DE4432666C2 - Transmission system for the combined transmission of laser radiation, high frequency and ultrasound - Google Patents

Transmission system for the combined transmission of laser radiation, high frequency and ultrasound

Info

Publication number
DE4432666C2
DE4432666C2 DE4432666A DE4432666A DE4432666C2 DE 4432666 C2 DE4432666 C2 DE 4432666C2 DE 4432666 A DE4432666 A DE 4432666A DE 4432666 A DE4432666 A DE 4432666A DE 4432666 C2 DE4432666 C2 DE 4432666C2
Authority
DE
Germany
Prior art keywords
transmission system
power transmission
core
optical waveguide
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4432666A
Other languages
German (de)
Other versions
DE4432666A1 (en
Inventor
Gerhard Prof Dr Ing Mueller
Johannes Dr Ing Tschepe
Kai Dipl Ing Desinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser und Medizin Technologie GmbH
Original Assignee
LASER- und MEDIZIN-TECHNOLOGIE GGMBH BERLIN 12207 BERLIN DE
Laser und Medizin Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LASER- und MEDIZIN-TECHNOLOGIE GGMBH BERLIN 12207 BERLIN DE, Laser und Medizin Technologie GmbH filed Critical LASER- und MEDIZIN-TECHNOLOGIE GGMBH BERLIN 12207 BERLIN DE
Priority to DE4432666A priority Critical patent/DE4432666C2/en
Publication of DE4432666A1 publication Critical patent/DE4432666A1/en
Application granted granted Critical
Publication of DE4432666C2 publication Critical patent/DE4432666C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2244Features of optical fibre cables, e.g. claddings

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Otolaryngology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

Die Erfindung betrifft ein flexibles Übertragungssystem nach dem Oberbegriff des Anspruchs 1.The invention relates to a flexible transmission system according to the preamble of claim 1.

Es ist grundsätzlich bekannt, daß Laserstrahlung über op­ tische Wellenleiter in Form von sog. Faseroptiken über­ tragen werden kann. Dabei wird das Prinzip der Totalre­ flexion ausgenutzt. Dabei besteht der Kern einer derarti­ gen Faseroptik aus einem für die Nutzstrahlung transpa­ renten Material des Brechungsindexes und ist ummantelt mit mindestens einem zweiten Material, dessen Brechungs­ index im Mantel kleiner ist als der Brechungsindex des Kernmaterials. Es sind nach dem Stand der Technik jedoch auch faseroptische Systeme bekannt, bei denen unter Aus­ nutzung des Prinzips der anomalen Dispersion eine Kapil­ lare zur Anwendung kommt, deren Mantelmaterial in der Nä­ he der Nutzwellenlänge eine Absorption aufweist, wobei das Maximum dieser Absorptionsbande hinreichend weit von der Wellenlänge der Nutzstrahlung entfernt ist, so daß die verbleibende Restabsorption keine wesentliche Dämp­ fung der zu übertragenden Nutzstrahlung verursacht, ande­ rerseits aber dazu führt, daß der Realteil des Brechungs­ indexes < 1 ist und damit die im hohlen Kern vorhandene Luft mit einem Brechungsindex von etwa 1 einen höheren Brechungsindex als das Mantelmaterial bei der Nutzwellen­ länge aufweist.It is generally known that laser radiation via op table waveguides in the form of so-called fiber optics can be worn. The principle of totalre exploited flexion. The core of such is gene fiber optics from a transparent for the useful radiation annuity material of the refractive index and is coated with at least a second material whose refraction index in the cladding is smaller than the refractive index of the Core material. However, they are according to the state of the art also known fiber optic systems in which under Aus use of the principle of anomalous dispersion a Kapil lare is used, the jacket material in the Nä he useful wavelength has an absorption, where the maximum of this absorption band is sufficiently far from the wavelength of the useful radiation is removed, so that the remaining absorption is not a significant damper causes the useful radiation to be transmitted, other on the other hand leads to the real part of the refraction indexes <1 and thus the one in the hollow core Air with a refractive index of about 1 is higher Refractive index as the cladding material in the case of useful waves has length.

