EP0103042B1 - Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln - Google Patents

Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln Download PDF

Info

Publication number
EP0103042B1
EP0103042B1 EP82108470A EP82108470A EP0103042B1 EP 0103042 B1 EP0103042 B1 EP 0103042B1 EP 82108470 A EP82108470 A EP 82108470A EP 82108470 A EP82108470 A EP 82108470A EP 0103042 B1 EP0103042 B1 EP 0103042B1
Authority
EP
European Patent Office
Prior art keywords
blades
fan
impeller hub
stop means
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82108470A
Other languages
English (en)
French (fr)
Other versions
EP0103042A1 (de
Inventor
Gert Hecht
Manfred Dr. Sellmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP82108470A priority Critical patent/EP0103042B1/de
Priority to DE8282108470T priority patent/DE3272588D1/de
Priority to AT82108470T priority patent/ATE21438T1/de
Priority to DD83254745A priority patent/DD217585A5/de
Priority to DK413983A priority patent/DK157147C/da
Publication of EP0103042A1 publication Critical patent/EP0103042A1/de
Application granted granted Critical
Publication of EP0103042B1 publication Critical patent/EP0103042B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • F04D29/362Blade mountings adjustable during rotation
    • F04D29/366Adjustment by interaction of inertion and lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes

Definitions

  • the invention relates to a fan with blades which can be rotated automatically about a longitudinal axis in order to avoid undesired rotational speeds according to the preamble of patent claim 1 and of patent claim 3; such a fan is known from DE-A-862 280 and FR-A-1 553 046.
  • the blades of the variable-pitch propeller are adjusted in a speed-dependent manner by centrifugal force regulators in order to achieve a starting position in a particularly simple manner in such a way that they are brought to a steeper position and thus a smaller angle with respect to the wind direction when the vehicle is at a standstill and at very low speeds will.
  • the centrifugal forces work on the respective wing axis via transmission means.
  • the centrifugal force device is to be used both for the adjustment in the start-up area and in the work area.
  • the known device is considered particularly advantageous for the use of wind power motors for small systems, since the propeller can start with large moments on the one hand and, on the other hand, as a high-speed runner in the actual working area of the impeller, it can be adjusted automatically as a function of speed in such a way that a control to an approximately constant speed or results in consistent performance.
  • the aim is to ensure that a generator connected to a wind turbine is no longer supplied with additional energy from a certain wind speed.
  • the wind turbines which operate continuously in turbine operation, they are first pulled against a stop with a spring; depending on the wind speed and in particular on the setting or the force of the spring, the wing lifts off the stop during operation, so that the aerodynamic angle of attack increases.
  • a weight arranged downstream on the wing is provided in order to reduce the angle of attack due to special inertia effects when the wind turbine accelerates.
  • the object of the present invention is to protect the fan from a harmful increase in speed in the event of a malfunction in the event of an external pressure wave driving the fan while maintaining its direction of rotation according to the principle of a wind turbine by the flow forces occurring in the pressure wave.
  • a fault is to be considered in particular when the secured secondary cooling circuit of a power plant block, consisting of cell coolers with a fan, must also be designed against the "external explosion" load case.
  • the explosion pressure wave is idealized by a pressure-time function, which among other things is characterized by a short but very high pressure increase or speed increase at the beginning of the start of the pressure wave. If the safety design of the fan provided in accordance with the task were not present, the pressure wave that would start would cause the operating speed of the fan to rise to such a peak speed that even materials with a large tear length could not withstand this load.
  • the counterweights in cooperation with the blades adjustable about their special longitudinal axes and the acting air and centrifugal forces ensure that the adjustable blades on the one hand in normal operation in accordance with the teaching of claim 1
  • Design provided by the centrifugal force is not rotated in the closed position with the wing chord running almost perpendicular to the fan axis, but pressed against the first stop or, in the case of the design provided for in claim 3, is pressed against the first stop with moderate force that can be overcome in the event of a fault, and on the other hand
  • the triggering criterion of the reversal of the resulting air force characteristic of the transition from pump to turbine operation, tilts from its first operating position into the second malfunctioning position and, in this, an undesirable rotation increase avoiding position can be held either by the second stop or in the zero-lift equilibrium position without a separate stop.
  • every second wing 2 is alternately designed as an independently rotatable wing 3, while the remaining wings 2 are arranged fixedly on the circumference of the impeller hub 1.
  • 4 shows, in a partial section, a top view of a developed impeller hub 1, two vanes 2 fixedly arranged on the circumference of this impeller hub and two vanes 3, each of which rotates along its longitudinal axis 31.
  • the rotatable vanes 3 are entered in FIG. in which they abut against stops 7 with their upstream ends.
  • the rotatable wings 3 are pivoted about their longitudinal axis 31 in such a way that their downstream ends rest against stops 6 and one to the fixed wings 2 take up the equivalent wing position.
  • the centrifugal weights fixedly arranged on the rotatable wings 3 according to the invention are not shown in FIG. 4.
  • FIG. 1 shows a sectional view of a single wing 3, which in the normal operating position due to the assumed direction of rotation: n or flow direction: L of the air, the bearing in the axis of gravity 31 and the counterweight 5 shown with its outflow end against the first Stop 6 is pressed.
  • the counterweights 5 compensate for the influence of the centrifugal forces, which otherwise try to turn the rotatable blades in the closed position (wing chord perpendicular to the impeller axis) and, on the other hand, achieve that the rotating blades with a definable pressure against the stop also when starting the impeller 6 are pressed.
  • the counterweights are each arranged in the quadrant of an assumed coordinate system, the coordinate origin of which according to FIG. 1 lies in the center of gravity of the longitudinal axis 31 and the abscissa x in the directions of rotation of the impeller or the ordinate y thereof in the direction L of the air flow.
  • Fig. 1 the resulting air force F, which acts on the vane 3 in normal fan operation, is also entered, which is due to the entered speed triangle with the assumed speeds: passage speed c m circumferential speed u and the relative or inflow speed w (neglecting the behind Impeller existing swirl component) results in the wing-fixed coordinate system.
  • FIGS. 5 to 8 show a further embodiment of a pressure-resistant axial fan designed according to the invention with the direction of rotation again assumed: n and the direction of flow: L of the air.
  • all vanes 4 arranged on the circumference of the impeller hub 1 are rotatably mounted. The rotation takes place about a longitudinal axis 41 in the first quarter of the wing depth.
  • Each wing is in turn firmly connected to a counterweight 5 arranged in the upstream region of the impeller hub 1 according to FIGS. 5 and 6.
  • the counterweights 5 are not shown in the schematic development of the impeller hub 1 according to FIG. 7 or FIG. 8.
  • each blade 4 is in normal fan operation due to the interaction of the air and centrifugal forces at its output end in the start-up or Operating position pressed against a first stop ⁇ .
  • Each individual wing will adjust in the intended bearing in the direction of zero lift if the air force F 2 changes its sign after the impact of the pressure wave and acts on the wing according to FIG. 6.
  • the air force causes each wing to bear against its stop 8.
  • the undesired adjusting torque acting on the wing during operation due to centrifugal forces is in turn compensated by counterweights 5.
  • the counterweight is in turn arranged in quadrant 111 of an assumed coordinate system, the coordinate origin of which lies at the point of the longitudinal axis 41 and the abscissa x in the direction of rotation n and the ordinate thereof in the direction of the air flow.
  • the counterweight 5 is dimensioned in the sense of the invention so that, on the one hand, in normal operation, in particular in start-up operation, a wing system with a defined pressure on the stop 8 is ensured and, in the event of a malfunction, the relatively low air force can tip the wing into the zero lift position.
  • Fig. 7 shows in a partial development of the impeller hub 1, the operating position of the vanes 4 with the assumed assumed direction of rotation n of the impeller and the inflow direction L of the pressure wave.
  • 8 shows the same development of the impeller hub, however, with vanes 4 rotated about their respective longitudinal axis 41 in the zero lift direction and with neglected bearing friction in each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Air-Flow Control Members (AREA)

Description

  • Die Erfindung bezieht sich auf einen Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse drehbaren Flügeln gemäß Oberbegriff des Patentanspruchs 1 bzw. des Patentanspruchs 3; ein derartiger Ventilator ist aus der DE-A-862 280 bzw. der FR-A-1 553 046 bekannt.
  • Bei dem durch die DE-A-862 280 bekannten Ventilator werden die Flügel des Verstellpropellers zur besonders einfachen Erzielung einer Anfahrstellung drehzahlabhängig mittels Fliehkraftreglern derart verstellt, daß sie bei Stillstand und sehr geringen Drehzahlen in eine steilere Stellung und somit einen kleineren Winkel gegenüber der Windrichtung gebracht werden. Die Fliehkräfte arbeiten dabei über Übertragungsmittel auf die jeweilige Flügelachse. Nach einer Ausgestaltung der Erfindung soll die Fliehkrafteinrichtung sowohl für die Verstellung im Anlaufbereich als auch im Arbeitsbereich verwendet werden. Die bekannte Einrichtung wird besonders vorteilhaft für die Verwendung von Windkraftmotoren für kleine Anlagen angesehen, da der Propeller einerseits mit großen Momenten anlaufen kann und andererseits als Schnell-Läufer im eigentlichen Arbeitsbereich des Flügelrades selbsttätig drehzahlabhängig derart verstellbar ist, daß sich eine Regelung auf annähernd gleichbleibende Drehzahl oder auf gleichbleibende Leistung ergibt.
  • Im Falle der FR-A-1 553 046 soll erreicht werden, daß einem mit einem Windrad verbundenen Generator ab einer bestimmten Windgeschwindigkeit keine zusätzliche Energie mehr zugeführt wird. Zur Leistungsbegrenzung der dauernd im Turbinenbetrieb arbeitenden Windräder werden diese mit einer Feder zunächst gegen einen Anschlag gezogen; abhängig von der Windgeschwindigkeit und insbesondere von der Einstellung bzw. der Kraft der Feder hebt der Flügel im Betrieb von dem Anschlag ab, so daß sich der aerodynamische Anstellwinkel vergrößert. Eine stromabwärts am Flügel angeordnetes Gewicht ist vorgesehen, um bei einer Beschleunigung des Windrades den Anstellwinkel wegen besonderer Trägheitseffekte zu verkleinern.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, mit einfachen Mitteln den Ventilator vor einer schädlichen Drehzahlerhöhung im Störfall einer externen, den Ventilator unter Beibehaltung seiner Drehrichtung nach dem Prinzip einer Windturbine antreibenden Druckwelle durch die in der Druckwelle auftretenden Strömungskräfte zu schützen. Ein solcher Störfall ist insbesondere dann zu betrachten, wenn der gesicherte Nebenkühlkreis eines Kraftwerkblocks, bestehend aus Zellenkühlern mit Ventilator, auch gegen den Lastfall "äußere Explosion" auszulegen ist. Nach den Vorschriften der Genehmigungsbehörden ist die Explosionsdruckwelle durch eine Druck-ZeitFunktion zu idealisieren, die u.a. durch eine kurzzeitige, jedoch sehr hohen Druckanstieg bzw. Geschwindigkeitsanstieg zu Begin der anlaufenden Druckwelle gekennzeichnet ist. Wäre eine aufgabengemäß vorgesehene Sicherheitskonstruktion des Ventilators nicht vorhanden, so würde gegebenenfalls die anlaufende Druckwelle die Betriebsdrehzahl des Ventilators auf eine solche Spitzendrehzahl ansteigen lassen, daß selbst Werkstoffe großer Reißlänge dieser Belastung nicht widerstehen könnten.
  • Ausgehend von der Erkenntnis, daß bei dem angenommenen Störfall einer externen, den Ventilator nach den Winkraftmaschinenprinzip antreibenden Druckwelle ein Vorzeichenwechsel in der auf jeden Lüfterflügel einwirkenden resultierenden Luftkraft eintritt und somit diese Luftkraft dann in entgegengesetzter Richtung auf den Lüfterflügel einwirkt, kann die gestellte Aufgabe bei einem Ventilator der eingangs genannten Art durch die Lehre gemäß Kennzeichen des Patentansprüches 1 bzw. des patentanspruchs 3 gelöst werden; vorteilhafte Ausgestaltungen der Erfindung sind jeweils Gegenstand der Unteransprüche 2 und 4. Durch die Gegengewichte wird im Zusammenwirken mit den um ihre speziellen Längsachsen verstellbaren Flügel und den einwirkenden Luft- und Zentrifugalkräften erreicht, daß die verstellbaren Flügel einerseits im Normalbetrieb bei der gemäß Lehre des Patentanspruchs 1 vorgesehenen Konstruktion durch die Zentrifugalkraft nicht in Schließ-Stellung mit nahezu senkrecht zur Lüfterachse verlaufender Flügelsehne verdreht, sondern gegen den ersten Anschlag gedrückt bzw. bei der gemäß Lehre des Patentanspruchs 3 vorgesehenen Konstruktion mit mäßiger und im Störfall überwindbarer Kraft gegen den ersten Anschlag gedrückt und andererseits im Störfall durch das auslösende Kriterium der beim Übergang von einem Pump- auf einen Turbinenbetrieb charakteristischen Umkehrung der resultierenden Luftkraft aus ihrer ersten Betriebs-Stellung in die zweite Störfall-Stellung kippen und in dieser, eine unerwünschte Drehzahlerhöhung vermeidenden Stellung entweder durch den zweiten Anschlag oder in der Nullauftriebs-Gleichgewichtsstellung ohne gesonderten Anschlag gehalten werden.
  • Bei der gemäß der Lehre des Patentanspruchs 1 vorgesehenen Konstruktion sma nur etwa die Hälfte der gesamten am Umfang der Ventilatornabe angeordneten Flügel selbsttätig verstellbar auszubilden, da in vorteilhafter Weise der zweite Anschlag eine derartige Flügelstellung bewirkt, daß das Antriebsmoment der verstellten Flügel dem Antriebsmoment der nicht verstellten Flügel in seiner absoluten Größe entspricht, in seiner vektoriellen Wirkungsrichtung jedoch derart entgegengerichtet ist, daß sich die Umfangskomponenten der Luftkräfte gerade aufheben oder zumindest nur ein solches resultierendes Antriebsmoment erlauben, das keine unzulässige Drehzahlerhöhung des Laufrades bewirkt.
  • Die Erfindung wird in folgenden anhand zweier, schematisch dargestellter Ausführungsbeispiele in der Zeichnung näher erläutert; darin zeigen:
    • Fig. 1 eine radiale Draufsicht auf einen Teil der Laufradnabe mit einem in Schnitt dargestellten drehbaren Flügel und daran wirkenden Luftkräften in normaler Betriebs-Stellung,
    • Fig. 2 die Darstellung gemäß Fig. 1 jedoch mit den wirkenden Luftkräften unmittelbar nach Auftreffen der Störfall-Druckwelle,
    • Fig. 3 die Darstellung gemäß Fig. 1 jedoch mit in Störfall-Stellung verdrehtem Flügel und daran wirkenden Luftkräften,
    • Fig. 4 in verkleinertem Maßstab eine Draufsicht auf einen Teil der abgewickelten Laufradnabe mit vier dargestellten Flügeln, von denen jeder zweite in Störfall-Gegenstellung zu den übrigen Flügeln verdreht ist,
    • Fig. 5 eine radiale Draufsicht auf einen Teil der abgewickelten Laufradnabe mit einem im Schnitt dargestellten, um eine im ersten Viertel der Flügeltiefe befindliche Längsachse drehbaren Flügel und daran wirkenden Luftkräften in normaler Betriebs-Stellung,
    • Fig. 6 die Darstellung genäß Fig.5 jedoch mit in Störfall-Stellung verdrehtem Flügel und daran wirkenden Luftkräften,
    • Fig. 7 in verkleinertem Maßstab eine Draufsicht auf einen Teil der abgewickelten Laufradnabe mit vier in Betriebs-Stellung dargestellten Flügeln, von denen jeder um eine Längsachse in ersten Viertel der Flügeltiefe drehbar ist,
    • Fig. 8 den Teil der Laufradnabe gemäß Fig. 7 jedoch mit in Störfall-Stellung verdrehten Flügeln.
  • Bei dem in den Figuren 1 bis 4 dargestellten Ausführungbeispiel ist wechselweise jeder zweite Flügel 2 als selbständig verdrehbarer Flügel 3 ausgebildet, während die übrigen Flügel 2 fest am Umfang der Laufradnabe 1 angeordnet sind. Fig. 4 zeigt dazu in einem Teilausschnitt in Draufsicht auf eine abgewickelte Laufradnabe 1 zwei am Umfang dieser Laufradnabe fest angeordnete Flügel 2 und jeweils zwei un ihre Längsachse 31 drehbare Flügel 3. Die drehbaren Flügel 3 sind in Fig. 4 in Störfall-Stellung eingetragen, in der sie mit ihren anströmseitigen Enden gegen Anschläge 7 anliegen Im Anfahr- und in normaler Betriebs- Stellung sind die drehbaren Flügel 3 derart um ihre Längsachse 31 verschwenkt, daß sie mit ihren abströmseitigen Enden an Anschlägen 6 anliegen und eine zu den fest angeordneten Flügeln 2 äquivalente Flügel-Stellung einnehmen. Die an den drehbaren Flügeln 3 erfindungsgemäß fest angeordneten Fliehgewichte sind in Fig. 4 nicht miteingezeichnet.
  • Anhand der Figuren 1 bis 3 soll im folgenden die aufgrund der in normalen Betriebsfall bzw. in Störfall jeweils wirkenden Luft- und Fliehkräfte sich selbsttätig einstellende Verdrehung der in ihrer Schwereachse 31 drehbar gelagerten Flügel 3 näher erläutert worden:
  • Dazu zeigt Fig. 1 im Schnittbild einen einzelnen Flügel 3, der in normaler Betriebs-Stellung aufgrund der angenommenen Drehrichtung:n bzw. Anströmrichtung: L der Luft, der Lagerung in der Schwereachse 31 und des dargestellten Gegengewichtes 5 mit seinem abströmseitigen Ende gegen den ersten Anschlag 6 gedrückt wird.
  • Durch die Gegengewichte 5 wird einerseits der Einfluß der Zentrifugalkräfte kompensiert, die ansonsten die drehbaren Flügel in Schließ-Stellung (Flügelsehne senkrecht zur Laufradachse) zu drehen versuchen und andererseits erreicht, daß auch beim Anfahren des Laufrades die drehbaren Flügel mit einem definierbaren Druck gegen den Anschlag 6 gedrückt werden. Im Sinne vorliegender Erfindung sind die Gegengewichte dazu jeweils im Quadranten eines angenommenen Koordinatensystems angeordnet, dessen Koordinaten-Ursprung gemäß Fig. 1 in Schwerepunkt der Längsachse 31 liegt und dessen Abszisse x in Drehrichtungn des Laufrades bzw. dessen Ordinate y in Richtung L der Luftströmung verläuft.
  • In Fig. 1 ist zusätzlich die im normalen Ventilatorbetrieb am Flügel 3 angreifende resultierende Luftkraft F, eingetragen, die sich aufgrund des eingetragenen Geschwindigkeitsdreiecks mit den angenommenen Geschwindigkeiten: Durchtrittsgeschwindigkeit cm Umfangsgeschwindigkeit u sowie der Relativ- bzw. Anströmgeschwindigkeit w (bei Vernachlässigung der hinter dem Laufrad vorhandenen Drallkomponente) im flügelfesten Koordinatensystem ergibt.
  • Beim Auftreffen bzw. beim Durchgang einer angenommenen definierten Druckwelle (Lastfall: "äußere Explosion") erhöht sich plötzlich - wie in Fig. 2 angedeutet - die Durchtritts- bzw. Meridiangeschwindigkeit cm z.B. um das Zehnfache auf einen Wert cm'; demzufolge wird auch die Relativ- bzw. Anströmgeschwindigkeit W4 auf W ' vergrößert, während die Geschwindigkeitskomponente u der Umfangsgeschwindigkeit sich nur wenig ändert. Dieser Übergang vom Pumpbetrieb auf einen Turbinenbetrieb bei Beibehaltung der Drehrichtung ist durch eine Umkehrung des Vorzeichens der resultierenden Luftkraft am Flügel gekennzeichnet, so daß die Luftkraft F,' im Störfall in entgegengesetzter Richtung zur Luftkraft F, im normalen Betriebs-Fall an Flügel 3 angreift. Der Vorzeichenwechsel der resultierenden Luftkraft und die sich dadurch ergebene entgegengesetzte Wirkungsrichtung der resultierenden Luftkraft wird nun benutzt, und den drehbaren Flügel 3 aus der normalen Betriebs- Stellung mit Anlage an dem ersten Anschlag 6 in die in Fig. 3 dargestellte Störfall-Stellung mit Anlage an dem zweiten Anschlag 7 zu verdrehen.
  • Durch die wechselweise Anordnung jeweils eines fest angeordneten und eines verdrehbar angeordneten Flügels am Umfang der Laufradnabe 1 ergibt sich dann die in Fig.4 in der Abwicklung eines Teils der Laufradnabe 1 dargestellte Zuordnung der verschiedenen Flügel 2 bzw. 3. Durch die Lagewahl des Anschlags 7 kann dafür gesorgt werden, daß die Gesamtheit der auf die Flügel 2, 3 wirkenden Umfangskomponenten der Luftkräfte sich gerade auflieben oder zumindest nur ein solches resultierendes Antriebsmoment zulassen, das nicht zu einer schädlichen Drehzahlerhöhung des Laufrades führt.
  • Die Figuren 5 bis 8 zeigen eine weitere Ausführung eines erfindungsgemäß ausgebildeten druckfesten Axialventilators bei wiederum angenommener Drehrichtung: n sowie Anströmrichtung: L der Luft. Dazu sind sämtliche am Umfang der Laufradnabe 1 angeordneten Flügel 4 drehbar gelagert. Die Drehung erfolgt um eine Längsachse 41 im ersten Viertel der Flügeltiefe. Jeder Flügel ist wiedeirum mit einem gemäß Fig. 5 bzw. Fig. 6 im stromaufwärts liegenden Bereich der Laufradnabe 1 angeordneten Gegengewicht 5 fest verbunden. Die Gegengewichte 5 sind in der schematischen Abwicklung der Laufradnabe 1 gemäß Fig. 7 bzw. Fig. 8 nicht eingezeichnet.
  • Ähnlich wie bei dem Ausführungsbeispiel gemäß Fig. 1 bis Fig. 4 ist auch beim vorliegenden Ausführungsbeispiel gemäß Fig. 3 bis Fig. 8 jeder Flügel 4 aufgrund des Zussammenwirkens der Luft- und Fliehkräfte in normalen VentilatorBetrieb an seinem abtriebsseitigen Ende in der Anfahr- bzw. Betriebs-Stellung gegen einen ersten Anschlag β gedrückt. Jeder einzelne Flügel wird sich bei der vorgesehenen Lagerung in Nullauftriebsrichtung verstellen, falls die Luftkraft F2 nach Auftreffen der Druckwelle ihr Vorzeichen ändert und gemäß Fig. 6 am Flügel angreift. Im Normalbetrieb, d.h. vor Auftreffen einer Druckwelle, bewirkt die Luftkraft ein Anlegen jedes Flügels gegen seinen Anschlag 8. Das in Betrieb infolge von Fliehkräften auf die Flügel wirkende unerwünschte Verstellmoment wird wiederum durch Gegengewichte 5 kompensiert. Dabei ist im Sinne der Erfindung das Gegengewicht wiederum im Quadranten 111 eines angenommenen Koordinatensystems angeordnet, dessen Koordinatenursprung im Punkt der Längsachse 41 liegt und dessen Abszisse x in Drehrichtung n sowie dessen Ordinate in Richtung der Luftströmung verlaufen. Das Gegengewicht 5 ist im erfindungsgemäßem Sinne so bemessen, daß einerseits im Normalbetrieb, insbesondere im Anfahrbetrieb eine Flügel-Anlage mit definiertem Druck an den Anschlag 8 gewährleistet ist und im Störfall die relativ geringe Luftkraft den Flügel in die Nullauftriebsstellung zu kippen vermag.
  • Bei Anlaufen einer Druckwelle (Lastfall: "äußere Explosion') gegen die Flügel 4 ändert sich die Richtung der Relativ- bzw. Anströmgeschwindigkeit wQ, gemäß Fig. 5 auf negative Anstellwinkel gemäß w'oo gemäß Fig. 6; durch die Vorzeichenumkehr der resultierenden Luftkraft von F2 gemäß Fig. 5 auf F2"gernäß Fig. 6 wird der Flügel 4 von dem ersten Anschlag 8 abgehoben und in Nullauftriebsrichtung und somit in die Störfall-Stellung gemäß Fig. 6 verdreht. Sobald die Nullauftriebsrichtung überschritten wird, erfährt der Flügel Verstellkräfte, durch die er wieder in Sinne einer stabilen Gleichgewichtslage in die Nähe der Nullauftriebsrichtung zurückgedreht wird. In dieser Gleichgewichtslage bleiben die auf den Flügel wirkenden Kräfte relativ gering, so daß eine schädliche Drehzahlerhöhung des Laufrades mit Sicherheit vermieden werden kann.
  • Fig. 7 zeigt in einer Teilabwicklung der Laufradnabe 1 die Betriebs-Stellung der Flügel 4 bei der eingezeichneten angenommenen Drehrichtung n des Laufrades und der Anströmrichtung L der Druckwelle. Fig. 8 zeigt die gleiche Abwicklung der Flügelradnabe jedoch mit um ihre jweilige Längsachse 41 in Nullauftriebsrichtung verdrehten Flügeln 4 und bei jeweils vernachlässigter Lagerreibung.

Claims (4)

1. Ventilator mit zur Vermeidung unerwünschter Drehzahlen unter Verwendung von Fliehgewichten und zwer in verschiedenen Richtungen wirkenden Anschlägen selbsttätig auf einer Laufradnabe eines Ventilators um eine Längsachse drehbaren Flügeln, gekennzeichnet durch folgende Merkmale:
a) Auf der Laufradnabe (1) sind erste Flügel (2) fest angeordnet und die restlichen Flügel (3) um ihre Schwereachse (31) frei drehbar gelagert;
b) es ist jeweils ein erster die Betriebsstellung der restlichen Flügel (3) begrenzender Anschlag (6) und ein zweiter Anschlag (7) vorgesehen, gegen den die restlichen Flügel (3) in Gegenstellung zu den ersten Flügeln (2) im Störfall anliegen;
c) jeder der restlichen Flügel (3) ist im stromaufwärts liegenden Bereich der Laufradnabe (1) mit einem Gegengewicht (5) fest verbunden;
d) die restlichen Flügel (3) sind bei niedrigen Anfahrdrehzahlen allein durch das Gegengewicht (5) und bei normalem Betriebsdrehzahlen zusätzlich durch die Luftkräfte in einer zur Stellung der ersten Flügel (2) äquivalenten Betriebsstellung gehalten (Fig. 1 bis 4).
2. Ventilator nach Anspruch 1, dadurch gekennzeichnet, daß von den am Umfang der Laufradnabe (1) angeordneten Flügeln (2; 3) wechselweise jeder zweite Flügel als selbsttätig verdrehbarer Flügel (3) ausgebildet ist.
3. Ventilator mit zur Vermeidung unerwünschter Drehzahlen unter Verwendung von Fliehgewichten und zumindest einem die Anfahrstellung der Flügel begrenzenden Anschlag selbsttätig auf einer Laufradnabe eines Ventilators um eine Längsachse drehbaren Flügeln, gekennzeichnet durch folgende Merkmale:
a) Die Längsachse (41) der drehbaren Flügel (4) liegt im ersten Viertel ihrer Flügeltiefe;
b) die drehbaren Flügel (4) sind im stromaufwärts liegenden Bereich der Laufradnabe (1) mit einem Gegengewicht (5) fest verbunden;
c) die drehbaren Flügel (4) sind im normalen Ventilatorbetrieb gegen den Anschlag (8) gedrückt und im Störfall in ihre Nullauftriebsrichtung gedreht (Fig. 5 bis 8).
4. Ventilator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sämtliche, am Umfang der Laufradnabe (1) angeordneten Flügel in ihrem aerodynamischen Teil die gleiche Bauform aufweisen.
EP82108470A 1982-09-14 1982-09-14 Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln Expired EP0103042B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP82108470A EP0103042B1 (de) 1982-09-14 1982-09-14 Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln
DE8282108470T DE3272588D1 (en) 1982-09-14 1982-09-14 Fan comprising automatically adjustable blades about its longitudinal axis to avoid undesirable rotational speed
AT82108470T ATE21438T1 (de) 1982-09-14 1982-09-14 Ventilator mit zur vermeidung unerwuenschter drehzahlen selbsttaetig um eine laengsachse verdrehbaren fluegeln.
DD83254745A DD217585A5 (de) 1982-09-14 1983-09-12 Ventilator mit zur vermeidung unerwuenschter drehzahlen selbsttaetig um eine laengsachse verdrehbaren fluegeln
DK413983A DK157147C (da) 1982-09-14 1983-09-13 Ventilator med vinger, der er svingelige om deres laengdeakser til undgaaelse af uoenskede omdrejningstal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82108470A EP0103042B1 (de) 1982-09-14 1982-09-14 Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln

Publications (2)

Publication Number Publication Date
EP0103042A1 EP0103042A1 (de) 1984-03-21
EP0103042B1 true EP0103042B1 (de) 1986-08-13

Family

ID=8189226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82108470A Expired EP0103042B1 (de) 1982-09-14 1982-09-14 Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln

Country Status (5)

Country Link
EP (1) EP0103042B1 (de)
AT (1) ATE21438T1 (de)
DD (1) DD217585A5 (de)
DE (1) DE3272588D1 (de)
DK (1) DK157147C (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828586B2 (ja) * 1993-12-28 1998-11-25 三菱電機株式会社 回転ファン
DE102007011990B4 (de) * 2007-03-09 2019-01-10 Tlt-Turbo Gmbh Vorrichtung zum hydraulischen Verstellen der Laufschaufeln eines Laufrades eines Axialventilators
DE102008001556A1 (de) * 2008-05-05 2009-11-12 Robert Bosch Gmbh Lüfter und Verfahren zum Betreiben eines Lüfters
CN106194832B (zh) * 2016-08-15 2019-02-05 联想(北京)有限公司 流体驱动装置及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553046A (de) * 1967-11-28 1969-01-10

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE351781C (de) * 1922-04-13 Otto Kuster Windturbine
GB719967A (en) * 1951-06-04 1954-12-08 Nordisk Ventilator Axial-flow blower
DE1036780B (de) * 1954-10-12 1958-08-14 Pintsch Electro Gmbh Einrichtung zum selbsttaetigen Verringern der Fluegelstellung bei schnell laufenden Windraedern
DE1034808B (de) * 1955-02-11 1958-07-24 Siemens Ag Fluegelrad fuer Stroemungsmaschinen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1553046A (de) * 1967-11-28 1969-01-10

Also Published As

Publication number Publication date
ATE21438T1 (de) 1986-08-15
EP0103042A1 (de) 1984-03-21
DE3272588D1 (en) 1986-09-18
DD217585A5 (de) 1985-01-16
DK413983D0 (da) 1983-09-13
DK157147C (da) 1990-04-16
DK413983A (da) 1984-03-15
DK157147B (da) 1989-11-13

Similar Documents

Publication Publication Date Title
DE2602380C3 (de) Drehvorrichtung, die durch ein in Bewegung befindliches Fluid wie z.B. Wasser oder Luft, angetrieben wird
DE577917C (de) Mit einem elektrischen Stromerzeuger gekuppeltes Windrad
DE883428C (de) Windkraftwerk
DE2740959A1 (de) Schnellflugpropeller-ventilator mit hoher blattzahl
EP1177381A1 (de) Windkraftanlag mit vertikalrotor
WO1992005341A1 (de) Rotor
DE2735709A1 (de) Windturbinenanlage
DE3227700A1 (de) Windenergiekonverter
WO1980000733A1 (en) Wind motor
DE3246694A1 (de) Windkraftanlage
DE3315439C2 (de)
EP1998042A1 (de) Rotoreinheit und deren Verwendung
EP0103042B1 (de) Ventilator mit zur Vermeidung unerwünschter Drehzahlen selbsttätig um eine Längsachse verdrehbaren Flügeln
WO1986005846A1 (en) Wind energy converter
DE10030497A1 (de) Axialventilator mit reversierbarer Strömungsrichtung
EP2223853A1 (de) Strömungsdynamische Fläche mit einer von einer durch die angeströmte Fläche induzierten Strömung angetriebenen Turbine
DE739482C (de) Grosswindkraftwerk
DE3707723C2 (de)
DE8225888U1 (de) Ventilator mit zur vermeidung unverwuenschter drehzahlen selbsttaetig um eine laengsachse verdrehbaren fluegeln
DE10340112A1 (de) Windkraftanlage
DE1036780B (de) Einrichtung zum selbsttaetigen Verringern der Fluegelstellung bei schnell laufenden Windraedern
DE3590007T1 (de) Windrotor
DD221505A1 (de) Regeleinrichtung fuer windkraftanlagen
CH130832A (de) Schaufelrad.
DE844028C (de) Anordnung zur Spannungs- und Drehzahlregelung fuer windkraft-elektrische Anlagen, insbesondere fuer kondensatorerregte Asynchron-generatoren und Synchrongeneratoren mit lastabhaengiger Erregung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 21438

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3272588

Country of ref document: DE

Date of ref document: 19860918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860930

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900907

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900913

Year of fee payment: 9

Ref country code: BE

Payment date: 19900913

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900925

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901126

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901217

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910914

Ref country code: AT

Effective date: 19910914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910930

Ref country code: CH

Effective date: 19910930

Ref country code: BE

Effective date: 19910930

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82108470.4

Effective date: 19920408