alter magnetic fields |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
Also Published As
Publication number | Publication date |
---|---|
EP0277521A2 (en) | 1988-08-10 |
JPS63200500A (en) | 1988-08-18 |
US4843333A (en) | 1989-06-27 |
JPH0711998B2 (en) | 1995-02-08 |
DE3865977D1 (en) | 1991-12-12 |
EP0277521A3 (en) | 1989-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0277521B1 (en) | Synchrotron radiation source with fixation of its curved coils | |
EP0276360B1 (en) | Magnet device with curved coil windings | |
EP0265797B1 (en) | Synchrotron | |
EP0208163B1 (en) | Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles | |
DE69711653T2 (en) | RÖNTGERGENERATOR | |
DE3511282C1 (en) | Superconducting magnet system for particle accelerators of a synchrotron radiation source | |
DE3587087T2 (en) | X-RAY SOURCE WITH HIGH INTENSITY. | |
DE68916695T2 (en) | Device for accelerating and transporting a beam of charged particles. | |
DE4109931C2 (en) | Deflection magnet for deflecting a beam of charged particles on a semicircular path | |
EP0492295B1 (en) | Electron energy filter, preferably from alpha or omega type | |
DE2559678C3 (en) | Atomic beam tube | |
DE4010032C2 (en) | Magnet system | |
DE102017205485A1 (en) | Permanent magnet arrangement for MR apparatus with axially and laterally displaceable, rotatably mounted ring assemblies | |
DE2805111C2 (en) | Neutron radiation therapy device | |
EP0774670A1 (en) | Magnet assembly for a diagnostic magnetic resonance apparatus | |
EP0102486B1 (en) | Device for adjusting and supporting magnetic coils of a magnetic system for nuclear spin tomography | |
DE2307822C3 (en) | Superconducting lens system for corpuscular radiation | |
DE69130590T2 (en) | Magnetic system for magnetic resonance | |
DE602004010934T2 (en) | X-RAY SOURCE | |
DE102019209160B3 (en) | Cryostat arrangement with resilient, thermally conductive connecting element | |
DE3881982T2 (en) | Magnetic resonance apparatus with a low-noise gradient coil. | |
DE68911987T2 (en) | Charged particle beam device. | |
DE69028620T2 (en) | X-ray tube with exit window | |
DE2731458C3 (en) | Magnetic objective lens device for corpuscular beam devices operating under vacuum, in particular objective lens device for high-voltage electron microscopes and use | |
DE3689319T2 (en) | Mass spectrometer with magnetic sector. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19890529 |
|
17Q | First examination report despatched |
Effective date: 19910403 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 3865977 Country of ref document: DE Date of ref document: 19911212 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920122 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920127 Year of fee payment: 5 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920422 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930131 Ref country code: CH Effective date: 19930131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940322 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941216 Year of fee payment: 8 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88100522.7 Effective date: 19930810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960115 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050115 |