Es ist aus der DE 43 22 955 A1 weiterhin bekannt, daß bei Verwendung von Quarzglaslichtwellenleitern vom Typ Kern­ mantel über eine derartige Faseroptik auch Ultraschall­ energie übertragen werden kann. Hieraus ist ebenfalls be­ kannt, daß die Übertragung von Ultraschallenergie auch durch eine Quarzglaskapillare bei geeigneter Einkopplung möglich ist. Gleichzeitig zeigt diese Druckschrift, daß simultan zur Übertragung von Ultraschallenergie bei ge­ eigneter Einkopplung auch die Übertragung von Laserstrah­ lung über denselben Wellenleiter möglich ist.It is also known from DE 43 22 955 A1 that at Use of Kern type quartz glass fiber optic cables sheath over such fiber optics also ultrasound energy can be transferred. From this is also be knows that the transmission of ultrasonic energy too through a quartz glass capillary with suitable coupling  is possible. At the same time, this document shows that simultaneous to the transmission of ultrasonic energy at ge suitable coupling also the transmission of laser beam tion over the same waveguide is possible.

Aus der DE 37 21 060 A1 ist eine flexible Nachrichtenlei­ tung bekannt, die einen optischen Wellenleiter sowie eine koaxiale Anordnung von elektrisch leitenden Schichten mit einer dazwischenliegenden Isolierschicht umfaßt und die einerseits optische und andererseits elektrische Signale übertragen kann.DE 37 21 060 A1 describes a flexible message line device known that an optical waveguide and a coaxial arrangement of electrically conductive layers with an intermediate insulating layer and the on the one hand optical and on the other hand electrical signals can transmit.

In U. Zwick: "Glas- und Quarzfaserkabel in optischen Übertragungssystemen", TAB 2/86, S. 117-122, werden ver­ schiedene Wellenleiteraufbauten und Herstellungsverfahren für diese beschrieben.In U. Zwick: "Glass and quartz fiber cables in optical Transmission systems ", TAB 2/86, pp. 117-122, are ver different waveguide structures and manufacturing processes described for this.

Der Erfindung liegt die Aufgabe zugrunde, ein noch uni­ verseller anwendbares flexibles Übertragungssystem zur Übertragung von Laserlicht- und Ultraschallenergie für den medizinischen Einsatz zu entwickeln.The invention has for its object a still uni flexible applicable transmission system for Transmission of laser light and ultrasonic energy for to develop medical use.

Es hat sich überraschenderweise gezeigt, daß bei geeigne­ ter Dimensionierung eines ultraschall- und laser­ lichtübertragenden Wellenleiters, wie er in der DE 43 22 955 A1 beschrieben ist, zusätzlich auch Hochfre­ quenzenergie übertragen werden kann.It has surprisingly been found that suitable dimensioning of an ultrasound and laser light-transmitting waveguide, as described in DE 43 22 955 A1  is also described, Hochfre frequency energy can be transmitted.

Es folgt die Beschreibung von Ausführungsformen der Er­ findung anhand der Abbildungen. Von diesen zeigen:Embodiments of the Er are described below finding based on the illustrations. Of these show:

Fig. 1) einen Wellenleiter für Licht-, Ultraschall- und elektromagnetische Wellen, Fig. 1) a waveguide for light, ultrasonic and electromagnetic waves,

Fig. 2) eine optische Faser für Licht- und Ultraschall mit für die Übertragung von elektromagnetischen Wellen geeigneten Beschichtungen, Fig. 2), an optical fiber for light and ultrasound with suitable for the transmission of electromagnetic waves coatings,

Fig. 3) eine Kapillare mit elektrisch leitenden und die­ lektrischen Innen- und Außenbeschichtungen für die Über­ tragung von Licht, Ultraschall und elektromagnetischen Wellen und Fig. 3) a capillary with electrically conductive and the dielectric inner and outer coatings for the transmission of light, ultrasound and electromagnetic waves and

Fig. 4) eine Kapillare für die Licht- und Ul­ traschallübertragung mit elektrisch leitenden Beschich­ tungen, so daß die Kapillare als HF-Koaxialleiter verwen­ det werden kann. Fig. 4) a capillary for light and Ul trasound transmission with electrically conductive coatings, so that the capillary can be used as an RF coaxial conductor.

