EP0156200B1 - Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel - Google Patents

Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel Download PDF

Info

Publication number
EP0156200B1
EP0156200B1 EP85102463A EP85102463A EP0156200B1 EP 0156200 B1 EP0156200 B1 EP 0156200B1 EP 85102463 A EP85102463 A EP 85102463A EP 85102463 A EP85102463 A EP 85102463A EP 0156200 B1 EP0156200 B1 EP 0156200B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
mixture
reference combustion
fuel
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85102463A
Other languages
German (de)
French (fr)
Other versions
EP0156200A1 (en
Inventor
Detlef Dr.-Ing. Altemark
Manfred Weid
Eugen Dr.-Ing. Brockmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOn Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6229836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0156200(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Publication of EP0156200A1 publication Critical patent/EP0156200A1/en
Application granted granted Critical
Publication of EP0156200B1 publication Critical patent/EP0156200B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling

Definitions

  • the invention relates to a method and an arrangement for determining the mixing ratio of a mixture containing an oxygen carrier gas and a fuel, which is burned in a main combustion device, the thermodynamic boundary conditions, i. H.
  • the composition, pressure and temperature of the amounts of the oxygen carrier gas and the fuel can be variable before and after the mixing, using a secondary combustion device in which a subset of the fuel is reacted with a subset of the oxygen carrier gas, with a measurement of the combustion state in at least one signal for measuring and / or regulating the mixing ratio of the main combustion device is derived from the secondary combustion device.
  • the combustion state and the mixing ratio of oxygen carrier gas to fuel in combustion devices are often determined by means of an exhaust gas analysis in the exhaust gas duct or by extracting an exhaust gas stream from the exhaust gas duct or by measuring the mixing ratio of the quantities fed to the main combustion device.
  • the measurement signal obtained in this way can be displayed in order to set the burners at specific time intervals according to the displayed values.
  • the measurement signal is implemented in a suitable manner and used directly for regulating the mixing ratio via a controller and suitable actuators.
  • the measuring signal is generated with a time delay compared to an adjustment of the actuators in the supply lines, the time delay inter alia.
  • secondary air can enter from outside as a result of leaks during combustion, mix with the exhaust gas and falsify the measured values in the exhaust gas duct in the exhaust gas duct.
  • the measurement signal can be falsified by unburned constituents in the exhaust gas.
  • a subsequent exhaust gas analysis to determine the primary oxygen content e.g. the air ratio, is practically not possible with open-acting combustion devices in which the exhaust gas is mixed early with tertiary air to be heated.
  • the determination frequently used in such systems, i.e. Measuring and / or regulating the mixing ratio of the mass flows supplied to the main combustion device is highly fuel-specific and requires precise knowledge of the fuel used.
  • the secondary combustion device is thus operated as a pilot plant and is cyclically disturbed in order to achieve the stoichiometric mixing ratio with constant heat output in the secondary combustion device and then to control the mixing ratio for the main combustion device.
  • the dynamics of this known system is relatively poor, since before a control intervention to change the mixing ratio of the gas mixture in the system of the main combustion device, as a rule, several disturbance variable changes and their control responses in the pilot system must first be waited for and the heat output must be kept constant.
  • the construction effort of the pilot system is relatively large, although essentially only changes in the nature of the fuel can be recorded.
  • the known system lacks a correlation between the combustion conditions in the main combustion direction and in the auxiliary combustion device. tung.
  • the present invention has for its object to provide a method and an arrangement of the type mentioned, with the help of which the mixing ratio of fuel and oxygen carrier gas is determined quickly and with high accuracy and reliability, i. H. can be measured and / or regulated.
  • the method should be applicable with basically the same advantages both to premixed combustion systems and to muzzle-mixed combustion systems and should be suitable for mapping both the substoichiometric and superstoichiometric combustion state of the main combustion device.
  • a possibility is to be created of calculating and outputting, if necessary, important fuel-specific parameters required for setting the main combustion device.
  • the method according to the invention is characterized in that the secondary combustion device is operated as a reference combustion chamber, that a mixture is used for the reaction in the reference combustion chamber that is analogous to the mixture that is to be burned in the main combustion device, and that the mixture in the reference combustion chamber is reacted in such a way that the combustion and the thermodynamic boundary conditions (composition, pressure, temperature) of the main combustion device are mapped analogously on the reference combustion chamber.
  • the auxiliary combustion device in the invention is to be correctly defined by the term “reference combustion chamber” since the combustion state of the reference combustion chamber is a direct reference to the combustion state of the main combustion device because of the analogous links to the main combustion device.
  • the combustion in the main combustion device can be simulated under identical boundary conditions, that is to say a link between the two combustion states can be achieved in a very simple manner.
  • the knowledge obtained at the reference combustion chamber by measurement analysis can then be transferred directly to the main combustion device by measurement and possibly readjustment or by regulation.
  • the reference combustion chamber is easier to handle and more accessible for measurement analysis than a measurement system housed in the exhaust duct.
  • the invention enables a reduction in the structural complexity, a functional simplification of the measurement and / or regulation and a lower susceptibility to malfunction both of the system components involved and of the entire control system or the closed control loop.
  • the simulation of the combustion and thermodynamic boundary conditions of premixing main combustion devices is favored in that a part of the mixture supplied there is fed directly to the reference combustion chamber via an adjustable flow resistance.
  • partial quantities of the oxygen carrier gas and the fuel are fed to the reference combustion chamber via adjustable flow resistances.
  • temperature and / or pressure changes in the system of the main combustion device should preferably also change the combustion state of the reference combustion chamber in a predetermined analog manner; however, they can also be taken into account indirectly by measurement. Accordingly, it is advantageous that the pressure differences are measured and / or regulated via the flow resistances or the ratio of the pressure differences.
  • One or more signals for measuring and / or regulating the mixture of the main combustion device are preferably obtained by means of metrological analysis of the reaction products of the reference combustion chamber.
  • at least one signal is obtained from the measurement of the 0 2 portion or the 02 partial pressure or the portion or partial pressure of an inert component, such as C0 2 , H 2 0, N 2 , of the reaction products derived from the reference combustion chamber, it being particularly favorable if the signal derivation is dependent on the CO content or the CO partial pressure or the content or partial pressure of another or more unburned components, e.g. B. H 2 , C x Hy o. Like., The reaction products.
  • a partial flow of the exhaust gas from the main combustion device can also be passed through the reference combustion chamber, in which case the reference combustion chamber has the function of a measuring chamber with the advantage that an exact determination of the mixing ratio is possible by converting combustible components.
  • a partial flow of a mixture that has partially reacted in the main combustion device can be passed through the reference combustion chamber and the combustion state in the reference chamber can be measured by measuring technology in order to obtain at least one signal for measuring and / or regulating the mixture of the main combustion device.
  • the reaction can then be carried out analogously to the main combustion device, the combustion state or the air ratio can be determined locally and the mixture of the main combustion device can be determined by a reference point in which, for. B. no false air entry is effective yet, can be controlled.
  • electrical heating of the reference combustion chamber can ensure that the fuel / oxygen carrier gas mixture is ignited within a wide range of mixing ratios and burns completely or reproducibly analogously to the main combustion device.
  • Another possibility for influencing the ignition and reaction sequence and the production of the combustion state (reaction state) is provided by the use of catalysts, as e.g. can also be used in plants for the production of protective and reactive gas.
  • the quantity of mixture flowing through the reference combustion chamber and thus the residence time of the reaction products in the reference combustion chamber are preferably kept essentially constant.
  • the arrangement according to the invention for determining the mixing ratio of the mixture containing an oxygen carrier gas and a fuel, which is burned in a main combustion device has a secondary combustion device to which partial quantities of the fuel and the oxygen carrier gas or a mixture of both can be fed in parallel to the main combustion device and in which the partial quantities are used Reaction can be brought about and a combustion parameter in the secondary combustion device measuring and evaluating device.
  • the arrangement according to the invention is characterized in that the secondary combustion device is provided as a reference combustion chamber and is arranged parallel to the main combustion device in such a way that a mixture is brought into reaction in the reference combustion chamber by analogous representation of the combustion and the thermodynamic boundary conditions of the main combustion device, which mixture is reacted in the main combustion device Combustion mixture is analogous.
  • the reference combustion chamber or at least the lining thereof consists of a temperature-resistant material, preferably of glass or a ceramic material.
  • a measuring chamber for measuring the combustion state in the reference combustion chamber is connected to the reference combustion chamber.
  • a zirconium dioxide measuring cell and a temperature sensor are installed in the measuring chamber to record the 0 2 component or the 02 partial pressure, the measuring chamber preferably connecting directly to the reference combustion chamber.
  • Measuring chamber and reference combustion chamber can be provided with a common, for example an electrical heating wire spiral surrounding the reference combustion chamber and the measuring chamber.
  • An electrical heating conductor arrangement is preferably applied directly to the reference combustion chamber (9), for example using thick-film technology.
  • the sensors and probes which measure the combustion state in the reference combustion chamber are connected to an evaluation unit containing a computer.
  • the signals derived from the measurement of the combustion state are converted into physical quantities, characteristic quantities are calculated and converted into suitable signals that are output as measured values or serve as input quantities for the mixture control of the main combustion device.
  • the computer can also be designed in such a way that it calculates characteristic quantities that characterize the combustion. In the superstoichiometric range in particular, this includes the air ratio and the Norm Wobbe index, the calorific and calorific value, the densities of oxygen carrier gas and fuel and their ratio.
  • the computer can be provided with a suitable device for entering fuel-specific parameters for very precise calculation of the parameters.
  • the computer can be used as a digital controller, for example for controlling the heating of the reference combustion chamber and / or for controlling the mixture of the main combustion device.
  • the fuel from the main line 1 and the oxygen carrier gas from the main line 2 are mixed in a mixing device 3.
  • the mixture is fed to the main combustion device 5 via an adjustable flow resistance 4.
  • the heat output of the main combustion device 5 is regulated via an adjustable flow resistance which is designed here as a control valve 6.
  • a partial amount of the unburned mixture is branched off via a sample gas line 7 and passed to a reference chamber 9 via an adjustable flow resistance 8. In the latter, the mixture is burned completely or reproducibly in the same way as the main combustion device 5.
  • a measuring device 10 is connected to the reference combustion chamber 9, which is used for measuring the combustion state in the reference combustion chamber 9, for example by measuring the reaction products of the reference combustion chamber, and for developing at least one signal for measuring and displaying or regulating the mixture of the main combustion device 5.
  • This signal is transmitted to an evaluation unit 11 which, in the exemplary embodiment described, contains a computer.
  • the latter calculates parameters that characterize the combustion state in the reference combustion chamber 9, and these parameters are converted into signals that can be displayed or printed out via an output device 12 or used as input values for a mixture controller 13 of the main combustion device 5.
  • the mixture controller 13 can be analog or digital and part or all of the computer of the evaluation unit 11.
  • the control signal of the mixture controller 13 acts on an actuator 14 and controls the mixing ratio by changing the quantity of the oxygen carrier gas.
  • the heat load via the oxygen carrier gas, i. H. via the control valve 14 and the mixing ratio via the fuel, d. H. the control valve 6, can be regulated, or the valves 6 and 14 can be coupled in a suitable manner.
  • thermodynamic boundary conditions of the oxygen carrier gas and fuel streams in the main lines 1 and 2, ie the pressures p and p 2 , the temperatures T and T 2 and the concentrations C i1 and Ci2 are subject to changes during operation.
  • measures are taken so that changes in temperature (T 5 ) and / or pressure ( P5 ) in the system of the main combustion device 5 are reproducible, that is to say given analog How to influence the combustion state (characterized by pg and Tg) in the reference combustion chamber 9. This can e.g. B.
  • the measurement result obtained by the measuring device from the measurement of the combustion state in the reference combustion chamber 9 is therefore just as representative of the combustion state in the main combustion device 5 as for that in the reference combustion chamber 9 can be used for the stationary control of the main combustion device 5, the control loop being closed back via the evaluation device 11, the mixture controller 13 to the actuator 14.
  • a partial stream of a mixture that has partially reacted in the main combustion device 5 can also be branched off from a suitable location in the main combustion device 5 and fed into the reference combustion chamber 9 via the sample gas line 7a and an adjustable flow resistance 8.
  • the exhaust gas of the main combustion device 5 which has not fully reacted can also be withdrawn in part from its exhaust pipe 15 via a sample gas pipe 7b and fed into the reference combustion chamber 9 via the adjustable flow resistance 8. Adjusting the flow resistance 8 changes the throughput and thus the residence time of the reaction components in the reference combustion chamber 9.
  • the fuel is fed via the main line 1 and the oxygen carrier gas via the main line 2 via the control valves 6 and 14 as well as adjustable flow resistances 16 and 17 of the main combustion device 5 provided with an orifice mixer 5a. Partial quantities are branched off from the main lines 1 and 2 via sample gas lines 18 and 19 and fed to the reference combustion chamber 9 via adjustable flow resistances 20 and 21.
  • the mixer 9a upstream of the reference combustion chamber 9 can either be designed as an orifice mixer simulated to the orifice mixer 5a of the main combustion device 5 or as a separate premixing device.
  • the measurement of the combustion state in the reference combustion chamber 9 and the use of the measurement variables obtained therefrom can be determined in the same way as in the premixing system according to FIG.
  • sample gas can also be withdrawn via sample gas lines 7a or 7b, the sample gas being introduced into the reference combustion chamber 9 at a suitable point 9b behind the mixer 9a.
  • Suitable measures are taken to establish the simulation condition so that changes in pressure (p 5 ) and / or temperature (T s ) in the system of the main combustion device 5 influence the combustion state (characterized by pg and Tg) in the reference combustion chamber 9 in a reproducibly analogous manner.
  • the temperatures at the measuring points 30, 31, 32 and 33 are measured for this purpose, recorded by the evaluation device 11 and processed in its computer. Instead of measuring the temperatures at the measuring point pairs 30, 31 and 32, 33, one of these pairs can be brought to the same temperature.
  • pre-mixing systems in addition to combustion, the mixture formation must also be simulated in muzzle-mixed systems.
  • N O2 / N b is the ratio of the quantity flows of oxygen carrier gas and fuel supplied to the reference combustion chamber and a (c i g) is the air ratio calculated from the exhaust gas composition.
  • the air ratio can be calculated in a known manner from the measured proportions of the reaction products. In the superstoichiometric range, the determination of an inert amount is sufficient.
  • the 0 2 fraction in the exhaust gas is particularly suitable for calculating the air ratio in this area. For precise determination, the moisture content in the oxygen carrier gas stream must be eliminated by drying or taken into account by measurement.
  • the other fuel-specific variables can be calculated if the pressure and temperature of the fuel flow supplied to the reference combustion chamber or additionally the densities or the ratio of the densities of the oxygen carrier gas and fuel are measured and determined and the corresponding definition equations are used to calculate the fuel-specific parameters.
  • the fuel temperature at the measuring point 32 and the absolute fuel pressure must be measured. It is important that the temperatures and pressures are measured at the flow resistances relevant for the mixture formation. If the densities or the density ratio are also recorded, the upper and lower norm and operating Wobbe index can also be determined using the corresponding definition equation.
  • the volume flows required as a starting point for calculating the standard calorific value or the standard calorific value cannot be measured directly. Therefore, the volume flow measurement is often calculated indirectly using known flow equations using the differential pressure method.
  • this indirect measurement it is first possible to know the densities by knowing the throttle cross section of the adjustable flow resistances 20 and 21, the pressure differences across the adjustable flow resistances 20 and 21, and the absolute gas pressures at the measuring points 28 and 29 and the temperatures at the measuring points 32 and 33 using the air number 7, (cig) calculate the lower and upper norm and operating Wobbe index with the evaluation unit 10.
  • this method can also be used to calculate the standard calorific value and standard calorific value as well as the operating calorific value and the calorific value in the evaluation unit 10 using the corresponding definition equations .
  • the evaluation of the fuel-specific parameters can often be simplified and the measurement effort reduced, for example by changing the temperature of the measuring points 32 and 33.
  • the variables, which are almost constant during the evaluation time, can be entered as constants in the computer, so that a measurement of these variables is not necessary.
  • the reference combustion chamber or its lining consists of a temperature-resistant material, preferably of glass or a ceramic material.
  • the reference combustion chamber 9 ' according to FIG. 3A is connected to a mixture inlet connection 40 which opens essentially tangentially into the spherical reference combustion chamber 9' and is designed such that the mixture is also injected tangentially into the reference combustion chamber.
  • the reference combustion chamber 9 "shown in FIG. 3B has a cylindrical design.
  • the mixture inlet connection 41 is designed and arranged in such a way that it spirally injects the mixture into the interior of the chamber 9", so that the mixture flow is given a swirl.
  • Both embodiments have an ignition device 42.
  • the measuring device 10 has a measuring chamber 22A which is connected directly to the reference combustion chamber 9 and is heated together with the latter by a heating coil 23.
  • a zirconium dioxide measuring cell 24 with a thermocouple 25 is immersed in the measuring chamber 22. The latter is used both for the measurement of the 0 2 content by means of the zirconium dioxide measuring cell 24 and for the temperature control of the reference combustion chamber 9 and measuring device 10 by means of the heating coil 23.
  • the entire unit is surrounded by thermal insulation 26 and a housing 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Die Erfindung bezieht sich auf eine Verfahren und eine Anordnung zur Bestimmung des Mischungsverhältnisses eines ein Sauerstoffträgergas und einen Brennstoff enthaltenden Gemisches, das in einer Hauptverbrennungseinrichtung verbrannt wird, wobei die thermodynamischen Randbedingungen, d. h. Zusammensetzung, Druck und Temperatur der Mengen des Sauerstoffträgergases und des Brennstoffes vor und nach dem Mischen veränderlich sein können, unter Verwendung einer Nebenverbrennungseinrichtung, in der eine Teilmenge des Brennstoffes mit einer Teilmenge des Sauerstoffträgergases zur Reaktion gebracht wird, wobei aus einer messtechnischen Erfassung des Verbrennungszustandes in der Nebenverbrennungseinrichtung wenigstens ein Signal für eine Messung und/oder Regelung des Mischungsverhältnisses der Hauptverbrennungseinrichtung abgeleitet wird.The invention relates to a method and an arrangement for determining the mixing ratio of a mixture containing an oxygen carrier gas and a fuel, which is burned in a main combustion device, the thermodynamic boundary conditions, i. H. The composition, pressure and temperature of the amounts of the oxygen carrier gas and the fuel can be variable before and after the mixing, using a secondary combustion device in which a subset of the fuel is reacted with a subset of the oxygen carrier gas, with a measurement of the combustion state in at least one signal for measuring and / or regulating the mixing ratio of the main combustion device is derived from the secondary combustion device.

