EP0200099B1 - Control circuit for an electromagnetic relay to interrupt an ac circuit under tension - Google Patents

Control circuit for an electromagnetic relay to interrupt an ac circuit under tension Download PDF

Info

Publication number
EP0200099B1
EP0200099B1 EP86105271A EP86105271A EP0200099B1 EP 0200099 B1 EP0200099 B1 EP 0200099B1 EP 86105271 A EP86105271 A EP 86105271A EP 86105271 A EP86105271 A EP 86105271A EP 0200099 B1 EP0200099 B1 EP 0200099B1
Authority
EP
European Patent Office
Prior art keywords
relay
voltage
control circuit
zero crossing
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86105271A
Other languages
German (de)
French (fr)
Other versions
EP0200099A2 (en
EP0200099A3 (en
Inventor
Peter Dipl.-Ing.(Fh) Drebinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86105271T priority Critical patent/ATE67341T1/en
Publication of EP0200099A2 publication Critical patent/EP0200099A2/en
Publication of EP0200099A3 publication Critical patent/EP0200099A3/en
Application granted granted Critical
Publication of EP0200099B1 publication Critical patent/EP0200099B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/043Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current making use of an energy accumulator

Definitions

  • the invention relates to a control circuit for an electromagnetic relay according to the preamble of claim 1.
  • Electromagnetic relays are generally ideal for switching electrical loads on the AC network, their high dielectric strength for separating the control and load circuits and their insensitivity to voltage peaks and current peaks in the switched load circuit having a particularly advantageous effect.
  • the errors that usually occur in semiconductors in the load circuit cannot arise with relays, which often reduces the monitoring effort.
  • relays that switch AC loads also have problems and disadvantages.
  • the contact life is severely impaired by high cold currents, especially when switching on incandescent lamp loads, and when switching off due to arcing until the following mains voltage zero crossing.
  • a zero crossing circuit is known from European patent application EP-A-108 538, in which one of two solenoids (electromagnets of a contactor) is optionally driven with a short pulse in order to either switch a load on or off.
  • This pulse is an output signal which is synchronized with the zero crossing point when a corresponding switch is actuated.
  • an electronic circuit is provided, which brings about a predetermined delay.
  • These pulses arrive from the outputs of the IC via an electronic circuit arrangement made up of several transistors for pulse amplification to the windings of the electromagnets.
  • DE-A-2 929 261 describes a device for actuating a relay which has a drive circuit with a transistor at one point of the relay winding and a capacitor and resistor at the other relay winding.
  • this known circuit causes the relay to respond very slowly in order to achieve the lowest possible current consumption. An accelerated response of a relay with a DC supply voltage that is higher than the nominal voltage of the relay winding is therefore not possible.
  • the object of the invention is therefore to provide a control circuit of the type mentioned, the switching of the relay can be achieved with a relatively small amount of circuitry even with a large spread of the response sides within the same relay types close to the zero crossing, so that the life of the relay contacts are considerably increased can.
  • this object is achieved in that the one connection point of the relay winding is connected to ground potential via the switching path of the semiconductor switch and to a DC supply voltage via a reverse polarized diode, in that the other connection point of the relay winding is connected to ground potential via a capacitor and via a resistor is connected to the DC supply voltage and that the DC supply voltage is significantly higher than the nominal voltage of the relay winding.
  • the invention makes use of the knowledge that a relay not only responds faster when overexcited, that is, when excited with an excessive control voltage, but that the spread of the response times can also be greatly reduced.
  • the relay winding is applied to such an overvoltage, the special type of circuit simultaneously ensuring that the overvoltage is dissipated very quickly, so that at the latest after the relay armature has been tightened, only a voltage is present on the winding at most corresponds to the nominal voltage or is preferably lower than this. Due to the small fluctuation in the response times, the point in time for the activation can then be determined quite precisely, which can be done with conventional semiconductor switching means.
  • the dimensioning of the DC supply voltage and the circuit components naturally depends on the properties of the relay and also on how exactly the zero point control is desired.
  • an embodiment has proven to be advantageous in which the DC supply voltage is twice as high as the nominal voltage of the relay winding, a fluctuation range of the response time of 2 ms being set by appropriately dimensioning the capacitor and the resistor.
  • the resistance can be coordinated with the relay winding so that, for example, only a holding voltage of approximately 2/3 of the nominal voltage is applied to the relay winding after the response.
  • FIG. 1 shows a load circuit with an incandescent lamp L which is connected between a phase conductor P and a neutral conductor N via a contact k.
  • An AC voltage U w is present at the phase conductor P.
  • the contact k is part of a relay with the winding K, which is connected between the two connection points 1 and 2.
  • a diode D1 is connected in the reverse direction between a supply voltage U v and point 1, while a resistor R1 is connected between point 2 and supply voltage U v .
  • the collector-emitter path of a transistor TR lies between point 1 and the ground potential, while at the other terminal of the relay winding a capacitor C1 is connected between point 2 and the ground potential.
  • the relay is driven by a lamp signal ls, which is applied to the base of the transistor TR via a synchronization memory SP in the form of a D flip-flop and a series resistor R2.
  • the synchronous memory SP is driven by a clock which is derived from a zero crossing sampling of the alternating voltage U w .
  • the alternating voltage U w is supplied to a phase detector PD, which generates a pulse i1 at each zero crossing of the voltage.
  • These pulses i1 are delayed by a certain time via a delay element VG, so that the pulses i2 emitted at the output of the delay element VG are each before the next zero crossing by the expected response time of the relay.
  • the lamp signal ls present at input D of memory SP is switched through to output Q, making transistor TR conductive.
  • Fig. 2 shows the voltage and current profile at the relay in one embodiment with the dimensions given in parentheses in Fig. 1. Thereafter, a DC supply voltage U v of 24 V is used for a relay K with the nominal voltage 12 V and a winding resistance of 215 ohms. Resistor R1 has a value of 390 ohms and capacitor C1 has a capacitance of 22 ⁇ F.
  • time axis As a function of the respective zero crossing of the alternating voltage U w , the time of the zero crossing being denoted in each case by T0. Assuming that an AC voltage of 50 Hz is used, a zero crossing occurs every 10 ms. The specified overvoltage ensures that the relay contact closes approximately 2.5 ms to 4.5 ms after the transistor TR has become conductive; bounce times and tolerances are already included.
  • the circuit with the delay element VG is thus set such that the transistor is controlled in each case 6.5 ms after a zero crossing of the AC voltage. Then the relay contact closes between 1 ms before and 1 ms after the next zero crossing.
  • the excitation current I K decays to the value determined by the direct voltage U v and the resistors R1 and K and reaches approximately the response current of the relay (approx. 40 mA).
  • the relay contact k closes approx. 2.5 ms to 4.5 ms after the time T s at which the transistor became conductive (6.5 ms after T0). The next zero crossing at time T0 thus coincides approximately with the closing of the contact.
  • the relay contact opens approx. 2.0 ms to 3.0 ms after transistor TR is blocked (tolerances included) and thus approx. 1.5 to 0.5 ms before the next zero crossing at time T0 of the mains voltage wave. This ensures that the lamp load is in any case switched off shortly before the zero crossing, so that an arc which may still occur is extinguished in the zero crossing of the mains half-wave, ie can no longer be present.
  • the inrush current of the incandescent lamp can be reduced to approximately 1/10 of the maximum by the control circuit according to the invention
  • the value is reduced and the arcing is shortened to the short duration (in the example, a maximum of 1.5 ms) until the zero crossing. In this way, the contact life can be increased significantly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Relay Circuits (AREA)
  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