In einer zweckmäßigen Ausführung nach Fig. 1 wird der op­ tische Mantel 2 eines Kernmantellichtwellenleiters 1 mit einer elektrisch leitenden Beschichtung 3 versehen, die ihrerseits wiederum mit einem dielektrischen weiteren Überzug 4 geschützt wird. Zusätzlich wird dieses Dielek­ trikum 4 seinerseits nach außen hin von einem weiteren elektrisch leitenden Material 5 umgeben, das abhängig von der zu übertragenden Hochfrequenz entweder nach dem Stand der Technik aus einem metallischen Geflecht oder aber wiederum aus einem elektrisch leitenden Überzug besteht. Dieser zweite elektrisch leitende Mantel außerhalb des ersten Dielektrikums wird seinerseits nun wiederum mit einem Isolatormaterial 6 umgeben. Durch diesen mehrfach konzentrischen Aufbau wird erzielt, daß zwischen den zwei elektrisch leitenden Mantelschichten wie in einem Koa­ xialwellenleiter Hochfrequenzenergie in einem durch die Geometrie und die verwendeten Materialien bestimmten Fre­ quenzbereich übertragen werden kann.In an expedient embodiment according to FIG. 1, the optical table 2 of an optical core optical waveguide 1 is provided with an electrically conductive coating 3 , which in turn is protected with a further dielectric coating 4 . In addition, this Dielek trikum 4 is in turn surrounded by another electrically conductive material 5 , which, depending on the radio frequency to be transmitted either from the prior art consists of a metallic mesh or in turn from an electrically conductive coating. This second electrically conductive jacket outside the first dielectric is in turn now surrounded with an insulator material 6 . This multiple concentric structure ensures that high-frequency energy can be transmitted between the two electrically conductive cladding layers as in a Koa xialwellenleiter in a frequency range determined by the geometry and the materials used.

In einem weiteren bevorzugten Ausführungsbeispiel gemäß Fig. 2 besteht der optische Wellenleiter aus einer sog. Quarz-Quarzfaser 7 handelsüblicher Abmessungen, die di­ rekt mit Gold 8 beschichtet ist und anschließend zur me­ chanischen Stabilität mit einem harten Polymer 9, wie beispielsweise Polyamid, beschichtet wird oder umgekehrt. Auf diese Beschichtung wiederum wird das für die Hochfre­ quenz- oder Radiofrequenzübertragung notwendige Dielek­ trikum 10, vorzugsweise Polyethylen, aufgebracht.In a further preferred exemplary embodiment according to FIG. 2, the optical waveguide consists of a so-called quartz-quartz fiber 7 of commercially available dimensions, which is directly coated with gold 8 and is subsequently coated with a hard polymer 9 , such as polyamide, for mechanical stability or the other way around. On this coating in turn the necessary for the Hochfre quenz- or radio frequency transmission Dielek trikum 10 , preferably polyethylene, is applied.

Dieses Dielektrikum wird nun seinerseits mit einem dünnen Metallgewebe 11 nach dem Stand der Technik ummantelt, das nach außen hin durch eine Isolationsschicht 12 geschützt wird. Typische Dimensionierungen sind hierbei etwa 600 µm Kerndurchmesser der Quarzfaser bei einem Außendurchmesser incl. Polyamid und Goldcoating von etwa 800 bis 900 µm, einer Dicke der Polyethylen-Ummantelung von etwa 500 µm und einer Dicke der äußeren Metallisierung incl. Isolati­ on von weiteren 250 µm. Damit ist der Durchmesser des ge­ samten Übertragungssystem etwa 2,1 mm entsprechend F 7, d. h. er entspricht den Standardmessungen medizinisch üb­ licher Katheter.This dielectric is in turn coated with a thin metal fabric 11 according to the prior art, which is protected on the outside by an insulation layer 12 . Typical dimensions are about 600 µm core diameter of the quartz fiber with an outer diameter including polyamide and gold coating of about 800 to 900 µm, a thickness of the polyethylene sheathing of about 500 µm and a thickness of the outer metallization including insulation of a further 250 µm. The diameter of the entire transmission system is therefore approximately 2.1 mm in accordance with F 7, ie it corresponds to the standard measurements of medically customary catheters.

Die Einkopplung der Hochfrequenz erfolgt vorzugsweise seitlich in das Übertragungssystem an einem Ort, der von der Einkopplung der Ultraschall- und Laserstrahlung die Viertelwellenbedingung der Hochfrequenz zwecks Reflexion am offenen Ende entfernt ist, so daß eine verlustfreie Einkopplung in Arbeitsrichtung gewährleistet ist.The high frequency is preferably coupled in laterally into the transmission system in a place that is by the coupling of the ultrasound and laser radiation Quarter wave condition of high frequency for reflection is removed at the open end so that a lossless Coupling in the working direction is guaranteed.

In einer in Fig. 3 gezeigten Weiterführung des Erfin­ dungsgedankens kann statt des Quarzglaswellenleiters mit festem Quarzglaskern auch eine innenverspiegelte Kapilla­ re 13 verwendet werden, die von ihren Materialeigenschaf­ ten entweder die Möglichkeit bietet, zur Wellenleitung das Prinzip der anomalen Dispersion nach dem Stand der Technik zu nutzen oder aber auf der Innenseite elektro­ chemisch spiegelnd beschichtet ist, beispielsweise mit Silber und Silberjodid. Im letzteren Falle kann bereits diese Metallisierung 14 als Kern für den erfindungsgemä­ ßen koaxialen Hochfrequenzwellenleiter genutzt werden. Im Falle der Ausnutzung der anomalen Dispersion, ist wei­ terhin zusätzlich außen auf der Kapillare eine Metalli­ sierung 15 anzubringen. Ein derartiges weiterführendes System ermöglicht grundsätzlich die Übertragung sowohl infraroten Laserlichtes durch die Hohlleiter als auch sichtbaren Laserlichtes durch die transparente Glaskapil­ lare sowie die Ultraschallübertragung durch die Glaska­ pillare und zusätzlich nach dem erfindungsgemäßen Prinzip die Übertragung von Hochfrequenzenergie durch den so ge­ bildeten koaxialen Wellenleiter.In a continuation of the inventive idea shown in FIG. 3, instead of the quartz glass waveguide with a solid quartz glass core, an internally mirrored capilla re 13 can also be used, which either offers the possibility of waveguiding the principle of anomalous dispersion according to the prior art for waveguiding use or is coated on the inside with electro-chemical reflective coating, for example with silver and silver iodide. In the latter case, this metallization 14 can already be used as a core for the coaxial high-frequency waveguide according to the invention. In the event that the anomalous dispersion is used, a metallization 15 must also be attached to the outside of the capillary. Such a further system fundamentally enables the transmission of both infrared laser light through the waveguide and visible laser light through the transparent glass capillary and the ultrasound transmission through the glass pillar and, in addition, according to the principle of the invention, the transmission of high-frequency energy through the so-formed coaxial waveguide.

