EP0150531B1 - Fabric softening compositions containing clays - Google Patents
Fabric softening compositions containing clays Download PDFInfo
- Publication number
- EP0150531B1 EP0150531B1 EP84201839A EP84201839A EP0150531B1 EP 0150531 B1 EP0150531 B1 EP 0150531B1 EP 84201839 A EP84201839 A EP 84201839A EP 84201839 A EP84201839 A EP 84201839A EP 0150531 B1 EP0150531 B1 EP 0150531B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- clay
- weight
- cationic
- composition
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 239000004744 fabric Substances 0.000 title claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 238000011282 treatment Methods 0.000 claims abstract description 26
- 238000005342 ion exchange Methods 0.000 claims abstract description 21
- 239000007787 solid Substances 0.000 claims abstract description 7
- 239000004927 clay Substances 0.000 claims description 41
- 239000004615 ingredient Substances 0.000 claims description 25
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 14
- 239000004665 cationic fabric softener Substances 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 11
- 235000012211 aluminium silicate Nutrition 0.000 claims description 6
- 239000005995 Aluminium silicate Substances 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 229920002873 Polyethylenimine Polymers 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- 239000002752 cationic softener Substances 0.000 claims description 3
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 229910052627 muscovite Inorganic materials 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 239000006057 Non-nutritive feed additive Substances 0.000 claims 1
- 125000002091 cationic group Chemical group 0.000 abstract description 28
- 239000004753 textile Substances 0.000 abstract description 24
- 230000008901 benefit Effects 0.000 abstract description 22
- 239000003795 chemical substances by application Substances 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 11
- 239000000835 fiber Substances 0.000 abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 15
- -1 primary Chemical class 0.000 description 15
- 239000002979 fabric softener Substances 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 10
- 239000003599 detergent Substances 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical group C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000004902 Softening Agent Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001450 anions Chemical group 0.000 description 3
- 238000005341 cation exchange Methods 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 229910052901 montmorillonite Inorganic materials 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- LULAYUGMBFYYEX-UHFFFAOYSA-N 3-chlorobenzoic acid Chemical compound OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 2
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N Valeric acid Natural products CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229910052900 illite Inorganic materials 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N methyl undecanoic acid Natural products CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 2
- 239000003608 nonionic fabric softener Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229960003010 sodium sulfate Drugs 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- QRAXLHLYZJCAKB-XZBKPIIZSA-N (2r,3s,4r,5r)-3,4,5,6-tetrahydroxy-2-methoxyhexanal Chemical compound CO[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO QRAXLHLYZJCAKB-XZBKPIIZSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical group CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- HSQFVBWFPBKHEB-UHFFFAOYSA-N 2,3,4-trichlorophenol Chemical compound OC1=CC=C(Cl)C(Cl)=C1Cl HSQFVBWFPBKHEB-UHFFFAOYSA-N 0.000 description 1
- OPJWPPVYCOPDCM-UHFFFAOYSA-N 2-ethylhexyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CC)CCCC OPJWPPVYCOPDCM-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- USVZHTBPMMSRHY-UHFFFAOYSA-N 8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9-[2-(2-chlorophenyl)ethyl]purin-6-amine Chemical compound C=1C=2OCOC=2C=C(Br)C=1SC1=NC=2C(N)=NC=NC=2N1CCC1=CC=CC=C1Cl USVZHTBPMMSRHY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 240000006497 Dianthus caryophyllus Species 0.000 description 1
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229940037626 isobutyl stearate Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- CPXCDEMFNPKOEF-UHFFFAOYSA-N methyl 3-methylbenzoate Chemical compound COC(=O)C1=CC=CC(C)=C1 CPXCDEMFNPKOEF-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000004669 nonionic softener Substances 0.000 description 1
- AQFWNELGMODZGC-UHFFFAOYSA-N o-ethylhydroxylamine Chemical class CCON AQFWNELGMODZGC-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
Definitions
- This invention relates to fabric treatment compositions comprising cationic fabric softeners and clays having a low ion-exchange capacity.
- this invention relates to the utilization of conventional fabric softeners in combination with clays having a low ion-exchange capacity and a specific surface area to provide textile treatment benefits not achieveable from conventional fabric-softener technologies containing cationic surface actives, if desired in combination with "detergent” clays.
- detergent in this context refers to clays such as montmorillonites which are well known to provide through-the-wash fabric benefits inclusive of softening.
- the technology herein can be embodied in various physical forms inclusive of liquid, paste and solid, and if desired, substrate-like compositions. The technology was found to be particularly beneficial for use in concentrated or conventional liquid rinse softeners.
- the claimed compositions are capable of delivering enhanced softening performance as compared to what can be obtained from known fabric softener compositions. Another significant benefit originates from the dry, non-greasy, feel conferred by the claimed compositions as compared to a greasy-lubricated feel of textiles treated with conventional rinse softeners.
- the clay compound can also provide desirable carrier properties for components which otherwise could not be effectively brought to the fiber to provide benefits e.g. aesthetics which are permanent in between successive laundry treatments. -
- water-insoluble detergent additives inclusive of clays
- the clay-platelet prior art is represented by a large number of publications, some examples of which are referred to below.
- the use of collodial bentonites in synthetic detergent compositions, built or unbuilt, intended for the washing of hair, textiles, or hard surfaces, is known from British Patent No. 401,413, to Marriott.
- British Patent No. 1,440,898, to The Procter & Gamble Company also discloses the use of smectite-type clays in granular, built, laundry detergent compositions to provide through-the-wash fabric softening and/ or anti-static benefits.
- Comparable technology is also known from U.S. Patent No. 3,033,699, to du Pont de Nemours and Co.; it pertains to compositions and processes for improving antistatic properties of synthetic fibers with the aid of an aqueous suspension of a magnesium montomorillonite and colloidal silica.
- U.S. Patent No. 3,886,075, to The Procter & Gamble Company discloses the detergent utilization of particular smectite clays and cationic antistatic agents, in combination with amino-compatibilizing agents, thus providing cleaning and other desirable benefits, inclusive of softening. Comparable disclosures are also known from European Patent Application No. 80200878.9, to the Procter & Gamble Company; U.S. Patent No. 4,292,035, to The Procter & Gamble Company; and U.S. Patent No. 3,594,212, to General Mills, Inc.
- the water-insoluble additive art relative to particles having no ion-exchange capacity is represented by U.S. Patent No. 3,861,870, to The Procter & Gamble Company; it discloses a fabric softening composition containing a cation-active softening agent and substantially water-insoluble particulate materials which are free from exchangeable calcium and magnesium ions.
- the fiber-benefits are derived from the geometry and can be visualized as a quasi "roller-bearing" effect.
- the spherical geometry of the water-insoluble materials is defined with the aid of an anisotropy of from 5:1 to 1:1.
- GB-A-2104540 discloses softening-through-the-wash detergent compositions containing metaleaolus.
- the clay-detergent prior art is silent and non-suggestive concerning the utilisation of clays in rinse softener compositions and further is, at least implicitly, possessed of the principle that low ion-exchange capacity clays such as kaolins would not deliver textile benefits comparable to e.g. detergent smectites.
- the present invention provides rinse-added liquid fabric rinse softener compositions comprising from 2 to 25% by weight of a cationic fabric softener; from 0.1 to 10% by weight of a clay having an ion-exchange capacity from 2 to 35 meg/100 g and a specific surface area from 2 to 100 m 2 /g, preferably 4 to 25 m 2 /g; and from 40% to 98%, preferably from 65% to 98%, by weight of a liquid carrier and conventional additives, whereby the weight ratio of the cationic fabric softener to the clay lies in a range from 1:1 1 to 80:1, preferably from 2:1 to 25:1.
- the present invention also contemplates rinse or dryer-added solid treatment compositions in particular compositions which are deposited onto a water-insoluble e.g. sheet-like carrier for use in e.g. hot air dryers.
- the invention herein relates to fabric treatment technology comprising, in its broadest scope, a binary ingredient combination, namely a cationic textile treatment agent, and a clay having a low and narrowly defined ion-exchange capacity and a relatively low specific surface-area.
- the cationic textile treatment component can be represented by all cationic surface-active agents which are known to be suitable for use in textile-treatment compositions and have found application in this field of technology. Particularly well-known in this respect are fabric softener/liquid textile treatment compositions for use in the rinsing step of an automatic washing machine operation.
- the cationic ingredient represents from 2% to 25% whereby the weight ratio of cationic ingredient to clay is in the range from 1:1 to 80:1.
- the cationic fabric softener represents from 4% to 8% whereas in another preferred, and more concentrated, execution, the cationic ingredient represents from 12% to 18% of the liquid textile treatment composition.
- the weight ratio of cationic fabric softener to low ion-exchange clays in the most preferred liquid softening compositions is in the range from 2:1 to 25:1.
- Suitable cationic ingredients herein are know textile-treatment components. Many of the like ingredients have found commercial application.
- the cationic ingredient is a nitrogen-containing material such as quarternary ammonium compounds and amines and have one or two straight-chain organic groups of at least eight carbon atoms. Preferably, they have one or two groups of from 12 to 22 carbon atoms.
- Preferred cationic components include the quarternary ammonium softener compounds corresponding to the formula: wherein
- Cation-active amines namely primary, secondary and tertiary amines, having, at least, one straight-chain organic group of from 12 to 2 carbon atoms can also be used.
- a well-known example of diamines useful herein is tallow-N,N' ,N'-tris(2-hydroxyethyl)-1 ,3-propylenediamine. This diamine will be protonated depending upon the pH and qualifies as a cationic in the meaning of the claimed technology.
- Preferred amines of this class are ethoxyamines, such as monotallow-dipolyethoxyamine, having a total of 2 to 30 ethoxygroups per molecule.
- a useful species of this class is C 16 - 1s -alkyl-N-bis(2-hydroxyethyl)amines.
- Suitable cationic ingredients herein are the quaternary imidazolinium salts.
- Preferred salts are those conforming to the formula: wherein
- Suitable anions include those disclosed with reference to the cationic quaternary ammonium fabric softeners described hereinbefore. Particularly preferred are those imidazolinium compounds in which both R 7 and R s are alkyls of from 12 to 22 carbon atoms, e.g., 1-methyl 2-tallow 3-tallowamidoethyl imidazolinium methosulfate.
- cationic quartenary ammonium fabric softeners which are useful herein include, for example, alkyl (C 12 to C 22 )-pyridinium chlorides, alkyl (C 12 to C 22 )-alkyl (C 1 to C 3 )-morpholinium chlorides, and quarternary derivatives of amino acids and amino esters.
- cationic fabric softeners mentioned above can be used singly or in combination in the practice of the present invention.
- the essential clay component is presented in the compositions of the invention at levels from 0.1 % to 10%, which amount varies depending upon the level of the cationic textile treatment agent.
- the clay In one preferred liquid formulation containing from 4% to 8% of the cationic fabric softener, the clay represents 0.1% to 0.5%, whereas in a more concentrated liquid execution containing from 12% to 18% of said cationic fabric softener, the clay ingredient can represent from 0.5% to 3.5%.
- Clays generally are essentially alumino-silicates which can be crystallized in a variety of mineral structures.
- Clay minerals usually contain besides the alumino-silicate hydrous silicates of less abundant metal elements, inclusive of Mg, Fe and others. They are crystallized in layer structures. Their operability for use in the instant compositions is defined via:
- Clay minerals can carry an excess of negative electric charge owing to internal substitution by lower valent cations.
- the exchangeable cations are held by weak electrical forces and more or less easily replaceable by others. No structural change in the mineral is involved as a result of the exchange.
- the ion-exchange is stoichiometric in nature, namely for each cation taken up from the medium, an equivalent amount of ion is released into the medium.
- the cation-exchange capacity is measured in terms of milliequivalents per 100 g of clay. This is done with the aid of well-known techniques, such as: electrodialysis; exchange with ammonium ion followed by back titration; or the methylene blue procedure.
- a typical cation exchange reaction may be expressed as follows:
- ammonium ion back titration is frequently used and can be carried out in accordance with the operational mode in "The Chemistry and Physics of Clays", Interscience, 1971, pages 264-265.
- the ion-exchange capacity of the clays herein is in the range of from 2 to 35 meq/100 g. These clays can, in fact, be termed as "low-ion-exchange" clays.
- the specifice surface area is the geometrical surface area per unit of volume.
- the method usually applied for the determination of this parameter is that proposed by Brunauer, Emmett and Teller, disclosed in "Physical and Chemical Aspects of Absorbents and Catalysts", Academic Press, 1970, p 21, 22, 23. It is known as the BET Method; the data are generated via the adsorption of nitrogen on solid substances.
- the particular shape of the clays of the invention leads to a low surface-to-volume ratio, i.e., a low specific surface area.
- the clay can, therefore, be more completely surrounded by cationics, and possibly spherical particles are formed, which can easily deposit onto the fabric.
- the clay component herein has a specific surface area from 2 to 100 m 2 /g, preferably from 4 to 25 m 2 /g.
- Clay species particularly suitable for use herein include: kaolin, illite clays such as muscovite and mica, talc, and mixture of these clays.
- clays herein can serve as carrier for optional substances that, in the context of prior art fabric softener technology, could not be effectively deposited onto the fabrics from an aqueous rinse in part because these compounds are quite soluble in water.
- optional components usually serve to augment and improve known fiber benefits and include, for instance, short chain di- or polyfunctional alcohols such as glycerol or ethylene glycol, short chain amines such as triethanolamine, and hydrophilic polymers, e.g., polyethylene glycol, polyethyleneimine.
- these compounds provide good softness properties to cotton fabrics if applied directly to the fabrics by a spray- on technique, or by immersing the fabrics in concentrated solutions of said compounds.
- Clays are known to form complexes with compounds of the type mentioned above, some of these complexes are described, for instance, in "The Chemistry of Clay Organic Reactions" by B. & C. Theng, A. Hilger 1974. In these complexes the organic compounds are believed to be adsorbed between the layers of the clay material. In this way these organic compounds can be deposited together with the clay to the fabrics where the optional component will exhibit the particular benefits.
- the weight ratio of clay carrier to component deposited thereon is preferably in the range of from 1:5 to 6:1, most preferably from 1:2 to 1:1.
- the clay can also help the fabric deposition of other materials such as perfume, germicidal agents and other optional components for fabric softener compositions which (optimals) are usually present in sub- additive levels e.g. below 2%.
- the carrier combination i.e. the clay and the optional component deposited thereon, are prepared separately, i.e., before being incorporated into the claimed compositions, by known means inclusive of mixing the additive and the clay.
- compositions of this invention can contain, in addition to the essential components described in more detail hereinbefore, all kind of matrix ingredients, compatibilizing agents and optional performance additives with a view to facilitate the utilization of the technology by e.g. the housewife, to enhance and facilitate the industrial processing of optimized executions, and also to augment and improve desirable performance benefits.
- the like additives and optional ingredients are represented by well-know ingredients and ingredient mixtures, which are used for their known functionality in the art established levels. Nonlimiting examples of useful optional ingredients are listed hereinafter.
- compositions herein frequently comprise inert matrix ingredients, fillers and/or liquid carriers.
- Matrix ingredients/fillers can generally comprise all neutral liquid or solid, frequently inert extenders, such as sodium sulfate, saccharose and possibly mixtures of polyphosphates and sodium-sulfate.
- the binary active system is stably incorporated and/or dispersed and/or suspended with the aid of from 40% to 98%, preferably 65% to 98% of a liquid carrier and additives.
- Suitable liquid carriers comprise water, lower aliphatic alcohols, especially ethanol, isopropanol, n-propanol, propanediol, hexanol, hexylene glycol, pentanol, isobutanol, as well as aromatic alcohols, like phenoxyethanol, benzyl alcohol, phenylethylalcohol, C 1 - 18 -alkyl phenols ethoxylated with 2 moles of ethylene oxide, and mixtures thereof.
- aromatic alcohols like phenoxyethanol, benzyl alcohol, phenylethylalcohol, C 1 - 18 -alkyl phenols ethoxylated with 2 moles of ethylene oxide, and mixtures thereof.
- aromatic adjuncts could be added; preferred adjuncts of the acid, ester, ketone or phenol types include benzoic acid, m-chlorobenzoic acid, p-toluic acid, hydrocinnamic acid, salicyclic acid, benzyl benzoate, benzyle salicylate, trichlorophenol, benzophenone, benzene sulfonic acid and CI-1,3-alkyl benzene sulfonic acid.
- the compositions can also contain nonionic fabric softeners such as those described in German Offenlegungschrift 26 31 114, preferably fatty acid esters of polyhydric alchols having up to 8 carbon atoms.
- nonionic fabric softeners such as those described in German Offenlegungschrift 26 31 114, preferably fatty acid esters of polyhydric alchols having up to 8 carbon atoms.
- the like esters include sorbitan esters and glycerol esters such as sorbitan monostearate, sorbitan monooleate, glycerol mono-di- and tri-fatty acid esters wherein the acid is selected from stearic, oleic, lauric, capric, caprylic, caproic, valeric, butyric, propionic and acetic acid; an individual glycerol can be esterified by identical fatty acid groups or by mixed esters e.g.
- glycerol monostearatedioleate Polyethyleneglycol esters of fatty acids such as monooleate, dioleate, monolaurate and monostearate, wherein the polyethyleneglycol moiety has a molecular weight in the range from 200 to 400 are also included in that class.
- Fatty acid esters of monohydric alcohols having at least 4 carbon atoms such as isobutyl stearate and ethyl hexyl stearate can also be useful.
- nonionic fabric softeners which can be used are: glycerol, diglycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, dihexylene glycol, polyethylene glycol (MW 200-100.000), polypropylene glycol (MW 200-100.000), polyvinylalcohol, polyoxyethylenepolyoxypropylene copolymers, polypropylene glycol (MW 900), glucose methylether, butyldiglycolether, diethyleneglycolmonobutylether, propyleneglycolmonoethyl or ethyl ether, ethylene carbonate, propylene carbonate.
- These glucosides exhibit desirable solvent properties and in addition can confer fiber benefits such as softness.
- Lanolins and derivatives and paraffins having from 16 to 30 carbon atoms constitute another example of non-ionic softeners which can be used if desired.
- Other optional ingredients for improving the textile softness can be selected from mono-, di- and triethanolamine, triethanolaminemono-, di- and triglycolether, hydrochlorosalts of the above amines, polyethyleneimine, N-alkyl polyethyleneimine and N-alkylamine oxides, ethoxylated polyfunctional amines such as polyethoxytetraethylene pentamine (90 times ethoxylated).
- nonionic textile treatment agents can be used in liquid softener compositions in levels which do not exceed the level of cationic textile treatment agent.
- liquid compositions herein can also contain viscosity control agents such as calcium chloride and/ or magnesium chloride at levels of from 100 to 2000 ppm.
- compositions may contain silicones such as described in DE-A-26 31 419. These materials can provide further benefits inclusive of ease of ironing and anti-wrinkling.
- the optional silicone component can be used in an amount of from about 0.1% to about 4%, preferably from 0.4% to 3% of the softener composition.
- Preferred silicones include aminosubstituted silicones, cationic silicones and non-substituted polydimethylsiloxanes.
- the silicone ingredient is frequently represented by a pre-emulsified silicone whereby the emulsifier can be represented by all kind of ionic and nonionic species. Highly ethoxylated fatty acid esters is one known class of suitable emulsifiers.
- compositions include emulsifiers, perfumes, preservatives, germicides, dyes, bactericides, stabilizers, brighteners, opacifiers, photoactivators, soil release agents and anti-yellowing agents. These additives are normally incorporated at their conventional low levels e.g. from about 0.001% to 5%.
- Suitable preservatives are frequently used in levels from 0.001 % to 0.3% and can be represented by 2-nitro-2-bromopropane-1,3-diol, glutaraldehyde, and 2-methyl-4-isothiazolin-3-one and its chloro- derivative.
- Photoactivators such as sulfonated-Zn-phthalocyanine and those disclosed in EP-A-0.003.149 can be used in e.g. levels from 1.0 ppm to 2000 ppm.
- the sum of matrix ingredients, solvents, additives and other optional ingredients can vary over a very broad range e.g. from 0% to 98%.
- the product can be added via the wash or into the hot air clothes dryer.
- Product characteristics are chosen to give a good balance between non-greasy/non-sticky product feel and good release in the wash/dryer.
- the key product characteristic desired is dispersibility with the release behaviour controlled by the material or sealing of the pouch/sachet.
- the substrate are non-woven polyester or rayon with wood pulp, of the foam-polyether or polyurethane and of the pouch - polyvinyl acetate.
- ingredient ranges for solids and substrate executions herein are as follows:
- a concentrated liquid fabric softener was prepared having the composition listed hereinafter.
- the ditallowdimethyl ammonium chloride was molten and, at 65°, mixed with the imidazolinium material, the ethoxylated amine, the phosphoric acid and the kaolin. This premix was injected, under vigorous stirring, in a waterseat having a temperature of about 60°C.
- the above composition was easily pourable, at ambient temperature, after preparation and after prolonged storage. It showed excellent phase stability and homogeneity after a one month storage at room temperature.
- This composition upon use in the rinsing step of an automatic washing machine, was found to impart superior textile softening properties compared to what was obtained from a conventional, non-kaolin- containing rinse softener.
- Substantially identical textile benefits are also secured by the replacement of the kaolin in the above composition by an equivalent level of talc, having an ion-exchange capacity of 2.4 meq/1 00 g and a specific surface area of 17.6 m 2 /g.
- compositions were evaluated thereby using the following softness test:
- Example II The composition of Example II was found to be significantly superior as compared to prior art Composition A.
- compositions of the invention provide remarkable softening benefits compared to prior art softening compositions containing no clay or quasi-art executions containing a bentonite clay.
- compositions of Ex VI, Ex VII and Ex VIII were tested and were found to exhibit excellent textile treatment benefit as compared to conventional liquid treatment softeners.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- This invention relates to fabric treatment compositions comprising cationic fabric softeners and clays having a low ion-exchange capacity. In more detail, this invention relates to the utilization of conventional fabric softeners in combination with clays having a low ion-exchange capacity and a specific surface area to provide textile treatment benefits not achieveable from conventional fabric-softener technologies containing cationic surface actives, if desired in combination with "detergent" clays. The term "detergent" in this context refers to clays such as montmorillonites which are well known to provide through-the-wash fabric benefits inclusive of softening. The technology herein can be embodied in various physical forms inclusive of liquid, paste and solid, and if desired, substrate-like compositions. The technology was found to be particularly beneficial for use in concentrated or conventional liquid rinse softeners.
- The claimed compositions are capable of delivering enhanced softening performance as compared to what can be obtained from known fabric softener compositions. Another significant benefit originates from the dry, non-greasy, feel conferred by the claimed compositions as compared to a greasy-lubricated feel of textiles treated with conventional rinse softeners.
- The clay compound can also provide desirable carrier properties for components which otherwise could not be effectively brought to the fiber to provide benefits e.g. aesthetics which are permanent in between successive laundry treatments. -
- The use of clays in textile treatment, particularly cleaning compositions, is well-known and has found commerical application.
- The use of water-insoluble detergent additives, inclusive of clays, can, based on the mechanism by which these additivies exhibit their textile treatment functionality, abitrarily be categorized in two distinct classes, namely those which derive intrinsic softness benefits from compression or slipping of clay- platelets lubricated by the water in the inter-layers having an ion-exchange capacity above 50 meg/100 g, and composite textile benefits derived from spherical particles which do not exhibit ion-exchange properties and which act by virtue of a quasi-"roller-bearing" effect.
- The clay-platelet prior art is represented by a large number of publications, some examples of which are referred to below. The use of collodial bentonites in synthetic detergent compositions, built or unbuilt, intended for the washing of hair, textiles, or hard surfaces, is known from British Patent No. 401,413, to Marriott.
- British Patent No. 1,440,898, to The Procter & Gamble Company, also discloses the use of smectite-type clays in granular, built, laundry detergent compositions to provide through-the-wash fabric softening and/ or anti-static benefits.
- Comparable technology is also known from U.S. Patent No. 3,033,699, to du Pont de Nemours and Co.; it pertains to compositions and processes for improving antistatic properties of synthetic fibers with the aid of an aqueous suspension of a magnesium montomorillonite and colloidal silica.
- U.S. Patent No. 3,886,075, to The Procter & Gamble Company, discloses the detergent utilization of particular smectite clays and cationic antistatic agents, in combination with amino-compatibilizing agents, thus providing cleaning and other desirable benefits, inclusive of softening. Comparable disclosures are also known from European Patent Application No. 80200878.9, to the Procter & Gamble Company; U.S. Patent No. 4,292,035, to The Procter & Gamble Company; and U.S. Patent No. 3,594,212, to General Mills, Inc.
- The above clay-platelet state of the art is exemplified in the use of montmorllonites, smectites and comparable clays having significant ion-exchange capacities, as referred to above.
- The water-insoluble additive art relative to particles having no ion-exchange capacity is represented by U.S. Patent No. 3,861,870, to The Procter & Gamble Company; it discloses a fabric softening composition containing a cation-active softening agent and substantially water-insoluble particulate materials which are free from exchangeable calcium and magnesium ions. The fiber-benefits are derived from the geometry and can be visualized as a quasi "roller-bearing" effect. The spherical geometry of the water-insoluble materials is defined with the aid of an anisotropy of from 5:1 to 1:1.
- GB-A-2104540 discloses softening-through-the-wash detergent compositions containing metaleaolus.
- The clay-detergent prior art is silent and non-suggestive concerning the utilisation of clays in rinse softener compositions and further is, at least implicitly, possessed of the principle that low ion-exchange capacity clays such as kaolins would not deliver textile benefits comparable to e.g. detergent smectites.
- It was now discovered that kaolin-type clays can deliver remarkable textile treatment benefits upon incorporation into rinse softener compositions containing cationic surface active agent. The benefits and the parameter limitations of the claimed technology are explained in more detail hereinafter.
- The present invention provides rinse-added liquid fabric rinse softener compositions comprising from 2 to 25% by weight of a cationic fabric softener; from 0.1 to 10% by weight of a clay having an ion-exchange capacity from 2 to 35 meg/100 g and a specific surface area from 2 to 100 m2/g, preferably 4 to 25 m2/g; and from 40% to 98%, preferably from 65% to 98%, by weight of a liquid carrier and conventional additives, whereby the weight ratio of the cationic fabric softener to the clay lies in a range from 1:1 1 to 80:1, preferably from 2:1 to 25:1.
- The present invention also contemplates rinse or dryer-added solid treatment compositions in particular compositions which are deposited onto a water-insoluble e.g. sheet-like carrier for use in e.g. hot air dryers.
- Unless indicated to the contrary, the "percent" indications hereinafter stand for "percent by weight". In the following description, the terms "fabric softener" and "textile treatment" are used interchangeably.
- The invention herein relates to fabric treatment technology comprising, in its broadest scope, a binary ingredient combination, namely a cationic textile treatment agent, and a clay having a low and narrowly defined ion-exchange capacity and a relatively low specific surface-area. These main parameters as well as preferred and optimized executions of the invention are described and illustrated in more detail in what follows.
- The cationic textile treatment component can be represented by all cationic surface-active agents which are known to be suitable for use in textile-treatment compositions and have found application in this field of technology. Particularly well-known in this respect are fabric softener/liquid textile treatment compositions for use in the rinsing step of an automatic washing machine operation.
- In the liquid fabric treatment compositions herein, the cationic ingredient represents from 2% to 25% whereby the weight ratio of cationic ingredient to clay is in the range from 1:1 to 80:1.
- In one execution of the preferred liquid fabric softener compositions, the cationic fabric softener represents from 4% to 8% whereas in another preferred, and more concentrated, execution, the cationic ingredient represents from 12% to 18% of the liquid textile treatment composition.
- The weight ratio of cationic fabric softener to low ion-exchange clays in the most preferred liquid softening compositions is in the range from 2:1 to 25:1.
- Suitable cationic ingredients herein are know textile-treatment components. Many of the like ingredients have found commercial application. Generally, the cationic ingredient is a nitrogen-containing material such as quarternary ammonium compounds and amines and have one or two straight-chain organic groups of at least eight carbon atoms. Preferably, they have one or two groups of from 12 to 22 carbon atoms. Preferred cationic components include the quarternary ammonium softener compounds corresponding to the formula:
- R is hydrogen or an aliphatic group from 1 to 22 carbon atoms;
- R1 is an aliphatic group having 12 to 22 carbon atoms;
- R2 and R3 are each alkyl groups of from 1 to 3 carbon atoms; and
- X is an anion selected from halogen, acetate, phosphate, nitrate and methyl sulfate radicals.
- Cation-active amines, namely primary, secondary and tertiary amines, having, at least, one straight-chain organic group of from 12 to 2 carbon atoms can also be used. A well-known example of diamines useful herein is tallow-N,N' ,N'-tris(2-hydroxyethyl)-1 ,3-propylenediamine. This diamine will be protonated depending upon the pH and qualifies as a cationic in the meaning of the claimed technology.
- Preferred amines of this class are ethoxyamines, such as monotallow-dipolyethoxyamine, having a total of 2 to 30 ethoxygroups per molecule. A useful species of this class is C16-1s-alkyl-N-bis(2-hydroxyethyl)amines.
-
- R6 is an alkyl containing from 1 to 4, preferably from 1 to 2, carbon atoms,
- Rs is an alkyl containing from 1 to 4 carbon atoms or a hydrogen radical,
- Rs is an alkyl containing from 1 to 22, preferably at least 15, carbon atoms,
- R7, an alkyl containing from 8 to 22, preferably at least 15, carbon atoms, and
- X is an anion, preferably methyl sulfate or chloride ions.
- Other suitable anions include those disclosed with reference to the cationic quaternary ammonium fabric softeners described hereinbefore. Particularly preferred are those imidazolinium compounds in which both R7 and Rs are alkyls of from 12 to 22 carbon atoms, e.g., 1-methyl 2-tallow 3-tallowamidoethyl imidazolinium methosulfate.
- Other cationic quartenary ammonium fabric softeners, which are useful herein include, for example, alkyl (C12 to C22)-pyridinium chlorides, alkyl (C12 to C22)-alkyl (C1 to C3)-morpholinium chlorides, and quarternary derivatives of amino acids and amino esters.
- The cationic fabric softeners mentioned above can be used singly or in combination in the practice of the present invention.
- The essential clay component is presented in the compositions of the invention at levels from 0.1 % to 10%, which amount varies depending upon the level of the cationic textile treatment agent.
- In one preferred liquid formulation containing from 4% to 8% of the cationic fabric softener, the clay represents 0.1% to 0.5%, whereas in a more concentrated liquid execution containing from 12% to 18% of said cationic fabric softener, the clay ingredient can represent from 0.5% to 3.5%.
- Clays generally are essentially alumino-silicates which can be crystallized in a variety of mineral structures.
- They differ in chemical and physical properties, like cation-exchange capacity and specific surface area.
- Clay minerals usually contain besides the alumino-silicate hydrous silicates of less abundant metal elements, inclusive of Mg, Fe and others. They are crystallized in layer structures. Their operability for use in the instant compositions is defined via:
- (1) an ion-exchange capacity from 2 to 35 meq/100 g; and
- (2) a specific surface area from 2 to 100 m2/g, preferably 4 to 25 m2/g.
- Clay minerals can carry an excess of negative electric charge owing to internal substitution by lower valent cations. The exchangeable cations are held by weak electrical forces and more or less easily replaceable by others. No structural change in the mineral is involved as a result of the exchange. The ion-exchange is stoichiometric in nature, namely for each cation taken up from the medium, an equivalent amount of ion is released into the medium.
- The cation-exchange capacity is measured in terms of milliequivalents per 100 g of clay. This is done with the aid of well-known techniques, such as: electrodialysis; exchange with ammonium ion followed by back titration; or the methylene blue procedure. A typical cation exchange reaction may be expressed as follows:
-
- The ammonium ion back titration is frequently used and can be carried out in accordance with the operational mode in "The Chemistry and Physics of Clays", Interscience, 1971, pages 264-265.
- The ion-exchange capacity of the clays herein is in the range of from 2 to 35 meq/100 g. These clays can, in fact, be termed as "low-ion-exchange" clays.
- It is believed that the relatively low surface-charge as compared to e.g. montmorillonite varieties, generates an optimized clay-cationic coaction to provide unexpected fiber benefits. The like benefits are not achievable in the event the cationic softener is strongly linked to clays such as e.g. montmorillonites having relatively higher surface-charge.
- The specifice surface area is the geometrical surface area per unit of volume. The method usually applied for the determination of this parameter is that proposed by Brunauer, Emmett and Teller, disclosed in "Physical and Chemical Aspects of Absorbents and Catalysts", Academic Press, 1970, p 21, 22, 23. It is known as the BET Method; the data are generated via the adsorption of nitrogen on solid substances.
- The particular shape of the clays of the invention leads to a low surface-to-volume ratio, i.e., a low specific surface area.
- The clay can, therefore, be more completely surrounded by cationics, and possibly spherical particles are formed, which can easily deposit onto the fabric. The clay component herein has a specific surface area from 2 to 100 m2/g, preferably from 4 to 25 m2/g.
- Clay species particularly suitable for use herein include: kaolin, illite clays such as muscovite and mica, talc, and mixture of these clays.
- Another useful property of the clays herein is that they can serve as carrier for optional substances that, in the context of prior art fabric softener technology, could not be effectively deposited onto the fabrics from an aqueous rinse in part because these compounds are quite soluble in water. These optional components usually serve to augment and improve known fiber benefits and include, for instance, short chain di- or polyfunctional alcohols such as glycerol or ethylene glycol, short chain amines such as triethanolamine, and hydrophilic polymers, e.g., polyethylene glycol, polyethyleneimine. Generally these compounds provide good softness properties to cotton fabrics if applied directly to the fabrics by a spray- on technique, or by immersing the fabrics in concentrated solutions of said compounds. They could up to now not be effectively deposited onto fabrics under conventional rinse conditions. Clays are known to form complexes with compounds of the type mentioned above, some of these complexes are described, for instance, in "The Chemistry of Clay Organic Reactions" by B. & C. Theng, A. Hilger 1974. In these complexes the organic compounds are believed to be adsorbed between the layers of the clay material. In this way these organic compounds can be deposited together with the clay to the fabrics where the optional component will exhibit the particular benefits. The weight ratio of clay carrier to component deposited thereon is preferably in the range of from 1:5 to 6:1, most preferably from 1:2 to 1:1.
- The clay can also help the fabric deposition of other materials such as perfume, germicidal agents and other optional components for fabric softener compositions which (optimals) are usually present in sub- additive levels e.g. below 2%.
- The carrier combination i.e. the clay and the optional component deposited thereon, are prepared separately, i.e., before being incorporated into the claimed compositions, by known means inclusive of mixing the additive and the clay.
- The compositions of this invention can contain, in addition to the essential components described in more detail hereinbefore, all kind of matrix ingredients, compatibilizing agents and optional performance additives with a view to facilitate the utilization of the technology by e.g. the housewife, to enhance and facilitate the industrial processing of optimized executions, and also to augment and improve desirable performance benefits. The like additives and optional ingredients are represented by well-know ingredients and ingredient mixtures, which are used for their known functionality in the art established levels. Nonlimiting examples of useful optional ingredients are listed hereinafter.
- The compositions herein frequently comprise inert matrix ingredients, fillers and/or liquid carriers. Matrix ingredients/fillers can generally comprise all neutral liquid or solid, frequently inert extenders, such as sodium sulfate, saccharose and possibly mixtures of polyphosphates and sodium-sulfate. In the liquid execution herein, the binary active system is stably incorporated and/or dispersed and/or suspended with the aid of from 40% to 98%, preferably 65% to 98% of a liquid carrier and additives. Suitable liquid carriers comprise water, lower aliphatic alcohols, especially ethanol, isopropanol, n-propanol, propanediol, hexanol, hexylene glycol, pentanol, isobutanol, as well as aromatic alcohols, like phenoxyethanol, benzyl alcohol, phenylethylalcohol, C1-18-alkyl phenols ethoxylated with 2 moles of ethylene oxide, and mixtures thereof.
- In order to increase the solubility of the cationic ingredient in the organic solvents, aromatic adjuncts could be added; preferred adjuncts of the acid, ester, ketone or phenol types include benzoic acid, m-chlorobenzoic acid, p-toluic acid, hydrocinnamic acid, salicyclic acid, benzyl benzoate, benzyle salicylate, trichlorophenol, benzophenone, benzene sulfonic acid and CI-1,3-alkyl benzene sulfonic acid.
- In addition to the cationic textile treatment agent, the compositions can also contain nonionic fabric softeners such as those described in German Offenlegungschrift 26 31 114, preferably fatty acid esters of polyhydric alchols having up to 8 carbon atoms. Examples of the like esters include sorbitan esters and glycerol esters such as sorbitan monostearate, sorbitan monooleate, glycerol mono-di- and tri-fatty acid esters wherein the acid is selected from stearic, oleic, lauric, capric, caprylic, caproic, valeric, butyric, propionic and acetic acid; an individual glycerol can be esterified by identical fatty acid groups or by mixed esters e.g. glycerol monostearatedioleate. Polyethyleneglycol esters of fatty acids such as monooleate, dioleate, monolaurate and monostearate, wherein the polyethyleneglycol moiety has a molecular weight in the range from 200 to 400 are also included in that class. Fatty acid esters of monohydric alcohols having at least 4 carbon atoms such as isobutyl stearate and ethyl hexyl stearate can also be useful.
- Additional nonionic fabric softeners which can be used are: glycerol, diglycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, dihexylene glycol, polyethylene glycol (MW 200-100.000), polypropylene glycol (MW 200-100.000), polyvinylalcohol, polyoxyethylenepolyoxypropylene copolymers, polypropylene glycol (MW 900), glucose methylether, butyldiglycolether, diethyleneglycolmonobutylether, propyleneglycolmonoethyl or ethyl ether, ethylene carbonate, propylene carbonate.
- Alkylpolyglucosides of the general formula R20(C"HZ"0)t(glucosyl)% wherein R2 is alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl and mixture thereof wherein the alkyl chain has from 8 to 18 carbon atoms, t is from 0 and 2 and x from 2 to 7, can also be used in the composition. These glucosides exhibit desirable solvent properties and in addition can confer fiber benefits such as softness.
- Lanolins and derivatives and paraffins having from 16 to 30 carbon atoms constitute another example of non-ionic softeners which can be used if desired.
- Low melting oils from animal, vegetable or mineral origin are representative of this class of softeners. Carnation oils, Jojoba oil!!) and Sunflower oil are specific examples which are found to work.
- Other optional ingredients for improving the textile softness can be selected from mono-, di- and triethanolamine, triethanolaminemono-, di- and triglycolether, hydrochlorosalts of the above amines, polyethyleneimine, N-alkyl polyethyleneimine and N-alkylamine oxides, ethoxylated polyfunctional amines such as polyethoxytetraethylene pentamine (90 times ethoxylated).
- The like nonionic textile treatment agents, can be used in liquid softener compositions in levels which do not exceed the level of cationic textile treatment agent.
- The liquid compositions herein can also contain viscosity control agents such as calcium chloride and/ or magnesium chloride at levels of from 100 to 2000 ppm.
- The compositions may contain silicones such as described in DE-A-26 31 419. These materials can provide further benefits inclusive of ease of ironing and anti-wrinkling. The optional silicone component can be used in an amount of from about 0.1% to about 4%, preferably from 0.4% to 3% of the softener composition. Preferred silicones include aminosubstituted silicones, cationic silicones and non-substituted polydimethylsiloxanes. The silicone ingredient is frequently represented by a pre-emulsified silicone whereby the emulsifier can be represented by all kind of ionic and nonionic species. Highly ethoxylated fatty acid esters is one known class of suitable emulsifiers.
- Other optional ingredients for use in the inventive compositions include emulsifiers, perfumes, preservatives, germicides, dyes, bactericides, stabilizers, brighteners, opacifiers, photoactivators, soil release agents and anti-yellowing agents. These additives are normally incorporated at their conventional low levels e.g. from about 0.001% to 5%.
- Suitable preservatives are frequently used in levels from 0.001 % to 0.3% and can be represented by 2-nitro-2-bromopropane-1,3-diol, glutaraldehyde, and 2-methyl-4-isothiazolin-3-one and its chloro- derivative.
- Photoactivators such as sulfonated-Zn-phthalocyanine and those disclosed in EP-A-0.003.149 can be used in e.g. levels from 1.0 ppm to 2000 ppm.
- Depending upon the exact formulation parameters of a given product execution, the sum of matrix ingredients, solvents, additives and other optional ingredients can vary over a very broad range e.g. from 0% to 98%.
- While a major illustration in the context of this invention is directed to aqueous based liquid rinse added softener, it is understood that the combination of low ion-exchange clay and cationic can also be utilized in delivering a fabric conditioning effect via other ways of incorporation. In all cases the broad range of clay/cationic combinations still apply although the preferred ratios of clay to cationic and choice of type and level of additives will depend on the form of the softening agent and its desired physical and chemical properties. Some examples of alternative forms of the clay/cationic softening agent are as follows (not in any way meant to be all encompassing).
- 1. A granular or powdered composition of this invention can be produced by, for example spray cooling/drying, granulation, agglomeration or extrusion. This execution can for example be added directly into the final rinse or predispersed in water before use in which case dispersibility is a key desired attribute. A key criteria is to maintain the product free flowing at all times and is generally achieved when the clay/ cationic with optional additives, has a softening point above normal room temperature, normally above 30-35°C.
- 2. A substrate execution where the softening composition is impregnated in or coated onto non-woven or foam substrates or contained within a pouch or sachet.
- In the case of a substrate, the product can be added via the wash or into the hot air clothes dryer. Product characteristics are chosen to give a good balance between non-greasy/non-sticky product feel and good release in the wash/dryer.
- In the case of product contained within a pouch or sachet, the key product characteristic desired is dispersibility with the release behaviour controlled by the material or sealing of the pouch/sachet. Examples of the substrate are non-woven polyester or rayon with wood pulp, of the foam-polyether or polyurethane and of the pouch - polyvinyl acetate.
-
- A concentrated liquid fabric softener was prepared having the composition listed hereinafter. The ditallowdimethyl ammonium chloride was molten and, at 65°, mixed with the imidazolinium material, the ethoxylated amine, the phosphoric acid and the kaolin. This premix was injected, under vigorous stirring, in a waterseat having a temperature of about 60°C.
- The above composition was easily pourable, at ambient temperature, after preparation and after prolonged storage. It showed excellent phase stability and homogeneity after a one month storage at room temperature.
- This composition, upon use in the rinsing step of an automatic washing machine, was found to impart superior textile softening properties compared to what was obtained from a conventional, non-kaolin- containing rinse softener.
- Comparable results are obtained by the replacement of the kaolin in the above formula by an equivalent level of an illite clay, selected from:
- mica : having an ion-exchange capacity of 19 meq/100 g and a specific surface area of 4 m2/g.
- muscovite: having an ion-exchange capacity of 25 meq/100 g and a specific surface area of 5 m2/g.
- Substantially identical textile benefits are also secured by the replacement of the kaolin in the above composition by an equivalent level of talc, having an ion-exchange capacity of 2.4 meq/1 00 g and a specific surface area of 17.6 m 2/g.
-
- The above compositions were evaluated thereby using the following softness test:
- A bundle of mixed fabrics and terry cotton test swatches was washed in a commercial washing machine, with detergent in the washing cycle, and subsequently rinsed thereby using 40 grams of the liquid softening composition followed by line drying. The softness of the terry cotton swatches so treated were comparatively measured. The softness difference between the various swatches was evaluated on 4 replicates, in paired comparisons, by 2 expert judges thereby using a 0-4 scale (psu) whereby:
- 0 means: there is no difference
- 1 means: I think there is a difference
- 2 means: I know there is a difference
- 3 means: I know there is a big difference
- 4 means: There is a very large difference.
-
-
- The testing evidence shows that the compositions of the invention provide remarkable softening benefits compared to prior art softening compositions containing no clay or quasi-art executions containing a bentonite clay.
-
- The compositions of Ex VI, Ex VII and Ex VIII were tested and were found to exhibit excellent textile treatment benefit as compared to conventional liquid treatment softeners.
- Further examples of the invention are formulated having the compositions indicated below.
-
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84201839T ATE38053T1 (en) | 1983-12-20 | 1984-12-11 | CLAY CONTAINING FABRIC DETERGENT. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB838333816A GB8333816D0 (en) | 1983-12-20 | 1983-12-20 | Fabric softening compositions |
GB8333816 | 1983-12-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0150531A1 EP0150531A1 (en) | 1985-08-07 |
EP0150531B1 true EP0150531B1 (en) | 1988-10-19 |
Family
ID=10553525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84201839A Expired EP0150531B1 (en) | 1983-12-20 | 1984-12-11 | Fabric softening compositions containing clays |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0150531B1 (en) |
JP (1) | JPS60209069A (en) |
AT (1) | ATE38053T1 (en) |
DE (1) | DE3474687D1 (en) |
GB (1) | GB8333816D0 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9506015B2 (en) | 2014-11-21 | 2016-11-29 | Ecolab Usa Inc. | Compositions to boost fabric softener performance |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3437721A1 (en) * | 1984-10-15 | 1986-04-17 | Süd-Chemie AG, 8000 München | DETERGENT ADDITIVE |
DE3604039A1 (en) * | 1986-02-08 | 1987-08-20 | Henkel Kgaa | TEXTILE DETERGENT AND CLEANING AGENT |
EP0299575B1 (en) * | 1987-07-14 | 1994-01-12 | The Procter & Gamble Company | Detergent compositions |
US4851139A (en) * | 1987-08-26 | 1989-07-25 | The Clorox Company | Isotropic fabric softener composition containing fabric mildewstat |
GB2212179A (en) * | 1987-11-06 | 1989-07-19 | Procter & Gamble | Detergent compatible, dryer released fabric softening/antistatic agents |
US5409619A (en) * | 1993-08-23 | 1995-04-25 | Reckitt & Colman Inc. | Ironing aid composition |
EP0839899B1 (en) | 1996-10-30 | 2003-03-26 | The Procter & Gamble Company | Fabric softening compositions |
DE102007012909A1 (en) | 2007-03-19 | 2008-09-25 | Momentive Performance Materials Gmbh | Fragrance-modified, reactive polyorganosiloxanes |
DE102007012910A1 (en) | 2007-03-19 | 2008-09-25 | Momentive Performance Materials Gmbh | Fragrance-modified, branched polyorganosiloxanes |
US9688945B2 (en) | 2014-11-21 | 2017-06-27 | Ecolab Usa Inc. | Compositions to boost fabric softener performance |
US9725679B2 (en) | 2014-11-21 | 2017-08-08 | Ecolab Usa Inc. | Compositions to boost fabric softener performance |
BR112017010709B8 (en) * | 2014-11-21 | 2023-10-17 | Ecolab Usa Inc | Method for conditioning and softening fabrics, method for softening fabrics and system for conditioning and softening fabric |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA734721B (en) * | 1972-07-14 | 1974-03-27 | Procter & Gamble | Detergent compositions |
US4178254A (en) * | 1978-03-13 | 1979-12-11 | The Procter & Gamble Company | Fabric care compositions containing smectite clay and starch |
US4178255A (en) * | 1978-05-15 | 1979-12-11 | Colgate-Palmolive Company | Detergent compositions |
US4183815A (en) * | 1978-05-15 | 1980-01-15 | Colgate-Palmolive Company | Laundry detergent compositions |
US4292035A (en) * | 1978-11-13 | 1981-09-29 | The Procter & Gamble Company | Fabric softening compositions |
DE3069588D1 (en) * | 1979-07-05 | 1984-12-13 | Procter & Gamble | Detergent composition having textile softening property |
-
1983
- 1983-12-20 GB GB838333816A patent/GB8333816D0/en active Pending
-
1984
- 1984-12-11 DE DE8484201839T patent/DE3474687D1/en not_active Expired
- 1984-12-11 EP EP84201839A patent/EP0150531B1/en not_active Expired
- 1984-12-11 AT AT84201839T patent/ATE38053T1/en not_active IP Right Cessation
- 1984-12-20 JP JP59269578A patent/JPS60209069A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9506015B2 (en) | 2014-11-21 | 2016-11-29 | Ecolab Usa Inc. | Compositions to boost fabric softener performance |
Also Published As
Publication number | Publication date |
---|---|
GB8333816D0 (en) | 1984-02-01 |
EP0150531A1 (en) | 1985-08-07 |
DE3474687D1 (en) | 1988-11-24 |
ATE38053T1 (en) | 1988-11-15 |
JPS60209069A (en) | 1985-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3954632A (en) | Softening additive and detergent composition | |
US3993573A (en) | Softening additive and detergent composition | |
EP0150531B1 (en) | Fabric softening compositions containing clays | |
US3862058A (en) | Detergent compositions containing a smectite-type clay softening agent | |
CA1074966A (en) | Detergent-compatible fabric softening and antistatic compositions | |
US4292035A (en) | Fabric softening compositions | |
CA2059038C (en) | Biodegradable fabric softening compositions based on pentaerythritol esters and free of quaternary ammonium compounds | |
US7211556B2 (en) | Fabric care composition comprising polymer encapsulated fabric or skin beneficiating ingredient | |
CA1152263A (en) | Detergent-compatible fabric softening and antistatic compositions | |
US20060252669A1 (en) | Fabric care composition comprising polymer encapsulated fabric or skin beneficiating ingredient | |
JPS5947753B2 (en) | Conditioning composition for fabrics | |
US4786422A (en) | Fabric softening and antistatic particulate wash cycle laundry additive containing cationic/anionic surfactant complex on bentonite | |
US4626364A (en) | Particulate fabric softening and antistatic built detergent composition and particulate agglomerate for use in manufacture thereof | |
GB1600907A (en) | Fabric softening and anti-static compositions | |
CA1204561A (en) | Fabric conditioning composition | |
EP0530959A1 (en) | Fabric softening compositions based on pentaerythritol compound and dispersant for such a compound | |
EP0076572B1 (en) | Fabric softening detergent additive products and use thereof in detergent compositions | |
US4764292A (en) | Fabric-softening particles | |
EP0387426B1 (en) | Fabric softening compositions containing natural hectorite clay | |
US4891143A (en) | Water insoluble antistatic compositions | |
JPS61176700A (en) | Fabric softening antistatic liquid deterent composition | |
US6194374B1 (en) | Biodegradable fabric softening compositions based on a combination of pentaerythritol esters, bentonite and a polyphosphonate compound | |
EP0440229B1 (en) | Process and composition for multicomponent 100% solid fabric softeners | |
JPS62265400A (en) | Cloth softening particle | |
US4882076A (en) | Fabric softening and antistatic particulate wash cycle laundry additive containing cationic/anionic surfactant complex on bentonite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19860127 |
|
17Q | First examination report despatched |
Effective date: 19870209 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 38053 Country of ref document: AT Date of ref document: 19881115 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3474687 Country of ref document: DE Date of ref document: 19881124 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19931202 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19931208 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19931209 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19931214 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19931215 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19931231 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940131 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19941211 Ref country code: AT Effective date: 19941211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19941231 Ref country code: CH Effective date: 19941231 Ref country code: BE Effective date: 19941231 |
|
BERE | Be: lapsed |
Owner name: PROCTER & GAMBLE EUROPEAN TECHNICAL CENTER Effective date: 19941231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |