DK154039B - PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS - Google Patents

PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS Download PDF

Info

Publication number
DK154039B
DK154039B DK516983A DK516983A DK154039B DK 154039 B DK154039 B DK 154039B DK 516983 A DK516983 A DK 516983A DK 516983 A DK516983 A DK 516983A DK 154039 B DK154039 B DK 154039B
Authority
DK
Denmark
Prior art keywords
weight
mnog
water
heat treatment
soot
Prior art date
Application number
DK516983A
Other languages
Danish (da)
Other versions
DK516983A (en
DK516983D0 (en
DK154039C (en
Inventor
Hans-Peter Schmoede
Michael Kohlhase
Original Assignee
Hoppecke Zoellner Sohn Accu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoppecke Zoellner Sohn Accu filed Critical Hoppecke Zoellner Sohn Accu
Publication of DK516983D0 publication Critical patent/DK516983D0/en
Publication of DK516983A publication Critical patent/DK516983A/en
Publication of DK154039B publication Critical patent/DK154039B/en
Application granted granted Critical
Publication of DK154039C publication Critical patent/DK154039C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

DK 154039 BDK 154039 B

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af positive elektroder til elektrokemiske elementer med ikke vandig elektrolyt, navnlig Li/MnOg-celler, i hvilke mangandioxid anvendes som aktivt materiale, der i blanding med et ledende middel 5 og et bindemiddel formes til elektroden og underkastes en afsluttende varmebehandling. Opfindelsen angår endvidere en ifølge denne fremgangsmåde fremstillet katode, navnlig en Li/MnOg-celle.The present invention relates to a process for producing positive electrodes for electrochemical elements with non-aqueous electrolyte, in particular Li / MnOg cells, in which manganese dioxide is used as active material which, in admixture with a conductive agent 5 and a binder, is formed to the electrode and subjected to a final heat treatment. The invention further relates to a cathode made according to this method, in particular a Li / MnOg cell.

En fremgangsmåde af den indledningsvis angivne art er kendt fra US-PS 4.133.856. Deri finder der en første varmebehandling af 10 mangandioxidet sted ved temperaturer, som er større end 250°C. Målsætningen er at foretage den nødvendige fjernelse af vand fra mangandioxidet og tilberede det til anvendelse i celler med ikke-van-dige elektrolytter. En ufuldstændig fjernelse af vandet ville medføre ulemper med hensyn til funktionsevne og effekten af cellen. Da der 15 i mangandioxidet findes en stor andel af såvel bundet vand som yderligere vedhængende vand, er den første varmebehandling alene ikke tilstrækkelig. På uheldig måde bliver derved kun overfladevandet, men ikke det bundne vand fjernet. Det er derfor ved den kendte fremgangsmåde nødvendigt at underkaste det allerede varmebehandlede 20 mangandioxid en anden varmebehandling efter blandingen med en ledende tilsætning og et bindemiddel som formemne. Det første behandlingstrin finder sted ved temperaturer mellem 350 og 430°C og det andet behandlingstrin ved temperaturer i området fra 200 til 350°C. Fremgangsmåden er derfor meget kostbar, kræver højt energifor-25 brug og bevirker en strukturændring af mangandioxidet fra γ-MnOg til p-MnOg. Herved forringes aktiviteten på uheldig måde.A method of the kind mentioned initially is known from US-PS 4,133,856. Therein, an initial heat treatment of the 10 manganese dioxide takes place at temperatures greater than 250 ° C. The objective is to perform the necessary removal of water from the manganese dioxide and prepare it for use in cells with non-aqueous electrolytes. Incomplete removal of the water would cause disadvantages in terms of function and effect of the cell. As there is a large proportion of both bound water and additional pendant water in the manganese dioxide, the initial heat treatment alone is not sufficient. Inadvertently, only the surface water but not the bound water is removed. Therefore, in the known process, it is necessary to subject the already heat treated manganese dioxide to another heat treatment after mixing with a conductive addition and a binder as molding agent. The first treatment step takes place at temperatures between 350 and 430 ° C and the second treatment step at temperatures in the range of 200 to 350 ° C. The process is therefore very expensive, requires high energy consumption, and causes a structural change of the manganese dioxide from γ-MnOg to p-MnOg. Doing so will adversely affect activity.

En lignende fremgangsmåde er kendt fra DE-OS 30 00 189, hvor der ligeledes foretages en totrinsvarmebehandling. Også her anvendes temperaturer mellem 220 og 350°C. Til forskel fra frem-30 gangsmåden ifølge US-PS 4.133.856, hvor det ikke lykkes fuldstændigt at fjerne det i formlegemet indesluttede vand ved opvarmningen efter formningen i det andet varmebehandlingstrin, foreslås det her før formningen af elektroden at underkaste den fremkomne blanding af mangandioxid det ledende middel og bindemidlet den anden varme-35 behandling. Herved skal det lykkes at forbedre afladningsegenskaberne ved cellen og lagringsevnen. Det forbliver imidlertid fortsat uheldigt, at der ved høje temperaturer skal foretages to varmebehandlinger, der som sådanne er kostbare og derudover på negativ måde påvirker strukturen af det anvendte mangandioxid.A similar method is known from DE-OS 30 00 189, in which a two-stage heat treatment is also carried out. Again, temperatures between 220 and 350 ° C are used. Unlike the method of U.S. Pat. No. 4,133,856, in which the water contained in the mold body fails to completely remove by heating after forming in the second heat treatment step, it is proposed here before subjecting the electrode to subject the resulting mixture of manganese dioxide. the conductive agent and the binder the second heat treatment. This will succeed in improving the discharge characteristics of the cell and its storage capacity. However, it remains unfortunate that at high temperatures two heat treatments have to be carried out, which as such are expensive and in addition negatively affect the structure of the manganese dioxide used.

DK 154039 BDK 154039 B

22

Alt i alt fremgår det af den kendte teknik, at de elektrokemiske egenskaber ved Li/MnC^-celler afhænger meget stærkt af fremstillingsmiden og sammensætningen af de positive elektroder, hvor mangendioxid med en y-krystal struktur hidtil blev foretrukket frem 5 for β-krystalformen pi grund af den højere aktivitet, men den nødvendige fjernelse af det bundne vand samt af overfladevandet skulle foretages ved temperaturer, som begunstiger en omdannelse af y-mangandioxidet til β-krystal strukturen under formindskelse af aktiviteten. Derudover vedrører de kendte fremgangsmåder princi-10 pielt den tørre vandfrie fremstilling af katoderne.All in all, it is apparent from the prior art that the electrochemical properties of Li / MnC 2 cells depend very strongly on the preparation and the composition of the positive electrodes where manganese dioxide having a γ-crystal structure was hitherto preferred over the β-crystal form. because of the higher activity, but the necessary removal of the bound water as well as of the surface water had to be carried out at temperatures which favor the conversion of the γ-manganese dioxide to the β-crystal structure while reducing the activity. In addition, the known methods basically relate to the dry anhydrous preparation of the cathodes.

Formålet med den foreliggende opfindelse er at udvikle en fremgangsmåde til fremstilling af positive elektroder til elektrokemiske elementer med ikke-vandige elektrolytter, navnlig Li/MnOg-cel-ler med mangandioxid som aktivt materiale, der er simpel at udføre, 15 er egnet til at tilvejebringe høje celleeffekter også for komplette afladninger ned til området af lave temperaturer på -30°C, hvormed også lagringsevnen er forbedret. Endelig tilsigter opfindelsen at tilvejebringe en forbedret katode, navnlig til en Li/NInO^-celle.The object of the present invention is to develop a process for producing positive electrodes for electrochemical elements with non-aqueous electrolytes, in particular Li / MnOg cells with manganese dioxide as easy-to-perform active material, suitable for providing high cell effects also for complete discharges down to the low-temperature range of -30 ° C, which also improves storage capacity. Finally, the invention aims to provide an improved cathode, in particular for a Li / NinO 2 cell.

Ifølge opfindelsen opnås dette ved, at der anvendes et synte-20 tisk mangandioxid med en δ-krystalstruktur, samt ved at elektroderne efter formningen underkastes den afsluttende varmebehandling mellem 180°C og 200°C. Fortrinsvis bliver MnOg, sod, methanol, poly-tetrafluorethylen i vandig suspension og vand blandet med hinanden under undgåelse af den hidtil som nødvendig ansete varmebehand-25 ling og sammenrørt og/eiler æltet til en pasta, og pastaen bliver derefter indført i en forudgiven form, formemnet bliver sammenpresset med et metal-strækgitter, og derefter udføres tørringen som eneste varmebehandling. Der anvendes fordelagtigt en udgangsblanding af 40 til 60 vægtprocent NlnO^, 3 til 8 vægtprocent sod, 4 til 8 vægt-30 procent methanol, 2 til 6 vægtprocent polytetrafluorethylen i vandig suspension og vand. I sammenligning med de hidtil kendte blandinger af 65 til 95 vægtprocent mangandioxidpulver, 20 til 30 vægtprocent kulstofpulver og i givet fald 15 til 2 vægtprocent polytetra-fluorethylenpulver er det den overraskende erkendelse i opfindelsen, 35 at der med relativt lave vægtprocenter af mangandioxid og sod ved en høj vandandel på eksempelvis 34 vægtprocent kun kræves et enkelt tørringsprocesskridt ved under 200°C for at kunne fremstille en vandfri positiv elektrode.According to the invention, this is achieved by the use of a synthetic manganese dioxide with a δ crystal structure, and by the electrodes after the molding is subjected to the final heat treatment between 180 ° C and 200 ° C. Preferably, MnOg, soot, methanol, polytetrafluoroethylene in aqueous suspension and water are mixed with each other to avoid the hitherto deemed necessary heat treatment and stirred and / or kneaded into a paste, and the paste is then introduced into a predetermined form. , the mold is compressed with a metal stretch grating and then the drying is performed as the sole heat treatment. Advantageously, a starting mixture of 40 to 60 weight percent NlnO 2, 3 to 8 weight percent soot, 4 to 8 weight-30 percent methanol, 2 to 6 weight percent polytetrafluoroethylene in aqueous suspension and water is used. Compared to the known mixtures of 65 to 95% by weight of manganese dioxide powder, 20 to 30% by weight of carbon powder and, where appropriate, 15 to 2% by weight of polytetrafluoroethylene powder, it is the surprising recognition of the invention that with relatively low percentages of manganese dioxide and soot a high water content of, for example, 34% by weight, only a single drying process step is required at below 200 ° C in order to produce an anhydrous positive electrode.

Det er fordelagtigt først at blande 45 til 55 vægtprocent, for-It is advantageous to first mix 45 to 55 weight percent, preferably

DK 154039 BDK 154039 B

3 trinsvis 50 vægtprocent MnOg med 4 til 6 vægtprocent, fortrinsvis 5 vægtprocent sod, at underkaste blandingen en homogenisering, derpå ved irøring af 6 tii 7 vægtprocent, navnlig 6,5 vægtprocent methanol, 4 ti! 5 vægtprocent, fortrinsvis 4,5 vægtprocent polytetra-5 flourethylen og ca. 34 vægtprocent vand at fremstille pastaen og derpå udføre den afsluttende tørringsproces.3 to 50 weight percent MnOg with 4 to 6 weight percent, preferably 5 weight percent soot, to subject the mixture to homogenization, then stirring 6 to 7 weight percent, in particular 6.5 weight percent methanol, 4 to 10 percent. 5% by weight, preferably 4.5% by weight of polytetra-5-fluorethylene and approx. 34% by weight of water to prepare the paste and then carry out the final drying process.

Det anvendte MnOg har principielt den fordel at afgive vandet, altså også det bundne vand, ved hidtil ikke kendt lav temperatur, så at det kan anvendes i Li/MnOg-celler med overraskende ringe 10 tab i elektrokemisk aktivitet. Særlig fordelagtig er en brunsten med en kornstørrelse på < 50 μ, der har meget gode formnings- og gli-deevneegenskaber. Sidstnævnte forbedres yderligere, når der til blandingen anvendes en glidedygtig ovnsod. Som bindemiddel kan en vandig PTFE-suspension med fordel finde anvendeise.The MnOg used, in principle, has the advantage of delivering the water, that is also the bound water, at hitherto unknown low temperature, so that it can be used in Li / MnOg cells with surprisingly small losses in electrochemical activity. Particularly advantageous is a brownstone with a grain size of <50 μ, which has very good forming and sliding properties. The latter is further improved when a slip-proof furnace is used for the mixture. As a binder, an aqueous PTFE suspension can advantageously be used.

15 U/MnOg-cellen ifølge opfindelsen består af en hermetisk lukket ædelstålbeholder, hvori der skiftevis er anbragt flade lithiumanoder i form af i polypropylenseparatorer i lommer anbragt lithiumfolie og MnOg-katoder af den ovenfor beskrevne art sammen med en elektrolyt, der består af propylencarbonat 1,2, dimethoxyæthan i forholdet 20 1:1 og 1 M lithiumtetrafluoroborat som ledesalt. I katoden bliver der ifølge opfindelsen benyttet et aluminium-strækgitter som bærer for den tørrede pasta.The U / MnOg cell of the invention consists of a hermetically sealed stainless steel container in which are alternately arranged flat lithium anodes in the form of lithium foil polypropylene separators and MnOg cathodes of the above described together with an electrolyte consisting of propylene carbon , 2, dimethoxyethane in a ratio of 1: 1 and 1 M lithium tetrafluoroborate as a guide salt. In the cathode, according to the invention, an aluminum stretch grating is used as a carrier for the dried paste.

Den beskrevne Li/MnOg-celle ifølge opfindelsen udmærker sig ved høj effekt også til komplette afladninger indtil området af lave 25 temperaturer på -30°C. Dermed kommer for første gang en sådan celle ind i Li/SC^-systemets effekt-energiområde.The described Li / MnOg cell according to the invention is characterized by high power also for complete discharges up to the range of low temperatures of -30 ° C. Thus, for the first time, such a cell enters the power-range of the Li / SC ^ system.

Yderligere enkeltheder, kendetegn og fordele ved opfindelsen fremgår af den efterfølgende beskrivelse af en fremstillingsmetode for positive NlnOg-elektroder samt en Li/MnO^-celle under henvis-30 ning til tegningen, hvor fig. 1 skematisk viser en Li/MnO^-celle, fig. 2 forløbet af klemspændingen i forhold til kapacite ten ved -30°C, fig, 3 forløbet af klemspændingen i forhold til kapacite- 35 ten ved -30°C med en konstant strøm på I^q (20 timer) og fig. 4 forløbet af kapaciteten i forhold til temperaturen.Further details, features and advantages of the invention will be apparent from the following description of a manufacturing method for positive N1nOg electrodes as well as a Li / MnO4 cell with reference to the drawings, in which: 1 schematically shows a Li / MnO 2 cell; FIG. Fig. 2 shows the terminal voltage versus capacity at -30 ° C; Fig. 3 shows the terminal voltage relative to the capacity at -30 ° C with a constant current of 1 q (20 hours); 4 shows the progress of the capacity relative to the temperature.

Principielt består Li/MnOg-cellen ifølge opfindelsen af et beholderformet hus 1 af ædelstål, der er hermetisk lukket foroven vedIn principle, the Li / MnOg cell according to the invention consists of a container-shaped housing 1 of stainless steel, hermetically sealed at the top by

DK 154039BDK 154039B

4 hjælp af et dæksel 2. Gennem dækslet 2 strækker der sig et I en glas/metal-tætning 3 indlagt fylderør 4, der samtidig danner den positive bund pi grundlag af tilsvarende indre tilslutninger/ medens huset 1 selv danner den negative pol.4 by means of a cover 2. Through the cover 2 extends a filling tube 4 inserted into a glass / metal seal 3, which simultaneously forms the positive bottom on the basis of corresponding internal connections / while the housing 1 itself forms the negative pole.

5 I huset befinder der sig som elektrolyt 5 propyiencarbonat (PC) med 1/2 dimethoxyæthan (DME) i blandingsforholdet 1:1 samt 1 M lithiumtetrafluoroborat LIBF^ som ledesalt. Anoden består af en lithiumfolie 6, der er anbragt i en lomme i en polypro-pylenseparator 7. Den negative elektrode er udformet fladeformet 10 og i udførelseseksemplet sammenstillet i fællesskab med katoden 8 til en cylindrisk celle.5 In the housing, there is as electrolyte 5 propylene carbonate (PC) with 1/2 dimethoxyethane (DME) in the 1: 1 mixture ratio as well as 1 M lithium tetrafluoroborate LIBF ^ as the lead salt. The anode consists of a lithium foil 6 disposed in a pocket in a polypropylene separator 7. The negative electrode is shaped 10 and in the exemplary embodiment assembled jointly with the cathode 8 into a cylindrical cell.

Den positive elektrode 8 bliver fremstillet under anvendelse af rho-mangandioxid, idet 10 vægtdele MnOg blandes tørt med en vægtdel sod. Af forblandingen bliver der fremstillet en pasta, idet 75 15 vægtdele MnOg/sod-blanding bliver rørt og æltet med 50 vægtdele vand og 10 vægtdele methanol samt 6 vægtdele polytetrafluorethylen.The positive electrode 8 is made using rho-manganese dioxide, with 10 parts by weight of MnOg mixed dry with one part by weight of soot. From the premix, a paste is made, with 75 parts by weight of MnOg / soot mixture being stirred and kneaded with 50 parts by weight of water and 10 parts by weight of methanol and 6 parts by weight of polytetrafluoroethylene.

Der foreligger si en katodepasta, der indeholder vand i form af bundet vand samt vedhængende overfladevand.There is a cathode paste containing water in the form of bound water as well as adherent surface water.

Derefter bliver katodepastaen pasteret i en forudgiven form 20 og sammenpresset deri med et aluminium-strækgitter. Derefter bliver der udført en varmebehandling ved en temperatur på 195°C. Væsentlig for afgivelsen af vandet under varmebehandlingen er evnen af det anvendte NlnOg til at afgive også det indesluttede vand ved temperaturer under 200°C fuldstændigt indenfor varmebehandlingens 25 ramme.Then, the cathode paste is pasted into a predetermined shape 20 and compressed therein with an aluminum stretch grating. Thereafter, a heat treatment is carried out at a temperature of 195 ° C. Essential to the release of the water during the heat treatment is the ability of the NlnOg used to also dispense the contained water at temperatures below 200 ° C completely within the scope of the heat treatment 25.

Den ved fremstillingen af katoden anvendte sod som ledende additiv til MnO,, danner i modsætning til de ellers anvendte acethy-lensod en ovnsod med høj relativ ledeevne. Denne sod har vist sig optimal med hensyn til katoderumfanget (Ah/cm ), porerumfanget, 30 den indre poreoverflade (Li-indlejring) og aktiviteten (effekt). Som bindemiddel er blevet anvendt en vandig PTFE-suspension.The soot used in the preparation of the cathode as a conductive additive to MnO 1, in contrast to the otherwise used acetylene sod, forms a furnace sod with high relative conductivity. This soot has proved optimal in terms of cathode volume (Ah / cm), pore volume, inner pore surface (Li embedding), and activity (effect). An aqueous PTFE suspension has been used as the binder.

Væsentlig er også anvendelsen af aluminium-strækmetalgitteret, der frembyder følgende fordele i henseende til opbygningen af Li/MnO^-cellen: 35 Pi grundlag af de specifikke materialeegenskaber ved alumini um bliver der opnået en høj elektrisk ledningsevne ved god strækbarhed. Specielt egner dette gitter sig til fremstilling af vikieelek-troder, ved hvilke formgivningen sædvanligvis på grund af de snævre indre radier frembyder vanskeligheder. Endvidere er den i sam-Also important is the use of the aluminum-stretch metal lattice, which offers the following advantages in terms of the structure of the Li / MnO4 cell: 35 P, based on the specific material properties of aluminum, a high electrical conductivity is obtained with good extensibility. In particular, this lattice is suitable for the manufacture of winding electrodes, in which the design usually presents difficulties due to the narrow inner radii. Furthermore, it is

DK 154039 BDK 154039 B

5 menligning med nikkel eller ædelstål ringe vægt af aluminium-stræk-gitteret fordelagtig.5 comparison with nickel or stainless steel low weight of aluminum stretch grating advantageous.

Fig. 2 på tegningen viser en afladekurve for det i fig. 1 på tegningen viste element ved en temperatur pi -30°C over en af-5 lademodstand på 100 ohm. Udbyttet indtil en afladeslutspænding udgør 94,7% af den angivne nominelle kapacitet Kn = 13 Ah.FIG. 2 of the drawing shows a discharge curve for the one shown in FIG. 1 in the drawing, at a temperature of -30 ° C over a discharge resistance of 100 ohms. The yield until a discharge end voltage is 94.7% of the specified rated capacity Kn = 13 Ah.

Fig. 3 pi tegningen viser for det samme element kiemspændin-gen U^'s afhængighed af den aftagne kapacitet K ved en konstant afiadestrøm = 0,65 A og en temperatur pi -30°C. Udbyttet ud-10 gør i dette tilfælde 62,25%. I begge tilfælde udgjorde den forudgivne afladeslutspænding 2,0 V. Det er dermed tydeliggjort, at de opnåede elektriske værdier ligger væsentligt over de tilsvarende værdier for kendte Li/MnO^-celler.FIG. The 3 µm drawing shows, for the same element, the dependence of the germ voltage U 2 on the decreased capacity K at a constant aiad current = 0.65 A and a temperature p -30 ° C. The yield-10 in this case makes 62.25%. In both cases, the predicted discharge terminal voltage was 2.0 V. Thus, it is made clear that the obtained electrical values are substantially above the corresponding values of known Li / MnO 2 cells.

Fig. 4 viser den aftagelige kapacitets afhængighed indtil en 15 afladeslutspænding på 2,0 V for konstante strømme på 2 x I2q = 1,3A af omgiveisestemperaturen.FIG. 4 shows the dependence of the removable capacity up to a discharge voltage of 2.0 V for constant currents of 2 x I2q = 1.3A of the ambient temperature.

Alt i alt bliver der med den beskrevne U/MnOg-celle tilvejebragt et elektrokemisk element, som har overordentligt høje effekter også for komplette afladninger indtil området af lave temperaturer 20 på -30°C. Følgende værdier blev konstateret:All in all, with the described U / MnOg cell, an electrochemical element is provided which has extremely high effects even for complete discharges up to the range of low temperatures 20 at -30 ° C. The following values were found:

Li/IVlnOg-celle med en diameter på 41 mm og en højde på 51 mm: I = 2 x IgQ med udbytte 62,25% Kn opnået (-30°C)Li / IVlnOg cell with a diameter of 41 mm and a height of 51 mm: I = 2 x IgQ with yield 62.25% Kn obtained (-30 ° C)

125 Wh/kg 250 Wh/I 6 h -30°C125 Wh / kg 250 Wh / I 6 h -30 ° C

25 150 Wh/kg 300 Wh/I 1 h RT25 150 Wh / kg 300 Wh / I 1 h RT

300 Wh/kg 600 Wh/I 500 h ' RT300 Wh / kg 600 Wh / I 500 h 'RT

Afladeslutspænding i hvert tilfælde 2,0 VDischarge final voltage in each case 2.0 V

K = 13 Ah. n 30 35K = 13 Ah. n 30 35

Claims (6)

1. Fremgangsmåde til fremstilling af positive elektroder til elektrokemiske elementer med ikke-vandig elektrolyt, navnlig Li/MnOg- 5 celler, i hvilke mangandioxid anvendes som aktivt materiale, der i blanding med et ledende middel og et bindemiddel formes til elektroden og underkastes en afsluttende varmebehandling, kendetegnet ved, at der anvendes et syntetisk mangandioxid med en δ-krystalstruktur, samt at elektroderne efter formningen underka- 10 stes den afsluttende varmebehandling mellem 180°C og 200°C.A process for preparing positive electrodes for electrochemical elements with non-aqueous electrolyte, in particular Li / MnOg cells, in which manganese dioxide is used as active material which, in admixture with a conductive agent and a binder, is formed to the electrode and subjected to a final heat treatment, characterized in that a synthetic manganese dioxide having a δ crystal structure is used, and that the electrodes after the molding are subjected to the final heat treatment between 180 ° C and 200 ° C. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at MnOg, sod, methanol, pol ytetraflou rethyl en i vandig opløsning og vand blandes med hinanden og sammenrøres og/eller sammenæltes til en pasta, at pastaen derefter indføres i en forudgiven form, 15 at formémnet sammenpresses med et metal-strækgitter, og at tørringen derefter udføres som eneste varmebehandling.Process according to Claim 1, characterized in that MnOg, soot, methanol, pol ytetraflou rethyl an aqueous solution and water are mixed with each other and stirred and / or coalesced into a paste, the paste is then introduced in a predetermined form, the molding is compressed with a metal stretch grating and the drying is then carried out as the sole heat treatment. 3. Fremgangsmåde ifølge krav 1 og 2, kendetegnet ved, at der anvendes en udgangsblanding af 40 til 60 vægtprocent IVlnOg, 3 til 8 vægtprocent sod, 4 til 8 vægtprocent methanol, 2 20 til 6 vægtprocent polytetrafluorethyien i vandig suspension og vand.Process according to claims 1 and 2, characterized in that an initial mixture of 40 to 60% by weight IVlnOg, 3 to 8% by weight of soot, 4 to 8% by weight of methanol, 2 to 6% by weight of polytetrafluoroethylene in aqueous suspension and water is used. 4. Fremgangsmåde ifølge et hvilket som helst af kravene I-3, kendetegnet ved, at 45 til 55 vægtprocent, fortrinsvis 50 vægtprocent MnOg blandes med 4 til 6 vægtprocent, fortrinsvis 5 vægtprocent sod, at blandingen underkastes en homogenisering, og 25 at pastaen derpå fremstilles ved irøring af 6 til 7 vægtprocent, navnlig 6,5 vægtprocent methanol, 4 til 5 vægtprocent, fortrinsvis 4,5 vægtprocent polytetrafluorethyien og ca. 34 vægtprocent vand.Process according to any one of claims I-3, characterized in that 45 to 55 wt.%, Preferably 50 wt.% MnOg, are mixed with 4 to 6 wt.%, Preferably 5 wt.% Soot, that the mixture is subjected to homogenization and that the paste thereon. are prepared by stirring 6 to 7% by weight, in particular 6.5% by weight of methanol, 4 to 5% by weight, preferably 4.5% by weight of polytetrafluoroethylene, and ca. 34% by weight of water. 5. Fremgangsmåde ifølge et hvilket som helst af kravene 1-4, kendetegnet ved, at der til blandingen anvendes en leden- 30 de ovnsod.Process according to any one of claims 1 to 4, characterized in that an articulated kiln is used for the mixture. 6. Katode ifølge et hvilket som helst af kravene 1-5, kendetegnet ved et aluminium-strækgitter som bærer for den aktive masse, der skai tørres. 35A cathode according to any one of claims 1-5, characterized by an aluminum stretch grating supporting the active mass which is to be dried. 35
DK516983A 1982-11-13 1983-11-11 PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS DK154039C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3242139A DE3242139C2 (en) 1982-11-13 1982-11-13 Process for the production of positive electrodes for electrochemical elements, in particular Li / Mn0 2 cells and electrodes produced by this process
DE3242139 1982-11-13

Publications (4)

Publication Number Publication Date
DK516983D0 DK516983D0 (en) 1983-11-11
DK516983A DK516983A (en) 1984-05-14
DK154039B true DK154039B (en) 1988-10-03
DK154039C DK154039C (en) 1989-02-20

Family

ID=6178133

Family Applications (1)

Application Number Title Priority Date Filing Date
DK516983A DK154039C (en) 1982-11-13 1983-11-11 PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS

Country Status (5)

Country Link
EP (1) EP0116115B1 (en)
JP (1) JPS59101767A (en)
DE (1) DE3242139C2 (en)
DK (1) DK154039C (en)
NO (1) NO157158C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557734B1 (en) * 1983-12-28 1986-10-17 Gipelec PROCESS FOR THE PREPARATION OF A POSITIVE ACTIVE MATERIAL BASED ON MANGANESE DIOXIDE FOR AN ELECTROCHEMICAL GENERATOR, ACTIVE MATERIAL DERIVED FROM SAID METHOD AND GENERATOR USING THE SAME
JPS618852A (en) * 1984-06-22 1986-01-16 Sanyo Electric Co Ltd Nonaqueous electrolyte cell
GB2196785B (en) * 1986-10-29 1990-05-23 Sony Corp Organic electrolyte secondary cell
US7238448B1 (en) 2000-04-26 2007-07-03 The Gillette Company Cathode for air assisted battery
US20030162099A1 (en) 2002-02-28 2003-08-28 Bowden William L. Non-aqueous electrochemical cell
US7279250B2 (en) 2003-11-24 2007-10-09 The Gillette Company Battery including aluminum components
US7544384B2 (en) 2003-11-24 2009-06-09 The Gillette Company Methods of making coated battery components
US7459234B2 (en) 2003-11-24 2008-12-02 The Gillette Company Battery including aluminum components
US7285356B2 (en) 2004-07-23 2007-10-23 The Gillette Company Non-aqueous electrochemical cells
US7479348B2 (en) 2005-04-08 2009-01-20 The Gillette Company Non-aqueous electrochemical cells
CN111653778A (en) * 2020-05-20 2020-09-11 佛山科学技术学院 Positive electrode composite material for lithium-manganese battery and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1509122A (en) * 1966-11-30 1968-01-12 Accumulateurs Fixes Improvements in the manufacture of manganese dioxide dry cells
DE2300156C3 (en) * 1972-01-06 1978-10-19 P.R. Mallory & Co. Inc., (N.D.Ges. D.Staates Delaware), Indianapolis, Ind. (V.St.A.) Process for the production of an electrode for a galvanic element
JPS5342325A (en) * 1976-09-29 1978-04-17 Sanyo Electric Co Method of making cathode of nonnaqueous battery
JPS5446344A (en) * 1977-09-20 1979-04-12 Sanyo Electric Co Method of producing positive plate for nonnaqueous battery
GB1557754A (en) * 1978-03-02 1979-12-12 Ever Ready Co Dry electric cells
DE2835976C3 (en) * 1978-08-17 1982-05-19 Hitachi Chemical Co., Ltd. Galvanic element
JPS6041829B2 (en) * 1979-01-06 1985-09-19 株式会社日立製作所 Manufacturing method of positive electrode for non-aqueous electrolyte battery
IN154337B (en) * 1979-06-25 1984-10-20 Union Carbide Corp
JPS581050B2 (en) * 1979-10-04 1983-01-10 田辺 伊佐雄 Manufacturing method of manganese dioxide

Also Published As

Publication number Publication date
DE3242139A1 (en) 1984-05-17
EP0116115A1 (en) 1984-08-22
EP0116115B1 (en) 1986-05-21
JPS59101767A (en) 1984-06-12
DK516983A (en) 1984-05-14
DK516983D0 (en) 1983-11-11
NO157158B (en) 1987-10-19
DK154039C (en) 1989-02-20
NO833863L (en) 1984-05-14
NO157158C (en) 1988-01-27
DE3242139C2 (en) 1984-09-06
JPH0324023B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JP3873760B2 (en) Alkaline battery
JPH11506721A (en) Improved manganese dioxide for lithium batteries
DK154039B (en) PROCEDURE FOR THE PREPARATION OF POSITIVE ELECTRODS FOR ELECTROCHEMICAL ELEMENTS, NAME LI / MNO2 CELLS
US4020248A (en) Primary electrochemical cell capable of high discharge rates
US4060668A (en) Primary electrochemical cell
JP2004186127A (en) Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
US3998658A (en) High voltage organic electrolyte batteries
JPH07153486A (en) Lithium secondary battery
JPH061698B2 (en) Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
US4118334A (en) Primary electrochemical cell
JP3553541B2 (en) Method for producing positive electrode active material for battery and electrolytic manganese dioxide, and battery
JP3029889B2 (en) Manganese dioxide for lithium secondary battery and method for producing the same
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JPH02168559A (en) Lithium primary battery and its positive electrode active substance
JP2594827B2 (en) Method for producing electrolytic manganese dioxide
JPH1197069A (en) Secondary battery
JP2646689B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP2000208143A (en) Lead-acid battery and manufacture thereof
CN117585666A (en) Hydrothermally modified graphite fluoride, and preparation method and application thereof
JPS6182674A (en) Nonaqueous solvent battery
JPH0318308B2 (en)
JPS59171470A (en) Nonaqueous solvent battery
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPH11135147A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
PBP Patent lapsed