In einer weiteren vorteilhaften Ausbildung des erfin­ dungsgemäßen Übertragungssystems wird, wie in Fig. 4 dar­ gestellt, zur Übertragung von CO2- und Er : YAG-Laser­ strahlung vorzugsweise eine Quarzglaskapillare 13 verwen­ det, die auf ihrer Innenseite elektrochemisch zunächst mit Silber 16 und sodann mit Silberjodid 17 verspiegelt ist, wie beispielsweise im US Patent 4 930 863 beschrie­ ben. Bei einer Dimensionierung des Innendurchmessers auf etwa 400 µm und einer Wandstärke der Glaskapillare von etwa 200 bis 250 µm wird diese innenverspiegelte Kapilla­ re zusätzlich außen mit einer Gold- oder Silberschicht 18 überzogen und sodann aus mechanischen Stabilitätsgründen mit einem Hartpolymer 19, wie Polyamid, geschützt. In diesem Falle wirkt das Material der Kapillare selbst als Dielektrikum für die Hochfrequenz. Damit wird eine weite­ re Verringerung des Außendurchmessers des Übertragungssy­ stems auf etwa 1 mm erreicht. Damit kann ein derartiges System zusätzlich mit einem konventionellen Hochfrequenz­ leiter in einem typischen F7-Katheter plaziert werden, so daß bipolare Hochfrequenzchirurgie grundsätzlich gleich­ zeitig mit Laser- und Ultraschallchirurgie möglich ist.In a further advantageous embodiment of the transmission system according to the invention, as shown in FIG. 4, for the transmission of CO 2 and Er: YAG laser radiation, a quartz glass capillary 13 is preferably used, which is electrochemically on the inside first with silver 16 and then is mirrored with silver iodide 17 , as described, for example, in US Pat. No. 4,930,863. With a dimensioning of the inner diameter to approximately 400 μm and a wall thickness of the glass capillary of approximately 200 to 250 μm, this internally mirrored capilla is additionally coated on the outside with a gold or silver layer 18 and then protected with a hard polymer 19 , such as polyamide, for mechanical stability reasons. In this case, the material of the capillary itself acts as a dielectric for the high frequency. A further reduction in the outer diameter of the transmission system to approximately 1 mm is thus achieved. Thus, such a system can also be placed with a conventional high-frequency conductor in a typical F7 catheter, so that bipolar high-frequency surgery is basically possible simultaneously with laser and ultrasound surgery.

Claims (6)

1. Flexibles Leistungsübertragungssystem für den medi­ zinischen Einsatz, mit einem optischen Wellenleiter (1 bis 6; 7 bis 12; 12 bis 15; 12 bis 18) zur Übertragung von Laserstrahlung und Ultraschall, dadurch gekennzeichnet, daß der Wellenleiter als Hochfrequenzwellenleiter zur gleichzeitigen Übertragung von Hochfrequenzleistung der­ art mehrfach koaxial aufgebaut ist, daß die Übertragung der Laserstrahlung in einer Seele (1, 2; 7) oder einem optischen Hohlleiter (13) in der optischen Achse erfolgt.1. Flexible power transmission system for medical use, with an optical waveguide ( 1 to 6 ; 7 to 12 ; 12 to 15 ; 12 to 18 ) for the transmission of laser radiation and ultrasound, characterized in that the waveguide as a high-frequency waveguide for the simultaneous transmission of High-frequency power of the type is constructed several times coaxially that the transmission of the laser radiation takes place in a core ( 1 , 2 ; 7 ) or an optical waveguide ( 13 ) in the optical axis. 2. Leistungsübertragungssystem nach Anspruch 1, da­ durch gekennzeichnet, daß die Seele des koaxialen Hoch­ frequenzleiters als faseroptisches Bauelement (1, 2; 7) vom Typ Kernmantelfaser bzw. Gradientenindexfaser ausge­ legt und in geeigneter Weise mit einem elektrisch leiten­ den Überzug (3; 8) versehen ist, der über ein Dielektri­ kum (4; 10) von einem äußeren, elektrisch leitenden und nach außen isolierten Mantel (5; 11) in geeignetem Ab­ stand gehalten wird.2. Power transmission system according to claim 1, characterized in that the core of the coaxial high-frequency conductor as a fiber optic component ( 1 , 2 ; 7 ) of the type core sheath fiber or gradient index fiber sets out and in a suitable manner with an electrically conductive coating ( 3 ; 8th ) is provided, which is held in a suitable position via a dielectric ( 4 ; 10 ) from an outer, electrically conductive and insulated jacket ( 5 ; 11 ). 3. Leistungsübertragungssystem nach Anspruch 1, da­ durch gekennzeichnet, daß als innerer Kern eine Glaska­ pillare (13) als Hohlleiter für optische Strahlung ver­ wendet wird, der seinerseits auf der äußeren Seite elek­ trisch leitend beschichtet und über ein Dielektrikum ge­ gen eine zweite äußere elektrisch leitende Schicht und weiter nach außen hin durch einen Polymer isoliert ist.3. Power transmission system according to claim 1, characterized in that a glass pillar ( 13 ) is used as a hollow conductor for optical radiation as the inner core, which in turn is coated electrically conductive on the outer side and has a second external electrical electrical via a dielectric conductive layer and further isolated from the outside by a polymer. 4. Leistungsübertragungssystem nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß der optische Hohlleiter (13) nach dem Prinzip der anomalen Dispersion ausgelegt ist. 4. Power transmission system according to claim 1 or 3, characterized in that the optical waveguide ( 13 ) is designed according to the principle of anomalous dispersion. 5. Leistungsübertragungssystem nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß der optische Hohlleiter innen durch elektrochemische Beschichtung verspiegelt ist und zur simultanen Übertragung von Infrarotlaserstrahlung im luftgefüllten Kern sowie zur Übertragung von Laserlicht im sichtbaren Spektralbereich durch den Glasmantel ge­ nutzt wird.5. Power transmission system according to claim 1 or 3, characterized in that the optical waveguide inside is mirrored by electrochemical coating and for the simultaneous transmission of infrared laser radiation in the air-filled core and for the transmission of laser light in the visible spectral range through the glass jacket is used. 6. Leistungsübertragungssystem nach Anspruch 5, da­ durch gekennzeichnet, daß der optische Hohlleiter zusätz­ lich außen elektrisch leitend beschichtet ist und seiner­ seits das Dielektrikum des koaxialen Hochfrequenzwellen­ leiters darstellt und außen eine elektrisch isolierende Stabilisierungsschicht aus einem Hartpolymer vorgesehen ist.6. Power transmission system according to claim 5, there characterized in that the optical waveguide additional Lich externally electrically coated and its on the one hand the dielectric of the coaxial high-frequency waves represents conductor and the outside an electrically insulating Stabilization layer provided from a hard polymer is.
DE4432666A 1994-09-14 1994-09-14 Transmission system for the combined transmission of laser radiation, high frequency and ultrasound Expired - Fee Related DE4432666C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4432666A DE4432666C2 (en) 1994-09-14 1994-09-14 Transmission system for the combined transmission of laser radiation, high frequency and ultrasound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4432666A DE4432666C2 (en) 1994-09-14 1994-09-14 Transmission system for the combined transmission of laser radiation, high frequency and ultrasound

Publications (2)

Publication Number Publication Date
DE4432666A1 DE4432666A1 (en) 1996-03-21
DE4432666C2 true DE4432666C2 (en) 1999-08-12

Family

ID=6528157

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4432666A Expired - Fee Related DE4432666C2 (en) 1994-09-14 1994-09-14 Transmission system for the combined transmission of laser radiation, high frequency and ultrasound

Country Status (1)

Country Link
DE (1) DE4432666C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239290B3 (en) * 2002-08-27 2004-04-08 Dornier Medtech Systems Gmbh Biosensor for biological or biochemical reaction, has an activating unit to transmit physical energy to sample-sensitive material to give sample identification reaction

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732503A1 (en) * 1997-07-29 1999-02-04 Alsthom Cge Alcatel HF signal transmission, radiation and reception device
DE102004003010A1 (en) * 2004-01-20 2005-08-04 Endress + Hauser Gmbh + Co. Kg Microwave conducting arrangement
GB2561167A (en) * 2017-03-30 2018-10-10 Creo Medical Ltd Electrosurgical energy conveying structure and electrosurgical device incorporating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721060A1 (en) * 1987-06-26 1989-01-05 Philips Patentverwaltung Communications line having an optical waveguide and at least one associated electrical conductor
US4930863A (en) * 1988-05-06 1990-06-05 Rauiot University Authority for Applied Research and Industrial Development Ltd. Hollow fiber waveguide and method of making same
DE4115447C2 (en) * 1991-05-11 1994-01-27 Schott Glaswerke Device for controlling the destruction of calculus
DE4322955A1 (en) * 1992-07-20 1994-01-27 Zeiss Carl Fa Invasive-endoscopic therapy instrument with duct for simultaneous transmission of ultrasound and laser radiation - has at least one wave conductor for transmission of sonic energy of proximal ultrasonic source and transmission of light energy from proximal laser radiation source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721060A1 (en) * 1987-06-26 1989-01-05 Philips Patentverwaltung Communications line having an optical waveguide and at least one associated electrical conductor
US4930863A (en) * 1988-05-06 1990-06-05 Rauiot University Authority for Applied Research and Industrial Development Ltd. Hollow fiber waveguide and method of making same
DE4115447C2 (en) * 1991-05-11 1994-01-27 Schott Glaswerke Device for controlling the destruction of calculus
DE4322955A1 (en) * 1992-07-20 1994-01-27 Zeiss Carl Fa Invasive-endoscopic therapy instrument with duct for simultaneous transmission of ultrasound and laser radiation - has at least one wave conductor for transmission of sonic energy of proximal ultrasonic source and transmission of light energy from proximal laser radiation source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZWICK, Ulrich: "Glas- und Quartzfaserkabel in optischen Übertragungssystemen", In: TAB 2/86, S. 117-122 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239290B3 (en) * 2002-08-27 2004-04-08 Dornier Medtech Systems Gmbh Biosensor for biological or biochemical reaction, has an activating unit to transmit physical energy to sample-sensitive material to give sample identification reaction

Also Published As

Publication number Publication date
DE4432666A1 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
EP0367267B1 (en) Scanning tip for electromagnetic radiation
EP1088378B1 (en) Housing arrangement for a laser module
DE4212816C2 (en) Connection system for coupling radiation energy
DE3822312C2 (en)
EP2004081B1 (en) Laser applicator
DE60037091T2 (en) Method for protecting a fiber optic unit against radiation
DE2836043A1 (en) SURGICAL INSTRUMENT
DE19546447C2 (en) Laser surgical applicator
EP0107840B1 (en) Process for making an optical connector, particularly a process to decrease the thickness of the quartz cladding of a glass optical fibre
DE4429022A1 (en) Coaxial high-frequency cable with optical fibres in inner conductor
DE4432666C2 (en) Transmission system for the combined transmission of laser radiation, high frequency and ultrasound
DE3829540C2 (en) Bent waveguide for an integrated optical circuit
DE69718707T2 (en) Light controlled thyristor
DE19911744C2 (en) Assembly for the pressure-tight separation of a first waveguide from a second waveguide and method for producing such an assembly
DE102005010557A1 (en) Optical Multiplexer / Demultiplexer
EP0308603A1 (en) Dynamic monomode laser emitter
EP3389133A1 (en) Dielectric waveguide cable
DE3134269A1 (en) CATHODE CARRIER FOR AN IMAGE AMPLIFIER TUBE
DE3721060A1 (en) Communications line having an optical waveguide and at least one associated electrical conductor
DE4429192A1 (en) Capillary-enclosed fibre applicator for infrared radiation therapy
EP0173930A2 (en) Optical multiplexer/demultiplexer
DE2536910B2 (en) Electro-optical (especially laser) distance measuring system with electrically heated window openings
EP0033474A2 (en) Coupling device between a diode emitting IR and a single glass-fibre used as a light wave guide
DE2927025C2 (en)
DE4311913A1 (en) Coaxial radio-frequency cable

Legal Events

Date Code Title Description
8181 Inventor (new situation)

Free format text: MUELLER, GERHARD, PROF. DR.-ING., 14129 BERLIN, DE TSCHEPE, JOHANNES, DR.-ING., 10781 BERLIN, DE

8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: LASER- UND MEDIZIN-TECHNOLOGIE GGMBH, 12207 BERLIN

8125 Change of the main classification

Ipc: H01B 11/22

8181 Inventor (new situation)

Free format text: MUELLER, GERHARD, PROF. DR.-ING., 14129 BERLIN, DE TSCHEPE, JOHANNES, DR.-ING., 10781 BERLIN, DE DESINGER, KAI, DIPL.-ING., 10827 BERLIN, DE

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee