DK201570471A1 - System and method for cleaning contaminated liquid - Google Patents

System and method for cleaning contaminated liquid Download PDF

Info

Publication number
DK201570471A1
DK201570471A1 DKPA201570471A DKPA201570471A DK201570471A1 DK 201570471 A1 DK201570471 A1 DK 201570471A1 DK PA201570471 A DKPA201570471 A DK PA201570471A DK PA201570471 A DKPA201570471 A DK PA201570471A DK 201570471 A1 DK201570471 A1 DK 201570471A1
Authority
DK
Denmark
Prior art keywords
liquid
contaminated liquid
enclosure
water
contaminated
Prior art date
Application number
DKPA201570471A
Other languages
Danish (da)
Inventor
Hans Andrias Djurhuus
Original Assignee
Hans Andrias Djurhuus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Andrias Djurhuus filed Critical Hans Andrias Djurhuus
Priority to DKPA201570471A priority Critical patent/DK201570471A1/en
Priority to PCT/DK2016/050243 priority patent/WO2017008814A1/en
Publication of DK201570471A1 publication Critical patent/DK201570471A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0051Regulation processes; Control systems, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0075Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with heat exchanging
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Den foreliggende opfindelse angår et system eller en fremgangsmåde indrettet til rensning af forurenet væske, hvilket system udfører mindst en fordampningsproces på den forurenede væske, hvilken fordampning udføres ved undertryk. Det er formålet med opfindelsen at udføre i det væsentlige fuldstændig rensning af forurenet væske. Et yderligere formål med den foreliggende opfindelse er at undgå skumdannelse under fordampningsprocessen. Formålet kan opfyldes, hvis systemet omfatter mindst et fælles procesindelukke, hvilket procesindelukke omfatter en flerhed af tekniske funktioner, såsom et varmeapparat, en fordamper og en kondensator. Herved kan opnås et kompakt system, i hvilket de fleste af de tekniske foranstaltninger er placeret i samme indelukke. Dette indelukke kan derefter delvist tømmes med en pumpe, så der opnås et fælles undertryk i indelukket. Herved kan varmeapparat, fordamper og kondensater virke ved undertryk.The present invention relates to a system or method adapted to purify contaminated liquid, which system performs at least one evaporation process on the contaminated liquid, which evaporation is carried out under vacuum. It is an object of the invention to perform substantially complete purification of contaminated liquid. A further object of the present invention is to avoid foaming during the evaporation process. The object can be met if the system comprises at least one common process enclosure, which process enclosure comprises a plurality of technical functions such as a heater, an evaporator and a capacitor. This enables a compact system in which most of the technical measures are placed in the same enclosure. This enclosure can then be partially emptied with a pump to achieve a common negative pressure in the enclosure. This allows the heater, evaporator and condensate to operate under vacuum.

Description

11

System og fremgangsmåde til rensning af forurenet væske Opfindelsens områdeField and method of purifying contaminated liquid Field of the Invention

Den foreliggende opfindelse angår et system eller en fremgangsmåde indrettet til at rense forurenet væske, fortrinsvis vand, hvilket system omfatter mindst et indløb for forurenet væske, hvilket system omfatter mindst et udløb for renset væske og mindst et udløb for spildevand, hvilket system udfører mindst en fordampningsproces på den forurenede væske, hvilken fordampning udføres ved undertryk.The present invention relates to a system or method adapted to purify contaminated liquid, preferably water, which system comprises at least one inlet for contaminated liquid, which system comprises at least one outlet for purified liquid and at least one outlet for waste water, which system performs at least one evaporation process on the contaminated liquid, which evaporation is carried out under vacuum.

Baggrund for opfindelsen WO 2011/014107 angår en fremgangsmåde til rensning af bund- og slagvand på et skib, især til havs, til et olieforureningsniveau mindre end 15 ppm under anvendelse af overskudsvarme fra skibets motor(er). Her beskrives et anlæg til udførelse af fremgangsmåden samt et fartøj, der indbefatter sådant anlæg såvel som anvendelse af fremgangsmåden og anlægget.BACKGROUND OF THE INVENTION WO 2011/014107 relates to a method for purifying bottom and impact water on a ship, especially at sea, to an oil pollution level less than 15 ppm using excess heat from the ship's engine (s). Here is described a system for carrying out the method as well as a vessel which includes such a system as well as the use of the method and the system.

Formål med opfindelsenObjects of the Invention

Det er formålet med den foreliggende opfindelse at udføre en næsten fuldstændig rensning af forurenet væske; et yderligere formål er at køre en proces forrensning af forurenet væske med lavt effektforbrug. Et yderligere formål med den foreliggende opfindelse er at undgå skumdannelse under fordampningsprocessen.It is the object of the present invention to perform an almost complete purification of contaminated liquid; a further purpose is to run a process of contaminating liquid with low power consumption. A further object of the present invention is to avoid foaming during the evaporation process.

Beskrivelse af opfindelsenDescription of the Invention

Formålet kan opfyldes med et system som beskrevet i indledningen, og som er indrettet sådan, at systemet omfatter mindst et fælles procesindelukke, hvilket procesindelukke omfatter en flerhed af tekniske funktioner, såsom et varmeapparat, en fordamper og en kondensator.The object can be fulfilled by a system as described in the introduction, which is arranged such that the system comprises at least one common process enclosure, which process enclosure comprises a plurality of technical functions such as a heater, an evaporator and a capacitor.

