EP0048008B1 - Method and apparatus for the direct production of hot metal from lump iron ore - Google Patents

Method and apparatus for the direct production of hot metal from lump iron ore Download PDF

Info

Publication number
EP0048008B1
EP0048008B1 EP81107215A EP81107215A EP0048008B1 EP 0048008 B1 EP0048008 B1 EP 0048008B1 EP 81107215 A EP81107215 A EP 81107215A EP 81107215 A EP81107215 A EP 81107215A EP 0048008 B1 EP0048008 B1 EP 0048008B1
Authority
EP
European Patent Office
Prior art keywords
flow
gas
reducing gas
shaft furnace
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107215A
Other languages
German (de)
French (fr)
Other versions
EP0048008A1 (en
Inventor
Ralph Weber
Bernt Rollinger
Rolf Dr. Hauk
Michael Nagl
Bernhard Rinner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Voest Alpine Industrieanlagenbau GmbH
Original Assignee
Voestalpine AG
Deutsche Voest Alpine Industrieanlagenbau GmbH
Korf Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG, Deutsche Voest Alpine Industrieanlagenbau GmbH, Korf Engineering GmbH filed Critical Voestalpine AG
Priority to AT81107215T priority Critical patent/ATE8799T1/en
Publication of EP0048008A1 publication Critical patent/EP0048008A1/en
Application granted granted Critical
Publication of EP0048008B1 publication Critical patent/EP0048008B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting

Definitions

  • the invention relates to a method according to the preamble of patent claim 1. It also relates to a device according to the preamble of patent claim 8.
  • a method and a device of this type are known from DE-B-1 238 941.
  • the known method burns a carbon-containing fuel with an oxygen-containing gas in a melting zone in such a way that an oxidizing atmosphere is created which is the temperature required for the melting process - it is a temperature range from 1600 to 1925 ° C stated - guaranteed.
  • the gas generated in the melting zone is subjected to an enrichment treatment in a gasification zone which is separate from the melting zone and in which an excess of fuel is burned with oxygen.
  • the sponge iron produced in the direct reduction shaft furnace is conveyed by a screw conveyor in the hot state in a direct way via a connecting line into the melting zone, where it is melted.
  • the object of the invention is to enable, in a method and a device of the type mentioned in the introduction, continuously reliable, continuous transport of sponge iron particles heated to just below the softening temperature from the direct reduction shaft furnace into the melter gasifier.
  • the locks are dispensed with, which prevent the reducing gas, which is hot and dirty at over 1200 ° C., from the melter gasifier from entering the reduction shaft furnace through the discharge opening. It has been shown that a small part of the reducing gas generated in the melter gasifier can be introduced into the reduction unit in counterflow to the sponge iron particles if this gas is cooled to temperatures below the softening temperature of the sponge iron being conveyed in front of the discharge device. In the cooling process, it appears essential that this does not reduce the quality of the reducing gas. It has proven to be particularly advantageous to admix sufficient, generally to below 100 ° C., cooled and purified reducing gas.
  • a substantial proportion of the dust carried is deposited in the area of the outlet side of the discharge device and is discharged together with the sponge iron particles by the discharge device.
  • the flow resistance in the flow path of the uncleaned reducing gas must be considerably higher than in the flow path of the cleaned and cooled to the process temperature be.
  • the flow resistance for the first-mentioned flow path is primarily determined by the discharge device and the pouring column up to the injection nozzles for the cleaned and cooled reducing gas.
  • a discharge device should therefore be used which has a relatively high flow resistance, while the flow resistance in the main flow path of the reducing gas should be kept as small as possible by suitable selection of dedusting and cooling devices.
  • Screw conveyors the conveyor part of which is designed as a paddle screw and the outlet opening of which opens directly into a downpipe connected to the molten iron gasifier, have proven to be particularly suitable as the discharge device.
  • the screw conveyors cause a relatively high pressure loss and at the same time form a good dust filter that “cleans itself” together with the sponge iron particles due to the constant discharge of the collected dust particles.
  • the device for the direct production of molten pig iron from lumpy iron ore shown schematically in FIG. 1, contains a melter gasifier 1 of the type described in DE-OS 2 843 303. Above the melter gasifier, a direct reduction shaft furnace 2 suspended in a steel construction, not shown, is arranged Principle is described for example in DE-OS 2 935 707.
  • the direct reduction shaft furnace is supplied with 3-piece iron ore via a gas-tight double bell lock, which sinks in the form of a loose bed in the shaft furnace and is reduced to sponge iron at a temperature between 760 and 850 ° C by means of a hot reducing gas blown in via a central gas inlet 4.
  • the used reducing gas leaves the shaft furnace 2 via an upper gas outlet 5 and can be returned to the reducing gas circuit in a known manner or used in some other way.
  • the hot sponge iron obtained by reduction of the lumpy iron ore is discharged at a temperature of about 750 ° to 800 ° C. from the direct reduction shaft furnace 2 at the bottom and continuously charged into the melter gasifier from above.
  • a coal fluid bed 8 is formed from coal introduced via openings 6 and oxygen-containing gas, in particular oxygen and air, which is blown in through twelve radially arranged nozzles 7, in which even larger iron sponge particles are noticeably braked and in the lower section of the coal fluid bed until they enter a high-temperature zone a significant amount in their temperature is increased and finally melted.
  • a calming space into which radial nozzles 9 open, through which water vapor, hydrocarbons or a reducing gas, for example cooled down to 50 ° C., are blown in to cool the hot reducing gas generated in the melter gasifier.
  • the reducing gas generated in the melter gasifier leaves the melter gasifier above the calming chamber through two gas outlets 10 with a temperature between 1200 and 1400 ° C. and a pressure of approximately 2 bar. It then arrives at a mixing point 11, in which it is brought to the temperature required for direct reduction, usually from 760 to 850 ° C., with a sufficiently low temperature of cooling gas.
  • the mixing point is designed in such a way that a part of the kinetic energy of the cooling gas is recovered as a pressure after mixing with the hot reducing gas supplied by the melter gasifier, and the pressure loss in the hot gas path is thus kept as low as possible.
  • the gas reaches a cyclone separator 12, in which the coke dust and ash entrained with the gas flow are largely separated.
  • the hot gas stream cooled and cleaned to the prescribed process temperature is divided, namely about 60 vol .-% of which is blown as the first partial gas stream 13 through the gas inlet 4 into the reduction zone of the direct reduction shaft furnace 2, while the other part for cooling gas extraction is an injection cooler 14 and then a washing tower 15 is supplied.
  • the cooling gas emerging here is compressed by a compressor 16 and at a temperature of approximately 50 ° C. for regulating the temperature of the hot reducing gas emerging from the melter gasifier of the mixing point 11, for regulating the temperature of the reducing gas in the melter gasifier, the nozzles 9 and also, as described later, a ring line 22 fed.
  • each screw conveyor 17 is arranged radially symmetrically to the central axis of the furnace, which are designed as paddle screws and are supported on one side.
  • the outlet opening 18 of each screw conveyor is connected to a connecting line in the form of a downpipe 19 which opens through the ceiling of the melter gasifier 1 into the settling chamber of this gasifier.
  • six axially symmetrically arranged downpipes are also provided in the present case.
  • a nozzle 21 from a ring line 22 opens into each downpipe, to which the compressor 16 feeds a stream of the reducing gases, which is cooled and cleaned to 50 ° C. and is supplied by the melter gasifier, and is cooled to 50 ° C.
  • a limited gas flow is directly from the melter gasifier via the discharge device 17 for the hot sponge iron in counterflow to the latter authorized.
  • the entire gas stream from unpurified reducing gas flowing directly from the melter gasifier into the downpipes is referred to as second partial gas stream 24.
  • the temperature of the second partial gas stream 24 flowing into the downpipes 19 is cooled to a temperature between 760 and 850 ° C by means of the cooling gas introduced in a controlled quantity via the nozzles 21 before the gas streams reach the reduction shaft furnace via the screw conveyors 17.
  • the cooling gas is supplied in such a way that there is particularly good swirling with the rising raw gas.
  • the dust contained in the rising gas stream when entering the screw conveyor 17 settles essentially in the area of the screw conveyor and is successively conveyed back together with the iron sponge particles back into the relevant downpipe and into the melter gasifier.
  • the second partial gas flow 24 that is to say the raw gas quantity flowing directly upward from the melter gasifier via the six downpipes 19 to a proportion of ma ximal 30% by volume of the total amount of reducing gas introduced into the direct reduction shaft furnace.
  • the flow resistance for the second partial gas flow 24 in the flow path to the reduction zone in the direct reduction shaft furnace that is to say to the level of the gas inlet 4
  • This requirement meets the design of the discharge device 17 as a screw conveyor, the conveyor part is designed as a paddle screw.
  • the flow resistance and thus the pressure losses in the flow path of the first partial gas stream 13 are deliberately kept small.
  • the inventive design of the method and the device enables a direct continuous transport of the hot sponge iron particles from the direct reduction shaft furnace 2 into the melter gasifier 1, without locks or other complex devices for sealing against the hot reducing gas being required, which are at the high temperature and Type of material to be conveyed can only be realized with difficulty with the required operational safety.
  • Fig. 2 one of the six screw conveyors 17 is partially shown in longitudinal section.
  • the screw conveyor is flanged to a socket 31 welded to the jacket of the direct reduction shaft furnace.
  • the socket 31 there is an outlet socket 32 on the outlet side 18 of the conveyor for flange mounting a downpipe 19 (see also FIG. 1).
  • the conveying part envelops a cladding tube 33, which is also flanged to the socket 31.
  • the screw conveyor 17 contains a conveyor part 36 protruding into the furnace and a bearing part 34 flanged out of the furnace on the nozzle 31 and a drive part 44.
  • the conveying part 36 has the shape of an interrupted worm gear formed by paddles 37, the envelope 38 of the paddle screw shown in broken lines tapering conically towards the free end of the shaft 35. This free end extends almost to the middle of the shaft furnace and, thanks to the conical tapering of the envelope, ensures even removal of the bulk material from the bulk column.
  • the shaft 35 is water-cooled and hollow for this purpose with an inner tube 39, which ends just before the free end of the shaft 35 and into which the cooling water is introduced, which is then diverted at the free end and in the annular gap between the central tube 39 and the inner wall of the shaft 35 flows back.
  • the drive 44 is constructed as follows.
  • a ratchet mechanism 45 with a wheel 40 in the teeth of which a pawl 41 engages, which is rotatably attached to a lever 42, which in turn is rotatably seated on the shaft 35, and by means of a hydraulically or pneumatically actuated piston 43 by one predetermined angular movement can be pivoted back and forth.
  • the pawl 41 rotates the wheel 40 by an amount corresponding to the tooth pitch or a multiple of the tooth pitch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Revetment (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Artificial Fish Reefs (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A device is described for directly making liquid pig-iron from coarse iron ore. Hot sponge-iron particles are directly conveyed by a worm conveyor (17) through a communicating passage (19) from a direct-reduction blast-furnace shaft (2) into a smelter-gasifier (1), and a stream (24) of gas flows, after cooling to below 950 DEG C., in counter-current to the sponge-iron particles, from the smelter-gasifier (1) to the blast-furnace shaft (2), this gas stream having a volumetric flow-rate not more than 30 percent of the total reduction-gas flow reaching the blast-furnace shaft (FIG. 1).

Description

Die Erfindung betrifft ein Verfahren gemäss dem Oberbegriff des Patentanspruchs 1. Sie bezieht sich ferner auf eine Vorrichtung gemäss dem Oberbegriff des Patentanspruchs 8.The invention relates to a method according to the preamble of patent claim 1. It also relates to a device according to the preamble of patent claim 8.

Ein Verfahren und eine Vorrichtung dieser Art sind durch die DE-B-1 238 941 bekannt geworden.A method and a device of this type are known from DE-B-1 238 941.

Um die zum Einschmelzen des Eisenschwamms erforderliche hohe Temperatur zu erzeugen, wird beim bekannten Verfahren in einer Schmelzzone ein kohlenstoffhaltiger Brennstoff mit einem sauerstoffhaltigen Gas so verbrannt, dass eine oxidierende Atmosphäre ensteht, die die für den Schmelzprozess erforderliche Temperatur - es ist ein Temperaturbereich von 1600 bis 1925°C angegeben - gewährleistet. Das in der Schmelzzone erzeugte Gas wird in einer von der Schmelzzone getrennten Vergasungszone, in welcher ein Überschuss an Brennstoff mit Sauerstoff verbrannt wird, einer Anreicherungsbehandlung unterworfen. Der im Direktreduktionsschachtofen erzeugte Eisenschwamm wird durch einen Schneckenförderer im heissen Zustand auf direktem Weg über eine Verbindungsleitung in die Schmelzzone befördert und dort geschmolzen.In order to generate the high temperature required to melt the sponge iron, the known method burns a carbon-containing fuel with an oxygen-containing gas in a melting zone in such a way that an oxidizing atmosphere is created which is the temperature required for the melting process - it is a temperature range from 1600 to 1925 ° C stated - guaranteed. The gas generated in the melting zone is subjected to an enrichment treatment in a gasification zone which is separate from the melting zone and in which an excess of fuel is burned with oxygen. The sponge iron produced in the direct reduction shaft furnace is conveyed by a screw conveyor in the hot state in a direct way via a connecting line into the melting zone, where it is melted.

Bei dem bekannten Verfahren ist es erforderlich, einen unmittelbaren Gasstrom von der Schmelzzone über die Verbindungsleitung zum Direktreduktionsschachtofen in diesen zu verhindern, da die heissen oxidierenden Gase einer Temperatur zwischen 1600 und 1925°C binnen kurzer Zeit eine Clusterbildung im Bereich der Austragvorrichtung und im unteren Bereich des Direktreduktionsschachtofens zur Folge hätten und damit der Verfahrensablauf gestört werden würde. Es muss deshalb durch konstruktive oder verfahrenstechnische Massnahmen dafür gesorgt werden, dass das oxidierende Gas aus der Schmelzzone nicht in den Direktreduktionsschachtofen gelangen kann. Durch die DE-A1-2 843 303 ist ein Verfahren bekannt geworden, bei dem die aus einem Direktreduktionsschachtofen ausgetragenen Eisenschwammpartikel im heissen Zustand einem Einschmelzvergaser an einer Stelle zugeführt werden, an der Reduktionsgas einer Temperatur von etwa 1200 bis 1400°C vorhanden ist, das mit einem hohen Staubanteil beladen ist. Um zu verhindern, dass über die Zufuhreinrichtung für die Eisenschwammpartikel staubbeladenes heisses Reduktionsgas aus dem Einschmelzvergaser in den Direktreduktionsschachtofen gelangt, werden die heissen Eisenschwammpartikel mittels einer als Absperrorgan ausgebildeten Schleuse vom Direktreduktionsschachtofen in den Einschmelzvergaser gefördert.In the known method, it is necessary to prevent a direct gas flow from the melting zone via the connecting line to the direct reduction shaft furnace, since the hot oxidizing gases at a temperature between 1600 and 1925 ° C. cluster within a short time in the area of the discharge device and in the lower area of the direct reduction shaft furnace would result and the process sequence would be disrupted. It must therefore be ensured by constructive or procedural measures that the oxidizing gas from the melting zone cannot get into the direct reduction shaft furnace. From DE-A1-2 843 303 a method is known in which the iron sponge particles discharged from a direct reduction shaft furnace are fed in the hot state to a melter gasifier at a point at which reducing gas is at a temperature of approximately 1200 to 1400 ° C, which is loaded with a high proportion of dust. To prevent dust-laden hot reducing gas from the smelting gasifier from entering the direct reduction shaft furnace via the feed device for the sponge iron particles, the hot sponge iron particles are conveyed from the direct reduction shaft furnace into the melting gasifier by means of a lock designed as a shut-off device.

Derartige Schleusen haben sich wegen der hohen Temperaturen und wegen der Beschaffenheit des Schüttgutes als störanfällig erwiesen. Es kommt vor, dass sich an den Schliessstellen der Absperrorgane Material festsetzt und damit kein gasdichter Abschluss mehr gewährleistet ist. Die heissen aufsteigenden Gase, die das Schüttgut über ihren Erweichungspunkt erwärmen, führen dann bald zu weiteren Schwierigkeiten infolge eines Zusammenbakkens der Eisenschwammpartikel.Such locks have proven to be prone to failure because of the high temperatures and the nature of the bulk material. It happens that material closes at the closing points of the shut-off device and therefore a gas-tight seal is no longer guaranteed. The hot rising gases that heat the bulk material above their softening point will soon lead to further difficulties due to the iron sponge particles baking together.

Aufgabe der Erfindung ist es, bei einem Verfahren und einer Vorrichtung der einleitend genannten Art einen auf Dauer betriebssicheren, kontinuierlichen Transport von auf knapp unterhalb der Erweichungstemperatur erhitzten Eisenschwammpartikeln aus dem Direktreduktionsschachtofen in den Einschmelzvergaser zu ermöglichen.The object of the invention is to enable, in a method and a device of the type mentioned in the introduction, continuously reliable, continuous transport of sponge iron particles heated to just below the softening temperature from the direct reduction shaft furnace into the melter gasifier.

Diese Aufgabe ist bei einem Verfahren der genannten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst, Vorteilhafte Ausgestaltungen des Verfahrens sind den Ansprüchen 2 bis 7 zu entnehmen. Die erfindungsgemässe Vorrichtung ist durch die Merkmale des Anspruchs 8 gekennzeichnet, vorteilhafte Ausgestaltungen der Vorrichtung sind den restlichen Ansprüchen zu entnehmen.This object is achieved in a method of the type mentioned by the characterizing features of claim 1. Advantageous refinements of the method can be found in claims 2 to 7. The device according to the invention is characterized by the features of claim 8, advantageous refinements of the device can be found in the remaining claims.

Bei der erfindungsgemässen Lösung wird auf die Schleusen verzichtet, die das über 1200°C heisse und verschmutzte Reduktionsgas aus dem Einschmelzvergaser daran hindern, über die Austragöffnung in den Reduktionsschachtofen zu gelangen. Es hat sich gezeigt, dass ohne Schwierigkeiten ein kleiner Teil des im Einschmelzvergaser erzeugten Reduktionsgases im Gegenstrom zu den Eisenschwammpartikeln-in das Reduktionsaggregat eingeleitet werden kann, wenn dieses Gas vor der Austragvorrichtung auf Temperaturen unterhalb der Erweichungstemperatur des geförderten Eisenschwammes abgekühlt wird. Beim Abkühlprozess erscheint es wesentlich, dass dieser die Güte des Reduktionsgases nicht verringert. Als besonders vorteilhaft hat es sich erwiesen, ausreichend, in der Regel auf unterhalb 100°C, abgekühltes und gereinigtes Reduktionsgas beizumischen. Ein wesentlicher Anteil des mitgeführten Staubs setzt sich im Bereich der Austrittsseite der Austragvorrichtung ab und wird durch die Austragvorrichtung zusammen mit den Eisenschwammpartikeln ausgetragen. Damit der Anteil des über die Austragvorrichtung direkt einströmenden ungereinigten Reduktionsgases im Verhältnis zu dem in die Reduktionszone eingeblasenen, gereinigten und auf Prozesstemperatur abgekühlten Gas klein gehalten wird, muss der Strömungswiderstand im Strömungsweg des ungereinigten Reduktionsgases wesentlich höher als im Strömungsweg des gereinigten und auf Prozesstemperatur abgekühlten Reduktionsgases sein. Der Strömungswiderstand wird für den erstgenannten Strömungsweg in erster Linie durch die Austragvorrichtung und die Schüttsäule bis zu den Einblasdüsen für das gereinigte und gekühlte Reduktionsgas bestimmt. Es sollte deshalb eine Austragvorrichtung zur Anwendung kommen, die einen verhältnismässig hohen Strömungswiderstand aufweist, während der Strömungswiderstand im Hauptströmungsweg des Reduktionsgases durch geeignete Auswahl von Entstaubungs- und Kühlvorrichtungen möglichst klein gehalten werden soll. Als Austragvorrichtung haben sich Schneckenförderer, deren Förderteil als Paddelschnecke ausgebildet ist und deren Austrittsöffnung jeweils unmittelbar in ein mit dem Eisenschmelzvergaser verbundenes Fallrohr mündet, als besonders geeignet erwiesen. Die Schneckenförderer bedingen einen verhältnismässig hohen Druckverlust und bilden zugleich ein gutes Staubfilter, das sich durch den ständigen Austrag der aufgefangenen Staubteilchen zusammen mit den Eisenschwammpartikeln «selbst reinigt».In the solution according to the invention, the locks are dispensed with, which prevent the reducing gas, which is hot and dirty at over 1200 ° C., from the melter gasifier from entering the reduction shaft furnace through the discharge opening. It has been shown that a small part of the reducing gas generated in the melter gasifier can be introduced into the reduction unit in counterflow to the sponge iron particles if this gas is cooled to temperatures below the softening temperature of the sponge iron being conveyed in front of the discharge device. In the cooling process, it appears essential that this does not reduce the quality of the reducing gas. It has proven to be particularly advantageous to admix sufficient, generally to below 100 ° C., cooled and purified reducing gas. A substantial proportion of the dust carried is deposited in the area of the outlet side of the discharge device and is discharged together with the sponge iron particles by the discharge device. In order for the proportion of the uncleaned reducing gas flowing in directly via the discharge device to be kept small in relation to the gas blown into the reduction zone, cleaned and cooled to the process temperature, the flow resistance in the flow path of the uncleaned reducing gas must be considerably higher than in the flow path of the cleaned and cooled to the process temperature be. The flow resistance for the first-mentioned flow path is primarily determined by the discharge device and the pouring column up to the injection nozzles for the cleaned and cooled reducing gas. A discharge device should therefore be used which has a relatively high flow resistance, while the flow resistance in the main flow path of the reducing gas should be kept as small as possible by suitable selection of dedusting and cooling devices. Screw conveyors, the conveyor part of which is designed as a paddle screw and the outlet opening of which opens directly into a downpipe connected to the molten iron gasifier, have proven to be particularly suitable as the discharge device. The screw conveyors cause a relatively high pressure loss and at the same time form a good dust filter that “cleans itself” together with the sponge iron particles due to the constant discharge of the collected dust particles.

Die Erfindung wird durch ein Ausführungsbeispiel anhand von zwei Figuren näher erläutert. Es zeigen

  • Fig. 1 eine schematische Darstellung des Verfahrens und der Vorrichtung,
  • Fig. 2 in einem Längsschnitt einen Schneckenförderer zum Heissaustrag der Eisenschwammpartikel.
The invention is illustrated by an embodiment explained in more detail using two figures. Show it
  • 1 is a schematic representation of the method and the device,
  • Fig. 2 in a longitudinal section a screw conveyor for hot discharge of the sponge iron particles.