In a control circuit for a relay for switching an AC load, the zero transition of the AC voltage is sampled and is used to control the relay at a predetermined response time before the next zero transition. In this case, the relay is connected via a timer (R1, C1) to a supply voltage (UN) which is significantly greater than the rated voltage of the relay, such that when the semi conductor switch is switched on, a voltage surge initially occurs on the relay winding which reduces the range of variation of the response time to a minimum level. In this way, the load circuit can be switched on and off fairly precisely in the vicinity of the zero transition. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Ansteuerschaltung für ein elektromagnetisches Relais gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a control circuit for an electromagnetic relay according to the preamble of claim 1.

Elektromagnetische Relais eignen sich allgemein hervorragend zum Schalten elektrischer Lasten am Wechselstromnetz, wobei ihre hohe Spannungsfestigkeit zur Trennung von Steuer- und Lastkreis sowie ihre Unempfindlichkeit gegenüber Spannungsspitzen und Stromspitzen im geschalteten Lastkreis besonders vorteilhaft zur Wirkung kommen. Auch die üblicherweise bei Halbleitern im Lastkreis auftretenden Fehler können bei Relais nicht entstehen, was häufig den Überwachungsaufwand senkt. Allerdings treten bei Relais, die Wechselstromlasten schalten, auch Probleme und Nachteile auf. So wird die Kontaktlebensdauer besonders beim Einschalten von Glühlampenlasten durch hohe Kaltströme und beim Ausschalten durch Lichtbogenbildung bis zum folgenden Netzspannungsnulldurchgang stark beeinträchtigt.Electromagnetic relays are generally ideal for switching electrical loads on the AC network, their high dielectric strength for separating the control and load circuits and their insensitivity to voltage peaks and current peaks in the switched load circuit having a particularly advantageous effect. The errors that usually occur in semiconductors in the load circuit cannot arise with relays, which often reduces the monitoring effort. However, relays that switch AC loads also have problems and disadvantages. The contact life is severely impaired by high cold currents, especially when switching on incandescent lamp loads, and when switching off due to arcing until the following mains voltage zero crossing.