Die Bestimmung des Verbrennungszustandes sowie des Mischungsverhältnisses von Sauerstoffträgergas zu Brennstoff an Verbrennungseinrichtungen erfolgt in der Praxis häufig über eine Abgasanalyse im Abgaskanal oder durch Absaugung eines Abgasstromes aus dem Abgaskanal bzw. durch Messung des Mischungsverhältnisses der der Hauptverbrennungseinrichtung zugeführten Mengen. Das auf diese Weise gewonnene Messsignal kann zur Anzeige gebracht werden, um nach den angezeigten Werten die Brenner in bestimmten Zeitabständen einzustellen. Bei stationären, geregelten Anlagen wird das Messsignal geeignet umgesetzt und über einen Regler und geeignete Stellglieder unmittelbar für eine Regelung des Mischungsverhältnisses verwendet. Bei im Abgaskanal angeordneten Messsonden wird das Messsignal zeitlich verzögert gegenüber einer Verstellung der Stellglieder in den Zuführungsleitungen erzeugt, wobei die Zeitverzögerung u.a. von der räumlichen Anordnung der Stellglieder und der Messsonden im Abgaskanal, der Grösse des Feuerungsraumes, dem Durchsatz und dem Verbrennungsablauf abhängig ist. Die Dynamik der Gemischregelung ist dann unmittelbar von der Summe der im geschlossenen Regelkreis auftretenden Verzögerungszeiten, d. h. den Totzeiten und Zeitkonstanten der genannten Systemkomponenten, abhängig. Grosse Verzögerungszeiten haben ein entsprechend träges Regelungsverhalten zur Folge. Dieses träge Regelungsverhalten kann insbesondere bei unterstöchiometrischem Betrieb knapp oberhalb der Russgrenze und bei nahstöchiometrischem Betrieb zu grossen Energieverlusten, hohem Schadstoffauswurf oder sogar Schäden an der Verbrennungseinrichtung bzw. bei Industrieöfen am beheizten Gut führen, wenn Störgrössen auftreten, die eine Änderung des Verbrennungszustandes bewirken.In practice, the combustion state and the mixing ratio of oxygen carrier gas to fuel in combustion devices are often determined by means of an exhaust gas analysis in the exhaust gas duct or by extracting an exhaust gas stream from the exhaust gas duct or by measuring the mixing ratio of the quantities fed to the main combustion device. The measurement signal obtained in this way can be displayed in order to set the burners at specific time intervals according to the displayed values. In the case of stationary, regulated systems, the measurement signal is implemented in a suitable manner and used directly for regulating the mixing ratio via a controller and suitable actuators. In the case of measuring probes arranged in the exhaust gas duct, the measuring signal is generated with a time delay compared to an adjustment of the actuators in the supply lines, the time delay inter alia. depends on the spatial arrangement of the actuators and the measuring probes in the flue gas duct, the size of the combustion chamber, the throughput and the combustion process. The dynamics of the mixture control is then directly dependent on the sum of the delay times occurring in the closed control loop, ie. H. the dead times and time constants of the system components mentioned. Long delay times result in sluggish control behavior. This sluggish control behavior can lead to large energy losses, high pollutant emissions or even damage to the combustion device or even industrial furnaces to the heated material, especially in substoichiometric operation just above the soot limit and in near stoichiometric operation if disturbance variables occur that cause a change in the combustion state.

Vor allem bei geschlossenen Feuerräumen kann als Folge von Undichtigkeiten während der Verbrennung Sekundärluft von aussen eindringen, sich mit dem Abgas vermischen und die Messwerte bei der Abgasanalyse im Abgaskanal verfälschen. Im überstöchiometrischen Bereich kann eine Verfälschung des Messsignals durch unverbrannte Bestandteile im Abgas eintreten. Eine nachträgliche Abgasanalyse zur Bestimmung des primär zugeführten Sauerstoffanteils, z.B. der Luftzahl, ist bei offen wirkenden Verbrennungseinrichtungen, bei denen das Abgas frühzeitig mit aufzuheizender Tertiärluft durchmischt wird, praktisch nicht möglich. Die bei solchen Systemen häufig angewandte Bestimmung, d.h. Messung und/oder Regelung des Mischungsverhältnisses der der Hauptverbrennungseinrichtung zugeführten Mengenströme ist stark brennstoffspezifisch und bedingt eine genaue Kenntnis des eingesetzten Brennstoffes. Bei einfachen Verbundsteuerungen werden ausserdem Druck- und Temperaturänderungen, die das Mischungsverhältnis und den Verbrennungszustand beeinflussen, nicht erfasst. Eine bei Vormischsystemen zur Bestimmung des Mischungsverhältnisses an sich mögliche Analyse charakteristischer unverbrannter Bestandteile des zugeführten Gemisches ist ebenfalls in hohem Masse brennstoffspezifisch.Especially in closed fireboxes, secondary air can enter from outside as a result of leaks during combustion, mix with the exhaust gas and falsify the measured values in the exhaust gas duct in the exhaust gas duct. In the superstoichiometric range, the measurement signal can be falsified by unburned constituents in the exhaust gas. A subsequent exhaust gas analysis to determine the primary oxygen content, e.g. the air ratio, is practically not possible with open-acting combustion devices in which the exhaust gas is mixed early with tertiary air to be heated. The determination frequently used in such systems, i.e. Measuring and / or regulating the mixing ratio of the mass flows supplied to the main combustion device is highly fuel-specific and requires precise knowledge of the fuel used. In the case of simple network controls, pressure and temperature changes that affect the mixing ratio and the combustion state are also not recorded. An analysis of characteristic unburned constituents of the supplied mixture, which is inherently possible in premixing systems for determining the mixing ratio, is likewise highly fuel-specific.

Aus der US-PS 4118172 sind ein Verfahren der eingangs genannten Art sowie eine zugehörige Anordnung für mündungsmischende Hauptverbrennungseinrichtungen bekannt. Der zur Hauptverbrennungseinrichtung parallel geschalteten Nebenverbrennungseinrichtung werden Teilmengen des Sauerstoffträgergases und des Brennstoffes zugeführt. Durch Störwertaufschaltung in Form einer zyklischen Veränderung des Mischungsverhältnisses in der Nebenverbrennungseinrichtung und durch Abtastung der maximalen Flammentemperatur wird ein besonderer Betriebspunkt, nämlich das genaue stöchiometrische Mischungsverhältnis bei konstanter Wärmeleistung, bestimmt. In Abhängigkeit von diesem Betriebspunkt wird das Mischungsverhältnis der Hauptverbrennungseinrichtung um einen bestimmten Wert verschoben gesteuert. Die Nebenverbrennungseinrichtung wird also als Pilotanlage betrieben und zyklisch gestört, um das stöchiometrische Mischungsverhältnis bei konstanter Wärmeleistung in der Nebenverbrennungseinrichtung zu erreichen und danach das Mischungsverhältnis für die Hauptverbrennungseinrichtung zu steuern. Die Dynamik dieses bekannten Systems ist relativ schlecht, da vor einem Steuereingriff zur Änderung des Mischungsverhältnisses des Gasgemisches im System der Hauptverbrennungseinrichtung in der Regel zunächst mehrere Störgrössenänderungen und deren Regelantworten im Pilotsystem abgewartet werden müssen und die Wärmeleistung konstant gehalten werden muss. Zudem ist der bauliche Aufwand des Pilotsystems relativ gross, obwohl im wesentlichen lediglich Brennstoffbeschaffenheitsänderungen erfasst werden können. Vor allem fehlt es bei dem bekannten System an einer Korrelation zwischen den Verbrennungszuständen in der Hauptverbrennungseinrichtung und in der Nebenverbrennungseinrich-. tung.From US-PS 4118172 a method of the type mentioned above and an associated arrangement for muzzle-mixing main combustion devices are known. The secondary combustion device, which is connected in parallel with the main combustion device, is supplied with partial quantities of the oxygen carrier gas and the fuel. A special operating point, namely the exact stoichiometric mixing ratio with constant heat output, is determined by switching on the disturbance value in the form of a cyclical change in the mixing ratio in the secondary combustion device and by scanning the maximum flame temperature. Depending on this operating point, the mixing ratio of the main combustion device is controlled shifted by a certain value. The secondary combustion device is thus operated as a pilot plant and is cyclically disturbed in order to achieve the stoichiometric mixing ratio with constant heat output in the secondary combustion device and then to control the mixing ratio for the main combustion device. The dynamics of this known system is relatively poor, since before a control intervention to change the mixing ratio of the gas mixture in the system of the main combustion device, as a rule, several disturbance variable changes and their control responses in the pilot system must first be waited for and the heat output must be kept constant. In addition, the construction effort of the pilot system is relatively large, although essentially only changes in the nature of the fuel can be recorded. Above all, the known system lacks a correlation between the combustion conditions in the main combustion direction and in the auxiliary combustion device. tung.

Letzteres gilt auch für ein weiteres bekanntes System nach der GB-A 2036290. Dort arbeitet die Nebenverbrennungseinrichtung ebenfalls als Pilotanlage, deren Ausgangssignal mit einem Sollwert verglichen wird. Abweichungen von diesem Sollwert bewirken, dass die Nebenverbrennungseinrichtung und die Hauptverbrennungseinrichtung entsprechend nachgeregelt werden.The latter also applies to another known system according to GB-A 2036290. There the secondary combustion device also works as a pilot system, the output signal of which is compared with a setpoint. Deviations from this target value have the effect that the secondary combustion device and the main combustion device are readjusted accordingly.

Aus der EP-B 0075369 und 0008151 ist es bekannt, mit Hilfe einer Nebenbrennkammer die Wärmebelastung von Gasfeuerungen zu bestimmen, d. h. zu messen und/oder zu regeln. Dieses bekannte Verfahren hat mit der vorausgesetzten Gattung, d. h. der Bestimmung des Mischungsverhältnisses eines in einer Hauptverbrennungseinrichtung verbrannten Gasgemisches, nichts zu tun.From EP-B 0075369 and 0008151 it is known to determine the thermal load of gas furnaces with the help of an auxiliary combustion chamber. H. to measure and / or regulate. This known method has the presupposed genre, i.e. H. the determination of the mixing ratio of a gas mixture burned in a main combustion device, do nothing.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung der eingangs genannten Art zu schaffen, mit deren Hilfe das Mischungsverhältnis von Brennstoff und Sauerstoffträgergas schnell und mit hoher Genauigkeit und Zuverlässigkeit bestimmt, d. h. gemessen und/oder geregelt werden kann. Das Verfahren soll dabei mit prinzipiell gleichen Vorteilen sowohl auf Vormischbrennsysteme als auch auf Mündungsmischbrennsysteme anwendbar sein und sich zur Abbildung sowohl des unterstöchiometrischen als auch überstöchiometrischen Verbrennungszustandes der Hauptverbrennungseinrichtung eignen. In Weiterbildung der Erfindung soll eine Möglichkeit geschaffen werden, ggf. wichtige, für die Einstellung der Hauptverbrennungseinrichtung benötigte brennstoffspezifische Kenngrössen zu berechnen und auszugeben.The present invention has for its object to provide a method and an arrangement of the type mentioned, with the help of which the mixing ratio of fuel and oxygen carrier gas is determined quickly and with high accuracy and reliability, i. H. can be measured and / or regulated. The method should be applicable with basically the same advantages both to premixed combustion systems and to muzzle-mixed combustion systems and should be suitable for mapping both the substoichiometric and superstoichiometric combustion state of the main combustion device. In a further development of the invention, a possibility is to be created of calculating and outputting, if necessary, important fuel-specific parameters required for setting the main combustion device.

Das erfindungsgemässe Verfahren zeichnet sich zur Lösung dieser Aufgabe dadurch aus, dass die Nebenverbrennungseinrichtung als Referenzbrennkammer betrieben wird, dass für die Reaktion in der Referenzbrennkammer ein Gemisch verwendet wird, das zu dem in der Hauptverbrennungseinrichtung zur Verbrennung kommenden Gemisch analog ist, und dass das Gemisch in der Referenzbrennkammer derart zur Reaktion gebracht wird, dass an der Referenzbrennkammer die Verbrennung und die thermodynamischen Randbedingungen (Zusammensetzung, Druck, Temperatur) der Hauptverbrennungseinrichtung analog abgebildet werden. Anders als beim zuvor erörterten Stand der Technik ist die Nebenverbrennungseinrichtung bei der Erfindung durch den Begriff «Referenzbrennkammer» zutreffend zu definieren, da der Verbrennungszustand der Referenzbrennkammer wegen der analogen Verknüpfungen zur Hauptverbrennungseinrichtung unmittelbar eine Referenz für den Verbrennungszustand der Hauptverbrennungseinrichtung ist.To achieve this object, the method according to the invention is characterized in that the secondary combustion device is operated as a reference combustion chamber, that a mixture is used for the reaction in the reference combustion chamber that is analogous to the mixture that is to be burned in the main combustion device, and that the mixture in the reference combustion chamber is reacted in such a way that the combustion and the thermodynamic boundary conditions (composition, pressure, temperature) of the main combustion device are mapped analogously on the reference combustion chamber. In contrast to the prior art discussed above, the auxiliary combustion device in the invention is to be correctly defined by the term “reference combustion chamber” since the combustion state of the reference combustion chamber is a direct reference to the combustion state of the main combustion device because of the analogous links to the main combustion device.

Mit Hilfe des erfindungsgemässen Verfahrens lässt sich die Verbrennung in der Hauptverbrennungseinrichtung unter identischen Randbedingungen simulieren, also eine Verknüpfung beider Verbrennungszustände in sehr einfacher Weise erreichen. Die an der Referenzbrennkammer durch messtechnische Analyse gewonnenen Erkenntnisse können dann durch Messung und gegebenenfalls Nachsteuerung oder durch Regelung unmittelbar auf die Hauptverbrennungseinrichtung übertragen werden. Die Referenzbrennkammer ist für die messtechnische Analyse einfacher zu handhaben und leichter zugänglich als ein im Abgaskanal untergebrachtes Messystem. Kurze Zuleitungen zu dem für die Messung massgeblichen System der Referenzbrennkammer, kurze Reaktions- und Verweilzeiten innerhalb der Referenzbrennkammer sowie ggf. die Möglichkeit, frühzeitig Teilmengen aus den Zuführungsleitungen der Hauptverbrennungseinrichtung abzuzweigen, gewährleisten ein schnelles Regelungsverhalten und eine Verbesserung der Dynamik. Durch die Entnahme noch nicht reagierter Teilmengen von Brennstoff, Sauerstoffträgergas oder eines Gemisches aus beiden und Reaktion in der verhältnismässig kleinen, gut abdichtbaren Referenzbrennkammer können Undichtigkeiten und Messungenauigkeiten zumindestvernachlässigbar gering gehalten werden.With the aid of the method according to the invention, the combustion in the main combustion device can be simulated under identical boundary conditions, that is to say a link between the two combustion states can be achieved in a very simple manner. The knowledge obtained at the reference combustion chamber by measurement analysis can then be transferred directly to the main combustion device by measurement and possibly readjustment or by regulation. The reference combustion chamber is easier to handle and more accessible for measurement analysis than a measurement system housed in the exhaust duct. Short supply lines to the system of the reference combustion chamber that is relevant for the measurement, short reaction and dwell times within the reference combustion chamber as well as the possibility, if necessary, of branching off partial quantities from the supply lines of the main combustion device at an early stage, guarantee a quick control behavior and an improvement in the dynamics. By removing unreacted portions of fuel, oxygen carrier gas or a mixture of both and reacting in the relatively small, easily sealable reference combustion chamber, leaks and measurement inaccuracies can be kept at least negligibly low.

Daher ermöglicht die Erfindung eine Verringerung des baulichen Aufwandes, eine funktionelle Vereinfachung der Messung und/oder Regelung und eine geringere Störanfälligkeit sowohl der beteiligten Systemkomponenten als auch der gesamten Steuerstrecke bzw. des geschlossenen Regelkreises.Therefore, the invention enables a reduction in the structural complexity, a functional simplification of the measurement and / or regulation and a lower susceptibility to malfunction both of the system components involved and of the entire control system or the closed control loop.

Die Simulation der Verbrennung sowie thermodynamischer Randbedingungen von vormischenden Hauptverbrennungseinrichtungen wird in Weiterbildung der Erfindung dadurch begünstigt, dass eine Teilmenge des dort zugeführten Gemisches der Referenzbrennkammer direkt über einen einstellbaren Strömungswiderstand zugeführt wird. Bei mündungsmischenden Hauptverbrennungseinrichtungen werden Teilmengen des Sauerstoffträgergases und des Brennstoffs über einstellbare Strömungswiderstände der Referenzbrennkammer zugeführt. In beiden Fällen sollen vorzugsweise Temperatur-und/oder Druckänderungen im System der Hauptverbrennungseinrichtung auch den Verbrennungszustand der Referenzbrennkammer in vorgegebener analoger Weise verändern; sie können aber auch indirekt durch Messung berücksichtigt werden. Dementsprechend ist es vorteilhaft, dass die Druckdifferenzen über den Strömungswiderständen oder das Verhältnis der Druckdifferenzen gemessen und/oder geregelt werden.In a further development of the invention, the simulation of the combustion and thermodynamic boundary conditions of premixing main combustion devices is favored in that a part of the mixture supplied there is fed directly to the reference combustion chamber via an adjustable flow resistance. In the case of muzzle-mixing main combustion devices, partial quantities of the oxygen carrier gas and the fuel are fed to the reference combustion chamber via adjustable flow resistances. In both cases, temperature and / or pressure changes in the system of the main combustion device should preferably also change the combustion state of the reference combustion chamber in a predetermined analog manner; however, they can also be taken into account indirectly by measurement. Accordingly, it is advantageous that the pressure differences are measured and / or regulated via the flow resistances or the ratio of the pressure differences.

Die Gewinnung eines oder mehrerer Signale für die Messung und/oder Regelung des Gemisches der Hauptverbrennungseinrichtung erfolgt vorzugsweise durch messtechnische Analyse der Reaktionsprodukte der Referenzbrennkammer. Vorteilhafterweise wird mindestens ein Signal aus der messtechnischen Erfassung des 02-Anteils oder des 02-Partialdrucks oder des Anteils oder des Partialdrucks einer inerten Komponente, wie z.B. C02, H20, N2, der Reaktionsprodukte der Referenzbrennkammer abgeleitet, wobei es ganz besonders günstig ist, wenn die Signalableitung in zusätzlicher Abhängigkeit von dem CO-Anteil oder dem CO-Partialdruck oder dem Anteil oder Partialdruck einer anderen oder mehrerer unverbrannter Komponenten, z. B. H2, CxHy o. dgl., der Reaktionsprodukte erfolgt.One or more signals for measuring and / or regulating the mixture of the main combustion device are preferably obtained by means of metrological analysis of the reaction products of the reference combustion chamber. Advantageously, at least one signal is obtained from the measurement of the 0 2 portion or the 02 partial pressure or the portion or partial pressure of an inert component, such as C0 2 , H 2 0, N 2 , of the reaction products derived from the reference combustion chamber, it being particularly favorable if the signal derivation is dependent on the CO content or the CO partial pressure or the content or partial pressure of another or more unburned components, e.g. B. H 2 , C x Hy o. Like., The reaction products.

Prinzipiell kann aber auch ein Teilstrom des Abgases der Hauptverbrennungseinrichtung durch die Referenzbrennkammer geleitet werden, wobei der Referenzbrennkammer in diesem Falle die Funktion einer Messkammer mit dem Vorteil zukommt, dass durch Umsetzung brennbarer Bestandteile eine exakte Bestimmung des Mischungsverhältnisses möglich ist.In principle, however, a partial flow of the exhaust gas from the main combustion device can also be passed through the reference combustion chamber, in which case the reference combustion chamber has the function of a measuring chamber with the advantage that an exact determination of the mixing ratio is possible by converting combustible components.

Erfindungsgemäss kann ein Teilstrom eines in der Hauptverbrennungseinrichtung teilweise reagierten Gemisches durch die Referenzbrennkammer geleitet und der Verbrennungszustand in der Referenzkammer zur Gewinnung mindestens eines Signals für die Messung und/oder Regelung des Gemisches der Hauptverbrennungseinrichtung messtechnisch erfasst werden. In der Referenzbrennkammer kann dann die Reaktion analog zur Hauptverbrennungseinrichtung ablaufen gelassen, lokal der Verbrennungszustand oder die Luftzahl bestimmt und das Gemisch der Hauptverbrennungseinrichtung durch eine Referenzstelle, in der z. B. noch kein Falschlufteintritt wirksam ist, gesteuert werden.According to the invention, a partial flow of a mixture that has partially reacted in the main combustion device can be passed through the reference combustion chamber and the combustion state in the reference chamber can be measured by measuring technology in order to obtain at least one signal for measuring and / or regulating the mixture of the main combustion device. In the reference combustion chamber, the reaction can then be carried out analogously to the main combustion device, the combustion state or the air ratio can be determined locally and the mixture of the main combustion device can be determined by a reference point in which, for. B. no false air entry is effective yet, can be controlled.

Durch beispielsweise elektrische Beheizung der Referenzbrennkammer kann sichergestellt werden, dass das Brennstoff-/Sauerstoffträgergasgemisch innerhalb eines weiten Bereiches von Mischungsverhältnissen zum Zünden gebracht wird und vollständig oder reproduzierbar analog zur Hauptverbrennungseinrichtung verbrennt. Für bestimmte Anwendungsfälle ist es zweckmässig, die Beheizung der Referenzbrennkammer so zu regeln, dass in letzterer eine bestimmte Temperatur erreicht und/oder aufrechterhalten wird. Eine andere Möglichkeit zur Beeinflussung des Zünd- und Reaktionsablaufs und der Herstellung des Verbrennungszustandes (Reaktionszustandes) bietet der Einsatz von Katalysatoren, wie sie z.B. auch in Anlagen zur Schutz- und Reaktionsgaserzeugung verwendet werden.For example, electrical heating of the reference combustion chamber can ensure that the fuel / oxygen carrier gas mixture is ignited within a wide range of mixing ratios and burns completely or reproducibly analogously to the main combustion device. For certain applications, it is expedient to regulate the heating of the reference combustion chamber in such a way that a certain temperature is reached and / or maintained in the latter. Another possibility for influencing the ignition and reaction sequence and the production of the combustion state (reaction state) is provided by the use of catalysts, as e.g. can also be used in plants for the production of protective and reactive gas.

Vorzugsweise werden die die Referenzbrennkammer durchströmende Gemischmenge und damit die Verweilzeit der Reaktionsprodukte in der Referenzbrennkammer im wesentlichen konstant gehalten.The quantity of mixture flowing through the reference combustion chamber and thus the residence time of the reaction products in the reference combustion chamber are preferably kept essentially constant.

Die erfindungsgemässe Anordnung zur Bestimmung des Mischungsverhältnisses des ein Sauerstoffträgergas und einen Brennstoff enthaltenden Gemisches, das in einer Hauptverbrennungseinrichtung verbrannt wird, weist eine Nebenverbrennungseinrichtung, der parallel zur Hauptverbrennungseinrichtung Teilmengen des Brennstoffes und des Sauerstoffträgergases oder eines Gemisches aus beiden zuführbar sind und in der die Teilmengen zur Reaktion bringbar sind, und eine Verbrennungsparameter in der Nebenverbrennungseinrichtung erfassende Mess- und Auswerteeinrichtung auf. Hiervon ausgehend ist die erfindungsgemässe Anordnung dadurch gekennzeichnet, dass die Nebenverbrennungseinrichtung als Referenzbrennkammer vorgesehen und parallel zur Hauptverbrennungseinrichtung derart angeordnet ist, dass in der Referenzbrennkammer unter analoger Abbildung der Verbrennung und der thermodynamischen Randbedingungen der Hauptverbrennungseinrichtung ein Gemisch zur Reaktion gebracht wird, welches dem in der Hauptverbrennungseinrichtung zur Verbrennung kommenden Gemisch analog ist. Die Referenzbrennkammer oder zumindest deren Auskleidung besteht aus einem temperaturbeständigen Material, vorzugsweise aus Glas oder einem keramischen Material.The arrangement according to the invention for determining the mixing ratio of the mixture containing an oxygen carrier gas and a fuel, which is burned in a main combustion device, has a secondary combustion device to which partial quantities of the fuel and the oxygen carrier gas or a mixture of both can be fed in parallel to the main combustion device and in which the partial quantities are used Reaction can be brought about and a combustion parameter in the secondary combustion device measuring and evaluating device. Proceeding from this, the arrangement according to the invention is characterized in that the secondary combustion device is provided as a reference combustion chamber and is arranged parallel to the main combustion device in such a way that a mixture is brought into reaction in the reference combustion chamber by analogous representation of the combustion and the thermodynamic boundary conditions of the main combustion device, which mixture is reacted in the main combustion device Combustion mixture is analogous. The reference combustion chamber or at least the lining thereof consists of a temperature-resistant material, preferably of glass or a ceramic material.

Bei einem bevorzugten Ausführungsbeispiel der Erfindung ist mit der Referenzbrennkammer eine Messkammer zur messtechnischen Erfassung des Verbrennungszustandes in der Referenzbrennkammer verbunden. Zur Erfassung des 02-Anteils oder des 02-Partialdrucks sind eine Zirkondioxidmesszelle und ein Temperaturfühler in die Messkammer eingebaut, wobei sich die Messkammer vorzugsweise unmittelbar an die Referenzbrennkammer anschliesst.In a preferred embodiment of the invention, a measuring chamber for measuring the combustion state in the reference combustion chamber is connected to the reference combustion chamber. A zirconium dioxide measuring cell and a temperature sensor are installed in the measuring chamber to record the 0 2 component or the 02 partial pressure, the measuring chamber preferably connecting directly to the reference combustion chamber.

Messkammer und Referenzbrennkammer können mit einer gemeinsamen, beispielsweise einer die Referenzbrennkammer und die Messkammer spiralförmig umgebenden elektrischen Heizdrahtwendel versehen sein. Dabei ist vorzugsweise eine elektrische Heizleiteranordnung direkt auf der Referenzbrennkammer (9) beispielsweise in Dickschichttechnik aufgebracht.Measuring chamber and reference combustion chamber can be provided with a common, for example an electrical heating wire spiral surrounding the reference combustion chamber and the measuring chamber. An electrical heating conductor arrangement is preferably applied directly to the reference combustion chamber (9), for example using thick-film technology.

Die den Verbrennungszustand in der Referenzbrennkammer messtechnisch erfassenden Fühler und Sonden sind bei einem bevorzugten Ausführungsbeispiel der Erfindung mit einer einen Rechner enthaltenden Auswerteeinheit verbunden. In dieser werden die aus der messtechnischen Erfassung des Verbrennungszustandes abgeleiteten Signale in physikalische Grössen umgerechnet, Kenngrössen berechnet und in geeignete Signale umgesetzt, die als Messwerte ausgegeben werden oder als Eingabegrössen für die Gemischregelung der Hauptverbrennungseinrichtung dienen. Der Rechner kann ausserdem so ausgebildet sein, dass er die Verbrennung charakterisierende Kenngrössen berechnet. Hierzu gehören insbesondere im überstöchiometrischen Bereich die Luftzahl und der Norm-Wobbe-Index, der Brenn- und Heizwert, die Dichten von Sauerstoffträgergas und Brennstoff und deren Verhältnis. Der Rechner kann mit einer geeigneten Einrichtung zur Eingabe brennstoffspezifischer Grössen zur sehr genauen Berechnung der Kenngrössen versehen sein.In a preferred exemplary embodiment of the invention, the sensors and probes which measure the combustion state in the reference combustion chamber are connected to an evaluation unit containing a computer. In this, the signals derived from the measurement of the combustion state are converted into physical quantities, characteristic quantities are calculated and converted into suitable signals that are output as measured values or serve as input quantities for the mixture control of the main combustion device. The computer can also be designed in such a way that it calculates characteristic quantities that characterize the combustion. In the superstoichiometric range in particular, this includes the air ratio and the Norm Wobbe index, the calorific and calorific value, the densities of oxygen carrier gas and fuel and their ratio. The computer can be provided with a suitable device for entering fuel-specific parameters for very precise calculation of the parameters.

Bei geeigneter Einfügung in einen geschlossenen Regelkreis kann der Rechner als digitaler Regler beispielsweise bei der Regelung der Beheizung der Referenzbrennkammer und/oder zur Regelung des Gemisches der Hauptverbrennungseinrichtung verwendet werden.With a suitable insertion into a closed control loop, the computer can be used as a digital controller, for example for controlling the heating of the reference combustion chamber and / or for controlling the mixture of the main combustion device.

Die Erfindung findet ihre bevorzugte Anwendung bei vormischenden Feuerungssystemen, lässt sich aber mit praktisch gleichen Vorteilen bei mündungsmischenden Verbrennungseinrichtungen anwenden. Die erfindungsgemässe Anordnung ist in Form von Handmessgeräten für die Brennereinstellung realisierbar, sie kann aber auch als stationäres Regelgerät vorgesehen sein und ist für unter- und überstöchiometrische Verbrennung einsetzbar. Die Erfindung ist nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. In der Zeichnung zeigen:

  • Fig. 1 ein Ausführungsbeispiel der erfindungsgemässen Anordnung in einem System mit vormischender Hauptverbrennungseinrichtung;
  • Fig. 2 ein Ausführungsbeispiel der erfindungsgemässen Anordnung in einem mündungsmischenden Verbrennungssystem;
  • Fig. 3A und 3B schematisch zwei Ausführungsformen der bei der Erfindung verwendeten Referenzbrennkammer; und
  • Fig. 4 eine elektrisch beheizte Referenzbrennkammer, die mit einer unmittelbar anschliessenden Messkammer wärmeisoliert in einem gemeinsamen Gehäuse angeordnet ist, wobei in die Messkammer eine Zirkondioxid-Messzelle mit Thermoelement eintaucht.
The invention finds its preferred application in premixing firing systems, but can be applied to muzzle-mixing combustion devices with practically the same advantages. The arrangement according to the invention can be implemented in the form of handheld measuring devices for the burner setting, but it can also be provided as a stationary control device and can be used for under and over stoichiometric combustion. The invention is explained in more detail below on the basis of exemplary embodiments shown schematically in the drawing. The drawing shows:
  • 1 shows an embodiment of the arrangement according to the invention in a system with a premixing main combustion device;
  • 2 shows an exemplary embodiment of the arrangement according to the invention in a muzzle-mixing combustion system;
  • 3A and 3B schematically show two embodiments of the reference combustion chamber used in the invention; and
  • Fig. 4 is an electrically heated reference combustion chamber, which is arranged with a directly adjoining measuring chamber in a heat-insulated manner in a common housing, a zirconium dioxide measuring cell with thermocouple being immersed in the measuring chamber.

Bei dem System gemäss Fig. 1 werden der Brennstoff aus der Hauptleitung 1 und das Sauerstoffträgergas aus der Hauptleitung 2 in einer Mischvorrichtung 3 gemischt. Das Gemisch wird über einen einstellbaren Strömungswiderstand 4 der Hauptverbrennungseinrichtung 5 zugeführt. Die Wärmeleistung der Hauptverbrennungseinrichtung 5 wird über einen hier als Stellventil 6 ausgebildeten einstellbaren Strömungswiderstand reguliert. Eine Teilmenge des unverbrannten Gemischs wird über eine Probegasleitung 7 abgezweigt und über einen einstellbaren Strömungswiderstand 8 zu einer Referenzkammer 9 geleitet. In letzterer wird das Gemisch vollkommen oder reproduzierbar analog zur Hauptverbrennungseinrichtung 5 verbrannt.In the system according to FIG. 1, the fuel from the main line 1 and the oxygen carrier gas from the main line 2 are mixed in a mixing device 3. The mixture is fed to the main combustion device 5 via an adjustable flow resistance 4. The heat output of the main combustion device 5 is regulated via an adjustable flow resistance which is designed here as a control valve 6. A partial amount of the unburned mixture is branched off via a sample gas line 7 and passed to a reference chamber 9 via an adjustable flow resistance 8. In the latter, the mixture is burned completely or reproducibly in the same way as the main combustion device 5.

Mit der Referenzbrennkammer 9 ist eine Messeinrichtung 10 verbunden, die der messtechnischen Erfassung des Verbrennungszustandes in der Referenzbrennkammer 9 beispielsweise durch messtechnische Analyse der Reaktionsprodukte der Referenzbrennkammer dient und mindestens ein Signal für die Messung und Anzeige bzw. Regelung des Gemisches der Hauptverbrennungseinrichtung 5 entwickelt. Dieses Signal wird zu einer Auswerteeinheit 11 übertragen, die in dem beschriebenen Ausführungsbeispiel einen Rechner enthält. Letzterer berechnet Kenngrössen, die den Verbrennungszustand in der Referenzbrennkammer 9 charakterisieren, und diese Kenngrössen werden in Signale umgesetzt, die über eine Ausgabeeinrichtung 12 angezeigt oder dort ausgedruckt oder als Eingabewerte für einen Gemischregler 13 der Hauptverbrennungseinrichtung 5 verwendet werden können. Der Gemischregler 13 kann dabei analog oder digital und ganz oder teilweise Bestandteil des Rechners der Auswerteeinheit 11 sein. Das Regelsignal des Gemischreglers 13 wirkt auf ein Stellglied 14 und regelt das Mischungsverhältnis durch Mengenänderung des Sauerstoffträgergases. In alternativer Anordnung kann aber auch die Wärmebelastung über das Sauerstoffträgergas, d. h. über das Stellventil 14 und das Mischungsverhältnis über den Brennstoff, d. h. das Stellventil 6, geregelt werden, oder es können die Ventile 6 und 14in geeigneter Weise gekoppelt sein.A measuring device 10 is connected to the reference combustion chamber 9, which is used for measuring the combustion state in the reference combustion chamber 9, for example by measuring the reaction products of the reference combustion chamber, and for developing at least one signal for measuring and displaying or regulating the mixture of the main combustion device 5. This signal is transmitted to an evaluation unit 11 which, in the exemplary embodiment described, contains a computer. The latter calculates parameters that characterize the combustion state in the reference combustion chamber 9, and these parameters are converted into signals that can be displayed or printed out via an output device 12 or used as input values for a mixture controller 13 of the main combustion device 5. The mixture controller 13 can be analog or digital and part or all of the computer of the evaluation unit 11. The control signal of the mixture controller 13 acts on an actuator 14 and controls the mixing ratio by changing the quantity of the oxygen carrier gas. In an alternative arrangement, however, the heat load via the oxygen carrier gas, i. H. via the control valve 14 and the mixing ratio via the fuel, d. H. the control valve 6, can be regulated, or the valves 6 and 14 can be coupled in a suitable manner.

Die thermodynamischen Randbedingungen der Sauerstoffträgergas- und Brennstoffströme in den Hauptleitungen 1 und 2, d. h. die Drücke p, und p2, die Temperaturen T, und T2 sowie die Konzentrationen Ci1 und Ci2 sind im Betrieb Änderungen unterworfen. Um den Verbrennungszustand in der Hauptverbrennungseinrichtung 5 in der zu dieser parallel geschalteten Referenzbrennkammer 9 genau simulieren zu können, sind Massnahmen getroffen, damit Änderungen von Temperatur (T5) und/oder Druck (P5) im System der Hauptverbrennungseinrichtung 5 in reproduzierbar, d. h. vorgegebener analoger Weise den Verbrennungszustand (charakterisiert durch pg und Tg) in der Referenzbrennkammer 9 beeinflussen. Dies kann z. B. dadurch geschehen, dass die Drücke p5 und pg durch Einleitung der Reaktionsprodukte der Referenzbrennkammer 9 in die Abgasleitung 15 auf annähernd gleicher Höhe gehalten werden und/oder dass die Referenzbrennkammer 9 entsprechend beheizt bzw. abgekühlt wird. Das durch die Messeinrichtung aus der messtechnischen Erfassung des Verbrennungszustandes in der Referenzbrennkammer 9 gewonnene Messergebnis ist daherfür den Verbrennungszustand in der Hauptverbrennungseinrichtung 5 ebenso repräsentativ wie für denjenigen in der Referenzbrennkammer 9. Insofern können die aus der messtechnischen Erfassung des Verbrennungszustandes in der Referenzbrennkammer 9 gewonnenen Messgrössen auch für die stationäre Regelung der Hauptverbrennungseinrichtung 5 verwendet werden, wobei der Regelkreis über die Auswerteeinrichtung 11, den Gemischregler 13 zurück zum Stellglied 14 geschlossen ist.The thermodynamic boundary conditions of the oxygen carrier gas and fuel streams in the main lines 1 and 2, ie the pressures p and p 2 , the temperatures T and T 2 and the concentrations C i1 and Ci2 are subject to changes during operation. In order to be able to precisely simulate the combustion state in the main combustion device 5 in the reference combustion chamber 9 connected in parallel with this, measures are taken so that changes in temperature (T 5 ) and / or pressure ( P5 ) in the system of the main combustion device 5 are reproducible, that is to say given analog How to influence the combustion state (characterized by pg and Tg) in the reference combustion chamber 9. This can e.g. B. happen that the pressures p 5 and pg are maintained at approximately the same level by introducing the reaction products of the reference combustion chamber 9 into the exhaust pipe 15 and / or that the reference combustion chamber 9 is heated or cooled accordingly. The measurement result obtained by the measuring device from the measurement of the combustion state in the reference combustion chamber 9 is therefore just as representative of the combustion state in the main combustion device 5 as for that in the reference combustion chamber 9 can be used for the stationary control of the main combustion device 5, the control loop being closed back via the evaluation device 11, the mixture controller 13 to the actuator 14.

Anstelle der Entnahme des unverbrannten Gemisches über die Probegasleitung 7 kann auch ein Teilstrom eines in der Hauptverbrennungseinrichtung 5 teilweise reagierten Gemisches von einem geeigneten Ort in der Hauptverbrennungseinrichtung 5 abgezweigt und über die Probegasleitung 7a sowie einen einstellbaren Strömungswiderstand 8 in die Referenzbrennkammer 9 geleitet werden. Alternativ kann auch das nicht vollständig ausreagierte Abgas der Hauptverbrennungseinrichtung 5 aus deren Abgasleitung 15 über eine Probegasleitung 7b in einer Teilmenge abgezogen und über den einstellbaren Strömungswiderstand 8 in die Referenzbrennkammer 9 geleitet werden. Eine Verstellung des Strömungswiderstandes 8 verändert den Durchsatz und damit die Verweilzeit der Reaktionskomponenten in der Referenzbrennkammer 9.Instead of removing the unburned mixture via the sample gas line 7, a partial stream of a mixture that has partially reacted in the main combustion device 5 can also be branched off from a suitable location in the main combustion device 5 and fed into the reference combustion chamber 9 via the sample gas line 7a and an adjustable flow resistance 8. Alternatively, the exhaust gas of the main combustion device 5 which has not fully reacted can also be withdrawn in part from its exhaust pipe 15 via a sample gas pipe 7b and fed into the reference combustion chamber 9 via the adjustable flow resistance 8. Adjusting the flow resistance 8 changes the throughput and thus the residence time of the reaction components in the reference combustion chamber 9.

In Fig. 2 ist ein mündungsmischendes System dargestellt. Der Brennstoff wird über die Hauptleitung 1 und das Sauerstoffträgergas über die Hauptleitung 2 jeweils über die Stellventile 6 bzw. 14 sowie einstellbare Strömungswiderstände 16 bzw. 17 der mit einem Mündungsmischer 5a versehenen Hauptverbrennungseinrichtung 5 unmittelbar zugeführt. Aus den Hauptleitungen 1 und 2 werden Teilmengen über Probegasleitungen 18 bzw. 19 abgezweigt und über einstellbare Strömungswiderstände 20 und 21 der Referenzbrennkammer 9 zugeführt. Der der Referenzbrennkammer 9 vorgeschaltete Mischer 9a kann entweder ein dem Mündungsmischer 5a der Hauptverbrennungseinrichtung 5 analog nachgebildeter Mündungsmischer oder als separate Vormischeinrichtung ausgebildet sein. Die messtechnische Erfassung des Verbrennungszustandes in der Referenzbrennkammer 9 und die Nutzung der daraus gewonnenen Messgrössen können in gleicher Weise wie bei dem Vormischsystem gemäss Fig. 1 zur Bestimmung, d.h. Messung, Steuerung oder Regelung des Mischungsverhältnisses der Mengen in den Hauptleitungen 1 und 2 verwendet werden. Wie bei dem Vormischsystem kann auch hier eine Probegasentnahme über Probegasleitungen 7a oder 7b vorgenommen werden, wobei das Probegas an einer geeigneten Stelle 9b hinter dem Mischer 9a in die Referenzbrennkammer 9 eingeleitet wird.2 shows a muzzle-mixing system. The fuel is fed via the main line 1 and the oxygen carrier gas via the main line 2 via the control valves 6 and 14 as well as adjustable flow resistances 16 and 17 of the main combustion device 5 provided with an orifice mixer 5a. Partial quantities are branched off from the main lines 1 and 2 via sample gas lines 18 and 19 and fed to the reference combustion chamber 9 via adjustable flow resistances 20 and 21. The mixer 9a upstream of the reference combustion chamber 9 can either be designed as an orifice mixer simulated to the orifice mixer 5a of the main combustion device 5 or as a separate premixing device. The measurement of the combustion state in the reference combustion chamber 9 and the use of the measurement variables obtained therefrom can be determined in the same way as in the premixing system according to FIG. Measurement, control or regulation of the mixing ratio of the quantities in the main lines 1 and 2 are used. As in the case of the premixing system, sample gas can also be withdrawn via sample gas lines 7a or 7b, the sample gas being introduced into the reference combustion chamber 9 at a suitable point 9b behind the mixer 9a.

Zum Herstellen der Simulationsbedingung sind geeignete Massnahmen getroffen, damit Änderungen von Druck (p5) und/oder Temperatur (Ts) im System der Hauptverbrennungseinrichtung 5 in reproduzierbar analoger Weise den Verbrennungszustand (charakterisiert durch pg und Tg) in der Referenzbrennkammer 9 beeinflussen. Bei dem in Fig. 2 schematisch dargestellten Ausführungsbeispiel werden zu diesem Zweck die Temperaturen an den Messstellen 30, 31, 32 und 33 gemessen, von der Auswerteeinrichtung 11 erfasst und in deren Rechner verarbeitet. Anstelle einer Messung der Temperaturen an den Messstellenpaaren 30, 31 und 32, 33 kann jeweils eines dieser Paare auf die gleiche Temperatur gebracht werden. Im Gegensatz zu Vormischsystemen muss bei mündungsgemischten Systemen zusätzlich zur Verbrennung auch die Gemischbildung simuliert werden. Während Druckänderungen in den Zuleitungen 1 und 2 von der Referenzkammer erfasst werden, wirken unterschiedliche Änderungen der Temperaturverhältnisse an den einstellbaren Strömungswiderständen 16 und 17 sowie 20 und 21 bzw. an den Messstellen 30 und 31 sowie 32 und 33 unterschiedlich auf die Bildung des Mischungsverhältnisses der der Hauptverbrennungseinrichtung 5 und Referenzbrennkammer 9 zugeführten Gemische.Suitable measures are taken to establish the simulation condition so that changes in pressure (p 5 ) and / or temperature (T s ) in the system of the main combustion device 5 influence the combustion state (characterized by pg and Tg) in the reference combustion chamber 9 in a reproducibly analogous manner. In the exemplary embodiment shown schematically in FIG. 2, the temperatures at the measuring points 30, 31, 32 and 33 are measured for this purpose, recorded by the evaluation device 11 and processed in its computer. Instead of measuring the temperatures at the measuring point pairs 30, 31 and 32, 33, one of these pairs can be brought to the same temperature. In contrast to pre-mixing systems, in addition to combustion, the mixture formation must also be simulated in muzzle-mixed systems. While pressure changes in the supply lines 1 and 2 are recorded by the reference chamber, different changes in the temperature conditions at the adjustable flow resistances 16 and 17 and 20 and 21 or at the measuring points 30 and 31 as well as 32 and 33 act differently on the formation of the mixing ratio of the Main combustion device 5 and reference combustion chamber 9 supplied mixtures.

Durch Messung verschiedener zusätzlicher Grössen können mit dem Rechner 11 verschiedene weitere brennstoffspezifische Kenngrössen bestimmt werden. Als Grundlage der Berechnung von Norm-Brennwert [Ho (n steht für «Norm»)] Norm-Heizwert Hu.n, Betriebs-Brennwert, Betriebs-Heizwert, unterem und oberem Norm- und Betriebs-Wobbe-Index werden die Definitionsgleichung der Luftzahl (λ), die existierende Korrelationsfunktion f" (...), mit a = o für den Brennwert und a = u für den Heizwert, zwischen dem stöchiometrischen Luftbedarf 1st (Luftbedarf für eine vollständige Verbrennung ohne Luftüber- oder -unterschuss) und dem Norm-Brennwert Ho" (a = o) und dem Norm-Heizwert Hu.n (a = u) verwendet. Danach gilt die Beziehung

Figure imgb0001
wobei NO2/Nb das Verhältnis der der Referenzbrennkammer zugeführten Mengenströme von Sauerstoffträgergas und Brennstoff und a (cig) die aus der Abgaszusammensetzung berechnete Luftzahl ist. Die Luftzahl kann aus den gemessenen Mengenanteilen der Reaktionsprodukte in bekannter Weise berechnet werden. Im überstöchiometrischen Bereich reicht dazu die Bestimmung eines inerten Mengenanteils aus. Für die Berechnung der Luftzahl in diesem Bereich ist besonders der 02-Mengenanteil im Abgas geeignet. Zur genauen Bestimmung muss der Feuchtigkeitsgehalt im Sauerstoffträgergasstrom durch Trocknung eliminiert oder durch Messung berücksichtigt werden. Die weiteren brennstoffspezifischen Grössen lassen sich berechnen, wenn Druck und Temperatur des der Referenzbrennkammer zugeführten Brennstoffmengenstromes bzw. zusätzlich die Dichten oder das Verhältnis der Dichten des Sauerstoffträgergases und Brennstoffes gemessen und bestimmt werden und zur Berechnung der brennstoffspezifischen Kenngrössen die entsprechenden Definitionsgleichungen verwendet werden. Zur Bestimmung der Betriebs-Brenn- und Betriebs-Heizwerte müssen beispielsweise die Brennstofftemperatur an der Messstelle 32 und der absolute Brennstoffdruck gemessen werden. Dabei kommt es darauf an, dass die Temperaturen und Drücke an den für die Gemischbildung relevanten Strömungswiderständen gemessen werden. Werden zusätzlich die Dichten oder das Dichteverhältnis erfasst, so kann ebenfalls mit der entsprechenden Definitionsgleichung der obere und untere Norm- und Betriebs-Wobbe-Index bestimmtwerden.By measuring different additional sizes, 11 different additional fuel-specific parameters can be determined with the computer. As the basis for the calculation of the standard calorific value [Ho (n stands for «norm»)], the standard calorific value Hu .n , the operating calorific value, the operating calorific value, the lower and upper standard and operating Wobbe index are the definition equation of the air ratio (λ), the existing correlation function f " (...), with a = o for the calorific value and a = u for the calorific value, between the stoichiometric air requirement 1 st (air requirement for a complete combustion without excess or deficiency of air) and the standard calorific value Ho " (a = o) and the standard calorific value Hu .n (a = u). After that, the relationship applies
Figure imgb0001
where N O2 / N b is the ratio of the quantity flows of oxygen carrier gas and fuel supplied to the reference combustion chamber and a (c i g) is the air ratio calculated from the exhaust gas composition. The air ratio can be calculated in a known manner from the measured proportions of the reaction products. In the superstoichiometric range, the determination of an inert amount is sufficient. The 0 2 fraction in the exhaust gas is particularly suitable for calculating the air ratio in this area. For precise determination, the moisture content in the oxygen carrier gas stream must be eliminated by drying or taken into account by measurement. The other fuel-specific variables can be calculated if the pressure and temperature of the fuel flow supplied to the reference combustion chamber or additionally the densities or the ratio of the densities of the oxygen carrier gas and fuel are measured and determined and the corresponding definition equations are used to calculate the fuel-specific parameters. To determine the operating calorific and operating calorific values, for example, the fuel temperature at the measuring point 32 and the absolute fuel pressure must be measured. It is important that the temperatures and pressures are measured at the flow resistances relevant for the mixture formation. If the densities or the density ratio are also recorded, the upper and lower norm and operating Wobbe index can also be determined using the corresponding definition equation.

Die als Ausgangspunkt für die Berechnung des Norm-Brennwertes bzw. des Norm-Heizwertes benötigten Mengenströme lassen sich nicht ohne weiteres direkt messen. Deshalb wird die Mengenstrommessung häufig indirekt mittels bekannter Durchflussgleichungen nach dem Wirkdruckverfahren berechnet. Bei dieser indirekten Messung lässt sich zunächst ohne Kenntnis der Dichten durch die Kenntnis des Drosselquerschnittes der einstellbaren Strömungswiderstände 20 und 21, der Druckdifferenzen über den einstellbaren Strömungswiderständen 20 und 21, der absoluten Gasdrücke an den Messstellen 28 und 29 und der Temperaturen an den Messstellen 32 und 33 mittels der Luftzahl 7,(cig) der untere und obere Norm- und Betriebs-Wobbe-Index mit der Auswerteeinheit 10 berechnen. Werden ausserdem zusätzlich die Dichten oder das Verhältnis der Dichten des Sauerstoffträgergases zum Brennstoff bestimmt, so lassen sich auch mit diesem Verfahren mit den entsprechenden Definitionsgleichungen der Norm-Brennwert und Norm-Heizwert sowie der Betriebs-Brennwert und der Betriebs-Heizwert in der Auswerteeinheit 10 berechnen.The volume flows required as a starting point for calculating the standard calorific value or the standard calorific value cannot be measured directly. Therefore, the volume flow measurement is often calculated indirectly using known flow equations using the differential pressure method. In this indirect measurement, it is first possible to know the densities by knowing the throttle cross section of the adjustable flow resistances 20 and 21, the pressure differences across the adjustable flow resistances 20 and 21, and the absolute gas pressures at the measuring points 28 and 29 and the temperatures at the measuring points 32 and 33 using the air number 7, (cig) calculate the lower and upper norm and operating Wobbe index with the evaluation unit 10. If, in addition, the densities or the ratio of the densities of the oxygen carrier gas to the fuel are determined, this method can also be used to calculate the standard calorific value and standard calorific value as well as the operating calorific value and the calorific value in the evaluation unit 10 using the corresponding definition equations .

Ohne die Simulationsbedinungen zu stören, kann häufig die Auswertung der brennstoffspezifischen Kenngrössen vereinfacht und der Messaufwand verringert werde, indem beispielsweise das Verhältnis der Temperaturen der Messstellen 32 und 33 z. B. durch Wärmetausch und/oder das Verhältnis der Druckdifferenzen über den Strömungswiderständen 20 und 21 und/oder der Absolutdrücke an den Messstellen 28 und 29 konstant, ggf. kurzzeitig für die Auswertung konstant gehalten werden. Die Grössen, die während der Auswertezeit annähernd konstant sind, können als Konstanten in den Rechner eingegeben werden, so dass sich eine Messung dieser Grössen erübrigt.Without disturbing the simulation conditions, the evaluation of the fuel-specific parameters can often be simplified and the measurement effort reduced, for example by changing the temperature of the measuring points 32 and 33. B. constant by heat exchange and / or the ratio of the pressure differences across the flow resistances 20 and 21 and / or the absolute pressures at the measuring points 28 and 29, possibly kept constant for a short time for the evaluation. The variables, which are almost constant during the evaluation time, can be entered as constants in the computer, so that a measurement of these variables is not necessary.

Die Fig. 3A und 3B zeigen zwei bevorzugte Ausführungsformen der Referenzbrennkammer 9. In beiden Fällen besteht die Referenzbrennkammer bzw. deren Auskleidung aus einem temperaturbeständigen Material, vorzugsweise aus Glas oder einem keramischen Material. Die Referenzbrennkammer 9' gemäss Fig. 3A ist mit einem Gemisch-Einlassstutzen 40 verbunden, der im wesentlichen tangential in die sphärische Referenzbrennkammer 9' mündet und so ausgebildet ist, dass das Gemisch auch tangential in die Referenzbrennkammer eingedüst wird. Die in Fig. 3B dargestellte Referenzbrennkammer 9" hat zylindrische Ausbildung. Der Gemischeinlassstutzen 41 ist so ausgebildet und angeordnet, dass er das Gemisch spiralförmig in den Innenraum der Kammer 9" eindüst, so dass der Gemischstrom einen Drall erhält. Beide Ausführungsformen weisen eine Zündeinrichtung 42 auf.3A and 3B show two preferred embodiments of the reference combustion chamber 9. In both cases, the reference combustion chamber or its lining consists of a temperature-resistant material, preferably of glass or a ceramic material. The reference combustion chamber 9 'according to FIG. 3A is connected to a mixture inlet connection 40 which opens essentially tangentially into the spherical reference combustion chamber 9' and is designed such that the mixture is also injected tangentially into the reference combustion chamber. The reference combustion chamber 9 "shown in FIG. 3B has a cylindrical design. The mixture inlet connection 41 is designed and arranged in such a way that it spirally injects the mixture into the interior of the chamber 9", so that the mixture flow is given a swirl. Both embodiments have an ignition device 42.

In Fig. 4 ist ein Ausführungsbeispiel gezeigt, bei dem die Referenzbrennkammer 9 und die Messeinrichtung 10 zu einer Einheit zusammengefasst und in einem gemeinsamen Gehäuse untergebracht sind. Die Messeinrichtung 10 weist eine Messkammer 22A auf, die unmittelbar an die Referenzbrennkammer 9 angeschlossen ist und gemeinsam mit dieser von einer Heizwendel 23 beheizt wird. In die Messkammer 22 taucht eine Zirkondioxid-Messzelle 24 mit einem Thermoelement 25 ein. Letzteres wird sowohl für die Messung des 02-Gehalts mittels der Zirkondioxid- Messzelle 24 als auch für die Temperaturregelung von Referenzbrennkammer 9 und Messeinrichtung 10 mittels der Heizwendel 23 verwendet. Die gesamte Einheit ist von einer Wärmeisolation 26 und einem Gehäuse 27 umgeben.4 shows an exemplary embodiment in which the reference combustion chamber 9 and the measuring device 10 are combined to form a unit and are accommodated in a common housing. The measuring device 10 has a measuring chamber 22A which is connected directly to the reference combustion chamber 9 and is heated together with the latter by a heating coil 23. A zirconium dioxide measuring cell 24 with a thermocouple 25 is immersed in the measuring chamber 22. The latter is used both for the measurement of the 0 2 content by means of the zirconium dioxide measuring cell 24 and for the temperature control of the reference combustion chamber 9 and measuring device 10 by means of the heating coil 23. The entire unit is surrounded by thermal insulation 26 and a housing 27.

Claims (32)

1. A method of determining the mixing ratio of a mixture comprising an oxygen carrier gas and a fuel to be burnt in a main combustion system (5), having thermodynamic conditions namely the composition, the pressure and the temperature of said oxyden carrier gas and said fuel which may be variable before and after mixing, by using a secondary combustion system (9) wherein part of said oxygen carrier gas is reacted with a part of said fuel, at least one signal being derived from measuring the conditions of combustion in said secondary combustion system for measuring and/or controlling the mixing ratio of the main combustion system mixture characterized in that said secondary combustion system (9) is being operated as a reference combustion chamber, a mixture analogous to that being burnt in said main combustion system (5) is used for the reaction in said reference combustion chamber and said mixture is caused to react in said reference combustion chamber so that the combustion and the thermodynamic conditions in said main combustion system are modelled analogously in said' reference combustion chamber.
2. A method according to claim 1 characterized in that said at least one signal for measuring and/or controlling the mixing ratio of the main combustion system mixture is derived from an analysis, by measurement, of the products of the reaction in said reference combustion chamber.
3. A method according to claim 2 characterized in that a partial stream of a mixture partly reacted in said main combustion system is caused to flow through said reference combustion chamber and conditions of combustion are measured in said reference combustion chamber to derive at least one signal for measuring and/or controlling the mixing ratio of the main combustion system mixture.
4. A method according to claim 2 or 3 characterized in that at least one signal is derived from measuring the oxygen concentration in or the oxygen partial pressure of or the concentration of an inert constituent, such as carbon dioxide, water vapor or nitrogen, in or the partial pressure of such an inert constituent of the products of reference combustion chamber reaction.
5. A method according to claim 4 characterized in that said at least one signal is also derived as a function of the carbon monoxide concentration in or the carbon monoxide partial pressure of or the concentration of any other uncombusted constituent or group of other uncombusted constituents, such as hydrogen or uncombusted hydrocarbons, in or the partial pressure of such uncombusted constituent or constituents of the products of reference combustion chamber reaction.
6. A method according to any one of claims 1 through 5 characterized in that the conditions of combustion in said reference combustion chamber are controlled as a predetermined function of temperature and/or pressure changes in said main combustion system.
7. A method according to any one of claims 1 through 6 characterized in that said reference combustion chamber is so heated that said mixture is caused in said reference combustion chamber to ignite and to react completely or reproducibly in a fashion corresponding to the fashion of the reaction in said main combustion chamber over a wide range of mixing ratios and the constituents of the products of combustion of said reference combustion chamber reaction are in their equilibriums determined by pressure and temperature.
8. A method according to any one of claims 1 through 7 characterized in that a partial stream of the mixture flowing to said main combustion system passes across an adjustable restricting device (8) or partial streams of said oxygen carrier gas and said fuel pass across adjustable restricting devices (20, 21) directly to said reference combustion chamber.
9. A method according to claim 8 characterized in that the pressure differences across said restricting devices or the ratio between said pressure differences may be measured and/or controlled.
10. A method according to any one of claims 1 through 9 characterized in that the reaction of said mixture caused in said reference combustion chamber is catalytic.
11. A method according to any one of claims 1 through 10 characterized in that mixture flow through said reference combustion chamber and hence the dwell time of the products of reaction in said reference combustion chamber are kept substantially constant.
12. A method according to any one of claims 1 through 11 characterized in that the signals derived from measuring the conditions of combustion in said reference combustion chamber are converted into physical quantities, characteristic quantities are computed therefrom and said characteristic quantities are converted into appropriate signals for displaying and/or printing measured data and/or input into a mixture con- trollerforthe main combustion system.
13. A method according to claim 12 characterized in that the air ratio of said mixture is calculated and, if desired, displayed by a computing device (11) using data from the measurement of the products of reaction in said reference combustion chamber and preferably the oxygen concentration in or the oxygen partial pressure of or the concentration of an inert constituent in or the partial pressure of such an inert constituent of said products of reaction.
14. A method according to any one of claims 1 through 13 characterized in that the volume flow rates of the partial oxygen carrier gas and fuel streams flowing to said reference combustion chamber (9) or the ratio between said flow rates are measured or determined, the products of reaction in said reference combustion chamber are analyzed and the gross calorific value and/or the net calorific value at reference conditions of the mixture caused to react in said reference combustion chamber are calculated and, if desired, displayed by a computing device (11) using the air ratio calculated from the analysis of the products of reaction.
15. A method according to claim 14 characterized in that the gross calorific value and/or the net calorific value at flowing conditions of the mixture caused to react in said reference combustion chamber are calculated and, if desired, displayed by a computing device (11) using additional measurement data or the pressure and the temperature of the fuel stream flowing to said reference combustion chamber.
16. A method according to claim 14 or 15 characterized in that the densities of said oxygen carrier gas and said fuel or the ratio between said densities are also determined and the gross and the net Wobbe numbers at reference conditions and/or the gross and the net Wobbe numbers at flowing conditions are calculated and, if desired, displayed.
17. A method according to any one of claims 1 through 16 characterized in that the products of reaction in said reference combustion chamber are analyzed and the air factor computed from the data of said analysis, the ratio of the cross sections of the restricting devices upstream from said reference combustion chamber, the pressure differences across said restricting devices and the pressures and the temperatures of the partial oxygen carrier gas and fuel streams to said reference combustion chamber are processed by a computing device to calculate and, if desired, display the gross and the net Wobbe numbers at reference conditions and/or the gross and the net Wobbe numbers at flowing conditions of the mixture caused to react.
18. A method according to claim 17 characterized in that the densities of the oxygen carrier gas and the fuel or the ratio between said densities are also determined and, if desired, displayed and the gross calorific value and the net calorific value at reference conditions and/or the gross calorific value and the net calorific value at flowing conditions of the mixture caused to react are calculated and, if desired, displayed by a computing device.
19. A method according to any one of claims 14 through 18 characterized in that the temperatures and the pressures or the ratios between the temperatures and the pressures of the partial oxygen carrier gas and fuel streams flowing to said reference combustion chamber are kept constant and/or that any variations thereof are made up for by corresponding changes in flow and/or the ratio between the pressure differences or the pressure differences are controlled to remain substantially constant and/or the ratio between the gas temperatures or the gas temperatures are kept substantially constant.
20. A method according to claims 4 and 7 characterized in that the heating device for said reference combustion chamber is so controlled that a given temperature is achieved and/or maintained therein and the temperature determined for oxygen measurement is also used to determine setpoint temperature deviation.
21. A device for determining the mixing ratio of a mixture comprising an oxygen carrier gas and a fuel to be burnt in a main combustion system, said device comprising a secondary combustion system arranged parallel with said main combustion system and allowing a partial stream of said fuel and said oxygen carrier gas or of a mixture of said fuel and said oxygen carrier gas to be fed into said secondary combustion system and to react therein and further comprising a measuring and processing device for determining the conditions of combustion in said secondary combustion system characterized in that said secondary combustion system is provided as a reference combustion chamber (9) and arranged parallel with said main combustion system (5) so that as mixture analogous to that being burnt in said main combustion system (5) is caused to react in said reference combustion chamber modelling analogously the combustion and the thermodynamic conditions in said main combustion chamber (5).
22. A device according to claim 21 characterized in that at least the lining of said reference combustion chamber (9) is made from a temperature-resistant material and preferably from glass or a ceramic material.
23. A device according to claim 21 or 22 characterized in that the reference combustion chamber (9) is of a spherical or a cylindrical shape and means (40) are provided for the substantially tangential or cyclonic injection of the mixture into said reference combustion chamber.
24. A device according to any one of claims 21 through 23 characterized in that a measuring chamber (22) for measuring the conditions of combustion in said reference combustion chamber (9) is connected with said reference combustion chamber.
25. A device according to claim 24 characterized in that said measuring chamber (22) is provided with a zirconium dioxide sensor (24) and a temperature sensor (25) for determining the oxygen concentration or the oxygen partial pressure.
26. A device according to claim 24 or 25 characterized in that said measuring chamber (22) and said reference combustion chamber (9) are provided with a common heater (23), surrounded by thermal insulation material (26) and accommodated in a common housing (27).
27. A device according to claim 26 characterized in that said heater is a heater coil (23) arranged spirally around said reference combustion chamber (9) and said measuring chamber (22).
28. A device according to claim 26 or 27 characterized in that said heater is mounted directly on said reference combustion chamber (9) for example by thick-film application.
29. A device according to any one of claims 21 through 28 characterized in that a sample gas line (7) is in the case of a premixed main combustion system (5) branched off the line connecting the mixer (3) and said main combustion system, said sample gas line carrying a partial stream of the mixture across an adjustable restricting device (8) directly to said reference combustion chamber (9).
30. A device according to any one of claims 21 through 29 characterized in that two samples gas lines (18, 19) are in the case of an atmospheric main combustion system (5, 5a) branched off the main lines (1, 2) to the atmospheric combustion device (5a) of said atmospheric combustion system, each such sample gas line being connected with a mixer (9a) serving said reference combustion chamber across adjustable restricting devices (20, 21), said mixer (9a) preferably modelling said atmospheric combustion device (5a) of said main combustion system.
31. A device according to any one of claims 21 through 30 characterized in that at least one sample gas line (7b, 7a) is provided for tapping a partial stream of a mixture partially reacted in said main combustion system (5) from a given point in said main combustion system and said at least . one sample gas line (7b, 7a) is connected with said reference combustion chamber (9) across an adjustable restricting device (8).
32. A device according to any one of claims 21 through 31 characterized in that said device is provided with a measuring device (10) for determining the conditions of combustion in said reference combustion chamber (9) and downstream therefrom is further provided with a processing device (11) comprising a computing device, said computing device being arranged so that it converts the signals derived from the measurement of the conditions of combustion into physical quantities and computes characteristic quantities therefrom and converts said characteristics and quantities into appropriate signals for displaying and/or printing measured data by an output device (12) or input into a mixture controller (13).
EP85102463A 1984-03-08 1985-03-05 Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel Expired EP0156200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3408397 1984-03-08
DE19843408397 DE3408397A1 (en) 1984-03-08 1984-03-08 METHOD AND ARRANGEMENT FOR DETERMINING THE MIXING RATIO OF A MIXTURE CONTAINING OXYGEN CARRIER GAS AND A FUEL

Publications (2)

Publication Number Publication Date
EP0156200A1 EP0156200A1 (en) 1985-10-02
EP0156200B1 true EP0156200B1 (en) 1989-10-18

Family

ID=6229836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102463A Expired EP0156200B1 (en) 1984-03-08 1985-03-05 Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel

Country Status (4)

Country Link
US (1) US4659306A (en)
EP (1) EP0156200B1 (en)
JP (1) JPS616513A (en)
DE (2) DE3408397A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588061B1 (en) * 1985-10-02 1987-12-24 Brunel Gerald METHOD AND INSTALLATION FOR CONTROLLING THE COMBUSTION OF A GAS BURNER OF A HEAT OR FORCE GENERATOR SUCH AS A BOILER OR THE LIKE, TO OBTAIN A DETERMINED COMBUSTION
EP0221799A1 (en) * 1985-10-02 1987-05-13 Societe D'etude Et De Construction De Chaudieres En Acier Seccacier Gas burner combustion regulation method and apparatus for a heat or force generator, especially a boiler or the like, to obtain a specific combustion
FR2592465B1 (en) * 1985-12-31 1988-03-25 Brunel Gerald INSTALLATION FOR MONITORING THE OPERATION OF A BOILER
DE3610363A1 (en) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe METHOD FOR CONTINUOUSLY MONITORING CONCENTRATIONS OF GASEOUS INGREDIENTS IN GAS MIXTURES, EXCEPT O (ARROW DOWN) 2 (ARROW DOWN)
DE3741817A1 (en) * 1987-12-10 1989-06-22 Messerschmitt Boelkow Blohm DEVICE FOR CONTROLLING OR REGULATION OF GAS MIXTURES
DE69014308T3 (en) * 1989-10-30 1998-04-16 Honeywell Inc COMBUSTION CONTROL WITH MICROMEASURING BRIDGE.
JP2961913B2 (en) * 1991-02-26 1999-10-12 株式会社日立製作所 Combustion device and control method thereof
DE9203528U1 (en) * 1992-03-18 1992-07-09 Ruhrgas Ag, 4300 Essen Device for controlling a gas consumption device
DE4333751A1 (en) * 1993-10-04 1995-04-06 Bosch Gmbh Robert Control system for a fuel-operated heat generator, especially a water heater
FR2712961B1 (en) * 1993-11-26 1995-12-22 Lorraine Laminage Real-time adjustment of a fuel burner with variable characteristics, in particular for metallurgical heating furnaces.
WO1997018417A1 (en) * 1995-11-13 1997-05-22 Gas Research Institute, Inc. Flame ionization control apparatus and method
DE19923980A1 (en) * 1999-05-25 2000-11-30 Linde Tech Gase Gmbh Method and device for monitoring and regulating a gas composition
US6299433B1 (en) 1999-11-05 2001-10-09 Gas Research Institute Burner control
WO2003062618A1 (en) * 2002-01-25 2003-07-31 Alstom Technology Ltd Method for operating a gas turbine group
EP1396681B1 (en) * 2002-09-04 2005-12-07 Siemens Schweiz AG Burner controller and method of setting a burner controller
ATE425418T1 (en) * 2003-11-27 2009-03-15 Siemens Ag METHOD FOR DETERMINING FLAWING FUEL PROPERTIES DURING THE OPERATION OF A POWER PLANT
US7241135B2 (en) * 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
SE529324C2 (en) * 2005-04-04 2007-07-03 Lars Svensson Med Odena Engine Air / fuel ratio control system in an air / fuel mixture fed to a premixed fuel burner
US7565805B2 (en) 2005-11-22 2009-07-28 General Electric Company Method for operating gas turbine engine systems
US8408896B2 (en) * 2007-07-25 2013-04-02 Lummus Technology Inc. Method, system and apparatus for firing control
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
DE102013106987A1 (en) * 2013-07-03 2015-01-08 Karl Dungs Gmbh & Co. Kg Method and device for determining a calorific value and gas-powered device with such a device
EP3206017B1 (en) * 2016-02-09 2018-09-12 Elster GmbH Sensor and method for determining the air ratio of a combustible gas-air mixture
EP3956556B1 (en) * 2019-04-16 2023-04-12 Wärtsilä Finland Oy Heating value estimation
DE102020132503A1 (en) 2020-12-07 2022-06-09 Ebm-Papst Landshut Gmbh Method for adjusting an air-fuel mixture for heaters
DE102021131260A1 (en) 2021-11-29 2023-06-01 Schwartz Gmbh Furnace installation and method for its operation

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1639167A (en) * 1927-05-21 1927-08-16 Degen Walter Oil burner
FR1004670A (en) * 1949-12-23 1952-04-01 Liquid fuel burner
US2780414A (en) * 1952-11-27 1957-02-05 Stamicarbon Heat input stabilization
US3049300A (en) * 1960-04-07 1962-08-14 Bailey Meter Co Combustion control for a furnace fired with fuels having different oxygenexcess air characteristics
US3211372A (en) * 1963-05-10 1965-10-12 United States Steel Corp Combustion-control system
US3365881A (en) * 1965-09-08 1968-01-30 United Aircraft Corp Gas turbine ignition detector
US3747340A (en) * 1971-08-12 1973-07-24 Ford Motor Co Flame sensing system for a turbine engine
FR2178350A5 (en) * 1972-03-29 1973-11-09 Est Aciers Fins
US3768955A (en) * 1972-06-26 1973-10-30 Universal Oil Prod Co Reactant ratio control process
DE2252185C2 (en) * 1972-10-25 1983-12-01 Robert Bosch Gmbh, 7000 Stuttgart Circuit arrangement for converting and evaluating the output signal of an oxygen sensor in a device for exhaust gas decontamination of internal combustion engines
JPS52126539A (en) * 1976-04-15 1977-10-24 Matsushita Electric Ind Co Ltd Combustion safety device
US4118172A (en) * 1976-10-20 1978-10-03 Battelle Development Corporation Method and apparatus for controlling burner stoichiometry
US4238185A (en) * 1977-05-25 1980-12-09 Telegan Limited Control system for a burner
US4231733A (en) * 1978-05-31 1980-11-04 Westinghouse Electric Corp. Combined O2 /combustibles solid electrolyte gas monitoring device
NL7808476A (en) * 1978-08-16 1980-02-19 Nederlandse Gasunie Nv APPARATUS FOR DETERMINING A QUANTITY CORRELATED TO THE WOBBE INDEX OF A GAS OR GAS MIXTURE, AND A METHOD FOR USING THIS APPARATUS.
GB2036290B (en) * 1978-11-22 1982-12-01 Hamworthy Engineering Fuel sampling system
IT1131905B (en) * 1980-07-04 1986-06-25 Snam Spa METHOD FOR REGULATING THE THERMAL FLOW RATE OF A NATURAL GAS-POWERED SYSTEM WITH VARIABLE POWER AND DENSITY AND APPARATUS SUITABLE FOR THE PURPOSE
US4360336A (en) * 1980-11-03 1982-11-23 Econics Corporation Combustion control system
DE3275237D1 (en) * 1981-03-17 1987-02-26 Honeywell Inc A COMBUSTIBLE GAS ANALYZER
DE3211533A1 (en) * 1981-04-13 1982-12-02 Process Electronic Analyse Und Oxygen-measuring probe
NL8104308A (en) * 1981-09-18 1983-04-18 Nederlandse Gasunie Nv METHOD AND APPARATUS FOR KEEPING THE CALORIC TAX OF GAS APPLIANCES CONSTANTLY
DE3208765A1 (en) * 1982-03-11 1983-09-22 Ruhrgas Ag, 4300 Essen METHOD FOR MONITORING COMBUSTION PLANTS
US4433922A (en) * 1982-07-02 1984-02-28 The Babcock & Wilcox Company Calorimeter
US4492559A (en) * 1983-11-14 1985-01-08 The Babcock & Wilcox Company System for controlling combustibles and O2 in the flue gases from combustion processes

Also Published As

Publication number Publication date
JPS616513A (en) 1986-01-13
DE3573828D1 (en) 1989-11-23
EP0156200A1 (en) 1985-10-02
US4659306A (en) 1987-04-21
DE3408397A1 (en) 1985-09-19

Similar Documents

Publication Publication Date Title
EP0156200B1 (en) Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel
EP1426740B1 (en) Device for measuring the flow and at least one material parameter of a fluid
DE10302487A1 (en) Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions
DE3006525A1 (en) METHOD AND DEVICE FOR MEASURING THE FUEL / AIR RATIO OF A MIXTURE WHICH IS ADDED TO A COMBUSTION SYSTEM
DE68909260T2 (en) Device for measuring the heat capacity of a fuel flow.
DE2222073A1 (en) PROCEDURE AND DEVICE FOR DETERMINING THE HEATING VALUE OF COMBUSTIBLE GASES
EP0156958B1 (en) Regulation method for the combustion air quantity of a burner apparatus
DE1526221A1 (en) Method and device for operating a multiple oil burner
DE2124074A1 (en) Method and device for determining the composition of a combustible fluid
DE19615141A1 (en) Method and device for controlling a combustion process in a boiler
DE10122039A1 (en) Method and device for determining a characteristic value representative of the nature of a gas
EP1114280B1 (en) Method and device for determining the soot charge in a combustion chamber
EP1051585B1 (en) Method and device for operating an incinerator plant
EP2848934B1 (en) Method and sensor for determining fuel characteristics of gas mixtures
EP4063732B1 (en) Method and assembly for observing flames in a heater operable with hydrogen or hydrogen-containing fuel gas
EP3214370A1 (en) Method and apparatus for burning solid organic fuels
DE102007039316B3 (en) Analysis apparatus for gaseous mixtures of fuel and air fed to burners for glass treatment vessels removes part of the gas and burns it in chamber in vessel wall, exhaust gases being passed to oxygen sensor
CH638289A5 (en) METHOD AND DEVICE FOR CONTINUOUSLY BURNING FUEL.
DE1016884B (en) Device for assessing the furnace atmosphere for furnaces, especially tunnel furnaces
DE3829491A1 (en) Fuel feed to a regenerating burner
EP4043791A1 (en) Gas boiler and method for adjusting a fuel / oxidator mixture as a function of a composition of the fuel
EP1067383B1 (en) Method for operating a mixing apparatus for gases, especially for determining the Wobbe index of a test gas
DE19908885A1 (en) Method for operating gas burner by heating gas in separated measurement chamber and using relationship between and pressure or temperature to measure gas composition
DE2045922B2 (en) Device for analyzing hydrocarbons and mixtures containing hydrocarbons
DE10010291A1 (en) Calorimetry method for flow of gaseous fuel introduces heat at controlled rate from burner to thermal transfer element with heat sink, and measures thermal state parameter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19860311

17Q First examination report despatched

Effective date: 19871223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891018

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19891018

Ref country code: BE

Effective date: 19891018

REF Corresponds to:

Ref document number: 3573828

Country of ref document: DE

Date of ref document: 19891123

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900331

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THYSSEN STAHL AG

Effective date: 19900713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF REVOCATION BY EPO

Effective date: 19901031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930215

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930219

Year of fee payment: 9

RDAC Information related to revocation of patent modified

Free format text: ORIGINAL CODE: 0009299REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19940326

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 940326

R27W Patent revoked (corrected)

Effective date: 19940326