Herved kan opnås et forholdsvist kompakt system, i hvilket de fleste af de tekniske foranstaltninger er placeret i samme indelukke. Dette indelukke kan derefter delvist tømmes med en pumpe, så der opnås et fælles undertryk i indelukket, under hvilket fælles undertryk de tekniske funktioner er i drift. Herved kan varmeapparat, fordamper og kondensator virke ved undertryk. Fordampning og kondensering kan herved finde sted i samme indelukke, ganske enkelt fordi der er forskellige 2 temperaturer til stede. Fordampning foretages ved en forholdsvis højere temperatur end kondenseringen. Ved korrekt udformning af det fælles indelukke kan det opnås, at kun fordampet væske finder vej til kondenseringsenheden. Det reducerede tryk i det fælles indelukke vil sænke enhver væskes kogepunkt. Derfor kan renseprocessen udføres med forholdsvis lavt effektforbrug. Fordi systemet som sådan arbejder ved forholdsvis lave temperaturer, er det muligt i mange tilfælde at arbejde med spildvarme fra processer så som motorer, varmepumper eller solfangere. Det kan forventeligt øge væskens temperatur til måske 60 eller 70°C for drift af det beskrevne system. I en foretrukken udførelsesform for opfindelsen kan systemet udføre en forrensning af den forurenede væske. Forrensningen kan for eksempel være en forvarmningsproces og føring af væsken gennem en vandlås, og at en første renseproces kan udføres på denne måde. Vandlåsen kan udføres på en måde, hvor forvarmning af væsken finder sted, og forurening kan findes på overfladen af vandspejlet eller kan være under væsken. En forbehandling er mulig på den måde. I en yderligere foretrukken udførelsesform for opfindelsen kan systemet udføre en filtrering af den forurenede væske i mindst et filter. Filtrering kan være nødvendig for at ijeme større partikler fra væsken, fordi disse partikler senere i processen kan forårsage tilstopning af f.eks. magnetventiler, indløb, etc. Det første filter kan være udført som et dobbeltfilter, hvor et af filtrene kan Ijemes og renses, mens det andet filter stadig er i fuld funktion. På den måde er det muligt at drive systemet mere eller mindre uafhængigt af forureningsgraden, fordi det er muligt at udføre rensning af filtrene parallelt med drift af systemet. I en yderligere foretrukken udførelsesform for opfindelsen kan systemet omfatte mindst en pumpe til generering af et undertryk i det fælles procesindelukke. Undertrykket genereret af pumpen skal kun genereres én gang, fordi på det tidspunkt, hvor undertrykket eksisterer i det fælles procesindelukke, skal det kun justeres, når der er en ændring i væskens volumen i det fælles procesindelukke. Efterhånden som væsken, der kommer ind i det fælles procesindelukke, imidlertid er mere eller mindre lig med væsken, der forlader det fælles procesindelukke, har pumpen, som genererer 3 undertrykket, næsten intet arbejde at udføre, uden at kompensere for mulige lækager. Derfor er dette system meget energieffektivt. I en yderligere foretrukken udførelsesform for opfindelsen kan varmeapparatsystemet være udformet som en varmeveksler, som er udformet med indløb og udløb for en opvarmningsvæske, hvilken varmeveksler ligeledes omfatter et indløb og et udløb for forurenet væske,. Herved kan yderligere opvarmning af den forurenede væske opnås, og ved anvendelse af en varmeveksler til opvarmningsprocessen er det muligt at anvende en eksisterende energikilde, såsom ved afkøling af procesvand fra tekniske installationer eller måske varmt vand tilført ved brug af solfangere. Hvis systemet skal anvendes ombord på et skib, vil der formentlig være tilstrækkelig tilførsel af varmt kølevand fra dieselmotorerne. Derfor kan denne opvarmning også ske med en miljømæssig neutral effektoverførsel. Derved kan systemet som beskrevet i denne patentansøgning fungere ved meget lavt effektforbrug. I en yderligere foretrukken udførelsesform for opfindelsen kan fordamperen være dannet af mindst en første pumpe, som pumper opvarmet forurenet væske gennem mindst et indløb ind i det fælles procesindelukke, hvorved lynfordampning udføres ved undertrykket genereret af en anden pumpe. Herved kan opnås meget hurtig dampgenerering. Hvis temperaturen af den forurenede væske, som er ført til indløbet, er højere end temperaturen i det fælles procesindelukke i forhold til det eksisterende tryk, vil der ske meget hurtig fordampning. De ikke-fordampede dråber eller partikler i den forurenede væske vil opsamles i en bakke placeret under indløbet. Her kan den forurenede væske Ijemes umiddelbart fra det fælles procesindelukke uden risiko for skumdannelse. Når tilstedeværelse af væske undgås i fællesindelukket, har det den positive virkning, at der ikke kan genereres skum. Hvis skum genereres i det fælles indelukke, vil skum hurtigt fylde indelukket og på den måde forurene den rensede væske igen. Det er derfor meget vigtigt, at der ikke genereres skum under processen. Det er vigtig at undertrykket holdes under kogepunktet for det respektive tryk og temperatur I en yderligere foretrukken udførelsesform for opfindelsen kan det fælles procesindelukke omfatte en kondensator, der omfatter et indløb og et udløb for 4 kølemiddel, såsom luft, vand, eller anden kølemedia. Således opnås det, at også kondensationsprocessen finder sted ved undertryk i det fælles procesindelukke.This allows a relatively compact system in which most of the technical measures are placed in the same enclosure. This enclosure can then be partially emptied with a pump so as to obtain a common negative pressure in the enclosure, during which common negative pressure the technical functions are in operation. This allows the heater, evaporator and condenser to operate under vacuum. Evaporation and condensation can take place in the same enclosure, simply because there are different 2 temperatures present. Evaporation is carried out at a relatively higher temperature than the condensation. By properly designing the joint enclosure, it can be achieved that only evaporated liquid finds its way to the condensing unit. The reduced pressure in the joint enclosure will lower the boiling point of any liquid. Therefore, the cleaning process can be carried out with relatively low power consumption. Because the system as such operates at relatively low temperatures, it is possible in many cases to work with waste heat from processes such as motors, heat pumps or solar panels. It is expected to increase the temperature of the liquid to perhaps 60 or 70 ° C for operation of the described system. In a preferred embodiment of the invention, the system may perform a purification of the contaminated liquid. The pre-purification, for example, may be a preheating process and passing the liquid through a water trap, and a first purification process may be carried out in this way. The water trap can be performed in a way where preheating of the liquid takes place and contamination can be found on the surface of the water level or may be below the liquid. A pre-treatment is possible that way. In a further preferred embodiment of the invention, the system may perform a filtration of the contaminated liquid into at least one filter. Filtration may be necessary to contain larger particles from the liquid, because these particles can later cause in the process of clogging, e.g. solenoid valves, inlets, etc. The first filter can be designed as a double filter, where one of the filters can be lifted and cleaned, while the second filter is still in full operation. In this way, it is possible to operate the system more or less independently of the degree of pollution, because it is possible to perform the cleaning of the filters in parallel with the operation of the system. In a further preferred embodiment of the invention, the system may comprise at least one pump for generating a negative pressure in the common process enclosure. The vacuum generated by the pump must be generated only once, because at the time when the vacuum exists in the common process enclosure, it must be adjusted only when there is a change in the volume of the liquid in the common process enclosure. However, as the liquid entering the common process enclosure is more or less equal to the liquid leaving the common process enclosure, the pump generating 3 suppressed has virtually no work to do without compensating for possible leaks. Therefore, this system is very energy efficient. In a further preferred embodiment of the invention, the heater system may be configured as a heat exchanger configured with inlet and outlet for a heating fluid, which heat exchanger also includes an inlet and outlet for contaminated liquid. Hereby further heating of the contaminated liquid can be obtained, and by using a heat exchanger for the heating process it is possible to use an existing energy source, such as by cooling process water from technical installations or perhaps hot water supplied by the use of solar collectors. If the system is to be used on board a ship, there will probably be sufficient supply of hot cooling water from the diesel engines. Therefore, this heating can also be done with an environmentally neutral power transfer. Thus, as described in this patent application, the system can operate at very low power consumption. In a further preferred embodiment of the invention, the evaporator may be formed by at least one first pump which pumps heated contaminated fluid through at least one inlet into the common process enclosure, whereby flash evaporation is performed at the vacuum generated by a second pump. This allows very rapid steam generation. If the temperature of the contaminated liquid introduced to the inlet is higher than the temperature of the common process enclosure relative to the existing pressure, very rapid evaporation will occur. The non-evaporated droplets or particles in the contaminated liquid will be collected in a tray located below the inlet. Here, the contaminated liquid can be removed immediately from the joint process enclosure without the risk of foaming. When the presence of liquid is avoided in the joint enclosure, it has the positive effect that no foam can be generated. If foam is generated in the common enclosure, foam will quickly fill the enclosure and thus contaminate the purified liquid again. Therefore, it is very important that no foam is generated during the process. It is important that the vacuum is kept below the boiling point of the respective pressure and temperature. In a further preferred embodiment of the invention, the common process enclosure may comprise a capacitor comprising an inlet and an outlet for 4 refrigerants such as air, water, or other refrigerant media. Thus, it is achieved that the condensation process also takes place by suppression in the common process enclosure.

Overflade temperaturen af kondensatoren skal have en temperatur som er lavere end dampens kondenserings temperatur, som er afhængig af tryk og temperatur, så kondensering finder sted. Det er muligt at udføre denne kondensationsproces i en varmeveksler, hvor væske eller luft forvarmes ved kondenseringen. Forvarmet væske kan anvendes til forvarmning af forurenet væske i dette system. 1 en yderligere foretrukken udførelsesform for opfindelsen som beskrevet kan anvendes en fremgangsmåde, ved hvilken den forurenede væske kan behandles i mindst følgende antal trin: a. for rensning af den forurenede væske ved udførelse af en første filtrering og en forvarmning kombineret med en første vandlås til separering af den forurenede væske i en for renset og en forurenet væskedel; b. fordampning af den forurenede væske i det fælles procesindelukke, idet den forurenede væske opvarmes i den første varmeveksler, hvor der i det fælles procesindelukke udføres fordampning ved undertryk, hvor den forurenede væske med den første pumpes tryk øgning presses gennem et indløb, hvorved lynfordampning sker i procesindelukkets undertryk; c. den genererede damp føres gennem en svævepartikel og dråbe fælde for at standse svævepartikler og dråber så disse ikke forurener det rensede destillat; d. kondensering af dampen i en tredje varmeveksler placeret i det fælles indelukke; e. med en tredje pumpe øgning af trykket i den kondenserede væske og presning af væsken gennem et andet filter; f. måling af restforurening; 5 g. hvis restforureningen er under et defineret niveau, sendes den rensede væske til udløbet. h. de ikke-fordampede dråber eller partikler fra den forurenede væske fjernes umiddelbart fra det fælles procesindelukke.The surface temperature of the condenser must have a temperature lower than the steam condensing temperature which is dependent on pressure and temperature for condensation to take place. It is possible to carry out this condensation process in a heat exchanger where liquid or air is preheated by the condensation. Preheated liquid can be used to preheat contaminated liquid in this system. In a further preferred embodiment of the invention as described, a method can be used in which the contaminated liquid can be treated in at least the following number of steps: a. For purification of the contaminated liquid by performing a first filtration and preheating combined with a first water trap to separating the contaminated liquid into a pre-purified and contaminated liquid portion; b. evaporation of the contaminated liquid in the common process enclosure, the contaminated liquid being heated in the first heat exchanger, where in the common process enclosure, evaporation is carried out under vacuum, whereby the contaminated liquid with the pressure of the first pump is increased through an inlet, thereby flash evaporation occurs in the suppression of the process enclosure; c. the generated vapor is passed through a hover particle and drop trap to stop the hover particles and droplets so that they do not contaminate the purified distillate; d. condensing the steam in a third heat exchanger located in the common enclosure; e. with a third pump, increasing the pressure in the condensed liquid and pressing the liquid through a second filter; f. measuring residual pollution; 5 g. If the residual contamination is below a defined level, the purified liquid is sent to the outlet. h. the non-evaporated droplets or particles from the contaminated liquid are immediately removed from the common process enclosure.

Ved den beskrevne fremgangsmåde er det muligt at rense en væske, såsom vand, sådan at det er muligt at få drikkevand af forholdsvis stærkt forurenet vand. Herved er det muligt at få drikkevand af havvand, f.eks. ombord på skibe. Kombineret med andre mekaniske processer, såsom membraner, er det muligt ved denne fremgangsmåde at bevirke den resterende rensning af f.eks. vand ved fordampningsprocessen. For eksempel kan indholdet af olie reduceres til meget lave niveauer. Faktisk kan forureningsniveaet efter denne proces være mindre end 5 ppm.In the process described, it is possible to purify a liquid, such as water, so that it is possible to obtain drinking water of relatively heavily contaminated water. This makes it possible to obtain drinking water from seawater, e.g. aboard ships. Combined with other mechanical processes, such as membranes, it is possible by this method to effect the residual purification of e.g. water by the evaporation process. For example, the content of oil can be reduced to very low levels. In fact, the pollution level after this process may be less than 5 ppm.

Anvendelse af et system eller fremgangsmåde som tidligere beskrevet til rensning af slagvand eller bundvand ombord på skibe kan være meget effektivt. Bundvand i skibe kan herved føres gennem de beskrevne processer, og det er muligt at opnå vandrensning, der er så effektiv, at det kan tillades at pumpe det rensede vand ud i havet. Krav til pumpning af renset vand ud i havet er i dag sådan, at forureningsniveauet skal være under 15 ppm, i fremtiden vil dette, med stor sandsynlighed blive reduceret til 5 ppm.Use of a system or method as previously described for the purification of impact water or bottom water on board vessels can be very effective. Bottom water in vessels can thereby be passed through the described processes, and it is possible to obtain water purification which is so effective that it is permissible to pump the purified water into the sea. Requirements for pumping purified water into the sea today are such that the level of pollution must be below 15 ppm, in the future this is very likely to be reduced to 5 ppm.

Anvendelse af et system eller fremgangsmåde som tidligere beskrevet til rensning af havvand og til fjernelse af salt kan være meget effektivt. Ved det beskrevne system og/eller fremgangsmåde er det muligt at afsalte saltvand. Det kan udføres ombord på skibe, men også f.eks. i ørkener tæt ved havet, hvor der er tilstrækkelige mængder saltvand, men hvor det er meget dyrt at afsalte saltvandet, så det kan anvendes til planter og dyr. Ved fremgangsmåden beskrevet i denne patentansøgning vil det være muligt at tilføre systemet energi genereret fra solfangere. Elektrisk energi, som er nødvendig til pumpning og også til styresystem og ventiler kan genereres med elektriske solpaneler. På denne måde kan et rensesystem fungere uden ekstern strømtilførsel. 6Use of a system or method as previously described for purifying seawater and for removing salt can be very effective. By the described system and / or method, it is possible to desalinate saline. It can be carried on board ships, but also for example. in deserts near the sea where there is sufficient amounts of saline, but where it is very expensive to desalinate the saline so that it can be used for plants and animals. By the method described in this patent application, it will be possible to supply the system with energy generated from solar panels. Electrical energy needed for pumping and also for control system and valves can be generated by electric solar panels. In this way, a cleaning system can operate without external power supply. 6

Anvendelse af et system eller fremgangsmåde som tidligere beskrevet til rensning af husspildevand kan være meget effektivt. I mange lande er der begrænset adgang til rent drikkevand. Derfor er det nødvendigt at udføre en næsten fuldstændig rensning af spildevand. Dette kan opnås med den foreliggende opfindelse med temperaturer helt ned til 30° C med tilsvarende undertryk for kogepunktet. Overalt hvor man kan opnå et kogepunkt over det tilsvarende undertryk, er det muligt at drive et system som beskrevet i den foreliggende patentansøgning. Spildenergi fra kraftværker kan f.eks. tilføre enorme mængder varme, der har det nødvendige temperatumiveau. Solfangere kan også levere varmt vand med det krævede temperatumiveau. Derfor kan et system som beskrevet fungere i byer, hvor der er begrænset adgang til rent vand hvor opfindelse gør det muligt at rense og genanvende spildevand.Use of a system or method as previously described for purifying domestic wastewater can be very effective. In many countries, access to clean drinking water is limited. Therefore, it is necessary to perform almost complete wastewater treatment. This can be achieved with the present invention at temperatures as low as 30 ° C with corresponding vacuum to the boiling point. Wherever a boiling point can be obtained above the corresponding negative pressure, it is possible to operate a system as described in the present patent application. Waste energy from power plants can e.g. supply huge amounts of heat that have the required temperature level. Solar collectors can also supply hot water with the required temperature level. Therefore, as described, a system can work in cities where there is limited access to clean water where the invention makes it possible to purify and recycle wastewater.

Til generering af drikkevand er det muligt at kombinere den beskrevne opfindelse med en yderligere proces, hvor en kombineret UV-ozon og kulfilter proces yderligere kan sterilisere vandet og fjerne de fleste af de organiske molekyler, samt fjerne mulig dårlig lukt og afsmag, der kan findes i vandet.For the generation of potable water, it is possible to combine the described invention with a further process wherein a combined UV ozone and carbon filter process can further sterilize the water and remove most of the organic molecules, as well as remove any possible odor and taste that may be found. in the water.

Beskrivelse af tegningenDescription of the drawing

Fig. 1 viser en første muligt udførelsesform for opfindelsen.FIG. 1 shows a first possible embodiment of the invention.

Fig. 2 viser en detaljeret udførelsesform for opfindelsen.FIG. 2 shows a detailed embodiment of the invention.

Detailbeskrivelse af opfindelsenDetailed Description of the Invention

Fig. 1 viser en første muligt udførelsesform for opfindelsen. Systemet 2 har et indløb for forurenet væske 4 og et udløb 8 for renset væske samt en udgang 12 for stærkt forurenet væske. Endvidere er angivet et fælles procesindelukke 14, hvori er et undertryk 15. Inde i dette fælles procesindelukke 14 er angivet en opvarmningsindretning i form af en varmeveksler 26 og fordampningssystem 18 og en kondensator 20. På fig. 1 viser ligeledes en forrensnings beholder 22 til forrensning af den forurenede væske. Denne proces kan med en foretrukken udførelsesform omfatte forvarmning ved hjælp af en varmeveksler 56 og en slags vandlås 58, hvor væsker skilles ved tyngdekraften, sådan at en slags forurening kan dannes på væskens overflade og andre slags forureninger dannes under væsken. På denne måde kan stærkt forurenet væske fjernes med forskellige pumpemidler fra den øverste overflade eller måske under 7 væsken, og hovedparten af væsken kan herefter sendes gennem en rørføring 28 med pumpeorganer 42 ind i en varmeveksler 26 for yderligere opvarmning af forurenet væske og føre væsken ud af varmeveksleren 26 mod fordamperen 18, som er udført som et indløb 40. Dette indløb 40 er placeret inde i en svævepartikkel og dråbefælde 50. Denne svævepartikkel og dråbefælde 50 omfatter ved den nedre del et udløb 52, som er forbundet med forureningsudløbet 12.FIG. 1 shows a first possible embodiment of the invention. The system 2 has an inlet for contaminated liquid 4 and an outlet 8 for purified liquid as well as an outlet 12 for highly contaminated liquid. Further, a common process enclosure 14 is provided, wherein is a negative pressure 15. Inside this common process enclosure 14 is disclosed a heating device in the form of a heat exchanger 26 and evaporator system 18 and a capacitor 20. In FIG. 1 also shows a pre-treatment container 22 for pre-cleaning the contaminated liquid. This process, in a preferred embodiment, may comprise preheating by means of a heat exchanger 56 and a kind of waterlock 58 in which liquids are separated by gravity such that some kind of contamination can be formed on the surface of the liquid and other kinds of contaminants are formed under the liquid. In this way, highly contaminated liquid can be removed with various pumping agents from the upper surface or perhaps below the liquid, and the majority of the liquid can then be passed through a pipe guide 28 with pump means 42 into a heat exchanger 26 for further heating of contaminated liquid and discharging the liquid. of the heat exchanger 26 against the evaporator 18, which is designed as an inlet 40. This inlet 40 is located within a hover particle and droplet 50. This hover particle and droplet 50 comprises an outlet 52 which is connected to the pollution outlet 12.

Det fælles procesindelukke 14 har et reduceret tryk genereret af den første pumpe 38. Kondensatoren 20 kan være udformet som en varmeveksler med et indløb 44 og et udløb 46 til et kølemedium. Ombord på et skib kunne kølemediet være havvand. I andre tilfælde kan denne kondensationsvarme, som vil opvarme kølevæsken, anvendes videre fremme i systemet, måske til forvarmning af den forurenede væske.The common process enclosure 14 has a reduced pressure generated by the first pump 38. The capacitor 20 may be designed as a heat exchanger with an inlet 44 and an outlet 46 for a cooling medium. On board a ship, the refrigerant could be seawater. In other cases, this condensation heat, which will heat the coolant, can be used further in the system, perhaps to preheat the contaminated liquid.

Under drift vil forurenet væske komme ind i systemet med rørføringen 4 til forrensnings beholder 22, hvilken forrensning omfatter en varmeindretning 56, der kan virker som en varmeveksler, som er placeret i en vandlås 58. Rørføringen 28 fører den rensede væske til varmeveksleren 26. Her opvarmes den forurenede væske med varmemedier, som er forbundet med indløb 32 og retur i udløb 34, som kunne være kølevand fra en dieselmotor i et skib. Den forurenede væske sendes videre gennem rør 30 med den anden pumpe 42 til fordamperen 18, som omfatter mindst et indløb 40. Indløbet 40 sprøjter den forurenede væske ind i en svævepartikkel og dråbefælde 50, men fordi tryk og temperatur er forholdsvis høje, og der er et undertryk i det fælles procesindelukke 14, finder der lyn fordampning sted. Derfor vil den væske, som kan fordampe, fordampe umiddelbart, mens den ikke fordampede væske, dannede dråber og svævepartikler vil bundfalde og ender nede i svævepartikkel og dråbefælde 50. Denne forurening fjernes via rørføringen 52. Dette er for at undgå skumdannelse. Den dannede damp vil i stedet strømme over kanten af svævepartikkel og dråbefælde 50 og komme i kontakt med kondensatoren 20, som afkøles med kølemedier gennem røret 44 og kølemediet føres tilbage gennem røret 46. Herved udføres en kondensation af den genererede damp. Den kondenserede væske er nu stort set renset, fordi den har været gennem en fordampningsproces. Denne rensede væske sendes til udløbet 8 gennem rørføring 54. 8In operation, contaminated liquid will enter the system of pre-conduit container tubing 4, which pre-comprises a heat exchanger 56 which may act as a heat exchanger located in a water trap 58. The conduit 28 directs the purified liquid to the heat exchanger 26. Here for example, the contaminated liquid is heated by heating media associated with inlet 32 and return in outlet 34, which could be cooling water from a diesel engine in a ship. The contaminated liquid is further passed through tube 30 with the second pump 42 to the evaporator 18, which comprises at least one inlet 40. Inlet 40 injects the contaminated fluid into a hover particle and droplet 50, but because pressure and temperature are relatively high and there is a negative pressure in the common process enclosure 14, lightning evaporation takes place. Therefore, the liquid which can evaporate will evaporate immediately, while the non-evaporated liquid, formed droplets and hover particles will settle and end in the hover particle and droplet 50. This contamination is removed via the piping 52. This is to avoid foaming. The resulting vapor will instead flow over the edge of the hover particle and droplet trap 50 and come into contact with the capacitor 20, which is cooled with refrigerant through the tube 44 and the refrigerant is fed back through the tube 46. This results in condensation of the generated steam. The condensed liquid is now largely purified because it has been through an evaporation process. This purified liquid is sent to the outlet 8 through piping 54. 8

Fig. 2 viser en detaljeret udførelsesform for opfindelsen. En første pumpe 102 til generering af et undertryk i det fælles procesindelukke 101. Endvidere er angivet en varmeveksler 103. Denne varmeveksler er placeret inde i en svævepartikel og dråbefælde 104, som ligeledes indeholder en kondenseringsenhed 105. Ligeledes er vist en kogesikring 106 for at indikere tilstedeværelse af skum inde i fordampningsrummet 148. En udløbsmagnetventil 107 leder renset væske til en pumpe 108, som pumper væske gennem et kulfilter 109. Fra kulfilteret 109 sendes den rensede væske nu gennem en ppm-måleindretning 110, og parallelt med den er angivet en reguleringsventil 111. Med 112 er der endvidere angivet en trevejsventil 112, som yderligere er forbundet til en flowmålerindretning 113, fra hvilken væsken er indikeret til en sø forbindelse. Endvidere er der fra ventilen 112 angivet en envejsventil 145, som skal anvendes, om væsken stadig er forurenet. Derefter sendes væsken tilbage til bundvandstanken 135. Svævepartikel og dråbefældens 104 indvendige volumen er ved åbning 150 åben for dampstrømning nedad omkring kondensatoren 105. Gennem en envejsventil 114 og gennem en pumpe 115 føres ikke fordampet væske og partikler tilbage gennem en rørføring til slamtank 136.FIG. 2 shows a detailed embodiment of the invention. A first pump 102 for generating an underpressure in the common process enclosure 101. Further, a heat exchanger 103. A heat exchanger 103. This heat exchanger is located within a hover particle and dropper trap 104 which also contains a condensing unit 105. A boiler fuse 106 is also shown to indicate presence of foam inside the evaporation compartment 148. An outlet solenoid valve 107 conducts purified liquid to a pump 108 which pumps liquid through a carbon filter 109. From the carbon filter 109, the purified liquid is now passed through a ppm measuring device 110, and parallel to it is a control valve. 111. In addition, 112 is indicated a three-way valve 112 which is further connected to a flow meter device 113 from which the liquid is indicated for a lake connection. Furthermore, from valve 112 there is provided a one-way valve 145 to be used if the liquid is still contaminated. The liquid is then sent back to the bottom water tank 135. The particle and the internal volume of the droplet 104 are open at steam 150 downstream of the condenser 105. Through a one-way valve 114 and through a pump 115, evaporated liquid and particles are not fed back through a pipe to sludge tank 136.

Det indre volumen af den fælles procesindelukke 101 er med rørføring forbundet med et pressostat 116 og yderligere via en envejsventil 117 til pumpen 102. Endvidere er angivet en magnetventil 118, som anvendes i det tilfælde, hvor skumdannelse indikeres af detektoren 106, derefter åbnes denne ventil 118 og atmosfærisk luft ledes direkte ind i indelukket. Dette vil med det samme mindske skumdannelse.The internal volume of the common process enclosure 101 is connected by piping to a pressure switch 116 and further via a one-way valve 117 to the pump 102. Further, a solenoid valve 118 is used which is used in the case where foam formation is indicated by the detector 106, then this valve is opened. 118 and atmospheric air is directed directly into the enclosure. This will immediately reduce foaming.

Med magnetventilen 121 er det muligt at tilføre ferskvand til varmeveksler 103 renseproces. 122 er en yderligere magnetventil, som kan åbne for en forbindelse for ferskvand til forrenserens 123 indre. Forrenser 123 omfatter en varmeveksler 124, som opvarmes med kølevand fra motoren via magnetventilen 143. En olieindikator 125, og magnetventiler 126 og 127 åbner for en forbindelse til spildolietanken 137. En magnetventil 122 giver mulighed for tilførsel af ferskvand til forrenseren 123. Forurenet væske, der forlader forrenseren 123, sendes gennem et filter 128 af en pumpe 130. Endvidere er der en forbindelse gennem en trevejs ventil 131, hvilken trevejs ventil 131 er forbundet med bundvandstanken 135 og med rørføring mod varmeveksleren 103. 9With the solenoid valve 121 it is possible to supply fresh water to the heat exchanger 103 purification process. 122 is an additional solenoid valve which can open a connection for fresh water to the interior of the pre-cleaner 123. Pre-purifier 123 comprises a heat exchanger 124 which is heated with cooling water from the engine via solenoid valve 143. An oil indicator 125, and solenoid valves 126 and 127 open for connection to the waste oil tank 137. A solenoid valve 122 allows fresh water to be supplied to the pre-purifier 123. exiting the pre-purifier 123 is passed through a filter 128 by a pump 130. Furthermore, there is a connection through a three-way valve 131, which three-way valve 131 is connected to the bottom water tank 135 and with piping to the heat exchanger 103. 9

Forrenserens 123 indløb er tilsluttet gennem et første grovfilter 133 og videre gennem en magnetventil 132, Endvidere er med 134 angivet en envejsventil. 135 er en bundvandstank, hvor 136 er en slamtank, og 137 er spildolietanken. Forrenseren 123 er tilsluttet en fælles forsyningsledning fra lænse brønde gennem en ventil 141, fra bundvandstank 135 gennem en ventil 140, fra slamtank 136 gennem en ventil 139, eller fra spilolietanken 137 gennem en ventil 138.The inlet of the pre-cleaner 123 is connected through a first coarse filter 133 and further through a solenoid valve 132. 135 is a bottom water tank, where 136 is a sludge tank, and 137 is the waste oil tank. The pre-purifier 123 is connected to a common supply line from bilge wells through a valve 141, from bottom water tank 135 through a valve 140, from sludge tank 136 through a valve 139, or from the waste oil tank 137 through a valve 138.

Under drift vil bundvand eller andre slags spildevand føres gennem envejsventilen 134, grovfilteret 133 og videre gennem magnetventilen 132 til forrenseren 123 og, som indbefatter varmeveksleren 124. Denne forrenser 123 omfatter også en vandlås 142. Den forurenede væske, som forlader vandlåsen 142, hvor sandsynligvis det meste af olieindholdet pumpes tilbage til spildolietanken 137, mens den forurenede væske sendes med pumpen 130 gennem ventilen 131 til varmeapparatet 103 for videre behandling.In operation, bottom water or other types of wastewater will pass through the one-way valve 134, the coarse filter 133, and further through the solenoid valve 132 to the pre-purifier 123 and, which includes the heat exchanger 124. This pre-cleaner 123 also includes a water trap 142. The contaminated liquid leaving the water trap 142, where most of the oil content is pumped back to the waste oil tank 137, while the contaminated liquid is sent with pump 130 through valve 131 to heater 103 for further processing.

Med trykket genereret af pumpen 130 føres væsken nu til indløbet 146. Fordi undertrykket genereret af pumpen 102 eksisterer i det fælles procesindelukke 101, sker der en hurtig fordampning. Dampen strømmer mod kondensatoren 105, idet den passerer gennem svævepartikel og dråbefælden 104. Med kondensatoren 105 reduceres dampens volumen tilbage til væskens volumen.With the pressure generated by the pump 130, the liquid is now fed to the inlet 146. Because the vacuum generated by the pump 102 exists in the common process enclosure 101, rapid evaporation occurs. The vapor flows toward the capacitor 105 as it passes through the hover particle and the drop trap 104. With the capacitor 105, the volume of vapor is reduced back to the volume of the liquid.

Den kondenserede væske ledes nu af magnetventilen 107 og med pumpen 108 til et kulfilter 109. Herfra sendes den nu rensede væske til en måleindretning 110 gennem en trevejsventil 112, og hvis rensningen kan godkendes og indholdet af forurening er under 15 ppm, eller måske i fremtiden 5 ppm, kan det rensede spildevand udledes i havet.The condensed liquid is now passed through the solenoid valve 107 and with the pump 108 to a carbon filter 109. From here, the now purified liquid is sent to a measuring device 110 through a three-way valve 112, and if the purification can be approved and the content of contamination is below 15 ppm, or maybe in the future 5 ppm, the purified sewage can be discharged into the sea.

For at få en så god kvalitet som muligt på den forurenede væske som skal behandles, suges den forurenede væske med pumpen 130 fra henholdsvis lænse brønde, spildolie Tank 137, slamtank 136, bundvandstank 135, eller andet sted fra, gennem et dobbelt grovfilter 133, som sorterer større partikler fra den forurenede væske. Herfra suges den forurenede væske igennem en kombineret olieudskiller/forrenser 123, som er 10 vandlås 142 anvendes til at sikrer at olie ikke kommer med i renseprocessen inde i procesindelukket 101.In order to obtain the best possible quality of the contaminated liquid to be treated, the contaminated liquid is sucked with pump 130 from bilge wells, waste oil Tank 137, sludge tank 136, bottom water tank 135, or elsewhere, through a dual coarse filter 133, which sorts larger particles from the contaminated liquid. From here, the contaminated liquid is sucked through a combined oil separator / purifier 123, which is water trap 142 used to ensure that oil does not enter the purification process inside the process enclosure 101.

Pumpen 130 trykker nu den forurenede væske til trevejsventilen 131 hvor det kan vælges om væsken skal pumpes tilbage til bundvandstanken 135 for senere viderebehandling, eller direkte til forvarmeren 103 i procesindelukket 101, som også opvarmes afkølevand fra skibets motor. Forvarmeren 103 står inde i en svævepartikel og dråbefælden 104. Forurenet væsken sendes herfra ind i fordampningsrummet 148 igennem indløbet 146. Fordi undertrykket genereret af pumpen 102 eksisterer i det fælles procesindelukket 101, sker der en hurtig fordampning. Mængden af forurenet væske som slippes ind igennem indløbet 146 styres af en ventil som ikke er vist på tegningen.The pump 130 now presses the contaminated liquid to the three-way valve 131 where it can be selected whether the liquid is to be pumped back to the bottom water tank 135 for further processing, or directly to the preheater 103 in the process enclosure 101, which also heats cooling water from the ship's engine. The preheater 103 is inside a floating particle and the droplet trap 104. The contaminated liquid is sent from here into the evaporation chamber 148 through the inlet 146. Because the vacuum generated by the pump 102 exists in the common process enclosure 101, rapid evaporation occurs. The amount of contaminated liquid discharged through the inlet 146 is controlled by a valve not shown in the drawing.

Herfra strømmer den fordampede forurenede væske igennem en svævepartikel og dråbefælde 104. S vævepartikler og dråber som stanses i svævepartikel og dråbefælden 104 vil bundfalde og suges ud sammen med den ikke fordampede væske med pumpen 115, og føres tilbage til slamtank 136 for videre behandling. Ved, til enhver tid, at have fordampningsrummet 148 tomt for væske undgås skumdannelse, som ellers kan opstå i en kogeproces ved undertryk.From here, the evaporated contaminated liquid flows through a floating particle and droplet 104. S weave particles and droplets punched in the floating particle and droplet 104 will settle and be sucked out with the non-evaporated liquid with the pump 115 and returned to slurry tank 136 for further treatment. By, at all times, having the evaporation chamber 148 empty of liquid, foam formation is avoided which may otherwise result in a boiling process under vacuum.

Dampen som passerer svævepartikel og dråbefælden 104 vil strømme ned til kondensatoren 105 og omdannes til kondensat.The vapor passing the particle and the droplet 104 will flow down to condenser 105 and be converted to condensate.

Med pumpen 108 suges den kondenserede væske ud af procesindelukket 101, og pumpes derfra igennem en PPM-måleindretning 110 til en trevejsventil 112. PPM- måleindretningen 110 styrer om kondensatet klarer kravet til 15 ppm renhedsgrad og kan pumpes overbord via trevejsventilen 112, eller om kondensatet skal pumpes via trevejsventilen 112 tilbage til bundvandstank 135 for videre behandling.With the pump 108, the condensed liquid is sucked out of the process enclosure 101 and is pumped from there through a PPM measuring device 110 to a three-way valve 112. The PPM measuring device 110 controls whether the condensate meets the requirement of 15 ppm purity and can be pumped overboard via the three-way valve 112 must be pumped via the three-way valve 112 back to the bottom water tank 135 for further treatment.

Den foreliggende opfindelse kan bruges på et skib til at rense bundvand, men det er også muligt med opfindelsen at udføre afsaltning af havvand. Fordi denne proces er meget energieffektiv, er det muligt at anvende denne fremgangsmåde til alle slags vandrensning. 11The present invention can be used on a ship to purify bottom water, but it is also possible with the invention to perform desalination of seawater. Because this process is very energy efficient, it is possible to use this method for all kinds of water purification. 11

Liste over henvisningstal 2 system 4 forurenet væske 8 udløb 12 udløb for spildevand 14 procesindelukke 101 15 undertryk 18 fordamper 20 kondensator 105 22 forrensning 123 24 filter 133 26 varmeveksler 103 28 indløb 30 udløb 32 indløb 34 udløb 38 første pumpe 102 40 indløb 146 42 anden pumpe 130 44 indløb 46 udløb 58 første vandlås 142 50 anden vandlås 104List of reference numbers 2 system 4 contaminated liquid 8 outlet 12 effluent outlet 14 process enclosure 101 15 vacuum 18 evaporator 20 capacitor 105 22 purification 123 24 filter 133 26 heat exchanger 103 28 inlet 30 outlet 32 inlet 34 outlet 38 first pump 102 40 inlet 146 42 second pump 130 44 inlet 46 outlet 58 first water trap 142 50 second water trap 104

Claims (14)

1212 1. System (2) indrettet til at rense forurenet væske (4), fortrinsvis vand, hvilket system (2) omfatter mindst et indløb for forurenet væske (4), hvilket system omfatter mindst et udløb (28) for forrenset væske, og hvilket system omfatter mindst et udløb (8) for renset væske og mindst et udløb for spildevand (12), hvilket system (2) udfører mindst en fordampningsproces på den forurenede væske (4), hvilken fordampning udføres ved undertryk (15), kendetegnet ved at systemet (2) omfatter mindst en fælles procesindelukke (14), hvilket procesindelukke (14) omfatter en flerhed af tekniske funktioner, såsom et varmeapparat (26), et indløb (18) og en kondensator (20).A system (2) adapted to purify contaminated liquid (4), preferably water, which system (2) comprises at least one inlet for contaminated liquid (4), which system comprises at least one outlet (28) for contaminated liquid, and which a system comprising at least one outlet (8) for purified liquid and at least one outlet for sewage (12), which system (2) performs at least one evaporation process on the contaminated liquid (4), which evaporation is carried out under vacuum (15), characterized in that the system (2) comprises at least one common process enclosure (14), said process enclosure (14) comprising a plurality of technical functions such as a heater (26), an inlet (18) and a capacitor (20). 2. System ifølge krav 1, kendetegnet ved, at systemet udføres en forrensning (22) af den forurenede væske (4).System according to claim 1, characterized in that the system is carried out a purification (22) of the contaminated liquid (4). 3. System ifølge krav 1 eller 2, kendetegnet ved, at systemet udfører en filtrering af den behandlede væske (4) i mindst et filter (24).System according to claim 1 or 2, characterized in that the system performs a filtration of the treated liquid (4) in at least one filter (24). 4. System ifølge et af kravene 1-3, kendetegnet ved, at systemet omfatter mindst en første pumpe (38) for generering af et undertryk i det fælles procesindelukke (14).System according to one of claims 1-3, characterized in that the system comprises at least one first pump (38) for generating a negative pressure in the common process enclosure (14). 5. System ifølge et af kravene 1-4, kendetegnet ved, at varmeapparatet (26) er udformet som en varmeveksler (26), der omfatter et indløb (28) og et udløb (30) for forurenet væske (4), hvilken varmeveksler yderligere omfatter et indløb (32) og et udløb (34) for en opvarmningsvæske.System according to one of claims 1-4, characterized in that the heater (26) is formed as a heat exchanger (26) comprising an inlet (28) and an outlet (30) for contaminated liquid (4), which heat exchanger further comprising an inlet (32) and an outlet (34) for a heating fluid. 6. System ifølge et af kravene 1-5, kendetegnet ved, at fordamperen (18) er dannet af mindst en anden pumpe (42), som pumper forvarmet forurenet væske gennem mindst et indløb (40) ind i det fælles procesindelukke (14), hvorved lynfordampning udføres ved undertrykket (15) genereret af en første pumpe (38).System according to one of claims 1 to 5, characterized in that the evaporator (18) is formed by at least one other pump (42) which pumps preheated contaminated liquid through at least one inlet (40) into the common process enclosure (14). , whereby lightning evaporation is performed at the vacuum (15) generated by a first pump (38). 7. System ifølge et af kravene 1-5, kendetegnet ved, at det fælles procesindelukke (14) omfatter kondensatoren (20), der omfatter et indløb (44) og et udløb (46) for kølemidler, såsom luft, vand, eller andet kølemedia. 13System according to one of claims 1 to 5, characterized in that the common process enclosure (14) comprises the capacitor (20) comprising an inlet (44) and an outlet (46) for refrigerants such as air, water or other cooling media. 13 8. Fremgangsmåde til drift af et system ifølge et af krav 1-7, kendetegnet ved at den forurenede væske behandles i mindst følgende processer: a. forbehandling (22) af den forurenede væske (4) ved udførelse af en første filtrering og en forvarmning kombineret med en første vandlås (58) til separering af den forurenede væske (4) i en forrenset og en forurenet vanddel; b. fordampning af den forurenede væske (4) foregår i det fælles procesindelukke (14), idet den forurenede væske (4) opvarmes i varmeveksler (26), hvor der i det fælles procesindelukke (14) udføres fordampning ved undertryk (15), hvor den forurenede væske med den anden pumpe (42) tryksættes, hvor det forurenede væske presses gennem et indløb (40), hvorved lynfordampning sker i procesindelukket (14) med undertrykket (15); c. den genererede damp føres gennem en svævepartikkel og dråbefælde (50); d. kondensering af dampen i en kondenseringsenhed (20) placeret i det fælles indelukke (14); e. med en tredje pumpe (54) øges trykket i den kondenserede væske for at fa kondensatet ud af procesindelukket (14); f. måling af restforurening; g. hvis restforureningen er under et defineret niveau, sendes den rensede væske til udløbet (8).Process for operating a system according to one of claims 1-7, characterized in that the contaminated liquid is treated in at least the following processes: a. Pretreatment (22) of the contaminated liquid (4) by performing a first filtration and preheating combined with a first water trap (58) for separating the contaminated liquid (4) into a contaminated and contaminated water part; b. Evaporation of the contaminated liquid (4) takes place in the common process enclosure (14), the contaminated liquid (4) being heated in heat exchanger (26), where in the common process enclosure (14) evaporation is carried out under vacuum (15), wherein the contaminated liquid is pressurized with the second pump (42), the contaminated liquid being pressed through an inlet (40), whereby lightning evaporation occurs in the process enclosure (14) with the vacuum (15); c. the generated steam is passed through a hover particle and droplet trap (50); d. condensing the steam in a condensing unit (20) located in the common enclosure (14); e. with a third pump (54), the pressure in the condensed liquid is increased to remove the condensate from the process enclosure (14); f. measuring residual pollution; g. if the residual contamination is below a defined level, the purified liquid is sent to the outlet (8). 9. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af skylle- eller bundvand på skibe.Use of a system or method according to any one of claims 1-8 for cleaning rinsing or bottom water on ships. 10. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af havvand og til fjernelse af salt. 14Use of a system or method according to any one of claims 1-8 for purification of seawater and for the removal of salt. 14 11. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af husspildevand.Use of a system or method according to any one of claims 1-8 for the purification of domestic waste water. 12. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af spildevand fra skibsværfter og værkstedsindustri.Use of a system or method according to any one of claims 1-8 for the purification of wastewater from shipyards and workshop industry. 13. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af forurenet eller salt vand i områder der det er vanskeligt at opdrive rent ferskvand til mennesker og husdyr.Use of a system or method according to any one of claims 1-8 for the purification of contaminated or salt water in areas where it is difficult to clean fresh water for humans and livestock. 14. Anvendelse af et system eller fremgangsmåde ifølge et af kravene 1-8 til rensning af kloakvand, i for eksempel tæt bebyggede områder, hvor drikkevand kan være en knaphedsfaktor.Use of a system or method according to any one of claims 1-8 for the treatment of sewage, for example in densely built-up areas, where drinking water can be a scarcity factor.
DKPA201570471A 2015-07-16 2015-07-16 System and method for cleaning contaminated liquid DK201570471A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DKPA201570471A DK201570471A1 (en) 2015-07-16 2015-07-16 System and method for cleaning contaminated liquid
PCT/DK2016/050243 WO2017008814A1 (en) 2015-07-16 2016-07-08 System and method for purification of contaminated liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA201570471A DK201570471A1 (en) 2015-07-16 2015-07-16 System and method for cleaning contaminated liquid

Publications (1)

Publication Number Publication Date
DK201570471A1 true DK201570471A1 (en) 2017-02-20

Family

ID=57756747

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201570471A DK201570471A1 (en) 2015-07-16 2015-07-16 System and method for cleaning contaminated liquid

Country Status (2)

Country Link
DK (1) DK201570471A1 (en)
WO (1) WO2017008814A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783431B2 (en) 2014-05-28 2017-10-10 Katz Water Tech, Llc Apparatus and method to remove contaminates from a fluid
US11713258B2 (en) 2017-08-24 2023-08-01 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US10864482B2 (en) 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864215A (en) * 1974-02-11 1975-02-04 Alanson J Arnold Method of Distilling Sea Water on Small Ships and Marine Platforms Having Internal Combustion Engine
DE2943261A1 (en) * 1979-10-26 1981-04-30 Herbert 2000 Hamburg Barthold METHOD AND DEVICE FOR TREATING BILG WATER
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
WO1993002964A1 (en) * 1991-08-09 1993-02-18 Alfa-Laval Desalt A/S Desalination plant, especially for use in marine and off-shore installations
DE19646459A1 (en) * 1996-11-11 1998-05-14 Geyer Axel Liquid waste vacuum evaporation vessel
WO2000010922A1 (en) * 1998-08-21 2000-03-02 Hydrotech Distallation Technologies Pty Limited Treatment of aqueous wastes
EP1443025A1 (en) * 2001-10-13 2004-08-04 HERNANDEZ HERNANDEZ, Fernandez Maria Installation used to obtain salt-free sea water at a low temperature with continuous operation and enthalpy recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526811C2 (en) * 2004-03-22 2005-11-08 Hans Sivertsson A method and a plant for the purification of oil-contaminated bilge water and a vessel equipped with a plant for the purification of bilge water
WO2011014107A1 (en) * 2009-07-27 2011-02-03 Ppmclean Ab Method and plant for purification of oil-contaminated bilge and sludge water on a ship, and ship equipped with such plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864215A (en) * 1974-02-11 1975-02-04 Alanson J Arnold Method of Distilling Sea Water on Small Ships and Marine Platforms Having Internal Combustion Engine
DE2943261A1 (en) * 1979-10-26 1981-04-30 Herbert 2000 Hamburg Barthold METHOD AND DEVICE FOR TREATING BILG WATER
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
WO1993002964A1 (en) * 1991-08-09 1993-02-18 Alfa-Laval Desalt A/S Desalination plant, especially for use in marine and off-shore installations
DE19646459A1 (en) * 1996-11-11 1998-05-14 Geyer Axel Liquid waste vacuum evaporation vessel
WO2000010922A1 (en) * 1998-08-21 2000-03-02 Hydrotech Distallation Technologies Pty Limited Treatment of aqueous wastes
EP1443025A1 (en) * 2001-10-13 2004-08-04 HERNANDEZ HERNANDEZ, Fernandez Maria Installation used to obtain salt-free sea water at a low temperature with continuous operation and enthalpy recovery

Also Published As

Publication number Publication date
WO2017008814A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
KR101616065B1 (en) Method and plant for purification of oil-contaminated bilge and sludge water on a ship, and ship equipped with such plant
RU2429896C2 (en) Device for treatment of process or industrial effluents
US10850210B2 (en) Production water desalinization via a reciprocal heat transfer and recovery
DK201570471A1 (en) System and method for cleaning contaminated liquid
JPH05184803A (en) Device and method for regenerating coolant
KR101459702B1 (en) Membrane distillation apparatus by Using waste heat recovery
US20130264185A1 (en) Method and Means of Production Water Desalination
US11420882B2 (en) Water treatment system and method of use thereof
US20090173617A1 (en) Desalinization by evaporation from capillary material
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
JP2014028362A (en) Device and method for recycling emulsified waste oil
WO2017066534A1 (en) Hybrid cooling and desalination system
JPH09108653A (en) Seawater desalination device
KR101672852B1 (en) Desalination system by using dual source energy
RU174039U1 (en) SHIP SEPARATOR OF OIL-CONTAINING WATERS
DK173837B1 (en) Process and apparatus for purifying wastewater
NO324285B1 (en) Apparatus for cleaning liquid in the form of steam from a circuit.
WO2018217111A2 (en) Distilling apparatus for purification of contaminated liquid
CN103420533A (en) Treatment method for high-concentration organic wastewater
US20100252410A1 (en) Water Purification Device and Method
US10859256B2 (en) Method and system utilizing waste heat for evaporation
US20190330079A1 (en) Water distillation system and method of distilling water
JP2006051451A (en) Power generation and seawater desalination system
DK177459B1 (en) Fresh Generator
CN116375120A (en) Water treatment equipment

Legal Events

Date Code Title Description
PHB Application deemed withdrawn due to non-payment or other reasons

Effective date: 20170714