EP0097097A1 - Direct-contact heat exchange process between gaseous and liquid fluids, and heat exchanger carrying out such a process - Google Patents

Direct-contact heat exchange process between gaseous and liquid fluids, and heat exchanger carrying out such a process Download PDF

Info

Publication number
EP0097097A1
EP0097097A1 EP83401179A EP83401179A EP0097097A1 EP 0097097 A1 EP0097097 A1 EP 0097097A1 EP 83401179 A EP83401179 A EP 83401179A EP 83401179 A EP83401179 A EP 83401179A EP 0097097 A1 EP0097097 A1 EP 0097097A1
Authority
EP
European Patent Office
Prior art keywords
liquid
chamber
layers
downstream
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83401179A
Other languages
German (de)
French (fr)
Other versions
EP0097097B1 (en
Inventor
Georges Gustave André Ignace Gautier
Charles Ludovic Etienne Provost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sarl Etudes & Realisations De Technique Thermique Ertt
Original Assignee
Sarl Etudes & Realisations De Technique Thermique Ertt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarl Etudes & Realisations De Technique Thermique Ertt filed Critical Sarl Etudes & Realisations De Technique Thermique Ertt
Priority to AT83401179T priority Critical patent/ATE31810T1/en
Publication of EP0097097A1 publication Critical patent/EP0097097A1/en
Application granted granted Critical
Publication of EP0097097B1 publication Critical patent/EP0097097B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour

Definitions

  • the present invention relates to the transfer of heat between a gas and a liquid according to the process known as by direct exchange.
  • the transfer of the calories contained in a flow of hot gases (for example a combustion gas) to a liquid, by bringing the sprayed liquid into direct contact with the hot gas, in particular by spraying the liquid into a vertical chamber traversed by the flow of gas, is known and described for example in US-A-4,287,138.
  • Heat transfer by direct exchange is subject to various limitations.
  • a first limitation results from the vapor pressure of the liquid in the gas with which the heat exchange takes place because, since the vaporization of the liquid is endothermic, the vapors entrained by. the outgoing gases constitute a loss.
  • the efficiency of the heat exchange is a function of the difference in temperatures at the level of the exchange surface, the surface of the exchange surface and the duration of the contact.
  • the temperature of heating the liquid which is in any case lower than its boiling temperature, is lower the higher the ratio of the calorific mass of the liquid to the calorific mass of the gas but the efficiency is all the more high that this last ratio is lower.
  • the aim of the present invention is to solve these problems, firstly, by obtaining a better efficiency of the heat exchange, which results in cooler outlet gases, and, secondly, by obtaining a liquid at temperature. near the boiling point.
  • This object is achieved, in accordance with the invention, by causing the gas flowing in the form of a vein to pass through a multiplicity of layers, independent and in series, of sprayed liquid, these sheets occupying the entire section of the vein, and in extracting the liquid from the exchanger to the right of the wall of the vein.
  • the spraying is carried out so as to obtain droplets having a diameter less than a millimeter and it is carried out from the center towards the periphery of the gas stream.
  • the liquid in line with the first upstream layers crossed by the hot gases, the liquid vaporizes while absorbing calories, but the temperature of the gas and vapor mixture cools and said calories absorbed by the vaporization are returned to the liquid constituting the following layers whose volume increases of the volume of condensed vapors. It can therefore be seen that a significant part of the heat transfer takes place at the level of the upstream layers with a significant temperature difference between the gases and the liquid, therefore with a high efficiency.
  • the exchange takes place at the level of each layer between the entire volume of the gases and a fraction of the total volume of the liquid corresponding to the flow supplying the exchanger.
  • the system therefore produces a system equivalent to a plurality of cascade exchangers which each operate with the maximum temperature difference, therefore the maximum possible yield.
  • each droplet Due to the very large volume surface of the liquid in the form of fine droplets, the heat exchange coefficient is high and in the layers where vapor condensation takes place, each droplet forms a condensation nucleus, the multiplicity of droplets promoting this condensation with direct transfer of calories into the mass of the droplet.
  • the projection is carried out in the form of conical sheets.
  • the duration of the contact is increased, compared to a radial ply, like the inverse of the square of the sine of the half-angle at the top of the ply, the length of the path of the liquid from the center to the wall being equal to the radius of the gas stream divided by the sine of the angle and the thickness of the sheet parallel to the axis, that is to say according to the direction of circulation of the gas flow, being equal to the thickness of the sheet divided by the same sine.
  • the conical sheet opens downstream in the direction of circulation of the gas flow.
  • the axial speed of circulation of the gas flow is deduced from the axial component of the speed of the droplets, which reduces the residual relative speed and increases the duration of the contact.
  • the streams of heated liquid corresponding to the various spray plies located on either side of at least the level where the gases are cooled substantially to the vaporization temperature are separated and collected independently.
  • the liquid heated in the downstream layers is used as liquid sprayed in the upstream layers.
  • the present invention also relates to an exchanger for implementing the above direct exchange method comprising an elongated exchange chamber with, at its two ends, respectively an inlet and an outlet for gases and means for spraying a liquid into the gas flow passing through this chamber constituted by a plura lity of spray nozzles staggered along said chamber, the exchanger being characterized in that each spray nozzle sprays the liquid in a flattened ply reaching the wall of the chamber, the different plies being parallel to each other and independent.
  • the exchange chamber being of vertical axis and the gas flowing from bottom to top, the spray nozzles spray according to a conical sheet opening upwards and downstream.
  • the reference 1 designates the cylindrical wall delimiting the exchanger chamber
  • 2 is the inlet of the 3 hot az located at the lower part of the chamber, this inlet tangentially opening over a width approximately equal to the radius of the chamber and 3 denotes the axial outlet of the gases.
  • the reference 4 designates helical guide vanes fixed on the inner wall of the lower part of the chamber to accentuate the helical gas circulation.
  • spray nozzles 5 are arranged along the axis of the chamber being substantially regularly spaced and they are supported by their supply pipe 6, the pipes being carried by boxes 7 inserted in the wall 1 and supplied with pressurized water from supply ramps 8.
  • the nozzles 5 are associated with nozzles to give spray jets 9 in thin conical layers.
  • the spraying is carried out under a pressure of approximately 3 ⁇ 10 P and gives droplets of approximately 0.4 to 0.7 mm in diameter, the angle at the top ⁇ being 70 °.
  • the spray nozzles are divided into two groups A and B supplied by independent booms, the group.
  • A being located the highest, that is to say downstream in the direction of circulation of the fumes and group B upstream.
  • a peripheral chute 10 intended to collect the water from the sheets 9A which s flows on the upper part of the wall.
  • the collected water is evacuated by a pipe 11 in a tank 12 from where it is taken up by a pump 13 to supply by the ramp 8, the nozzles 5 of group B.
  • the water sprayed by the nozzles 9B flows along the wall of the lower part of the chamber and is collected in a tarpaulin 14.
  • the exchanger operates as follows: the hot gases arrive at a temperature T F via inlet 2 and circulate according to an upward helical movement in the chamber to be evacuated by the outlet 3 at a temperature T s , the circulation taking place by natural or forced draft.
  • the water is introduced at a temperature t o and under a pressure of 3 x 10 5 P , which may be the pressure of the supply network, by the ramp 8 of group A, it is sprayed at this temperature t o by the sprayers 5 of group A in the form of conical sheets.
  • This water at temperature t 1 is taken up by the pump 13 and sprayed under the same pressure by the nozzles 5 from group B in the form of conical layers 9B.
  • the temperature difference T F - t 1 is high, the exchange efficiency is high and part of the water will pass into the vapor state.
  • T m the temperature of the gases entraining the vaporized water of the lower layers will decrease to T m and in the upper layers the vapors will condense to be reincorporated into the layers whose water will reach the wall at a temperature neighbor of T M.
  • the coolant is water and the hot gases are combustion gases, but the invention is not limited to this liquid and these hot gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Chimneys And Flues (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

1. A direct-contact process for transferring heat between a gaseous fluid at a liquid fluid, in which the gaseous fluid is introduced at one end of a vertical cylindrical chamber (1) and extracted at the other end of said chamber, the gaseous fluid circulating in said chamber as a cylindrical column with fluid streams substantially parallel to one another and in which the liquid is introduced through the chamber wall and sprayed within said chamber, from a plurality of coaxial spraying nozzles located at the centre and spaced apart in the direction of the gaseous fluid and fed from a common liquid feed source under pressure, as a plurality of coaxial thin conical sheets extending from each spraying nozzle to the chamber periphery, each conical sheet corresponding to a nozzle, the conical liquid sheets sprayed from the various nozzles being independent and serially crossed by the gaseous flux, characterized in that the sprayed liquid in each sheet is collected at the periphery of the sheet on the chamber wall.

Description

La présente invention concerne le transfert de chaleur entre un gaz et un liquide selon la procédé dit par échange direct. Le transfert des calories contenues dans un flux de gaz chauds (par exemple un gaz de combustion) à un liquide, par mise en contact direct du liquide pulvérisé avec le gaz chaud, notamment par pulvérisation du liquide dans une chambre verticale parcourue par le flux de gaz, est connu et décrit par exemple dans US-A-4.287.138.The present invention relates to the transfer of heat between a gas and a liquid according to the process known as by direct exchange. The transfer of the calories contained in a flow of hot gases (for example a combustion gas) to a liquid, by bringing the sprayed liquid into direct contact with the hot gas, in particular by spraying the liquid into a vertical chamber traversed by the flow of gas, is known and described for example in US-A-4,287,138.

Le transfert de chaleur par échange direct est soumis à diverses limitations. Tout d'abord une première limitation résulte de la tension de vapeur du liquide dans le gaz avec lequel s'effectue l'échange thermique car, la vaporisation du liquide étant endothermique, les vapeurs entraînées par . les gaz sortants constituent une perte. Le rendement de l'échange thermique est fonction de la différence des températures au droit de la surface d'échange, de la superficie de la surface d'échange et de la durée du contact. Enfin la température de réchauffement du liquide, qui est de toutes façons inférieure à sa température d'ébullition, est d'autant plus faible que le rapport de la masse calorifique du liquide à la masse calorifique du gaz est plus élevé mais le rendement est d'autant plus élevé que ce dernier rapport est plus faible. Si donc on veut obtenir par échange direct un liquide à une température voisine de son point d'ébullition, il faut réduire le rapport volumique entre le liquide et le gaz, mais le rendement calorifique décroît. Pour obtenir un rendement acceptable, on est obligé de limiter, avec l'eau utilisée comme liquide, la température de réchauffement de l'eau à environ 60°C.Heat transfer by direct exchange is subject to various limitations. First of all, a first limitation results from the vapor pressure of the liquid in the gas with which the heat exchange takes place because, since the vaporization of the liquid is endothermic, the vapors entrained by. the outgoing gases constitute a loss. The efficiency of the heat exchange is a function of the difference in temperatures at the level of the exchange surface, the surface of the exchange surface and the duration of the contact. Finally the temperature of heating the liquid, which is in any case lower than its boiling temperature, is lower the higher the ratio of the calorific mass of the liquid to the calorific mass of the gas but the efficiency is all the more high that this last ratio is lower. If therefore one wants to obtain by direct exchange a liquid at a temperature close to its boiling point, it is necessary to reduce the volume ratio between the liquid and the gas, but the calorific yield decreases. To obtain an acceptable yield, it is necessary to limit, with the water used as liquid, the temperature for heating the water to around 60 ° C.

La présente invention a pour but de résoudre ces problèmes, dans un premier temps, en obtenant un meilleur rendement de l'échange thermique, qui se traduit par des gaz en sortie plus froids et, dans un deuxième temps, en obtenant un liquide à température voisine du point d'ébullition.The aim of the present invention is to solve these problems, firstly, by obtaining a better efficiency of the heat exchange, which results in cooler outlet gases, and, secondly, by obtaining a liquid at temperature. near the boiling point.

Ce but est atteint, conformément à l'invention, en amenant le gaz circulant sous forme d'une veine à traverser une multiplicité de nappes, indépendantes et en série, de liquide pulvérisé, ces nappes occupant toute la section de la veine, et en extrayant le liquide de l'échangeur au droit de la paroi de la veine.This object is achieved, in accordance with the invention, by causing the gas flowing in the form of a vein to pass through a multiplicity of layers, independent and in series, of sprayed liquid, these sheets occupying the entire section of the vein, and in extracting the liquid from the exchanger to the right of the wall of the vein.

La pulvérisation est effectuée de manière à obtenir des gouttelettes ayant un diamètre inférieur au millimètre et elle est effectuée du centre vers la périphérie de la veine gazeuse.The spraying is carried out so as to obtain droplets having a diameter less than a millimeter and it is carried out from the center towards the periphery of the gas stream.

Avec le procédé conforme à l'invention, au droit des premières nappes amont traversées par les gaz chauds, le liquide se vaporise en absorbant des calories, mais la température du mélange de gaz et de vapeur se refroidit et lesdites calories absorbées par la vaporisation sont restituées au liquide constituant les nappes suivantes dont le volume s'accroît du volume des vapeurs condensées. On voit donc qu'une partie importante du transfert de chaleur s'effectue au droit des nappes amont avec une différence de température importante entre les gaz et le liquide, donc avec un rendement élevé. Pendant la traversée des nappes aval au droit desquelles les gaz sont refroidis en dessous de la température de vaporisation du liquide, l'échange se fait au droit de chaque nappe entre la totalité du volume des gaz et une fraction du volume total du liquide correspondant au débit alimentant l'échangeur. On réalise donc par le procédé un système équivalent à une pluralité d'échangeurs en cascade qui fonctionnent chacun avec la différence de température maximale, donc le rendement maximal possible.With the process according to the invention, in line with the first upstream layers crossed by the hot gases, the liquid vaporizes while absorbing calories, but the temperature of the gas and vapor mixture cools and said calories absorbed by the vaporization are returned to the liquid constituting the following layers whose volume increases of the volume of condensed vapors. It can therefore be seen that a significant part of the heat transfer takes place at the level of the upstream layers with a significant temperature difference between the gases and the liquid, therefore with a high efficiency. During the crossing of the downstream layers at the right of which the gases are cooled below the vaporization temperature of the liquid, the exchange takes place at the level of each layer between the entire volume of the gases and a fraction of the total volume of the liquid corresponding to the flow supplying the exchanger. The system therefore produces a system equivalent to a plurality of cascade exchangers which each operate with the maximum temperature difference, therefore the maximum possible yield.

Dans les procédés antérieurement connus d'échange direct, on cherche à effectuer un échange à contre-courant en faisant tomber le liquide en pluie dans une tour parcourue dans le sens ascendant par le flux gazeux et donc la pulvérisation est effectuée, non sous forme d'une nappe atteignant les parois, mais sous forme d'une dispersion dans toute la section de la veine gazeuse, les gouttes ayant une trajectoire parallèle et de sens inverse à la direction de circulation du gaz. Le procédé conforme à l'invention dans lequel on pulvérise sous forme d'une nappe mince atteignant la paroi permet d'effectuer une pulvérisation sous une pression plus élevée et avec une finesse de gouttelettes plus grande que les procédés antérieurs et le liquide suit une trajectoire sensiblement perpendiculaire ou oblique par rapport à celle du gaz. Du fait de la très grande surface volumique du liquide sous forme de gouttelettes fines, le coefficient d'échange thermique est élevé et dans les nappes où il se produit une condensation des vapeurs, chaque gouttelette forme un noyau de condensation, la multiplicité des gouttelettes favorisant cette condensation avec transfert direct des calories dans la masse de la gouttelette.In the previously known methods of direct exchange, it is sought to carry out an exchange against the current by dropping the liquid in rain in a tower traversed in the ascending direction by the gas flow and therefore the spraying is carried out, not in the form of 'a sheet reaching the walls, but in the form of a dispersion throughout the section of the gas stream, the drops having a trajectory parallel and opposite to the direction of gas flow. The method according to the invention in which it is sprayed in the form of a thin sheet reaching the wall makes it possible to carry out a spraying under a higher pressure and with a greater fineness of droplets than the previous methods and the liquid follows a trajectory substantially perpendicular or oblique to that of the gas. Due to the very large volume surface of the liquid in the form of fine droplets, the heat exchange coefficient is high and in the layers where vapor condensation takes place, each droplet forms a condensation nucleus, the multiplicity of droplets promoting this condensation with direct transfer of calories into the mass of the droplet.

Pour accroître le temps de contact et selon une autre caractéristique de l'invention, la projection est effectuée sous forme de nappes coniques. Avec cette forme de nappe et pour une même épaisseur de la nappe, la durée du contact est accrue, par rapport à une nappe radiale, comme l'inverse du carré du sinus du demi-angle au sommet de la nappe, la longueur de la trajectoire du liquide du centre à la paroi étant égale au rayon de la veine gazeuse divisé par le sinus de l'angle et l'épaisseur de la nappe parallèlement à l'axe, c'est-à-dire selon la direction de circulation du flux gazeux, étant égale à l'épaisseur de la nappe divisée par le même sinus.To increase the contact time and according to another characteristic of the invention, the projection is carried out in the form of conical sheets. With this form of ply and for the same thickness of the ply, the duration of the contact is increased, compared to a radial ply, like the inverse of the square of the sine of the half-angle at the top of the ply, the length of the path of the liquid from the center to the wall being equal to the radius of the gas stream divided by the sine of the angle and the thickness of the sheet parallel to the axis, that is to say according to the direction of circulation of the gas flow, being equal to the thickness of the sheet divided by the same sine.

Selon une autre caractéristique, la nappe conique s'ouvre vers l'aval selon la direction de circulation du flux gazeux. Avec cette disposition, la vitesse axiale de circulation du flux gazeux est déduite de la composante axiale de la vitesse des gouttelettes, ce qui réduit la vitesse relative résiduelle et accroît la durée du contact.According to another characteristic, the conical sheet opens downstream in the direction of circulation of the gas flow. With this arrangement, the axial speed of circulation of the gas flow is deduced from the axial component of the speed of the droplets, which reduces the residual relative speed and increases the duration of the contact.

Selon encore une autre caractéristique qui accroît la longueur de la trajectoire du flux gazeux dans chaque nappe et donc la durée du contact, on impose au flux gazeux une trajectoire hélicoidale. Tous ces facteurs qui accroissent la durée de contact sont d'une importance significative dans le procédé conforme à l'invention dans lequel, pour atteindre la paroi de la veine et sous forme de gouttelettes fines, la pulvérisation doit se faire sous une pression notable donc à vitesse élevée.According to yet another characteristic which increases the length of the trajectory of the gas flow in each layer and therefore the duration of the contact, the gas flow is imposed on a helical trajectory. All these factors which increase the duration of contact are of significant importance in the process according to the invention in which, to reach the wall of the vein and in the form of fine droplets, the spraying must be done under a significant pressure therefore at high speed.

Conformément à l'invention, le liquide qui atteint la paroi de la veine gazeuse présente, dans les nappes les plus en amont, une température voisine de la température de vaporisation puisque ce liquide a traversé des gaz à haute température en se vaporisant partiellement et, dans les nappes suivantes, une température analogue puisque les gaz sont, à ce niveau, à la température de condensation du liquide, le volume atteignant la paroi étant pour partie formé des vapeurs condensées. Au droit des nappes plus en aval, le liquide présente une température décroissant vers l'aval car il a traversé une veine gazeuse de plus en plus froide avec des températures tendant vers l'équilibre.In accordance with the invention, the liquid which reaches the wall of the gas stream has, in the most upstream layers, a temperature close to the vaporization temperature since this liquid has passed through gases at high temperature by partially vaporizing and, in the following layers, a similar temperature since the gases are, at this level, at the condensation temperature of the liquid, the volume reached impeding the wall being partly formed by condensed vapors. At the level of the sheets further downstream, the liquid has a decreasing temperature downstream because it has passed through an increasingly cold gas stream with temperatures tending towards equilibrium.

Selon une autre caractéristique de l'invention, on sépare et recueille indépendamment les flux de liquide réchauffé correspondant aux différentes nappes de pulvérisation se trouvant de part et d'autre d'au moins le niveau où les gaz sont refroidis sensiblement à la température de vaporisation du liquide. Il est bien évident que l'on peut séparer à volonté les flux liquides des nappes en série, selon la température ou les températures auxquelles on veut obtenir le liquide réchauffé. Il faut toutefois remarquer que les gouttelettes étant très fines, celui provenant de toutes les nappes amont sera sensiblement à la même température maximale et un fractionnement du liquide réchauffé portant sur ces nappes serait sans intérêt. Par contre le niveau où s'établit l'équilibre dépend de la température du liquide pulvérisé. Pour relever ce niveau et donc accroître le débit du liquide obtenu à cette température maximale, donc le rendement de l'échange thermique, il est possible d'admettre le liquide à pulvériser dans les nappes amont à une température plus élevée.According to another characteristic of the invention, the streams of heated liquid corresponding to the various spray plies located on either side of at least the level where the gases are cooled substantially to the vaporization temperature are separated and collected independently. some cash. It is quite obvious that one can separate the liquid flows of the layers in series at will, according to the temperature or the temperatures at which one wants to obtain the reheated liquid. It should however be noted that the droplets being very fine, that coming from all the upstream layers will be substantially at the same maximum temperature and a fractionation of the heated liquid bearing on these layers would be pointless. On the other hand, the level at which equilibrium is established depends on the temperature of the sprayed liquid. To raise this level and therefore increase the flow rate of the liquid obtained at this maximum temperature, and therefore the efficiency of the heat exchange, it is possible to admit the liquid to be sprayed into the upstream layers at a higher temperature.

En conséquence et selon une autre caractéristique de l'invention, le liquide réchauffé dans les nappes aval est utilisé comme liquide pulvérisé dans les nappes amont.Consequently and according to another characteristic of the invention, the liquid heated in the downstream layers is used as liquid sprayed in the upstream layers.

La présente invention a également pour objet un échangeur pour la mise en oeuvre du procédé d'échange direct ci-dessus comportant une chambre d'échange allongée avec, à ses deux extrémités, respectivement une entrée et une sortie pour les gaz et des moyens pour pulvériser un liquide dans le flux gazeux traversant cette chambre constitués par une pluralité de gicleurs de pulvérisation échelonnés le long de ladite chambre, l'échangeur étant caractérisé en ce que chaque gicleur de pulvérisation pulvérise le liquide selon une nappe aplatie atteignant la paroi de la chambre, les différentes nappes étant parallèles entre elles et indépendantes.The present invention also relates to an exchanger for implementing the above direct exchange method comprising an elongated exchange chamber with, at its two ends, respectively an inlet and an outlet for gases and means for spraying a liquid into the gas flow passing through this chamber constituted by a plura lity of spray nozzles staggered along said chamber, the exchanger being characterized in that each spray nozzle sprays the liquid in a flattened ply reaching the wall of the chamber, the different plies being parallel to each other and independent.

Selon une autre caractéristique, la chambre d'échange étant d'axe vertical et le gaz circulant de bas en haut, les gicleurs de pulvérisation pulvérisent selon une nappe conique s'ouvrant vers le haut et vers l'aval.According to another characteristic, the exchange chamber being of vertical axis and the gas flowing from bottom to top, the spray nozzles spray according to a conical sheet opening upwards and downstream.

Selon une autre caractéristique au moins une goulotte périphérique est prévue le long de la périphérie de la chambre et à un niveau intermédiaire de celle-ci pour collecter le liquide des nappes situées en aval qui s'écoule sur la paroi. Dans le cadre de cette caractéristique des moyens sont de préférence prévus pour reprendre le liquide collecté par une goulotte située en aval et le refouler vers les gicleurs de pulvérisation situés directement en amont.According to another characteristic, at least one peripheral chute is provided along the periphery of the chamber and at an intermediate level thereof to collect the liquid from the sheets situated downstream which flows on the wall. Within the framework of this characteristic, means are preferably provided to take up the liquid collected by a chute situated downstream and to discharge it towards the spray nozzles situated directly upstream.

Selon une autre caractéristique des moyens sont prévus pour donner au flux gazeux un mouvement rotationnel hélicoïdal. Ces moyens peuvent être constitués par une entrée tangentielle et/ou des ailettes directrices.According to another characteristic, means are provided for giving the gas flow a helical rotational movement. These means can be constituted by a tangential inlet and / or directing fins.

La présente invention sera décrite plus en détail ci-après avec référence au dessin ci-annexé dans lequel :

  • la figure 1 est une vue en coupe axiale schématique d'un échangeur et la figure 2 en est une vue en coupe horizontale par II-II de figure 1.
The present invention will be described in more detail below with reference to the attached drawing in which:
  • FIG. 1 is a schematic axial section view of an exchanger and FIG. 2 is a view in horizontal section through II-II of FIG. 1.

)ans les dessins la référence 1 désigne la paroi cylindrique lélimitant la chambre de l'échangeur, 2 est l'entrée des 3az chauds située à la partie basse de la chambre, cette entrée débouchant tangentiellement sur une largeur approximativement égale au rayon de la chambre et 3 désigne la sortie axiale des gaz. La référence 4 désigne des ailettes directrices hélicoïdales fixées sur la paroi intérieure de la partie basse de la chambre pour accentuer la circulation hélicoïdale des gaz.) in the drawings, the reference 1 designates the cylindrical wall delimiting the exchanger chamber, 2 is the inlet of the 3 hot az located at the lower part of the chamber, this inlet tangentially opening over a width approximately equal to the radius of the chamber and 3 denotes the axial outlet of the gases. The reference 4 designates helical guide vanes fixed on the inner wall of the lower part of the chamber to accentuate the helical gas circulation.

Conformément à l'invention, des gicleurs de pulvérisation 5 sont disposés selon l'axe de la chambre en étant sensiblement régulièrement espacés et ils sont supportés par leur tubulure d'alimentation 6, les tubulures étant portées par des caissons 7 insérés dans la paroi 1 et alimentées en eau sous pression depuis des rampes d'alimentation 8. Conformément à l'invention les gicleurs 5 sont associés à des buses pour donner des jets de pulvérisation 9 en nappes coniques minces. A titre d'exemple la pulvérisation est effectuée sous une pression d'environ 3 x 10 P et donne des gouttelettes d'environ 0,4 à 0,7mm de diamètre, l'angle au sommet α étant de 70°.According to the invention, spray nozzles 5 are arranged along the axis of the chamber being substantially regularly spaced and they are supported by their supply pipe 6, the pipes being carried by boxes 7 inserted in the wall 1 and supplied with pressurized water from supply ramps 8. According to the invention, the nozzles 5 are associated with nozzles to give spray jets 9 in thin conical layers. By way of example, the spraying is carried out under a pressure of approximately 3 × 10 P and gives droplets of approximately 0.4 to 0.7 mm in diameter, the angle at the top α being 70 °.

Selon le mode de réalisation préférentiel de l'invention les gicleurs de pulvérisation sont répartis en deux groupes A et B alimentés par des rampes indépendantes, le groupe . A étant situé le plus haut, c'est-à-dire en aval dans le sens de circulation des fumées et le groupe B en amont. Sur la paroi interne et au droit de la séparation entre la nappe conique la plus élevée 9b du groupe B et la nappe conique la plus basse 9a du groupe A est réalisée une goulotte périphérique 10 destinée à recueillir l'eau des nappes 9A qui s'écoule sur la partie supérieure de la paroi. L'eau recueillie est évacuée par une canalisation 11 dans un réservoir 12 d'où elle est reprise par une pompe 13 pour alimenter par la rampe 8, les gicleurs 5 du groupe B. L'eau pulvérisée par les gicleurs 9B s'écoule le long de la paroi de la partie inférieure de la chambre et est recueillie dans une bâche 14.According to the preferred embodiment of the invention the spray nozzles are divided into two groups A and B supplied by independent booms, the group. A being located the highest, that is to say downstream in the direction of circulation of the fumes and group B upstream. On the inner wall and in line with the separation between the highest conical sheet 9b of group B and the lowest conical sheet 9a of group A is made a peripheral chute 10 intended to collect the water from the sheets 9A which s flows on the upper part of the wall. The collected water is evacuated by a pipe 11 in a tank 12 from where it is taken up by a pump 13 to supply by the ramp 8, the nozzles 5 of group B. The water sprayed by the nozzles 9B flows along the wall of the lower part of the chamber and is collected in a tarpaulin 14.

L'échangeur fonctionne de la façon suivante : les gaz chauds arrivent à une température TF par l'entrée 2 et circulent selon un mouvement hélicoïdal ascendant dans la chambre pour être évacués par la sortie 3 à une température Ts, la circulation ayant lieu par tirage naturel ou forcé. L'eau est introduite à une température to et sous une pression de 3 x 105 P,qui peut être la pression du réseau d'alimentation,par la rampe 8 du groupe A, elle est pulvérisée à cette température to par les pulvérisateurs 5 du groupe A sous forme de nappes coniques. Ces nappes sont traversées par les gaz dont la température décroit au fur et à mesure qu'ils traversent les nappes successives d'une température TM qui à titre de simple indication,peut être voisine de 90°C, jusqu'à une température TS qui est voisine de to. L'eau de la nappe 8a qui a traversé les gaz à une température voisine de TM sera à une température relativement élevée alors que celle de la nappe supérieure sera à une température voisine de TS. Il est évident que le rendement thermique dans la nappe 9a est meilleur que dans la dernière nappe mais,globalement, toutes les calories correspondant à la différence TM-TS de température des gaz se retrouveront dans l'eau recueillie à une température t1 comprise entre TM et TS dans la goulotte 10 et le bac 12. Cette eau à la température t1 est reprise par la pompe 13 et pulvérisée sous la même pression par les gicleurs 5 du groupe B sous forme des nappes coniques 9B. Dans la nappe inférieure la différence de température TF- t1 est élevée, le rendement de l'échange est élevé et une partie de l'eau va passer à l'état de vapeur. En traversant les nappes successives la température des gaz entrainant l'eau vaporisée des nappes inférieures va décroitre jusqu'à Tm et dans les nappes supérieures les vapeurs vont se condenser pour être réincorporées aux nappes dont l'eau va atteindre la paroi à une température voisine de TM. Dans cette partie de l'échangeur vont se produire une évaporation endothermique et une condensation exothermique mais la température moyenne t2 de l'eau obtenue sera à un niveau que l'on ne peut atteindre avec un seul étage et les calories qui pourraient être en-trainées par les gaz sous forme d'eau vaporisée dans les premières nappes sont récupérées par condensation dans les nappes supérieures.The exchanger operates as follows: the hot gases arrive at a temperature T F via inlet 2 and circulate according to an upward helical movement in the chamber to be evacuated by the outlet 3 at a temperature T s , the circulation taking place by natural or forced draft. The water is introduced at a temperature t o and under a pressure of 3 x 10 5 P , which may be the pressure of the supply network, by the ramp 8 of group A, it is sprayed at this temperature t o by the sprayers 5 of group A in the form of conical sheets. These layers are crossed by the gases, the temperature of which decreases as they pass through the successive layers of a temperature T M which, by way of simple indication, may be close to 90 ° C, up to a temperature T S which is close to t o . The water of the water table 8a which has passed through the gases at a temperature close to T M will be at a relatively high temperature while that of the upper water table will be at a temperature close to T S. It is obvious that the thermal efficiency in the sheet 9a is better than in the last sheet but, overall, all the calories corresponding to the difference T M -T S of gas temperature will be found in the water collected at a temperature t 1 between T M and T S in the chute 10 and the tank 12. This water at temperature t 1 is taken up by the pump 13 and sprayed under the same pressure by the nozzles 5 from group B in the form of conical layers 9B. In the lower layer the temperature difference T F - t 1 is high, the exchange efficiency is high and part of the water will pass into the vapor state. By crossing the successive layers the temperature of the gases entraining the vaporized water of the lower layers will decrease to T m and in the upper layers the vapors will condense to be reincorporated into the layers whose water will reach the wall at a temperature neighbor of T M. In this part of the exchanger will occur endothermic evaporation and exothermic condensation but the average temperature t 2 of the water obtained will be at a level that can not be reached with a single stage and the calories that could be in -trained by gases in the form of water vaporized in the first layers are recovered by condensation in the upper layers.

Dans l'exemple de mise en oeuvre décrit avec référence aux dessins, le liquide de refroidissement est de l'eau et les gaz chauds sont des gaz de combustion mais l'invention n'est pas limitée à ce liquide et ces gaz chauds.In the implementation example described with reference to the drawings, the coolant is water and the hot gases are combustion gases, but the invention is not limited to this liquid and these hot gases.

Claims (12)

1. Un procédé pour le transfert de chaleur par échange direct entre fluides gazeux et liquide,
caractérisé en ce que l'on amène le gaz circulant sous forme d'une veine à traverser une multiplicité de nappes, indépendantes et en série, de liquide pulvérisé, ces nappes occupant toute la section de la veine, et extrait le liquide de l'échangeur au droit de la paroi de la veine.
1. A process for the transfer of heat by direct exchange between gaseous and liquid fluids,
characterized in that the circulating gas is brought in the form of a vein to pass through a multiplicity of layers, independent and in series, of sprayed liquid, these sheets occupying the entire section of the vein, and extracts the liquid from the exchanger to the right of the wall of the vein.
2. Un procédé selon la revendication 1,
caractérisé en ce que la pulvérisation est effectuée de manière à obtenir des gouttelettes ayant un diamètre inférieur au millimètre et elle est effectuée du centre vers la périphérie de la veine gazeuse.
2. A method according to claim 1,
characterized in that the spraying is carried out so as to obtain droplets having a diameter less than a millimeter and it is carried out from the center towards the periphery of the gas stream.
3. Un procédé selon l'une quelconque des revendications 1 et 2,
caractérisé en ce que la projection est effectuée sous forme de nappes coniques.
3. A method according to any one of claims 1 and 2,
characterized in that the projection is carried out in the form of conical layers.
4. Un procédé selon la revendication 3, caractérisé en ce que la nappe conique s'ouvre vers l'aval selon la direction de circulation du flux gazeux.4. A method according to claim 3, characterized in that the conical sheet opens downstream in the direction of circulation of the gas flow. 5. Un procédé selon l'une quelconque des revendications 1 à 4,
caractérisé en ce qu'on impose au flux gazeux une trajectoire hélicoïdale.
5. A method according to any one of claims 1 to 4,
characterized in that a helical path is imposed on the gas flow.
6. Un procédé selon l'une quelconque des revendications 1 à 5,
caractérisé en ce qu'on sépare et recueille indépendamment les flux de liquide réchauffé correspondant aux différentes nappes de pulvérisation se trouvant de part et d'autre d'au moins le niveau où les gaz sont refroidis sensiblement à la température de vaporisation du liquide.
6. A method according to any one of claims 1 to 5,
characterized in that the heated liquid streams corresponding to the different spraying layers located on either side are separated and collected independently at least at the level where the gases are cooled substantially to the vaporization temperature of the liquid.
7. Un procédé selon la revendication 6, caractérisé en ce que le liquide réchauffé dans les nappes aval est utilisé comme liquide pulvérisé dans les nappes amont.7. A method according to claim 6, characterized in that the liquid heated in the downstream layers is used as liquid sprayed in the upstream layers. 8. Un échangeur pour la mise en oeuvre du procédé d'échange direct selon l'une quelconque des revendications 1 à 7 comportant une chambre d'échange allongée avec, à ses deux extrémités, respectivement une entrée et une sortie pour les gaz et des moyens pour pulvériser un liquide dans le flux gazeux traversant cette chambre constitués par une pluralité de gicleurs de pulvérisation échelonnés le long de ladite chambre, caractérisé en ce que chaque gicleur de pulvérisation 5 pulvérise le liquide selon une nappe aplatie 9 atteignant la paroi 1 de la chambre, les différentes nappes étant parallèles entre elles et indépendantes.8. An exchanger for implementing the direct exchange method according to any one of claims 1 to 7 comprising an elongated exchange chamber with, at its two ends, respectively an inlet and an outlet for gases and means for spraying a liquid into the gas flow passing through this chamber constituted by a plurality of spray nozzles staggered along said chamber, characterized in that each spray nozzle 5 sprays the liquid in a flattened sheet 9 reaching the wall 1 of the chamber, the different layers being parallel to each other and independent. 9. Un échangeur selon la revendication 8, caractérisé en ce que la chambre d'échange 1 étant d'axe vertical et le gaz circulant de bas en haut, les gicleurs 5 de pulvérisation pulvérisent selon une nappe conique 9 s'ouvrant vers le haut et vers l'aval.9. An exchanger according to claim 8, characterized in that the exchange chamber 1 being of vertical axis and the gas flowing from bottom to top, the spray nozzles 5 spray according to a conical sheet 9 opening upwards and downstream. 10. Un échangeur selon l'une quelconque des revendications 8 et 9,
caractérisé en ce qu'au moins une goulotte périphérique 10 est prévue le long de la périphérie de la chambre et à un niveau intermédiaire de celle-ci pour collecter le liquide des nappes 9A situées en aval qui s'écoule sur la paroi.
10. An exchanger according to any one of claims 8 and 9,
characterized in that at least one peripheral chute 10 is provided along the periphery of the chamber and at an intermediate level thereof to collect the liquid from the sheets 9A located downstream which flows on the wall.
11. Un échangeur selon la revendication 10,
caractérisé en ce que des moyens 11-12-13 sont prévus pour reprendre le liquide collecté par une goulotte 5 située en aval et le refouler vers les gicleurs de pulvérisation 9B situés directement en amont.
11. An exchanger according to claim 10,
characterized in that means 11-12-13 are provided for taking up the liquid collected by a chute 5 located in downstream and discharge it to the spray nozzles 9B located directly upstream.
12. Un échangeur selon l'une quelconque des revendications 8 à 11,
caractérisé en ce que des moyens 2-4 sont prévus pour donner au flux gazeux un mouvement rotationnel hélicoïdal.
12. An exchanger according to any one of claims 8 to 11,
characterized in that means 2-4 are provided to give the gas flow a helical rotational movement.
EP83401179A 1982-06-10 1983-06-09 Direct-contact heat exchange process between gaseous and liquid fluids, and heat exchanger carrying out such a process Expired EP0097097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83401179T ATE31810T1 (en) 1982-06-10 1983-06-09 PROCESS FOR HEAT EXCHANGE WITH DIRECT CONTACT BETWEEN GASEOUS AND LIQUID MEDIA AND HEAT EXCHANGER FOR CARRYING OUT THIS PROCESS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8210363 1982-06-10
FR8210363A FR2528556B1 (en) 1982-06-10 1982-06-10 METHOD AND APPARATUS FOR DIRECT MULTI-DEMULTIPLICATION HEAT EXCHANGE BETWEEN GASEOUS AND LIQUID FLUIDS

Publications (2)

Publication Number Publication Date
EP0097097A1 true EP0097097A1 (en) 1983-12-28
EP0097097B1 EP0097097B1 (en) 1988-01-07

Family

ID=9274984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401179A Expired EP0097097B1 (en) 1982-06-10 1983-06-09 Direct-contact heat exchange process between gaseous and liquid fluids, and heat exchanger carrying out such a process

Country Status (4)

Country Link
EP (1) EP0097097B1 (en)
AT (1) ATE31810T1 (en)
DE (1) DE3375203D1 (en)
FR (1) FR2528556B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657630A (en) * 1993-06-04 1997-08-19 Man B&W Diesel A/S Large supercharged diesel engine
US5809981A (en) * 1993-06-04 1998-09-22 Man B&W Diesel A/S Large supercharged internal combustion engine and a method of operating a cooler for cooling the intake air of such an engine
WO1998058221A1 (en) * 1997-06-16 1998-12-23 Izot Isaevich Dyment Method and apparatus for cooling liquid in cooling tower
AU756857B2 (en) * 2000-09-21 2003-01-23 Baltimore Aircoil Company, Incorporated Water distribution conduit
US8222457B2 (en) 2006-11-17 2012-07-17 Chemetall Gmbh Coordination compounds of the boron group

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820620A (en) * 1954-07-22 1958-01-21 Kaiser Aluminium Chem Corp Apparatus and process for heating liquids
US2838135A (en) * 1954-01-26 1958-06-10 Pilo Claes Wilhelm Process for the recovery of heat from hot gases
FR2066052A5 (en) * 1969-10-17 1971-08-06 Von Hutten Friedrich Wet dust removal appts
DE1601122A1 (en) * 1967-10-04 1971-11-11 Bischoff Gasreinigung Device for cooling compressed gas, in particular compressed air
US4028440A (en) * 1974-03-11 1977-06-07 Baltimore Aircoil Company, Inc. Method and apparatus of multi stage injector cooling
US4287138A (en) * 1979-02-02 1981-09-01 Buckner Lynn A Direct contact gaseous to liquid heat exchange and recovery system
US4345916A (en) * 1980-05-19 1982-08-24 Richards Clyde N Means and method for removing airborne particulates from an aerosol stream

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1658533A (en) * 1927-01-12 1928-02-07 Leon T Mart Spray-cooling-cone device
US2654584A (en) * 1950-09-29 1953-10-06 Research Corp Gas cooling contact apparatus
US3163498A (en) * 1961-10-06 1964-12-29 Foster Wheeler Corp Quench apparatus for reactor tube exits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2838135A (en) * 1954-01-26 1958-06-10 Pilo Claes Wilhelm Process for the recovery of heat from hot gases
US2820620A (en) * 1954-07-22 1958-01-21 Kaiser Aluminium Chem Corp Apparatus and process for heating liquids
DE1601122A1 (en) * 1967-10-04 1971-11-11 Bischoff Gasreinigung Device for cooling compressed gas, in particular compressed air
FR2066052A5 (en) * 1969-10-17 1971-08-06 Von Hutten Friedrich Wet dust removal appts
US4028440A (en) * 1974-03-11 1977-06-07 Baltimore Aircoil Company, Inc. Method and apparatus of multi stage injector cooling
US4287138A (en) * 1979-02-02 1981-09-01 Buckner Lynn A Direct contact gaseous to liquid heat exchange and recovery system
US4345916A (en) * 1980-05-19 1982-08-24 Richards Clyde N Means and method for removing airborne particulates from an aerosol stream

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657630A (en) * 1993-06-04 1997-08-19 Man B&W Diesel A/S Large supercharged diesel engine
US5809981A (en) * 1993-06-04 1998-09-22 Man B&W Diesel A/S Large supercharged internal combustion engine and a method of operating a cooler for cooling the intake air of such an engine
WO1998058221A1 (en) * 1997-06-16 1998-12-23 Izot Isaevich Dyment Method and apparatus for cooling liquid in cooling tower
AU756857B2 (en) * 2000-09-21 2003-01-23 Baltimore Aircoil Company, Incorporated Water distribution conduit
US8222457B2 (en) 2006-11-17 2012-07-17 Chemetall Gmbh Coordination compounds of the boron group

Also Published As

Publication number Publication date
FR2528556A1 (en) 1983-12-16
EP0097097B1 (en) 1988-01-07
FR2528556B1 (en) 1988-01-29
ATE31810T1 (en) 1988-01-15
DE3375203D1 (en) 1988-02-11

Similar Documents

Publication Publication Date Title
EP2601464B1 (en) Method and installation for drying sludge
FR2608461A1 (en) IMPROVED PLANT AND METHOD FOR EXTRACTING OIL, GAS AND BY-PRODUCTS FROM OILS SHELLS AND OTHER HYDROCARBON IMPREGNATED MATERIALS
WO2010020723A2 (en) Method for the desalination or purification of water by distillation of a spray (spray pump)
WO2004110936B1 (en) Distillation method and device, in particular for producing potable water
FR2588564A1 (en) Apparatus for cracking gaseous or liquid hydrocarbons
EP0097097A1 (en) Direct-contact heat exchange process between gaseous and liquid fluids, and heat exchanger carrying out such a process
EP1409099B1 (en) System for cooling a heated juice by partial low-pressure evaporation
EP0275770B1 (en) Method and apparatus for distilling liquid heat sensitive products
CH411826A (en) Process for the production of adiponitrile and apparatus for using
CH619436A5 (en)
BE538399A (en) Method and installation for the treatment of liquids, preferably in the beverage industry, especially milk
EP0730131A1 (en) Cooling apparatus for a fluid or for condensation of steam
CH520514A (en) Condensation chamber
LU82963A1 (en) METHOD AND DEVICE FOR RECOVERING HEAT FROM OVEN FUMES, ESPECIALLY GLASS OVENS
EP2576188B1 (en) Equipment for drawing a film made of synthetic material
FR2720147A1 (en) Rotating cylindrical drier for drying grains (granules)
EP3194874B1 (en) Heat pipe and method for making a heat pipe
WO2002046669A1 (en) Evaporator-condenser and air distillation plant comprising same
EP0049676A1 (en) Solvent extraction process and apparatus
FR2476817A2 (en) Solids dryer fitted with heat economiser - has tower with water spray nozzles from heater spraying over cold air discharge
FR2640028A2 (en) Condensing boiler for heating with a heat-transfer fluid
BE419017A (en)
BE487579A (en)
BE351397A (en)
FR2471571A1 (en) Heat exchanger for cylindrical burner - has exterior finned vertical water tubes surrounding burner connected by headers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880107

REF Corresponds to:

Ref document number: 31810

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3375203

Country of ref document: DE

Date of ref document: 19880211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

Ref country code: BE

Effective date: 19890630

BERE Be: lapsed

Owner name: SARL ETUDES & REALISATIONS DE TECHNIQUE THERMIQUE

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EAL Se: european patent in force in sweden

Ref document number: 83401179.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990629

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020617

Year of fee payment: 20

EUG Se: european patent has lapsed