Die in Fig. 1 schematisch dargestellte Vorrichtung zur direkten Erzeugung von flüssigem Roheisen aus stückigem Eisenerz enthält einen Einschmelzvergaser 1 der in der DE-OS 2 843 303 beschriebenen Art. Oberhalb des Einschmelzvergasers ist ein in einer nicht dargestellten Stahlkontruktion aufgehängter Direktreduktionsschachtofen 2 angeordnet, der im Prinzip beispielsweise in der DE-OS 2 935 707 beschrieben ist. Dem Direktreduktionsschachtofen wird über einen gasdichten Doppelglockenverschluss 3 stückiges Eisenerz zugeführt, das in Form einer losen Schüttung im Schachtofen absinkt und mittels eines über einen mittleren Gaseinlass 4 eingeblasenen heissen Reduktionsgases einer Temperatur zwischen 760 und 850°C zu Eisenschwamm reduziert wird. Das verbrauchte Reduktionsgas verlässt den Schachtofen 2 über einen oberen Gasauslass 5 und kann in bekannter Weise in den Reduktionsgaskreislauf zurückgeführt oder anderweitig ausgenutzt werden.The device for the direct production of molten pig iron from lumpy iron ore, shown schematically in FIG. 1, contains a melter gasifier 1 of the type described in DE-OS 2 843 303. Above the melter gasifier, a direct reduction shaft furnace 2 suspended in a steel construction, not shown, is arranged Principle is described for example in DE-OS 2 935 707. The direct reduction shaft furnace is supplied with 3-piece iron ore via a gas-tight double bell lock, which sinks in the form of a loose bed in the shaft furnace and is reduced to sponge iron at a temperature between 760 and 850 ° C by means of a hot reducing gas blown in via a central gas inlet 4. The used reducing gas leaves the shaft furnace 2 via an upper gas outlet 5 and can be returned to the reducing gas circuit in a known manner or used in some other way.

Der durch Reduktion des stückigen Eisenerzes erhaltene heisse Eisenschwamm wird mit einer Temperatur von etwa 750° bis 800°C unten aus dem Direktreduktionsschachtofen 2 ausgetragen und kontinuierlich von oben in den Einschmelzvergaser chargiert. Im Einschmelzvergaser wird aus über Öffnungen 6 eingebrachter Kohle und durch zwölf radial angeordnete Düsen 7 eingeblasenem sauerstoffhaltigem Gas, insbesondere Sauerstoff und Luft, ein Kohlefliessbett 8 gebildet, in dem auch grössere Eisenschwammpartikel merklich abgebremst und bis zum Eintritt in eine Hochtemperaturzone im unteren Abschnitt des Kohlefliessbettes um einen wesentlichen Betrag in ihrer Temperatur erhöht und schliesslich aufgeschmolzen werden.The hot sponge iron obtained by reduction of the lumpy iron ore is discharged at a temperature of about 750 ° to 800 ° C. from the direct reduction shaft furnace 2 at the bottom and continuously charged into the melter gasifier from above. In the melter gasifier, a coal fluid bed 8 is formed from coal introduced via openings 6 and oxygen-containing gas, in particular oxygen and air, which is blown in through twelve radially arranged nozzles 7, in which even larger iron sponge particles are noticeably braked and in the lower section of the coal fluid bed until they enter a high-temperature zone a significant amount in their temperature is increased and finally melted.

Oberhalb des Kohlefliessbettes 8 schliesst sich ein Beruhigungsraum an, in den radiale Düsen 9 münden, durch die zur Kühlung des im Einschmelzvergaser erzeugten heissen Reduktionsgases Wasserdampf, Kohlenwasserstoffe oder ein beispielsweise auf 50°C herabgekühltes Reduktionsgas eingeblasen werden. Das im Einschmelzvergaser erzeugte Reduktionsgas verlässt den Einschmelzvergaser oberhalb des Beruhigungsraumes durch zwei Gasauslässe 10 mit einer Temperatur zwischen 1200 und 1400°C und einem Druck von etwa 2 bar. Es gelangt dann zu einer Mischstelle 11, in der es mit Kühlgas ausreichend niedriger Temperatur auf die für die Direktreduktion notwendige Temperatur, in der Regel von 760 bis 850°C, gebracht wird. Die Mischstelle ist strömungstechnisch so ausgebildet, dass ein Teil der kinetischen Energie des Kühlgases nach Durchmischung mit dem heissen vom Einschmelzvergaser gelieferten Reduktionsgas als Druck wiedergewonnen wird und damit der Druckverlust im Heissgasweg möglichst gering gehalten wird. Von der Mischstelle gelangt das Gas zu einem Zyklonabscheider 12, in dem der mit dem Gasstrom mitgerissene Koksstaub und Asche weitgehend abgeschieden werden. Sodann wird der auf die vorgeschriebene Prozesstemperatur abgekühlte und gereinigte Heissgasstrom geteilt, und zwar werden etwa 60 Vol.-% hiervon als erster Teilgasstrom 13 durch den Gaseinlass 4 in die Reduktionszone des Direktreduktionsschachtofens 2 eingeblasen, während der andere Teil zur Kühlgasgewinnung einem Einspritzkühler 14 und dann einem Waschturm 15 zugeführt wird. Das hier austretende Kühlgas wird durch einen Kompressor 16 komprimiert und mit einer Temperatur von etwa 50°C zur Temperaturregelung des aus dem Einschmelzvergaser austretenden heissen Reduktionsgases der Mischstelle 11, zur Temperaturregelung des Reduktionsgases im Einschmelzvergaser den Düsen 9 und ferner, wie später beschrieben, einer Ringleitung 22 zugeführt.Above the coal fluidized bed 8 there is a calming space into which radial nozzles 9 open, through which water vapor, hydrocarbons or a reducing gas, for example cooled down to 50 ° C., are blown in to cool the hot reducing gas generated in the melter gasifier. The reducing gas generated in the melter gasifier leaves the melter gasifier above the calming chamber through two gas outlets 10 with a temperature between 1200 and 1400 ° C. and a pressure of approximately 2 bar. It then arrives at a mixing point 11, in which it is brought to the temperature required for direct reduction, usually from 760 to 850 ° C., with a sufficiently low temperature of cooling gas. In terms of flow technology, the mixing point is designed in such a way that a part of the kinetic energy of the cooling gas is recovered as a pressure after mixing with the hot reducing gas supplied by the melter gasifier, and the pressure loss in the hot gas path is thus kept as low as possible. From the mixing point, the gas reaches a cyclone separator 12, in which the coke dust and ash entrained with the gas flow are largely separated. Then the hot gas stream cooled and cleaned to the prescribed process temperature is divided, namely about 60 vol .-% of which is blown as the first partial gas stream 13 through the gas inlet 4 into the reduction zone of the direct reduction shaft furnace 2, while the other part for cooling gas extraction is an injection cooler 14 and then a washing tower 15 is supplied. The cooling gas emerging here is compressed by a compressor 16 and at a temperature of approximately 50 ° C. for regulating the temperature of the hot reducing gas emerging from the melter gasifier of the mixing point 11, for regulating the temperature of the reducing gas in the melter gasifier, the nozzles 9 and also, as described later, a ring line 22 fed.

Für den Heissaustrag der Eisenschwammpartikel aus dem Direktreduktionsschachtofen 2 sind symmetrisch zur Mittelachse des Ofens radial sechs Schneckenförderer 17 angeordnet, die als Paddelschnecken ausgebildet und einseitig gelagert sind. Die Austrittsöffnung 18 jedes Schneckenförderers steht mit einer Verbindungsleitung in Form eines Fallrohres 19 in Verbindung, die durch die Decke des Einschmelzvergasers 1 in den Beruhigungsraum dieses Vergasers mündet. Es sind demnach im vorliegenden Fall auch sechs axialsymmetrisch angeordnete Fallrohre vorgesehen. Möglichst nahe am Eintritt in den Einschmelzvergaser mündet in jedes Fallrohr eine Düse 21 aus einer Ringleitung 22, der vom Kompressor 16 ein als dritter Teilgasstrom 23 bezeichneter Strom des auf 50°C abgekühlten und gereinigten vom Einschmelzvergaser gelieferten Reduktionsgase zugeführt wird.For the hot discharge of the sponge iron particles from the direct reduction shaft furnace 2, six screw conveyors 17 are arranged radially symmetrically to the central axis of the furnace, which are designed as paddle screws and are supported on one side. The outlet opening 18 of each screw conveyor is connected to a connecting line in the form of a downpipe 19 which opens through the ceiling of the melter gasifier 1 into the settling chamber of this gasifier. Accordingly, six axially symmetrically arranged downpipes are also provided in the present case. As close as possible to the entrance to the melter gasifier, a nozzle 21 from a ring line 22 opens into each downpipe, to which the compressor 16 feeds a stream of the reducing gases, which is cooled and cleaned to 50 ° C. and is supplied by the melter gasifier, and is cooled to 50 ° C.

Während bei bekannten Verfahren und Anlagen durch aufwendige Massnahmen verhindert wird, dass das ungereinigte und zu heisse Reduktionsgas ohne Aufbereitung in den Direktreduktionsschachtofen gelangen kann, wird bei dem vorliegenden Verfahren ein begrenzter Gasstrom unmittelbar vom Einschmelzvergaser über die Austragvorrichtung 17 für den heissen Eisenschwamm im Gegenstrom zu diesem zugelassen. Der gesamte, direkt aus dem Einschmelzvergaser in die Fallrohre strömende Gasstrom aus ungereinigtem Reduktionsgas ist als zweiter Teilgasstrom 24 bezeichnet. Die Temperatur des in die Fallrohre 19 einströmenden zweiten Teilgasstromes 24 wird mittels des über die Düsen 21 in geregelterMenge eingeleiteten Kühlgases auf eineTemperatur zwischen 760 und 850°C abgekühlt, bevor die Gasströme über die Schneckenförderer 17 in den Reduktionsschachtofen gelangen. Das Kühlgas wird so zugeführt, dass eine besonders gute Verwirbelung mit dem aufsteigenden Rohgas eintritt. Der beim Eintritt in den Schneckenförderer 17 im aufsteigenden Gasstrom enthaltene Staub setzt sich im wesentlichen im Bereich des Schneckenförderers ab und wird sukzessive zusammen mit den Eisen schwammpartikeln wieder in das betreffende Fallrohr und in den Einschmelzvergaser zurück befördert.While in known methods and systems, complex measures prevent the unpurified and too hot reducing gas from reaching the direct reduction shaft furnace without treatment, in the present method a limited gas flow is directly from the melter gasifier via the discharge device 17 for the hot sponge iron in counterflow to the latter authorized. The entire gas stream from unpurified reducing gas flowing directly from the melter gasifier into the downpipes is referred to as second partial gas stream 24. The temperature of the second partial gas stream 24 flowing into the downpipes 19 is cooled to a temperature between 760 and 850 ° C by means of the cooling gas introduced in a controlled quantity via the nozzles 21 before the gas streams reach the reduction shaft furnace via the screw conveyors 17. The cooling gas is supplied in such a way that there is particularly good swirling with the rising raw gas. The dust contained in the rising gas stream when entering the screw conveyor 17 settles essentially in the area of the screw conveyor and is successively conveyed back together with the iron sponge particles back into the relevant downpipe and into the melter gasifier.

Wesentlich ist eine Begrenzung des zweiten Teilgasstromes 24, d.h. also der über die sechs Fallrohre 19 unmittelbar vom Einschmelzvergaser nach oben strömenden Rohgasmenge auf einen Anteil von maximal 30 Vol.-% der gesamten in den Direktreduktionsschachtofen eingeleiteten Reduktionsgasmenge. Zu diesem Zweck ist es erforderlich, dass der Strömungswiderstand für den zweiten Teilgasstrom 24 im Strömungsweg bis zur Reduktionszone im Direktreduktionsschachtofen, d.h. also bis zur Ebene des Gaseinlasses 4, grösser ist als der Strömungswiderstand für den ersten Teilgasstrom 13 im Strömungsweg vom Gasauslass 10 bis zum Gaseinlass 4. Dieser Forderung kommt die Ausbildung der Austragvorrichtung 17 als Schneckenförderer, deren Förderteil als Paddelschnecke ausgebildet ist, entgegen. Im übrigen werden der Strömungswiderstand und damit die Druckverluste im Strömungsweg des ersten Teilgasstromes 13 bewusst klein gehalten.What is essential is a limitation of the second partial gas flow 24, that is to say the raw gas quantity flowing directly upward from the melter gasifier via the six downpipes 19 to a proportion of ma ximal 30% by volume of the total amount of reducing gas introduced into the direct reduction shaft furnace. For this purpose, it is necessary that the flow resistance for the second partial gas flow 24 in the flow path to the reduction zone in the direct reduction shaft furnace, that is to say to the level of the gas inlet 4, is greater than the flow resistance for the first partial gas flow 13 in the flow path from the gas outlet 10 to the gas inlet 4. This requirement meets the design of the discharge device 17 as a screw conveyor, the conveyor part is designed as a paddle screw. In addition, the flow resistance and thus the pressure losses in the flow path of the first partial gas stream 13 are deliberately kept small.

Durch die erfindungsgemässe Ausbildung des Verfahrens und der Vorrichtung wird ein unmittelbarer kontinuierlicher Transport der heissen Eisenschwammpartikel aus dem Direktreduktionsschachtofen 2 in den Einschmelzvergaser 1 ermöglicht, ohne dass Schleusen oder andere aufwendige Einrichtungen zur Abdichtung gegenüber dem heissen Reduktionsgas erforderlich sind, die bei der hohen Temperatur und der Art des zu fördernden Materials nur unter Schwierigkeiten mit der erforderlichen Betriebssicherheit realisierbar sind.The inventive design of the method and the device enables a direct continuous transport of the hot sponge iron particles from the direct reduction shaft furnace 2 into the melter gasifier 1, without locks or other complex devices for sealing against the hot reducing gas being required, which are at the high temperature and Type of material to be conveyed can only be realized with difficulty with the required operational safety.

In Fig. 2 ist teilweise im Längsschnitt einer der sechs Schneckenförderer 17 dargestellt. Der Schneckenförderer ist an einem mit dem Mantel des Direktreduktionsschachtofens verschweissten Stutzen 31 angeflanscht. Im Stutzen 31 befindet sich an der Austrittsseite 18 des Förderers ein Austrittsstutzen 32 zum Anflanschen eines Fallrohres 19 (siehe auch Fig. 1). Als Verschleissschutz für das Mauerwerk umhüllt den Förderteil ein Hüllrohr 33, das ebenfalls am Stutzen 31 angeflanscht ist.In Fig. 2 one of the six screw conveyors 17 is partially shown in longitudinal section. The screw conveyor is flanged to a socket 31 welded to the jacket of the direct reduction shaft furnace. In the socket 31 there is an outlet socket 32 on the outlet side 18 of the conveyor for flange mounting a downpipe 19 (see also FIG. 1). As a wear protection for the masonry, the conveying part envelops a cladding tube 33, which is also flanged to the socket 31.

Der Schneckenförderer 17 enthält einen in den Ofen hineinragenden Förderteil 36 sowie einen am Stutzen 31 angeflanschten aus dem Ofen herausragenden Lagerteil 34 und einen Antriebsteil 44.The screw conveyor 17 contains a conveyor part 36 protruding into the furnace and a bearing part 34 flanged out of the furnace on the nozzle 31 and a drive part 44.

Der Förderteil 36 hat die Form eines durch Paddeln 37 gebildeten unterbrochenen Schneckengangs, wobei sich die gestrichelt eingezeichnete Umhüllende 38 der Paddelschnecke zum freien Ende der Welle 35 hin konisch verjüngt. Dieses freie Ende reicht bis nahezu in die Mitte des Schachtofens und gewährleistet durch die konische Verjügung der Umhüllenden eine gleichmässige Entnahme des Schüttgutes aus der Schüttsäule.The conveying part 36 has the shape of an interrupted worm gear formed by paddles 37, the envelope 38 of the paddle screw shown in broken lines tapering conically towards the free end of the shaft 35. This free end extends almost to the middle of the shaft furnace and, thanks to the conical tapering of the envelope, ensures even removal of the bulk material from the bulk column.

Die Welle 35 ist wassergekühlt und für diesen Zweck hohl ausgebildet mit einem Innenrohr 39, das kurz vor dem freien Ende der Welle 35 endet und in das das Kühlwasser eingeführt wird, welches sodann am freien Ende umgeleitet wird und im Ringspalt zwischen dem zentralen Rohr 39 und der Innenwand der Welle 35 zurückströmt.The shaft 35 is water-cooled and hollow for this purpose with an inner tube 39, which ends just before the free end of the shaft 35 and into which the cooling water is introduced, which is then diverted at the free end and in the annular gap between the central tube 39 and the inner wall of the shaft 35 flows back.

Der Antrieb 44 ist wie folgt aufgebaut.The drive 44 is constructed as follows.

Zum Drehen der Welle 35 dient ein Klinkenschaltwerk 45 mit einem Rad 40, in dessen Zähne eine Klinke 41 eingreift, die drehbar an einem Hebel 42 befestigt ist, der wiederum drehbar auf der Welle 35 sitzt und mittels eines hydraulisch oder pneumatisch betätigbaren Kolben 43 um eine vorgegebene Winkelbewegung hin und her geschwenkt werden kann. Hierbei wird durch die Klinke 41 das Rad 40 jeweils um einen der Zahnteilung oder einem Vielfachen der Zahnteilung entsprechenden Betrag weitergedreht.To rotate the shaft 35, a ratchet mechanism 45 with a wheel 40, in the teeth of which a pawl 41 engages, which is rotatably attached to a lever 42, which in turn is rotatably seated on the shaft 35, and by means of a hydraulically or pneumatically actuated piston 43 by one predetermined angular movement can be pivoted back and forth. Here, the pawl 41 rotates the wheel 40 by an amount corresponding to the tooth pitch or a multiple of the tooth pitch.

Bei grösseren Durchmessern des Direktreduktionsschachtofens kann es erforderlich sein, die Welle des Schneckenförderers durch den Ofen zu führen und beidseitig in der Wand des Ofengefässes zu lagern. In diesem Fall ist es zweckmässig, die Schneckengänge vom Zentrum aus gegenläufig, d.h. zum Umfang fördernd, anzuordnen.With larger diameters of the direct reduction shaft furnace, it may be necessary to pass the shaft of the screw conveyor through the furnace and to store it on both sides in the wall of the furnace vessel. In this case, it is advisable to reverse the screw flights from the center, i.e. promoting to scope.

Claims (12)

1. A process for the direct production of liquid pig iron from iron ore in lump form which is reduced to sponge iron in a direct reduction shaft furnace in the form of a loose bulk material by means of a hot reducing gas, and then conveyed by a discharge apparatus in a hot condition directly by way of at least one connecting conduit (19) into a smelter gasifier (1) in which the heat required for melting the sponge iron, and the reducing gas, are produced from coal which is introduced into the gasifier and oxygen- bearing gas which is blown thereinto, a first portion of the flow of reducing gas, after cooling to the temperature prescribed for the reduction operation, and a dust separation operation, being blown into the reduction zone of the direct reduction shaft furnace, characterised in that a second portion (24) of the flow of reducing gas which is formed over the direct path between the smelter gasifier and the direct reduction shaft furnace (2) in counter-flow to the sponge iron particles, is limited to not more than 30% by volume of the total amount of reducing gas introduced into the direct reduction shaft furnace and is cooled to a temperature of below 950° C in the region of the connecting conduit.
2. A process according to claim 1, characterised in that the proportion of the second flow portion (24) of the amount of reducing gas fed to the direct reduction shaft furnace (2) is between 5 and 15% by volume.
3. A process according to claim 2, characterised in that the proportion of the second flow portion (24) of the amount of reducing gas fed to the direct reduction shaft furnace (2) is between 8 and 10% by volume.
4. A process according to one of claims 1 to 3, characterised in that the second flow portion (24) is cooled to a temperature of between 750 and 850°C in the region of the connecting conduit (19).
5. A process according to one of claims 1 to 4, characterised in that the second flow portion (24) is cooled in the region of the connecting conduit (19) by admixing a third flow portion (23) of the reducing gas which is produced in the smelter gasifier (1) after said reducing gas has been scrubbed and adequately cooled.
6. A process according to claim 5, characterised in that the gas of the third flow portion (23) is cooled to a temperature of about 50°C before it is mixed with the second flow portion (24).
7. A process according to one of claims 1 to 6, characterised in that the flow resistance in respect of the first flow portion (13) in the flow path between the smelter gasifier (1) and the entry (4) into the reduction zone is kept substantially lower than the flow resistance in respect of the second and third flow portions (24, 23) in the flow path between the smelter gasifier and the entry into the reduction zone.
8. Apparatus for carrying out the process according to one of claims 1 to 7 comprising a direct reduction shaft furnace (2) which is disposed above a smelter gasifier (1) and which at its lower end has a discharge apparatus (17) for hot sponge iron, with at least one outlet opening (18) to which is connected a connecting conduit (19) which opens directly into the smelter gasifier (1), characterised in that the connecting conduit is provided with an additional lateral gas inlet (21) for cooling gas.
9. Apparatus according to claim 8, characterised in that the discharge apparatus is in the form of screw conveyors (17) which are distributed over the cross-section thereof.
10. Apparatus according to claim 8, characterised in that the discharge apparatus is in the form of radially disposed screw conveyors (17) which are mounted in an overhung configuration.
11. Apparatus according to claim 9 or claim 10, characterised in that the conveyor member (36) of the screw conveyors (17) is in the form of an interrupted screw pitch formed by paddles (37).
12. Apparatus according to one of claims 9 to 11, characterised in that the envelope (38) of the conveyor member (36) of the screw conveyors (17) tapers conically towards the entry end of the screw conveyor.
EP81107215A 1980-09-12 1981-09-12 Method and apparatus for the direct production of hot metal from lump iron ore Expired EP0048008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81107215T ATE8799T1 (en) 1980-09-12 1981-09-12 PROCESS AND APPARATUS FOR DIRECT PRODUCTION OF LIQUID PIG IRON FROM CHILLED IRON ORE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3034539 1980-09-12
DE3034539A DE3034539C2 (en) 1980-09-12 1980-09-12 Method and device for the direct production of liquid pig iron from lumpy iron ore

Publications (2)

Publication Number Publication Date
EP0048008A1 EP0048008A1 (en) 1982-03-24
EP0048008B1 true EP0048008B1 (en) 1984-08-01

Family

ID=6111837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107215A Expired EP0048008B1 (en) 1980-09-12 1981-09-12 Method and apparatus for the direct production of hot metal from lump iron ore

Country Status (19)

Country Link
US (2) US4409023A (en)
EP (1) EP0048008B1 (en)
JP (1) JPS5848607B2 (en)
KR (1) KR890002797B1 (en)
AT (1) ATE8799T1 (en)
AU (1) AU542484B2 (en)
BR (1) BR8105812A (en)
CA (1) CA1189705A (en)
DD (1) DD201697A5 (en)
DE (1) DE3034539C2 (en)
ES (1) ES505397A0 (en)
GB (1) GB2084196B (en)
IN (1) IN155081B (en)
MX (1) MX158677A (en)
PH (1) PH18291A (en)
PL (1) PL133135B1 (en)
SU (1) SU1151220A3 (en)
UA (1) UA6580A1 (en)
ZA (1) ZA815863B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166679A1 (en) * 1984-06-12 1986-01-02 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Arrangement for a gasifier and direct reduction furnace
EP0179734A2 (en) * 1984-10-12 1986-04-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Process and apparatus for making sponge iron, especially pig iron
EP0210435A2 (en) * 1985-07-02 1987-02-04 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Process for cooling and cleaning generator gas and furnace gas, and apparatus for carrying out this process
EP0299231A1 (en) * 1987-07-13 1989-01-18 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Method for charging fuel and sponge iron into a melting furnace
WO1989004445A1 (en) * 1987-11-12 1989-05-18 Voest-Alpine Industrieanlagenbau Gesellschaft M.B. System for conveying bulk materials
EP0578628A1 (en) * 1992-07-07 1994-01-12 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Conveying arrangement for the dosed conveyance of bulk material

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3273996D1 (en) * 1981-04-28 1986-12-04 Kawasaki Steel Co Methods for melting and refining a powdery ore containing metal oxides and apparatuses for melt-refining said ore
CA1204287A (en) * 1982-03-22 1986-05-13 Frank V. Summers Method of generating a reducing gas
NL8201945A (en) * 1982-05-12 1983-12-01 Hoogovens Groep Bv METHOD AND APPARATUS FOR MANUFACTURING LIQUID IRON FROM OXYDIC IRON ORE.
JPS59107013A (en) * 1982-12-09 1984-06-21 Ishikawajima Harima Heavy Ind Co Ltd Production of molten steel utilizing melt reduction
DE3318005C2 (en) * 1983-05-18 1986-02-20 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for making iron
AT388388B (en) * 1983-11-24 1989-06-12 Voest Alpine Ag METHOD AND DEVICE FOR MELTING IRON IN A MELT-UP CARBURETTOR
AT381954B (en) * 1984-08-16 1986-12-29 Voest Alpine Ag METHOD FOR DIRECTLY REDUCING IRON OXIDE MATERIALS
JPS6169910A (en) * 1984-09-12 1986-04-10 Kobe Steel Ltd Fluidized bed reducing method of iron ore
AT381116B (en) * 1984-11-15 1986-08-25 Voest Alpine Ag METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS AND DEVICE FOR IMPLEMENTING THE METHOD
DE3503493A1 (en) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf METHOD FOR THE PRODUCTION OF RAW IRON
US4897113A (en) * 1985-09-23 1990-01-30 Hylsa, S.A. Direct reduction process in reactor with hot discharge
US4685964A (en) * 1985-10-03 1987-08-11 Midrex International B.V. Rotterdam Method and apparatus for producing molten iron using coal
JPS6296202A (en) * 1985-10-21 1987-05-02 極東開発工業株式会社 Side-surface reinforcing beam structure in container for transport
DE3607774A1 (en) * 1986-03-08 1987-09-17 Kloeckner Cra Tech METHOD FOR TWO-STAGE MELT REDUCTION OF IRON ORE
US4701214A (en) * 1986-04-30 1987-10-20 Midrex International B.V. Rotterdam Method of producing iron using rotary hearth and apparatus
ATE89320T1 (en) * 1987-02-16 1993-05-15 Mo I Stali I Splavov PROCESS AND FURNACE FOR THE MANUFACTURE OF IRON-CARBON INTERMEDIATE PRODUCTS FOR STEEL MAKING.
AT388176B (en) * 1987-07-30 1989-05-10 Voest Alpine Ag METHOD AND PLANT FOR THE PRODUCTION OF LIQUID RAW IRON OR STEEL PRE-PRODUCTS FROM LIQUID, IRON OXIDE-CONTAINING MATERIALS
US4936908A (en) * 1987-09-25 1990-06-26 Nkk Corporation Method for smelting and reducing iron ores
DE3742156C1 (en) * 1987-12-10 1988-10-13 Korf Engineering Gmbh Process for operating a melter gasifier and melter gasifier for carrying it out
US5296015A (en) * 1990-01-09 1994-03-22 Hylsa S.A. De C.V. Method for the pneumatic transport of large iron-bearing particles
AT393901B (en) * 1990-02-09 1992-01-10 Voest Alpine Ind Anlagen PLANT FOR TREATING AND MELTING METALS, METAL COMPOUNDS AND / OR METAL ALLOYS OR FOR PRODUCING CALCIUM CARBIDE
AT395435B (en) * 1991-02-19 1992-12-28 Voest Alpine Ind Anlagen METHOD FOR COMMISSIONING A PLANT FOR PRODUCING RAW IRON OR STEEL PRE-MATERIAL, AND PLANT FOR IMPLEMENTING THE METHOD
US5429658A (en) * 1992-10-06 1995-07-04 Bechtel Group, Inc. Method of making iron from oily steel and iron ferrous waste
US5320676A (en) * 1992-10-06 1994-06-14 Bechtel Group, Inc. Low slag iron making process with injecting coolant
US5354356A (en) * 1992-10-06 1994-10-11 Bechtel Group Inc. Method of providing fuel for an iron making process
US5259864A (en) * 1992-10-06 1993-11-09 Bechtel Group, Inc. Method of disposing of environmentally undesirable material and providing fuel for an iron making process e.g. petroleum coke
US6197088B1 (en) 1992-10-06 2001-03-06 Bechtel Group, Inc. Producing liquid iron having a low sulfur content
US5380352A (en) * 1992-10-06 1995-01-10 Bechtel Group, Inc. Method of using rubber tires in an iron making process
US5397376A (en) * 1992-10-06 1995-03-14 Bechtel Group, Inc. Method of providing fuel for an iron making process
US5338336A (en) * 1993-06-30 1994-08-16 Bechtel Group, Inc. Method of processing electric arc furnace dust and providing fuel for an iron making process
DE4317968C2 (en) * 1993-05-28 1995-10-26 Voest Alpine Ind Anlagen Process for the production of molten pig iron from lumpy iron ore
US5958107A (en) * 1993-12-15 1999-09-28 Bechtel Croup, Inc. Shift conversion for the preparation of reducing gas
JP4310395B2 (en) * 1995-01-24 2009-08-05 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Utilization of dust generated in reduction of iron ore
AT405520B (en) 1996-05-15 1999-09-27 Voest Alpine Ind Anlagen METHOD FOR REDUCING IMPURITIES IN THE GAS FLOW AND DEVICE FOR IMPLEMENTING IT
DE19623246C1 (en) * 1996-05-30 1997-10-02 Voest Alpine Ind Anlagen Loading of melting gasifier with gasifying agents and sponge iron@
DE19625127C2 (en) * 1996-06-12 1998-04-30 Voest Alpine Ind Anlagen Device and method for producing sponge iron
AT403929B (en) 1996-07-10 1998-06-25 Voest Alpine Ind Anlagen METHOD FOR GENERATING A REDUCING GAS FOR THE REDUCTION OF METAL ORE, AND SYSTEM FOR IMPLEMENTING THE METHOD
AT406299B (en) * 1996-11-12 2000-03-27 Voest Alpine Ind Anlagen DEVICE FOR DISCHARGING OR MIXING PIECE OF GOODS
AU725970B2 (en) * 1997-05-02 2000-10-26 Pohang Iron & Steel Co., Ltd. Apparatus for manufacturing molten iron by using calcination furnace, and manufacturing method therefor
AUPQ205799A0 (en) * 1999-08-05 1999-08-26 Technological Resources Pty Limited A direct smelting process
KR20050077103A (en) 2004-01-26 2005-08-01 주식회사 포스코 The apparatus for producing molten iron directly using coal with wide range of size and the method using the same
RU2350670C2 (en) * 2006-11-20 2009-03-27 Общество с ограниченной ответственностью Фирма "ДАТА-ЦЕНТР" (ООО Фирма "ДАТА-ЦЕНТР") Method of concentrates treatment from ore, containing oxides of ferric, titanium and vanadium and facility for its implementation
DE102008026835A1 (en) 2008-06-05 2009-12-17 Kurt Himmelfreundpointner Conveyable material e.g. foam particle feeding method for shaft furnace in cement production, involves conveying air or gas into starting region of lance through mechanical conveyor operating at zero pressure
US8177886B2 (en) * 2009-05-07 2012-05-15 General Electric Company Use of oxygen concentrators for separating N2 from blast furnace gas
CN202639805U (en) * 2011-07-27 2013-01-02 上海宝冶集团有限公司 Disassembling, assembling and jacking device for areal gas distribution (AGD) pipeline of reduction furnace
CN106854702B (en) * 2015-12-09 2019-03-15 中国科学院过程工程研究所 The method of iron, vanadium and titanium in one step conversion separation sefstromite concentrate
CN107619941A (en) * 2017-10-30 2018-01-23 攀钢集团攀枝花钢铁研究院有限公司 The method that vanadium and chromium are separated from vanadium chromium slag
CN109852424B (en) * 2019-01-02 2021-04-27 新奥科技发展有限公司 Coal gasification iron-making method and coal gasification iron-making gasification furnace
CN113720142B (en) * 2021-08-23 2023-01-03 西安交通大学 Vertical cooling kiln with uniform heat exchange

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889219A (en) * 1956-12-28 1959-06-02 Inland Steel Co Control method and apparatus for iron ore reduction process
NL223944A (en) * 1957-01-15 1900-01-01
US3704011A (en) * 1971-08-12 1972-11-28 Mintech Corp Discharge mechanism for shaft kiln
SE396616B (en) * 1973-05-17 1977-09-26 Rolf Kristian Londer METHOD AND DEVICE FOR THE MANUFACTURE OF A METAL MELT BY REDUCTION AND MELTING
IT1029175B (en) * 1975-04-28 1979-03-10 Kinglor Metor Spa RETORT IRON SPONGE EXTRACTOR
DE2655813B2 (en) * 1976-12-09 1980-10-23 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln Process and plant for the direct and continuous extraction of iron
US4188022A (en) * 1978-09-08 1980-02-12 Midrex Corporation Hot discharge direct reduction furnace
DE2843303C2 (en) * 1978-10-04 1982-12-16 Korf-Stahl Ag, 7570 Baden-Baden Process and plant for the production of liquid pig iron and reducing gas in a melter gasifier
US4235425A (en) * 1979-07-16 1980-11-25 Midrex Corporation Impact bed gasifier-melter
US4248626A (en) * 1979-07-16 1981-02-03 Midrex Corporation Method for producing molten iron from iron oxide with coal and oxygen
US4238226A (en) * 1979-07-16 1980-12-09 Midrex Corporation Method for producing molten iron by submerged combustion
MX153453A (en) * 1979-07-16 1986-10-16 Mindres Int Bv IMPROVEMENTS IN METHOD AND APPARATUS FOR THE PRODUCTION OF CAST CAST IRON
US4288217A (en) * 1980-04-28 1981-09-08 Gte Products Corporation Rotary calciner feed spiral

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0166679A1 (en) * 1984-06-12 1986-01-02 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Arrangement for a gasifier and direct reduction furnace
EP0179734A2 (en) * 1984-10-12 1986-04-30 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Process and apparatus for making sponge iron, especially pig iron
EP0179734A3 (en) * 1984-10-12 1986-12-30 Korf Engineering Gmbh Process and apparatus for making sponge iron, especially pig iron
EP0210435A2 (en) * 1985-07-02 1987-02-04 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Process for cooling and cleaning generator gas and furnace gas, and apparatus for carrying out this process
EP0210435A3 (en) * 1985-07-02 1989-11-23 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Process for cooling and cleaning generator gas and furnace gas, and apparatus for carrying out this process
EP0299231A1 (en) * 1987-07-13 1989-01-18 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Method for charging fuel and sponge iron into a melting furnace
WO1989004445A1 (en) * 1987-11-12 1989-05-18 Voest-Alpine Industrieanlagenbau Gesellschaft M.B. System for conveying bulk materials
EP0578628A1 (en) * 1992-07-07 1994-01-12 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Conveying arrangement for the dosed conveyance of bulk material
DE4318515A1 (en) * 1992-07-07 1994-01-13 Voest Alpine Ind Anlagen Conveyor for the dosed conveying of bulk goods
AT397378B (en) * 1992-07-07 1994-03-25 Voest Alpine Ind Anlagen CONVEYING DEVICE FOR DOSED CONVEYING BULK MATERIAL
US5480070A (en) * 1992-07-07 1996-01-02 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Conveying arrangement for the dosed conveyance of bulk material

Also Published As

Publication number Publication date
DE3034539A1 (en) 1982-03-25
GB2084196A (en) 1982-04-07
UA6580A1 (en) 1994-12-29
ZA815863B (en) 1982-08-25
IN155081B (en) 1984-12-29
DE3034539C2 (en) 1982-07-22
DD201697A5 (en) 1983-08-03
CA1189705A (en) 1985-07-02
PH18291A (en) 1985-05-20
BR8105812A (en) 1982-06-08
JPS5848607B2 (en) 1983-10-29
PL232996A1 (en) 1982-04-26
EP0048008A1 (en) 1982-03-24
KR830007847A (en) 1983-11-07
ES8206634A1 (en) 1982-08-16
US4448402A (en) 1984-05-15
ES505397A0 (en) 1982-08-16
SU1151220A3 (en) 1985-04-15
PL133135B1 (en) 1985-05-31
GB2084196B (en) 1984-08-08
AU542484B2 (en) 1985-02-21
MX158677A (en) 1989-02-27
ATE8799T1 (en) 1984-08-15
AU7476681A (en) 1982-03-18
JPS57120607A (en) 1982-07-27
KR890002797B1 (en) 1989-07-31
US4409023A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
EP0048008B1 (en) Method and apparatus for the direct production of hot metal from lump iron ore
EP0193488B1 (en) Process and apparatus for producing sponge iron and liquid pig iron
EP0670910B1 (en) Process and device for producing pig iron from iron ore or for thermally and/or chemically treating an easily decomposable material
DD155330A5 (en) METHOD FOR RECOVERING NON-FLUSH METALS FROM DUST-SOURED APPLICATION MATERIAL
DE2530399A1 (en) GAS PURIFICATION DEVICE
DE2501457A1 (en) TURNING SYSTEM
AT405057B (en) METHOD FOR REDUCING OXIDE CONTAINING MATERIAL AND SYSTEM FOR IMPLEMENTING THE METHOD
WO2000009764A1 (en) Method for producing liquid pig iron
AT405742B (en) METHOD FOR PRODUCING LIQUID METAL AND SYSTEM FOR IMPLEMENTING THE METHOD
DE2846584A1 (en) METHOD AND DEVICE FOR THE HEAT TREATMENT OF FINE GRAIN GOODS
DE60021064T2 (en) Fluidized bed reduction reactor for reducing fine iron ore and feeding the reduced ore to a melt gasifier
EP0766750A1 (en) Process and plant for recycling iron-containing residues from the steel and iron industry
DE19648306A1 (en) Treatment of shredded scrap light constituents in a melt
WO1998035064A1 (en) Method of producing liquid crude iron or liquid steel fabricated materials
AT404255B (en) METHOD AND DEVICE FOR RETURNING A FINE-PARTIC SOLID DISCHARGED FROM A REACTOR VESSEL WITH A CARRIER GAS
DE8024491U1 (en) DISCHARGE DEVICE FOR HOT IRON SPONGE FROM A DIRECT REDUCTION CHAMBER
AT403380B (en) METHOD FOR REDUCING METAL SPONGE
DE2742099A1 (en) DEVICE FOR HEAT TREATMENT OF FINE-GRAIN SOLIDS
EP0533866B1 (en) Process and reduction and melting furnace for producing liquid metal from fine metal oxide particles
DE3719549A1 (en) METHOD AND DEVICE FOR DEDUSTING AND DESULFURING GASES
DE1280479B (en) Melting furnace for the continuous production of trace stone and the process for its operation
EP0521523A1 (en) Process for running a cupola
EP0024637B1 (en) Process for operating a change-over valve for supplying a nozzle in steel-producing convertor
DE3441082A1 (en) MELTING ARRANGEMENT
DD146190A5 (en) METHOD AND DEVICE FOR REDUCING METAL OXIDES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810912

AK Designated contracting states

Designated state(s): AT BE CH FR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOEST ALPINE AG

Owner name: KORF ENGINEERING GMBH

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR IT LI LU NL SE

REF Corresponds to:

Ref document number: 8799

Country of ref document: AT

Date of ref document: 19840815

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KORF ENGINEERING GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;DEUTSCHE VOEST - ALPINE INDUSTRIEANLAGENB

NLS Nl: assignments of ep-patents

Owner name: KORF ENGINEERING GMBH TE DUESSELDORF, BONDSREPUBLI

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81107215.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20001201

Year of fee payment: 20

Ref country code: AT

Payment date: 20001201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001215

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20010912 *VOEST-ALPINE INDUSTRIEANLAGENBAU G.M.B.H.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010911

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010912

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010912

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20010912

EUG Se: european patent has lapsed

Ref document number: 81107215.6