Es wurde bereits wiederholt versucht, die Kontaktlebensdauer von Relais beim Schalten von Wechselspannungslasten durch Verlegung des Schaltzeitpunktes in den Nullpunkt der Wechselspannung zu verlängern. Da das Relais jeweils nach dem Einschalten bzw. Ausschalten der Erregerspannung eine bestimmte Ansprechzeit bzw. Abfallzeit benötigt, bis der Kontakt des Lastkreises schließt bzw. öffnet, muß für diesen Fall die Relaiswicklung um diese Zeit vor dem Nulldurchgang an die Steuerspannung angelegt bzw. von ihr abgetrennt werden. Der Nulldurchgang der Wechselspannung läßt sich zwar exakt ermitteln, und es ließe sich über Zeitglieder auch ein exakter Schaltzeitpunkt vor dem Nulldurchgang festlegen, doch können derartige Schaltungen bisher deshalb nicht allgemein mit Erfolg eingesetzt werden, weil die Ansprechzeiten der Relais sehr stark streuen, auch innerhalb ein und derselben Type. Diese Streuungen der Ansprechzeiten liegen nicht selten in der Größenordnung einer Wechselstrom-Halbwelle, so daß die für ein Relais ermittelte Ansprechzeit nicht auf das nächste gleich Typs übertragen werden kann. Aber auch bei ein und demselben Relais schwanken die Ansprechzeiten, insbesondere aufgrund der Umgebungsbedingungen und infolge von Alterung.Attempts have already been made repeatedly to extend the contact life of relays when switching AC voltage loads by moving the switching time to the zero point of the AC voltage. Because the relay each after switching on or switching off the excitation voltage, a certain response time or fall time is required until the contact of the load circuit closes or opens, in this case the relay winding must be applied to the control voltage or disconnected from it at this time before the zero crossing. The zero crossing of the AC voltage can be determined exactly, and an exact switching point in time before the zero crossing could also be determined via timers, but such circuits have so far not been successfully used because the response times of the relays vary widely, even within and the same type. These variations in the response times are often of the order of magnitude of an AC half-wave, so that the response time determined for one relay cannot be transferred to the next of the same type. However, the response times also fluctuate with one and the same relay, in particular due to the ambient conditions and due to aging.

Um das Problem der Kontaktmaterialwanderung bei gleicher Polarität der geschalteten Spannung im Schaltaugenblick zu umgehen, wird in der US-PS 3,707,634 vorgeschlagen, ein Relais unabhängig vom tatsächlichen Nulldurchgang der Wechselspannung im Lastkreis jeweils abwechselnd so zu schalten, daß bei jedem Schaltvorgang gegenüber dem vorhergehenden eine um 180° versetzte Phasenlage besteht. Damit soll erreicht werden, daß die Materialwanderung der Kontaktoberflächen sich nach jedem Schaltvorgang umkehrt und so der Kontaktverschleiß bis zu einem gewissen Grad kompensiert wird. Eine derartige Schaltung erfordert jedoch nicht nur einen erhöhten Aufwand an Meß- und Schaltelementen, sondern es ist auch bekannt, daß durch die Materialwanderungen in zwei entgegengesetzten Richtungen trotzdem nicht wieder die ursprüngliche Kontaktoberfläche hergestellt wird, so daß die Verlängerung der Lebensdauer nicht in zufriedenstellender Weise erreicht wird.In order to avoid the problem of contact material migration with the same polarity of the switched voltage at the moment of switching, it is proposed in US Pat. No. 3,707,634 to switch a relay independently of the actual zero crossing of the alternating voltage in the load circuit in such a way that each switching operation has one switch over the previous one There is a phase shift of 180 °. This is to ensure that the material migration of the contact surfaces is reversed after each switching operation and so the contact wear is compensated to a certain extent. However, such a circuit not only requires an increased outlay on measuring and switching elements, but it is also known that the material contact in two opposite directions does not nevertheless restore the original contact surface, so that the extension of the service life is not achieved in a satisfactory manner becomes.

Aus der Europäischen Patentanmeldung EP-A-108 538 ist eine Nulldurchgangsschaltung bekannt, bei der wahlweise eines von zwei Solenoiden (Elektromagnete eines Schaltschützes) mit einem kurzen Impuls angesteuert wird, um eine Last entweder ein- oder auszuschalten. Dieser Impuls ist ein Ausgangssignal, welches mit dem Nulldurchgangspunkt synchronisiert ist, wenn ein entsprechender Schalter betätigt wird. Hierzu ist ein elektronischer Schaltkreis vorgesehen, welcher eine vorbestimmte Verzögerung bewirkt. Diese Impulse gelangen von den Ausgängen des IC's über eine elektronische Schaltungsanordnung aus mehreren Transistoren zur Impulsverstärkung an die Wicklungen der Elektromagnete. Mit der bekannten Schaltung ist ein Schalten einer Last möglichst nahe beim Nullpunkt möglich, jedoch ist sie nicht für die Ansteuerung eines herkömmlichen Relais vorgesehen, welches ein möglichst schnelles Ansprechverhalten aufweisen soll, um Exemplarstreuungen der Relais mit verschiedenen Ansprechverhalten nicht wirksam werden zu lassen.A zero crossing circuit is known from European patent application EP-A-108 538, in which one of two solenoids (electromagnets of a contactor) is optionally driven with a short pulse in order to either switch a load on or off. This pulse is an output signal which is synchronized with the zero crossing point when a corresponding switch is actuated. For this purpose, an electronic circuit is provided, which brings about a predetermined delay. These pulses arrive from the outputs of the IC via an electronic circuit arrangement made up of several transistors for pulse amplification to the windings of the electromagnets. With the known circuit it is possible to switch a load as close as possible to the zero point, but it is not intended for the control of a conventional relay, which should have the fastest possible response behavior, in order to prevent scattering of the relays with different response characteristics from being effective.

In der DE-A-2 929 261 ist eine Einrichtung zur Betätigung eines Relais beschrieben, welche eine Ansteuerschaltung mit einem Transistor an einem Punkt der Relaiswicklung und einem Kondensator und Widerstand an der anderen Relaiswicklung aufweist. Diese bekannte Schaltung bewirkt jedoch ein sehr langsames Ansprechen des Relais, um einen möglichst geringen Strombedarf zu erreichen. Ein beschleunigtes Ansprechen eines Relais mit einer Versorgungs-Gleichspannung, die höher als die Nennspannung der Relaiswicklung ist, ist damit nicht möglich.DE-A-2 929 261 describes a device for actuating a relay which has a drive circuit with a transistor at one point of the relay winding and a capacitor and resistor at the other relay winding. However, this known circuit causes the relay to respond very slowly in order to achieve the lowest possible current consumption. An accelerated response of a relay with a DC supply voltage that is higher than the nominal voltage of the relay winding is therefore not possible.

Aufgabe der Erfindung ist es daher, eine Ansteuerschaltung der eingangs genannten Art zu schaffen, wobei mit relativ geringem Schaltungsaufwand das Schalten des Relais auch bei einer starken Streuung der Ansprechseiten innerhalb derselben Relaistypen nahe am Nulldurchgang erzielbar ist, so daß die Lebensdauer der Relaiskontakte beträchtlich erhöht werden kann.The object of the invention is therefore to provide a control circuit of the type mentioned, the switching of the relay can be achieved with a relatively small amount of circuitry even with a large spread of the response sides within the same relay types close to the zero crossing, so that the life of the relay contacts are considerably increased can.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß der eine Anschlußpunkt der Relaiswicklung über die Schaltstrecke des Halbleiterschalters gegen Massepotential und über eine in Sperrichtung gepolte Diode an eine Versorgungs-Gleichspannung geschaltet ist, daß der andere Anschlußpunkt der Relaiswicklung über einen Kondensator an Massepotential und über einen Widerstand an die Versorgungs-Gleichspannung angeschaltet ist und daß die Versorgungs-Gleichspannung wesentlich höher ist als die Nennspannung der Relaiswicklung.According to the invention, this object is achieved in that the one connection point of the relay winding is connected to ground potential via the switching path of the semiconductor switch and to a DC supply voltage via a reverse polarized diode, in that the other connection point of the relay winding is connected to ground potential via a capacitor and via a resistor is connected to the DC supply voltage and that the DC supply voltage is significantly higher than the nominal voltage of the relay winding.

Die Erfindung macht sich dabei die Erkenntnis zunutze, daß ein Relais bei Übererregung, also bei Erregung mit einer überhöhten Steuerspannung, nicht nur schneller anspricht, sondern daß dabei auch die Streuung der Ansprechzeiten sehr stark verringert werden kann. Mit der erfindungsgemäßen Schaltungsanordnung wird die Relaiswicklung an eine derartige Überspannung angelegt, wobei durch die spezielle Art der Schaltung gleichzeitig sichergestellt ist, daß die Überspannung sehr schnell abgebaut wird, so daß spätestens nach dem Anziehen des Relaisankers an der Wicklung nur noch eine Spannung anliegt, die allenfalls der Nennspannung entspricht oder vorzugsweise niedriger als diese ist. Durch die geringe Schwankung der Ansprechzeiten läßt sich dann der Zeitpunkt für die Ansteuerung ziemlich exakt festlegen, was mit üblichen Halbleiter-Schaltmitteln erfolgen kann.The invention makes use of the knowledge that a relay not only responds faster when overexcited, that is, when excited with an excessive control voltage, but that the spread of the response times can also be greatly reduced. With the circuit arrangement according to the invention, the relay winding is applied to such an overvoltage, the special type of circuit simultaneously ensuring that the overvoltage is dissipated very quickly, so that at the latest after the relay armature has been tightened, only a voltage is present on the winding at most corresponds to the nominal voltage or is preferably lower than this. Due to the small fluctuation in the response times, the point in time for the activation can then be determined quite precisely, which can be done with conventional semiconductor switching means.

Beim Abschalten der Steuerspannung ergibt sich ein vergleichbarer Effekt, da im Abschaltzeitpunkt nach dem Induktionsgesetz zunächst eine erhöhte Spannung in Gegenrichtung an der Relaiswicklung anliegt, die sich durch den Strom über die Diode und den Widerstand und über die Diode und den Kondensator sehr schnell abbaut, was die Abfallzeit verkürzt. Damit läßt sich auch beim Abschalten der Wechselstromlast der Schaltzeitpunkt des Kontakts kurz vor den Nullpunkt verlegen, so daß keine oder nur geringe Lichtbögen auftreten können.A comparable result is obtained when the control voltage is switched off Effect, since at the time of the switch-off according to the law of induction there is initially an increased voltage in the opposite direction at the relay winding, which is rapidly reduced by the current through the diode and the resistor and via the diode and the capacitor, which shortens the fall time. This means that the switching time of the contact can be moved shortly before the zero point even when the AC load is switched off, so that no or only slight arcs can occur.

Die Dimensionierung der Versorgungs-Gleichspannung und der Schaltungsbauelemente hängt natürlich von den Eigenschaften des Relais und auch davon ab, wie genau die Nullpunktansteuerung gewünscht wird. Es hat sich jedoch eine Ausführungsform als vorteilhaft erwiesen, bei der die Versorgungs-Gleichspannung doppelt so hoch ist wie die Nennspannung der Relaiswicklung, wobei durch entsprechende Dimensionierung des Kondensators und des Widerstandes eine Schwankungsbreite der Ansprechzeit von 2 ms eingestellt wurde. Dabei kann der Widerstand mit der Relaiswicklung so abgestimmt werden, daß beispielsweise nach dem Ansprechen lediglich eine Haltespannung von etwa 2/3 der Nennspannung an der Relaiswicklung anliegt.The dimensioning of the DC supply voltage and the circuit components naturally depends on the properties of the relay and also on how exactly the zero point control is desired. However, an embodiment has proven to be advantageous in which the DC supply voltage is twice as high as the nominal voltage of the relay winding, a fluctuation range of the response time of 2 ms being set by appropriately dimensioning the capacitor and the resistor. The resistance can be coordinated with the relay winding so that, for example, only a holding voltage of approximately 2/3 of the nominal voltage is applied to the relay winding after the response.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt

  • Fig. 1 eine erfindungsgemäße Ansteuerschaltung für ein Relais,
  • Fig. 2 ein Zeitdiagramm für den an der Relaiswicklung anliegenden Spannungs- und Stromverlauf.
The invention is explained in more detail using an exemplary embodiment with reference to the drawing. It shows
  • 1 shows an inventive control circuit for a relay,
  • Fig. 2 is a timing diagram for the voltage and current applied to the relay winding.

Die Fig. 1 zeigt einen Lastkreis mit einer Glühlampe L, die über einen Kontakt k zwischen einen Phasenleiter P und einen Nulleiter N geschaltet wird. An dem Phasenleiter P liegt eine Wechselspannung Uw an.1 shows a load circuit with an incandescent lamp L which is connected between a phase conductor P and a neutral conductor N via a contact k. An AC voltage U w is present at the phase conductor P.

Der Kontakt k ist Teil eines Relais mit der Wicklung K, die zwischen die beiden Anschlußpunkte 1 und 2 geschaltet ist. Zwischen einer Versorgungsspannung Uv und dem Punkt 1 ist eine Diode D1 in Sperrichtung geschaltet, während zwischen dem Punkt 2 und der Versorgungsspannung Uv ein Widerstand R1 liegt. Außerdem liegt die Kollektor-Emitter-Strecke eines Transistors TR zwischen dem Punkt 1 und dem Massepotential, während am anderen Anschluß der Relaiswicklung ein Kondensator C1 zwischen dem Punkt 2 und das Massepotential geschaltet ist. Das Relais wird über ein Lampensignal ls angesteuert, welches über einen Synchronisierspeicher SP in Form eines D-Flipflops und einen Vorwiderstand R2 an die Basis des Transistors TR angelegt wird.The contact k is part of a relay with the winding K, which is connected between the two connection points 1 and 2. A diode D1 is connected in the reverse direction between a supply voltage U v and point 1, while a resistor R1 is connected between point 2 and supply voltage U v . In addition, the collector-emitter path of a transistor TR lies between point 1 and the ground potential, while at the other terminal of the relay winding a capacitor C1 is connected between point 2 and the ground potential. The relay is driven by a lamp signal ls, which is applied to the base of the transistor TR via a synchronization memory SP in the form of a D flip-flop and a series resistor R2.

Der Synchronspeicher SP wird über einen Takt angesteuert, der aus einer Nulldurchgangsabtastung der Wechselspannung Uw abgeleitet ist. Zu diesem Zweck wird die Wechselspannung Uw einem Phasendetektor PD zugeführt, der bei jedem Nulldurchgang der Spannung einen Impuls i1 erzeugt. Diese Impulse i1 werden über ein Verzögerungsglied VG um eine bestimmte Zeit verzögert, so daß die am Ausgang des Verzögerungsgliedes VG abgegebenen Impulse i2 jeweils um die voraussichtliche Ansprechzeit des Relais vor dem nächsten Nulldurchgang liegen. Mit einem solchen Impuls i2 wird also das am Eingang D des Speichers SP anstehende Lampensignal ls zum Ausgang Q durchgeschaltet, womit der Transistor TR leitend wird.The synchronous memory SP is driven by a clock which is derived from a zero crossing sampling of the alternating voltage U w . For this purpose, the alternating voltage U w is supplied to a phase detector PD, which generates a pulse i1 at each zero crossing of the voltage. These pulses i1 are delayed by a certain time via a delay element VG, so that the pulses i2 emitted at the output of the delay element VG are each before the next zero crossing by the expected response time of the relay. With such a pulse i2, the lamp signal ls present at input D of memory SP is switched through to output Q, making transistor TR conductive.

Fig. 2 zeigt den Spannungs- und Stromverlauf am Relais bei einem Ausführungsbeispiel mit der in Fig. 1 in Klammern angegebenen Dimensionierung. Danach wird also eine Versorgungs-Gleichspannung Uv von 24 V bei einem Relais K mit der Nennspannung 12 V und einem Wicklungswiderstand von 215 Ohm verwendet. Der Widerstand R1 hat einen Wert von 390 Ohm und der Kondensator C1 eine Kapazität von 22 µF.Fig. 2 shows the voltage and current profile at the relay in one embodiment with the dimensions given in parentheses in Fig. 1. Thereafter, a DC supply voltage U v of 24 V is used for a relay K with the nominal voltage 12 V and a winding resistance of 215 ohms. Resistor R1 has a value of 390 ohms and capacitor C1 has a capacitance of 22 µF.

In Fig. 2 ist hierzu über der Zeitachse t der Zustand des Speicherausgangs Q, entsprechend dem Durchschaltzustand des Transistors TR, dargestellt. Wenn Q den Wert 1 annimmt, ist der Transistor leitend, ist Q = 0, ist der Transistor TR gesperrt. Darunter sind die Spannungsverläufe U₁ am Punkt 1 der Relaiswicklung K und U₂ am Punkt 2 der Relaiswicklung gezeigt, außerdem der Stromverlauf IK durch die Relaiswicklung. Schließlich ist noch der Schaltzustand des Kontaktes k angegeben; im Zustand 0 ist der Kontakt offen, im Zustand 1 ist er geschlossen.2 shows the state of the memory output Q, corresponding to the on-state of the transistor TR, over the time axis t. If Q takes the value 1, the transistor is conductive, if Q = 0, the transistor TR is blocked. Below this, the voltage curves U 1 at point 1 of the relay winding K and U 2 at point 2 of the relay winding are shown, as well as the current curve I K through the relay winding. Finally, the switching state of the contact k is specified; in state 0 the contact is open, in state 1 it is closed.

Auf der Zeitachse sind verschiedene Zeitpunkte in Abhängigkeit vom jeweiligen Nulldurchgang der Wechselspannung Uw angegeben, wobei der Zeitpunkt des Nulldurchgangs jeweils mit T₀ bezeichnet ist. Nimmt man an, daß eine Wechselspannung von 50 Hz verwendet wird, so erfolgt alle 10 ms ein Nulldurchgang. Durch die angegebene Überspannung wird erreicht, daß der Relaiskontakt ca. 2,5 ms bis 4,5 ms, nachdem der Transistor TR leitend geworden ist, schließt; dabei sind Prellzeiten und Toleranzen bereits eingeschlossen. Die Schaltung mit dem Verzögerungsglied VG wird also so eingestellt, daß der Transistor jeweils 6,5 ms nach einem Nulldurchgang der Wechselspannung leitend gesteuert wird. Dann schließt der Relaiskontakt in der Zeit zwischen 1 ms vor und 1 ms nach dem nächsten Nulldurchgang.Various times are indicated on the time axis as a function of the respective zero crossing of the alternating voltage U w , the time of the zero crossing being denoted in each case by T₀. Assuming that an AC voltage of 50 Hz is used, a zero crossing occurs every 10 ms. The specified overvoltage ensures that the relay contact closes approximately 2.5 ms to 4.5 ms after the transistor TR has become conductive; bounce times and tolerances are already included. The circuit with the delay element VG is thus set such that the transistor is controlled in each case 6.5 ms after a zero crossing of the AC voltage. Then the relay contact closes between 1 ms before and 1 ms after the next zero crossing.

Solange der Transistor TR gesperrt ist, ist der Kondensator C1 voll aufgeladen, so daß an beiden Enden der Relaiswicklung K jeweils die volle Spannung von 24 V anliegt (U₁ = U₂ = 24 V). Zum Zeitpunkt 6,5 ms nach T₀ wird der Transistor TR leitend, und die Spannung U₁ am Punkt 1 fällt praktisch auf 0. Damit entlädt sich der geladene Kondensator C1 über die Wicklung K bis auf ca. 8,5 V entsprechend dem Spannungsteilerverhältnis zwischen R1 und K. Bei dieser Entladung entsteht zunächst eine Stromspitze des Stroms IK - mit einer Einsattelung im Augenblick der Ankerbewegung -, die das Relais schnell anziehen läßt. Dann klingt der Erregerstrom IK auf den von der Gleichspannung Uv und den Widerständen von R1 und K bestimmten Wert ab und erreicht etwa den Ansprechstrom des Relais (ca. 40 mA). Wie erwähnt, schließt der Relaiskontakt k ca. 2,5 ms bis 4,5 ms nach dem Zeitpunkt Ts, zu dem der Transistor leitend wurde (6,5 ms nach T₀). Der nächste Nulldurchgang zum Zeitpunkt T₀ fällt also annähernd mit dem Schließen des Kontaktes zusammen.As long as the transistor TR is blocked, the capacitor C1 is fully charged, so that the full voltage of 24 V is applied to both ends of the relay winding K (U 1 = U 2 = 24 V). At the time 6.5 ms after T₀, the transistor TR becomes conductive, and the voltage U 1 at point 1 practically drops to 0. Thus, the charged capacitor C1 discharges via the winding K to approximately 8.5 V in accordance with the voltage divider ratio between R1 and K. During this discharge, a current spike initially occurs of the current I K - with a saddle at the moment of the armature movement - which allows the relay to pick up quickly. Then the excitation current I K decays to the value determined by the direct voltage U v and the resistors R1 and K and reaches approximately the response current of the relay (approx. 40 mA). As mentioned, the relay contact k closes approx. 2.5 ms to 4.5 ms after the time T s at which the transistor became conductive (6.5 ms after T₀). The next zero crossing at time T₀ thus coincides approximately with the closing of the contact.

Beim Ausschalten der Lampe L wird der leitende Transistor TR über das auf 0 gefallene Signal Q gesperrt, und zwar wiederum zum Zeitpunkt Ts, d. h. 6,5 ms nach dem Nulldurchgang im Zeitpunkt T₀. Die im Relais gespeicherte Energie hat infolge der zunächst hohen Spannung am Relais (U₂ - U₁ = 24 V - 8 V = 16 V) durch die Relaiswicklung über D1 und R1 bzw. über C1 und D1 einen rasch abklingenden Strom IK zur Folge, der das Relais schnell abfallen läßt. Relaistoleranzen und Toleranzen der Versorgungsspannung Uv beeinflussen die Abfallzeit wenig. Trotz der höheren Spannung an K steigt dabei die Kollektor-Emitter-Spannung U₁ nur um eine (vernachlässigbare) Diodenspannung über die Versorgungsspannung Uv von 24 V an. Der Relaiskontakt öffnet in diesem Fall ca. 2,0 ms bis 3,0 ms nach Sperrung des Transistors TR (Toleranzen eingeschlossen) und somit ca. 1,5 bis 0,5 ms vor dem nächsten Nulldurchgang zum Zeitpunkt T₀ der Netzspannungswelle. Damit ist sichergestellt, daß die Lampenlast in jedem Fall kurz vor dem Nulldurchgang abgeschaltet wird, so daß ein gegebenenfalls noch auftretender Lichtbogen im Nulldurchgang der Netzhalbwelle gelöscht wird, also nicht länger anstehen kann.When the lamp L is switched off, the conductive transistor TR is blocked by the signal Q which has fallen to 0, again at the time T s , ie 6.5 ms after the zero crossing at the time T₀. The energy stored in the relay has due to the initially high voltage at the relay (U₂ - U₁ = 24 V - 8 V = 16 V) through the relay winding via D1 and R1 or C1 and D1 a rapidly decaying current I K , which the relay drops quickly. Relay tolerances and tolerances of the supply voltage U v have little influence on the fall time. Despite the higher voltage at K, the collector-emitter voltage U 1 increases only by a (negligible) diode voltage above the supply voltage U v of 24 V. In this case, the relay contact opens approx. 2.0 ms to 3.0 ms after transistor TR is blocked (tolerances included) and thus approx. 1.5 to 0.5 ms before the next zero crossing at time T₀ of the mains voltage wave. This ensures that the lamp load is in any case switched off shortly before the zero crossing, so that an arc which may still occur is extinguished in the zero crossing of the mains half-wave, ie can no longer be present.

Durch die erfindungsgemäße Ansteuerschaltung kann der Einschaltstrom der Glühlampe bis auf etwa 1/10 des maximalen Wertes erniedrigt und die Lichtbogenbildung auf die kurze Dauer (im Beispiel maximal 1,5 ms) bis zum Nulldurchgang verkürzt werden. Auf diese Weise läßt sich die Kontaktlebensdauer wesentlich erhöhen.The inrush current of the incandescent lamp can be reduced to approximately 1/10 of the maximum by the control circuit according to the invention The value is reduced and the arcing is shortened to the short duration (in the example, a maximum of 1.5 ms) until the zero crossing. In this way, the contact life can be increased significantly.

Claims (5)

  1. Control circuit for an electromagnetic relay for switching an alternating voltage load circuit near to the zero crossing point which is scanned by means of a phase detector (PD), a semiconductor switch (TR) located in the control circuit of the relay being controlled in chronological dependence on the phase relation of the alternating voltage (Uw), characterised in that one connecting point (1) of the relay winding (K) is connected to earth potential via the switching path of the semiconductor switch (TR) and to a direct supply voltage (Uv) via a diode (D1) poled in the blocking direction, in that the other connecting point (2) of the relay winding (K) is connected to earth potential via a capacitor (C1) and to the direct supply voltage (Uv) via a resistor (R1), and in that the direct supply voltage (Uv) is substantially higher than the nominal voltage (UN) of the relay winding (K).
  2. Control circuit according to Claim 1, characterised in that the direct supply voltage (Uv), the capacitor (C1) and the resistor (R1) are dimensioned such that the operate time of the relay (K) has a deviation range of less than 2 ms, and in that the semiconductor switch (TR) is controlled with such a time delay with respect to a zero crossing point of the alternating voltage (Uw) that the closing of the contact (k) occurs in the period between 1 ms before and 1 ms after the next zero crossing point of the alternating voltage (Uw).
  3. Control circuit according to Claim 1 or 2, characterised in that the direct supply voltage (Uv), the capacitor (C1) and the resistor (R1) are dimensioned such that the drop-out time of the relay (K) has a deviation range of less than 1 ms, and in that the semiconductor switch (TR) is controlled with such a time delay with respect to a zero crossing point of the alternating voltage (Uw) that the opening of the contact (k) occurs in the period between 1.5 and 0.5 ms before the next zero crossing point of the alternating voltage (Uw).
  4. Control circuit according to one of Claims 1 to 3, characterised in that the supply voltage (Uv) is approximately twice as high as the nominal voltage of the relay winding (K).
  5. Control circuit according to one of Claims 1 to 4, characterised in that the resistance values of the resistor (R1) and of the relay winding (K) are matched to one another such that when the transistor is switched through, a voltage of approximately 1/3 of the nominal voltage is present at the relay winding.
EP86105271A 1985-04-19 1986-04-16 Control circuit for an electromagnetic relay to interrupt an ac circuit under tension Expired - Lifetime EP0200099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86105271T ATE67341T1 (en) 1985-04-19 1986-04-16 CONTROL CIRCUIT FOR AN ELECTROMAGNETIC RELAY FOR SWITCHING AN AC LOAD CIRCUIT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3514300 1985-04-19
DE3514300 1985-04-19

Publications (3)

Publication Number Publication Date
EP0200099A2 EP0200099A2 (en) 1986-11-05
EP0200099A3 EP0200099A3 (en) 1989-05-17
EP0200099B1 true EP0200099B1 (en) 1991-09-11

Family

ID=6268682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105271A Expired - Lifetime EP0200099B1 (en) 1985-04-19 1986-04-16 Control circuit for an electromagnetic relay to interrupt an ac circuit under tension

Country Status (3)

Country Link
EP (1) EP0200099B1 (en)
AT (1) ATE67341T1 (en)
DE (1) DE3681326D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051762A1 (en) * 2005-10-27 2007-05-03 Steinel Gmbh Device for producing a switching connection between a connection contact for an electrical load and an alternating voltage network connection comprises units for detecting a current flowing during a connection and a control unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739811A1 (en) * 1987-11-24 1989-06-08 Norbert Dipl Ing Suttner Circuit arrangement for protecting the electrical power supply to installations or apparatuses
DE4231242A1 (en) * 1992-09-18 1994-03-24 Buderus Heiztechnik Gmbh Reducing wear of electromechanical relay - using controlled switching in and switching out points for switching load related to voltage and current zero transitions
DE19627599A1 (en) * 1996-07-09 1998-01-15 Schleicher & Co Int Document shredder
WO2013189517A1 (en) * 2012-06-19 2013-12-27 Siemens Aktiengesellschaft Electromagnetic relay having shortened switching duration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108538A1 (en) * 1982-10-23 1984-05-16 Hawker Siddeley Revenue Controls Limited Zero crossing circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072678B (en) * 1958-07-23 1960-01-07 Siemens-Schuckertwerke Aktiengesellschaft, Berlin Und Erlangen Device for the synchronous switching off of a switch
BE771192A (en) * 1971-08-11 1971-12-16 Rouvet Jacques IMPROVEMENT OF MAGNETIC OR ELECTROMAGNETIC CONTROLLED CURRENT CUTTING DEVICES SUCH AS SWITCHES AND RELAYS.
DE2929261A1 (en) * 1979-07-17 1981-02-05 Licentia Gmbh Relay operating circuit for high resistance power source - has relay operating RC circuit initiated by second RC circuit which switches transistor
DE3110314A1 (en) * 1980-07-31 1982-04-01 LGZ Landis & Gyr Zug AG, 6301 Zug System and device for operating an electromagnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108538A1 (en) * 1982-10-23 1984-05-16 Hawker Siddeley Revenue Controls Limited Zero crossing circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051762A1 (en) * 2005-10-27 2007-05-03 Steinel Gmbh Device for producing a switching connection between a connection contact for an electrical load and an alternating voltage network connection comprises units for detecting a current flowing during a connection and a control unit

Also Published As

Publication number Publication date
EP0200099A2 (en) 1986-11-05
EP0200099A3 (en) 1989-05-17
ATE67341T1 (en) 1991-09-15
DE3681326D1 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
DE1614159A1 (en) Actuation device
EP0136968A2 (en) Control device for driving an electromagnet with a starting current followed by a holding current
DE69400948T2 (en) SWITCHGEAR WITH TWO RELAY SWITCHES FOR A BALLAST UNIT FOR A DISCHARGE LAMP
EP0222727B1 (en) Device for minimizing the effects on a power system during the on-and-off switching of inductive and capacitive elements in a high voltage power system
EP0060992A2 (en) Testing and evaluating circuit for a proximity switch in control systems for machines
DE2546424C2 (en)
DE2050219C3 (en) Device for controlling an electromagnet
DE4217866C1 (en)
EP0200099B1 (en) Control circuit for an electromagnetic relay to interrupt an ac circuit under tension
EP0575792B1 (en) Method and device for driving an electromagnetic switch
DE4330859A1 (en) Electronic ballast for a discharge lamp
DE2700148A1 (en) CIRCUIT BREAKER
DE2323482A1 (en) TRANSFORMERLESS POWER SUPPLY DEVICE STABILIZED BY CYCLE FOR CONNECTION TO DC VOLTAGE SOURCES
EP0534250A2 (en) Method and device to protect an AC circuit
DE3701588A1 (en) SWITCHING DEVICE FOR AN INDUCTIVE LOAD
EP0552406A1 (en) Method for reducing the cut-in current in operating an inductive load
EP0433592A1 (en) Computer controlled electric timer
DE1005590B (en) AC switchgear
DE19933201A1 (en) Emergency shut down protective switch circuit has voltage divider connected to control electrode of transistor
DE4019928A1 (en) CIRCUIT ARRANGEMENT FOR LOW-REACTIVITY POWER CONTROL
DE3441096C2 (en)
DE19604208C1 (en) Low-loss DC voltage supply circuit e.g. for small domestic appliance relay circuit
EP1016204B1 (en) Circuit device for approximately-sinusoidal lowering of an ac voltage
EP0087675B1 (en) Switching arrangement for switching on and off major consumer power in an alternating current circuit with several spaced switches for switching-on power for preset periods determined by an electric circuit
DE3027183A1 (en) Inductive element two current power supply - has diode control circuit incorporating switch off release delay minimisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR LI NL

PUAB Information related to the publication of an a document modified or deleted

Free format text: ORIGINAL CODE: 0009199EPPU

RA1 Application published (corrected)

Date of ref document: 19861210

Kind code of ref document: A2

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR LI NL

17P Request for examination filed

Effective date: 19891026

17Q First examination report despatched

Effective date: 19900821

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR LI NL

REF Corresponds to:

Ref document number: 67341

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3681326

Country of ref document: DE

Date of ref document: 19911017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940425

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940718

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950430

Ref country code: CH

Effective date: 19950430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST