DE4032569A1 - Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network - Google Patents
Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains networkInfo
- Publication number
- DE4032569A1 DE4032569A1 DE4032569A DE4032569A DE4032569A1 DE 4032569 A1 DE4032569 A1 DE 4032569A1 DE 4032569 A DE4032569 A DE 4032569A DE 4032569 A DE4032569 A DE 4032569A DE 4032569 A1 DE4032569 A1 DE 4032569A1
- Authority
- DE
- Germany
- Prior art keywords
- photovoltaic system
- modules
- control
- mains network
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 9
- 230000007935 neutral effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J5/00—Circuit arrangements for transfer of electric power between ac networks and dc networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/32—Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Die Erfindung betrifft eine netzgekoppelte Photovoltaik anlage, mit einem Solargenerator, welcher eine Vielzahl seriell oder parallel verschalteter Moduln umfaßt, mit wenigstens einem Wechselrichter zum Umwandeln der erzeug ten Gleichspannung in Wechselspannung und mit einer Ein richtung zum Anbinden an das Netz, welche einen Leistungsteil umfaßt.The invention relates to a grid-connected photovoltaic plant, with a solar generator, which a variety includes modules connected in series or in parallel, with at least one inverter to convert the generated ten DC voltage in AC voltage and with an ON direction to connect to the network, which one Power section includes.
Eine solche Anlage ist in dem Aufsatz "Photovoltaikanlage in Fellbach", Sonnenenergie 2/90, Seiten 16 ff. (1990), beschrieben. Der Solargenerator besteht dabei aus einer Vielzahl verschalteter Moduln, die zu sogenannten Strings seriell verschaltet sind, wobei durch die Anzahl der Moduln die Ausgangsspannung der Strings festgelegt ist. Je nach gewünschter Ausgangsleistung wird eine entspre chende Anzahl von Strings parallelgeschaltet. Die Umwand lung der durch den Solargenerator erzeugten Gleichstrom größen in netzkonforme elektrische Größen, also Wechsel ströme und Wechselspannungen, erfolgt mittels eines ge meinsamen Wechselrichters.Such a system is in the article "Photovoltaic system in Fellbach ", solar energy 2/90, pages 16 ff. (1990), described. The solar generator consists of one Large number of interconnected modules that form so-called strings are connected in series, whereby by the number of Modules the output voltage of the strings is fixed. Depending on the desired output power, a corresponding number of strings connected in parallel. The conversion the direct current generated by the solar generator sizes in line-compliant electrical sizes, i.e. change currents and alternating voltages, takes place by means of a ge common inverter.
Dazu müssen die Strings auf einer Gleichstromsammel schiene zusammengefaßt werden. Um die Ohm′schen Lei tungsverluste möglichst gering zu halten, ist ein vergleichsweise großer Querschnitt der Schiene notwendig. Eine derartige bekannte Anlage hat auch den Nachteil, daß das leistungsschwächste Modul innerhalb eines Strings den Stringstrom begrenzt. Dies führt wiederum zu einer Leistungsschwächung der Gesamtanlage. Eine solche Leistungsschwächung kann beispielsweise bei Teilabschat tung des Solargenerators auftreten, wenn also nicht die gesamte Generatorfläche ausgeleuchtet ist. Weiterhin gestaltet es sich schwierig, die Funktionsfähigkeit der einzelnen Moduln individuell zu überwachen. Dazu wird auf die DE-GM 88 15 963 verwiesen, aus der bekannt ist, eine Shuntdiode, die zur Überbrückung eines defekten Moduls dient, auch dazu zu verwenden, eine lichtemittierende Diode oder ein Drehspulgerät anzusteuern, um so die Mög lichkeit zu haben, die Position eines defekten Moduls im Solargenerator optisch festzustellen. Hier wird der große Schaltungsaufwand deutlich, der zur Lösung dieses Einzel problems notwendig ist.To do this, the strings must be on a DC collector rail can be summarized. To the Ohm's lei Keeping losses as low as possible is one comparatively large cross-section of the rail necessary. Such a known system also has the disadvantage that the weakest performing module within a string String current limited. This in turn leads to one Performance deterioration of the entire system. Such Performance degradation can occur, for example, with partial discounts tion of the solar generator occur, if not entire generator area is illuminated. Farther it is difficult to ensure the functionality of the to monitor individual modules individually. This is done on referred to DE-GM 88 15 963, from which it is known a Shunt diode used to bridge a defective module also serves to use a light emitting To control diode or a moving coil device, so that the poss to have the position of a defective module in the Determine the solar generator optically. Here's the big one Circuit effort clearly, the solution to this single problems is necessary.
Es ist weiterhin aus der DE-OS 36 11 545 bekannt, bei einem Modul, das von einem Rahmen aus Hohlprofilen umgeben ist, in einem solchen Hohlraum ein elektrisches Regelgerät anzuordnen, das Steuer-, Regel- und/oder Wandelfunktion hat. Ein solches Regelgerät muß in seinen Abmessungen optimal an den Hohlraum des Profiles angepaßt werden, damit das so ausgestattete Modul an ein anderes angelegt werden kann. Damit ist ein solches Modul wenig variabel und somit zur Serienfertigung ungeeignet.It is also known from DE-OS 36 11 545, at a module made by a frame made of hollow profiles is surrounded in such a cavity an electrical Arrange control device, the control, regulation and / or Change function. Such a control device must be in its Dimensions optimally adapted to the cavity of the profile so that the module is equipped with another can be created. Such a module is therefore little variable and therefore unsuitable for series production.
Es ist die Aufgabe der vorliegenden Erfindung, eine Photovoltaikanlage zu schaffen, die auch in Kleinserien kostengünstig herstellbar ist und bei der der Ausfall einzelner Moduln den Wirkungsgrad der gesamten Anlage kaum oder gar nicht beeinträchtigt.It is the object of the present invention, a To create photovoltaic system, even in small series is inexpensive to manufacture and in which the failure individual modules the efficiency of the entire system little or no impairment.
Diese Aufgabe wird von einer netzgekoppelten Photovoltaikanlage der eingangs genannten Gattung mit den Merkmalen des Kennzeichens von Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.This task is done by a grid-connected Photovoltaic system of the type mentioned at the beginning the features of the characterizing part of patent claim 1 solved. Advantageous refinements are the subject of Subclaims.
Erfindungsgemäß weist jedes der Moduln einen integrierten Wechselrichter auf, außerdem ist - insbesondere bei größeren Anlagen - ggf. die Einrichtung zum Anbinden an das Netz eine Zentraleinheit, die zur Steuerung und/oder Überwachung der Gesamtanlage geeignet ist. Der Wech selrichter übernimmt üblicherweise auch das Einstellen des maximalen Leistungspunktes, was aufgrund der nicht linearen U/I-Kennlinie von Photovoltaikanlagen notwendig ist. Bei der Anlage gemäß der vorliegenden Erfindung kann nunmehr jedes Modul in seinem optimalen Arbeitspunkt betrieben werden. Hierdurch wirken sich Teilabschattungs effekte nur auf die betroffenen Moduln aus und beein trächtigen den Wirkungsgrad der gesamten Anlage nur wenig. Die Zentraleinheit übernimmt dann die Steuerung und/oder Überwachung unter Berücksichtigung von Parametern, die beispielsweise durch Auflagen der Energieversorgungsunternehmen in den Prozeß einfließen müssen, wie etwa Maßnahmen für den Netzschutz oder dergleichen.According to the invention, each of the modules has an integrated one Inverters, moreover, is - especially at larger systems - if necessary, the facility for connecting to the network is a central unit that is used for control and / or Monitoring the entire system is suitable. The change The judge usually also takes care of the setting of the maximum credit point, which is not due to the linear U / I characteristic curve of photovoltaic systems necessary is. In the plant according to the present invention can now every module in its optimal working point operate. This affects partial shading effects only on the affected modules only affect the efficiency of the entire system little. The central unit then takes over control and / or monitoring taking into account Parameters, for example, by the requirements of Energy supply companies flow into the process such as measures for network protection or the like.
Bevorzugt sind die Moduln über die zu deren Steuerung zu erfassenden Meßdaten auch überwachbar. Um die Wechsel richtersteuerung für jedes Modul durchführen zu können, müssen Meßdaten auf der Gleichstromseite und auf der Wechselstromseite erfaßt werden. Es bedeutet daher kaum zusätzlichen Aufwand, diese Information zu verwenden, um einen Ausfall eines Moduls festzustellen.The modules are preferably closed to control them measurement data can also be monitored. About the bills to be able to perform judge control for each module, measurement data on the DC side and on the AC side are detected. So it hardly means additional effort to use this information to detect a module failure.
Es kann dazu ein gemeinsamer Datenbus die Daten einer Vielzahl von Moduln der Zentraleinheit zuführen.For this purpose, a common data bus can transfer the data of one Feed a large number of modules to the central unit.
Nach einer bevorzugten Ausführungsform weist die Zentral einheit zur Steuerung und/oder Überwachung der Gesamtheit der Moduln ein Steuerteil auf. Dieses Steuerteil kann nicht nur funktionell, sondern auch räumlich vom Lei stungsteil getrennt sein. Dies ist vorteilhaft im Sinne einer möglichst weitgehenden Standardisierbarkeit. Die einzelnen Komponenten der Zentraleinheit können dabei so konzipiert sein, daß der Einbau in Systemschränke möglich ist. Dadurch kann der Verkabelungsaufwand zur Netzanbin dung beträchtlich gesenkt werden. Ohne zusätzlichen Gehäuseaufwand kann dann die Zentraleinheit mit in die bereits vorhandene Hausinstallation eingebunden werden.According to a preferred embodiment, the central unit for controlling and / or monitoring the whole of the modules on a control part. This control section can not only functionally, but also spatially from Lei be separated. This is advantageous in the sense the greatest possible standardizability. The individual components of the central processing unit can do so be designed so that installation in system cabinets is possible is. This can reduce the cabling effort to the network connection can be reduced considerably. Without additional The CPU can then be used in the housing existing house installation can be integrated.
Besonders bevorzugt ist es, wenn in der Zentraleinheit Leistungsteil und Steuerteil unabhängig voneinander modu laraufbaubar sind. Dies erlaubt insbesondere eine indivi duelle Anpassung des Leistungsteils an die Generatorlei stung, während der Steuerteil unabhängig davon aufgebaut werden kann.It is particularly preferred if in the central unit Power section and control section modu are buildable. This allows in particular an individual duel adjustment of the power section to the generator line stung, while the control section is built independently can be.
Mit der erfindungsgemäßen Anlage wird erreicht, daß der üblicherweise erforderliche Verdrahtungsaufwand erheblich verringert wird. Beispielsweise entfällt auch die aufwen dige Gleichstromsammelschiene. Die Möglichkeit zur Modul überwachung wird bei der erfindungsgemäßen Anlage sozusa gen mitgeliefert. Darüber hinaus würde auch der Ausfall eines oder mehrerer Moduln nicht die verheerenden Konse quenzen wie bei einer konventionellen Anlage haben und den Gesamtwirkungsgrad der Anlage nur unwesentlich beein trächtigen.With the system according to the invention it is achieved that the Usually required wiring effort considerably is reduced. For example, the expense is also eliminated dige DC busbar. The possibility of module Monitoring is practically in the system according to the invention included. In addition, the failure would also occur one or more modules not the devastating cones sequences like in a conventional system and affect the overall efficiency of the system only marginally pregnant.
Im folgenden soll die Erfindung anhand der Zeichnung lediglich beispielhaft dargestellt werden. Es zeigt:In the following the invention with reference to the drawing are only shown as examples. It shows:
Fig. 1 eine schematische Darstellung der erfindungsgemäßen netzgekoppelten Photovoltaikanlage, Fig. 1 is a schematic representation of the grid-connected photovoltaic plant according to the invention,
Fig. 2 ein Funktionsschaltbild eines photovoltai schen Moduls mit integriertem Wechselrichter, Fig. 2 is a functional diagram of a photovoltai's modulus inverter-integrated,
Fig. 3 ein Blockschaltbild der Zentraleinheit, Fig. 3 is a block diagram of the central unit,
Fig. 4 eine Darstellung des mechanischen Aufbaus des Moduls mit integriertem Wechselrichter, Fig. 4 is an illustration of the mechanical structure of the module with integrated inverter,
Fig. 5 eine schematische Darstellung des Aufbaus der Verbindungselemente des Wechselrichters, Fig. 5 is a schematic representation of the structure of the connecting elements of the inverter,
Fig. 6 eine schematische Ansicht im Längsschnitt des Wechselrichters, Fig. 6 is a schematic view in longitudinal section of the inverter,
Fig. 7 eine schematische Darstellung des Leistungs teiles der Zentraleinheit, und Fig. 7 is a schematic representation of the power part of the central unit, and
Fig. 8 eine Außenansicht des Steuerteils der Zen traleinheit. Fig. 8 is an external view of the control part of the Zen traleinheit.
Fig. 1 zeigt eine schematische Gesamtansicht der erfin dungsgemäßen Photovoltaik-Anlage. Eine Vielzahl von Moduln 1, 1′, 1′′ sind zu Strings L1-S, L2-S und L3-S zusammengefaßt. Jedes der Moduln 1, 1′, 1′′ ist mit einem eigenen Wechselrichter 2, 2′, 2′′ versehen und über diesen direkt mit dem Netz 4 verbunden. Jedes Modul 1, 1′, 1′′ stellt somit eine eigenständige netzgekoppelte Einheit dar. Die Strings können beispielsweise die drei Phasen eines Niederspannungs-Drehstromsystems bilden. Jeder String bildet somit eine eigenständige Einheit und wird mit einer Betriebsspannung von je 220 Volt betrieben. Über die Strings L1-S, L2-S, L3-S sind die Moduln mit der Zentraleinheit 3 verbunden. Diese Zentraleinheit 3 stellt das Bindeglied zum Netz 4 dar. Sie hat weiterhin ggf. Überwachungsfunktion für die dezentralisierten Wechselrichter 2, 2′, 2′′. Dazu ist dann ggf. ein Datenbus 5 vorgesehen, über den jedes der Moduln mit der Zentraleinheit kommunizieren kann. Über den Datenbus 5 erhält die Zentraleinheit 3 Informationen, die es ihr ermöglichen, die Funktionsfähigkeit der Moduln 1, 1′, 1′′ zu überwachen. Dabei werden nicht nur Leistungskenndaten überprüft, sondern auch mögliche Moduldefekte können lokalisiert werden, so daß sich anfallende Wartungsarbeiten zielgerichtet und genau durchführen lassen. Die Strings L1-S, L2-S und L3-S werden hinter der Zentraleinheit 3 als Phasenleiter L1, L2, L3 weitergeführt, während ein gemeinsamer Nulleiter N vorgesehen ist, die dann jeweils an das Netz 4 ange koppelt werden. Fig. 1 shows an overall schematic view of the photovoltaic system according to the invention. A variety of modules 1 , 1 ', 1 ''are combined into strings L 1 -S, L 2 -S and L 3 -S. Each of the modules 1 , 1 ', 1 ''is provided with its own inverter 2 , 2 ', 2 '' and connected directly to the grid 4 via this. Each module 1 , 1 ', 1 ''thus represents an independent, grid-connected unit. The strings can, for example, form the three phases of a low-voltage three-phase system. Each string thus forms an independent unit and is operated with an operating voltage of 220 volts each. The modules are connected to the central unit 3 via the strings L 1 -S, L 2 -S, L 3 -S. This central unit 3 represents the link to the network 4. It may also have a monitoring function for the decentralized inverters 2 , 2 ', 2 ''. A data bus 5 is then optionally provided for this purpose, via which each of the modules can communicate with the central unit. Via the data bus 5 , the central unit 3 receives information that enables it to monitor the functionality of the modules 1 , 1 ', 1 ''. Not only are performance characteristics checked, but also possible module defects can be localized so that maintenance work can be carried out in a targeted and precise manner. The strings L 1 -S, L 2 -S and L 3 -S are continued behind the central unit 3 as phase conductors L 1 , L 2 , L 3 , while a common neutral conductor N is provided, which is then coupled to the network 4 will.
Fig. 2 zeigt das Funktionsschaltbild eines Moduls 1 mit integriertem Wechselrichter 2. Auf schaltungstechnisch übliche Weise ist die Gleichstromseite DC des Wechsel richters 2 an den photovoltaischen Ausgang des Moduls 1 gelegt. Von dieser Gleichstromseite wird über die Meß leitung 12 Information abgenommen und einer Steuereinheit 11 zugeführt. Der Wechselrichter 2 konvertiert die Gleichstromgrößen dann in Wechselstromgrößen, die von der Wechselstromseite AC abgenommen werden. Eine Meßleitung 13 führt wiederum Information von der Wechselstromseite auf die Steuereinheit 11. Die Steuereinheit 11 wiederum bereitet die Information zum Ansteuern des Leistungs teiles 10 des Wechselrichters 2 auf. Der Wechselrichter 2 wird so betrieben, daß er an seinem MPP-Punkt (Maximum Power Point), also an dem optimalen Arbeitspunkt des Moduls betrieben wird. Weiterhin gibt die Steuereinheit 11 Signale an den Datenbus 5, der diese Daten der Zentraleinheit zum Überprüfen der Funktionsfähigkeit des Moduls 1 zuführt. Ein solcher Wechselrichter unter scheidet sich grundsätzlich nicht von solchen, die in Anlagen nach dem Stand der Technik verwendet werden. Ein Vorteil ergibt sich aber aus der relativ geringen Über tragungsleistung, die je nach Modul zwischen 50 W und 150 W betragen kann. Aufgrund der geringen Übertragungs leistung ist ein platzsparender Leiterplattengesamtaufbau möglich. Fig. 2 shows the functional diagram of a module 1 with integrated inverter 2. In a circuit-wise manner, the DC side DC of the inverter 2 is placed on the photovoltaic output of the module 1 . From this DC side 12 information is taken via the measuring line and fed to a control unit 11 . The inverter 2 then converts the direct current quantities into alternating current quantities which are taken from the AC side AC. A measuring line 13 in turn carries information from the AC side to the control unit 11 . The control unit 11 in turn prepares the information for controlling the power part 10 of the inverter 2 . The inverter 2 is operated such that it is operated at its MPP point (maximum power point), that is to say at the optimal operating point of the module. Furthermore, the control unit 11 sends signals to the data bus 5 , which feeds this data to the central unit for checking the functionality of the module 1 . Such an inverter is fundamentally no different from those used in state-of-the-art systems. An advantage results from the relatively low transmission power, which can be between 50 W and 150 W depending on the module. Due to the low transmission power, a space-saving overall PCB construction is possible.
In der Gesamtanlage müssen relativ viele Wechselrichter elektrisch nahe parallelgeschaltet werden. Dies erfordert ein neues Steuerungskonzept, das die Blind- und Wirkungs steuerung sowie das MPP-Tracking, also das Hinführen zum optimalen Arbeitspunkt, beinhaltet. Zur Steuerung kann beispielsweise eine Parametersteuerung eingesetzt werden, die auch schon in anderen Bereichen mit großem Erfolg eingesetzt worden ist. Mit heute verfügbaren leistungs starken Microcontrollern kann die Steuerung realisiert werden.A relatively large number of inverters are required in the overall system electrically close in parallel. This requires a new control concept, the blind and effective control as well as MPP tracking, i.e. leading to optimal working point. Can be used to control for example, parameter control can be used, which are already very successful in other areas has been used. With power available today strong microcontrollers can implement the control will.
Fig. 3 zeigt das Funktionsschema der Zentraleinheit, die sich aus Leistungsteil 31 und Steuerteil 32 zusammen setzt. Der Leistungsteil umfaßt die Zuleitungen für die Strings L1-S, L2-S und L3-S, deren Nulleiter gemeinsam zu dem ausgehenden Nulleiter N zusammengefaßt werden. Über Leistungsschützer 51 können die Phasenleiter L1, L2, L3 aktiviert werden. Jeder der Phasenleiter L1, L2, L3 und der Nulleiter N liefern Information an einen Meßwandler 52, der diese Information dann an den Steuerteil weiter führt. Der Leistungsteil kann weiterhin Vorsicherungen umfassen und läßt sich auf konventionelle Weise aufbauen. Der Steuerteil 32 besteht aus fünf Funktionsblöcken, nämlich dem Funktionsblock 57 für die Meßwerterfassung, dem Buskoppler 54, dem Steuerblock 58 für den Netzschutz, dem Steuer- und Überwachungsblock 55 und der Anzeige 59. Der Funktionsblock 57 dient der Auskopplung der relevanten Meßgrößen. Dabei wird vom vorgeschalteten Meßwandler 52 einerseits die galvanische Trennung und andererseits die Pegelanpassung vorgenommen. Der Bus koppler 54 koordiniert die Datenübertragung vom und auf den Datenbus 5. Der Aufbau des Datenbus 5 richtet sich nach der Anzahl der verwendeten Moduln und nach deren strukturellem Aufbau bzw. deren Anordnung in Strings. Es können dabei bekannte Techniken angewendet werden, wobei aber sicherzustellen ist, daß eine Lokalisierung eines jeweils angesprochenen Moduls über den Datenbus 5 immer möglich ist. Der Steuerblock 58 enthält vorgebbare, gespeicherte Parameter, die den entsprechenden Vor schriften des jeweiligen Energieversorgungsunternehmens Rechnung tragen. Er übernimmt die netzseitige Überwachung der Anlage sowie gegebenenfalls das Abschalten. Im zentralen Steuer- und Überwachungsblock 55 sind die entsprechenden Funktionen für den Netzschutz und für die Modulüberwachungen programmiert und abgelegt. Relevante Anlagegrößen, beispielsweise Störmeldungen, können über die Anzeige 59, die vom Block 55 angesteuert wird, ausgegeben werden. Fig. 3 shows the functional diagram of the central unit, which is composed of the power section 31 and control section 32 . The power section includes the leads for the strings L 1 -S, L 2 -S and L 3 -S, the neutral of which are combined together to form the outgoing neutral N. The phase conductors L 1 , L 2 , L 3 can be activated via power contactors 51 . Each of the phase conductors L 1 , L 2 , L 3 and the neutral conductor N supply information to a transducer 52 , which then passes this information on to the control part. The power section can also include backup fuses and can be set up in a conventional manner. The control part 32 consists of five function blocks, namely the function block 57 for the measured value acquisition, the bus coupler 54 , the control block 58 for the network protection, the control and monitoring block 55 and the display 59 . Function block 57 is used to decouple the relevant measured variables. In this case, the upstream transducer 52, on the one hand, performs the electrical isolation and, on the other hand, the level adjustment. The bus coupler 54 coordinates the data transmission from and to the data bus 5 . The structure of the data bus 5 depends on the number of modules used and on their structural structure or their arrangement in strings. Known techniques can be used, but it must be ensured that a localization of a module in question is always possible via the data bus 5 . The control block 58 contains predeterminable, stored parameters which take into account the corresponding regulations of the respective energy supply company. It takes over the network-side monitoring of the system and, if necessary, the shutdown. The corresponding functions for the network protection and for the module monitoring are programmed and stored in the central control and monitoring block 55 . Relevant plant sizes, for example fault messages, can be output via the display 59 , which is controlled by the block 55 .
Fig. 4 zeigt ein Modul 1 mit integriertem Wechselrichter, dessen Gehäuse 20 auf der Rückseite des Moduls angebracht ist. In dem Gehäuse 20 integriert befinden sich die Ver bindungselemente für den Datenbus und für die Netzanbin dung, wobei eine Unterteilung nach Daten und Netz vorge nommen ist. Für jede der Funktionsgruppen "Daten- und "Netz" ist jeweils ein Eingang E und ein Ausgang A vorge sehen. FIG. 4 shows a module 1 with an integrated inverter, the housing 20 of which is attached to the rear of the module. Integrated in the housing 20 are the connecting elements for the data bus and for the network connection, a subdivision being made according to data and network. For each of the function groups "data and" network ", an input E and an output A are provided.
Fig. 5 zeigt den Aufbau der Verbinder 26. Die Verbinder 26 weisen Stecker 28 auf, die jeweils unterschiedlich ausgebildet sind, so daß ein Vertauschen nicht möglich ist. Jeder Verbinder 26 ist mit einem Gewinde 29 sowie einer Dichtung 30 versehen. Die Verschaltung der Moduln erfolgt über vorkonfektionierte Leitungen, deren Ende mit entsprechenden Kupplungen oder Steckern versehen sind. Fig. 5 shows the construction of the connector 26. The connectors 26 have plugs 28 , which are each designed differently, so that an interchange is not possible. Each connector 26 is provided with a thread 29 and a seal 30 . The modules are interconnected via pre-assembled cables, the ends of which are provided with appropriate connectors or plugs.
Der Aufbau des Wechselrichters 2 mit zugehöriger Steuer elektronik 23 kann aufgrund der geringen Übertragungslei stung zusammen auf einer Leiterplatte erfolgen. Die Längsschnittansicht aus Fig. 6 zeigt ein Gehäuse 20, in dem auf Abstandhaltern 21 eine Leiterplatte 22 ruht. Diese Leiterplatte 22 trägt die erforderlichen Elektronikkomponenten 23. Zur Leiterplatte sind Anschlüsse 27 geführt, die mit dem Stecker 28 verbunden sind. Der Stecker 28 mündet in dem Verbinder 26 an einer Außenwand des Gehäuses 20. Das Gehäuse 20 ist mit einer Abdeckkappe 24 verschließbar, wobei eine umlaufende Dichtung 25 vorgesehen ist, die das Eindringen von Schmutz und dergleichen verhindert.The structure of the inverter 2 with associated control electronics 23 can be performed together on a circuit board due to the low transmission power. The longitudinal sectional view from FIG. 6 shows a housing 20 in which a printed circuit board 22 rests on spacers 21 . This printed circuit board 22 carries the required electronic components 23 . Connections 27 are connected to the printed circuit board and are connected to the plug 28 . The plug 28 opens into the connector 26 on an outer wall of the housing 20 . The housing 20 can be closed with a cover cap 24 , a circumferential seal 25 being provided, which prevents the ingress of dirt and the like.
Fig. 7 zeigt den Aufbau des Leistungsteils 31 der Zentraleinheit. Der Leistungsteil besteht aus Meß wandlern, dem Leistungsschütz und Sicherungen 35. Die Sicherungen 35 sind auf einer Klemmschiene 34 angeordnet. Ein Gehäuse nimmt das Schütz und die Meßwandler auf. An geeigneter Stelle erfolgt die Zuführung der Phasenleiter bzw. der Strings. Die äußeren Abmessungen des Leistungsteils 31 sind so gewählt, daß ein Einbau in Systemschränke, wie sie üblicherweise in Haus installationen eingesetzt werden, möglich ist. Die Verbindung zum Steuerteil 32 wird über externe Meß- und Steuerleitungen 33 vorgenommen. Fig. 7 shows the structure of the power unit 31 of the central unit. The power section consists of transducers, the power contactor and fuses 35th The fuses 35 are arranged on a clamping rail 34 . A housing houses the contactor and the transducers. The phase conductors or strings are fed in at a suitable point. The outer dimensions of the power section 31 are chosen so that installation in system cabinets, as are usually used in house installations, is possible. The connection to the control part 32 is made via external measuring and control lines 33 .
Fig. 8 zeigt eine Außenansicht des mechanischen Aufbaus des Steuerteiles. Die Netzschutzparameter sind gesondert eingebbar bzw. einstellbar, wobei der zugehörige Funk tionsblock mit einer Abdeckung 60 versehen werden kann. Eine Plombe 61 schützt vor unberechtigtem Zugang. Mit dem Tastenfeld 62 kann der Anlagenzustand abgefragt werden, die Anzeige 59 visualisiert auftretende Störungen oder aktuelle Anlagendaten. Fig. 8 shows an external view of the mechanical structure of the control part. The network protection parameters can be entered or set separately, and the associated function block can be provided with a cover 60 . A seal 61 protects against unauthorized access. The system status can be queried using the keypad 62 , the display 59 visualizes occurring faults or current system data.
Durch die Trennung von Leistungsteil und Steuerteil ist ein modularer Anlagenaufbau möglich. Es können dabei mehrere Leistungsteile mit einer Steuereinheit kombiniert werden. Damit lassen sich Anlagen auf einfache Weise erweitern, auch Anlagen größerer Leistung können mit einem bereits vorhandenen Steuerteil betrieben werden.By separating the power section and the control section a modular system structure possible. You can do it several power units combined with one control unit will. This makes it easy to create systems expand, even systems with higher performance can an existing control unit can be operated.
Die in der vorstehenden Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.The in the above description, in the drawing as well as features of the disclosed in the claims Invention can be used individually as well as in any Combination for realizing the invention in their different embodiments may be essential.
BezugszeichenlisteReference symbol list
1 Modul
2 Wechselrichter
3 Zentraleinheit
4 Netz
5 Datenbus
10 Leistungsteil des Wechselrichters
11 Steuereinheit
12 Meßleitung Gleichstromseite
13 Meßleitung Wechselstromseite
20 Gehäuse
21 Abstandhalter
22 Leiterplatte
23 Elektronikkomponenten
24 Abdeckkappe
25 Dichtung
26 Verbinder
27 Anschlußleitungen
28 Stecker
29 Gewinde
30 Dichtung
31 Leistungsteil
32 Steuerteil
33 Meß- und Steuerleitung
34 Klemmschiene
35 Sicherung
51 Leistungsschutz
52 Meßwandler
54 Buskoppler
55 Steuer- und Überwachungsblock
57 Funktionsblock für die Meßwerterfassung
58 Steuerblock für den Netzschutz
59 Anzeige
60 Abdeckung
61 Plombe
62 Tastenfeld
L1-S Phasenstring
L2-S Phasenstring
L3-S Phasenstring
L1 Phasenleiter
L2 Phasenleiter
L3 Phasenleiter
N Nulleiter 1 module
2 inverters
3 central unit
4 network
5 data bus
10 power section of the inverter
11 control unit
12 DC line test lead
13 AC line test lead
20 housing
21 spacers
22 printed circuit board
23 electronic components
24 cover cap
25 seal
26 connectors
27 connecting cables
28 plugs
29 threads
30 seal
31 power section
32 control section
33 Measuring and control line
34 clamping rail
35 fuse
51 Performance protection
52 transducers
54 bus couplers
55 Control and monitoring block
57 Function block for data acquisition
58 Control block for network protection
59 display
60 cover
61 seal
62 keypad
L 1 -S phase string
L 2 -S phase string
L 3 -S phase string
L 1 phase conductor
L 2 phase conductor
L 3 phase conductor
N neutral
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4032569A DE4032569A1 (en) | 1990-10-13 | 1990-10-13 | Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network |
CH2885/91A CH683216A5 (en) | 1990-10-13 | 1991-09-30 | Grid-connected photovoltaic system. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4032569A DE4032569A1 (en) | 1990-10-13 | 1990-10-13 | Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network |
Publications (2)
Publication Number | Publication Date |
---|---|
DE4032569A1 true DE4032569A1 (en) | 1992-04-16 |
DE4032569C2 DE4032569C2 (en) | 1993-01-14 |
Family
ID=6416243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4032569A Granted DE4032569A1 (en) | 1990-10-13 | 1990-10-13 | Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH683216A5 (en) |
DE (1) | DE4032569A1 (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0677749A2 (en) * | 1994-04-13 | 1995-10-18 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and power generating system using the same |
DE4419467A1 (en) * | 1994-06-04 | 1995-12-07 | Bernd Jonatat | Modular power supply for electrical equipment |
DE4433428A1 (en) * | 1994-09-20 | 1996-03-21 | Inst Luft Kaeltetech Gem Gmbh | Power supply for room air-conditioning plant |
US5669987A (en) * | 1994-04-13 | 1997-09-23 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same |
DE19718046A1 (en) * | 1997-04-29 | 1998-11-12 | Sun Power Solartechnik Gmbh | Contactless current transfer from photovoltaic solar module to busbar |
EP1227599A2 (en) * | 2000-12-20 | 2002-07-31 | Ascom Energy Systems AG | Method for data transmission over AC power line network |
DE10136147A1 (en) * | 2001-07-25 | 2003-02-20 | Hendrik Kolm | Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module |
DE10222621A1 (en) * | 2002-05-17 | 2003-11-27 | Josef Steger | Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation |
WO2004006342A1 (en) * | 2002-07-09 | 2004-01-15 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
EP1398687A2 (en) * | 2002-09-13 | 2004-03-17 | Solarnet GmbH | Method for monitoring the operation of a photovoltaic system |
DE10323982A1 (en) * | 2003-05-27 | 2004-12-30 | Institut für Luft- und Kältetechnik gGmbH | Inverter e.g. for solar modules, is releasably mounted on rear-surface of solar module and housing and ground-plate have spacer-retainer forming air-gap |
GR1004977B (en) * | 2004-05-07 | 2005-09-09 | Γεωργιος Σεργιαδης | Shaping of a pprofile, frame or other structural element for the support of structural glazings with photovoltaic elementss or for the support of other active and passive elements, suitable to incorporate and connect electrical or electronic sub-units. |
US7443052B2 (en) | 2004-01-09 | 2008-10-28 | Koninklijke Philips Electronics N.V. | DC/DC converter and decentralized power generation system comprising a DC/DC converter |
WO2009065158A1 (en) | 2007-11-22 | 2009-05-28 | Fronius International Gmbh | Method for detecting the actuation of a control element of a control front of an inverter and control front for an inverter |
DE102008003272A1 (en) * | 2008-01-05 | 2009-07-09 | Hans-Hermann Hunfeld | Monitoring unit for photovoltaic modules |
US7612283B2 (en) | 2002-07-09 | 2009-11-03 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
EP2159895A2 (en) | 2008-08-26 | 2010-03-03 | Betronic Solutions B.V. | Electrically parallel connection of photovoltaic modules in a string to provide a DC voltage to a DC voltage bus |
EP2291907A2 (en) * | 2008-05-14 | 2011-03-09 | National Semiconductor Corporation | Method and system for providing local converters to provide maximum power point tracking in an energy generating system |
ITRM20100026A1 (en) * | 2010-01-27 | 2011-07-28 | Aepi Costruzioni Elettromeccaniche S R L | SIGNAL TRANSMISSION SYSTEM IN AN ENERGY PRODUCTION PLANT AND ITS RELATIVE TRANSMISSION METHOD. |
WO2011051943A3 (en) * | 2009-10-29 | 2011-10-13 | Watts & More Ltd. | Energy collection system and method |
EP2395556A1 (en) * | 2010-06-08 | 2011-12-14 | Yamaichi Electronics Deutschland GmbH | Connection socket, solar panel and method for generating a three phase current |
CN102282444A (en) * | 2009-01-16 | 2011-12-14 | 菲尼克斯电气公司 | Photovoltaic system having module monitoring |
US8362739B2 (en) | 2009-11-26 | 2013-01-29 | Carlo Gavazzi Services Ag | Control apparatus for photovoltaic modules |
US8432143B2 (en) | 2010-02-16 | 2013-04-30 | Femtogrid Energy Solutions B.V. | Electrically parallel connection of photovoltaic modules in a string to provide a DC voltage to a DC voltage bus |
US8581441B2 (en) | 2007-05-17 | 2013-11-12 | Enphase Energy, Inc. | Distributed inverter and intelligent gateway |
US8669675B2 (en) | 2003-05-28 | 2014-03-11 | Beacon Power, Llc | Power converter for a solar panel |
WO2014144354A3 (en) * | 2013-03-15 | 2014-11-06 | Christopher Estes | Integrated solar panel |
EP2208236A4 (en) * | 2007-10-15 | 2015-05-06 | Ampt Llc | High efficiency remotely controllable solar energy system |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
EP2092625B1 (en) | 2006-12-06 | 2016-02-17 | Solaredge Technologies | Current bypass for distributed power harvesting systems using dc power sources |
US9270141B2 (en) | 2010-05-04 | 2016-02-23 | Adensis Gmbh | Photovoltaic system with selective MPP mismatch |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9444397B2 (en) | 2012-10-26 | 2016-09-13 | Sunculture Solar, Inc. | Integrated solar panel |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9601986B2 (en) | 2011-09-05 | 2017-03-21 | Dehn + Söhne Gmbh + Co. Kg | Method and arrangement for the surge protection of inverters for photovoltaic systems |
EP3090483A4 (en) * | 2013-12-31 | 2017-03-22 | Marco A. Marroquin | Alternating current photovoltaic module |
US9620993B2 (en) | 2012-10-26 | 2017-04-11 | Solpad, Inc. | Auto-synchronous isolated inlet power converter |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
EP3252909A1 (en) * | 2016-05-25 | 2017-12-06 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9948139B2 (en) | 2012-10-26 | 2018-04-17 | Solpad, Inc. | Solar power generation, distribution, and communication system |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US10008979B2 (en) | 2013-11-27 | 2018-06-26 | Sunpower Corporation | Integration of microinverter with photovoltaic module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
IT202000020008A1 (en) * | 2020-08-11 | 2022-02-11 | Free Energy Tech S R L | MODULAR SYSTEM FOR THE COLLECTION, STORAGE AND USE OF SOLAR ENERGY AND MODULE FOR THE CREATION OF SUCH SYSTEM |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11967653B2 (en) | 2013-03-15 | 2024-04-23 | Ampt, Llc | Phased solar power supply system |
US12034087B2 (en) | 2009-10-19 | 2024-07-09 | Ampt, Llc | Solar panel power conversion circuit |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4305326A1 (en) * | 1993-02-20 | 1994-08-25 | Inst Luft & Kaeltetechnik Ggmbh | Circuit arrangement for photovoltaic power generation |
DE19508250A1 (en) * | 1995-03-08 | 1996-09-12 | Dorfmueller Solaranlagen Gmbh | Solar power plant for feeding electrical energy into AC mains network |
DE29517414U1 (en) * | 1995-11-03 | 1996-02-22 | Steinke, Uwe, Dipl.-Ing., 29525 Uelzen | Charge or discharge controller for the use of solar and / or wind generator systems |
DE19545655A1 (en) * | 1995-12-07 | 1997-06-12 | Cenith Control Gmbh | Circuit for charging up batteries from solar panels |
DE19609189A1 (en) * | 1996-03-09 | 1997-09-11 | Webasto Karosseriesysteme | Solar power generator for mounting on vehicle roof and including adaptive voltage converter e.g. for driving fan motor |
DE19630432A1 (en) * | 1996-07-27 | 1998-01-29 | Dorfmueller Solaranlagen Gmbh | Network-coupled photo-voltaic power plant |
DE102004025923A1 (en) * | 2004-05-27 | 2005-12-22 | Siemens Ag | Photovoltaic system for feeding into an electrical network and central control and monitoring device for a photovoltaic system |
DE102005050883A1 (en) * | 2005-10-21 | 2007-04-26 | Systaic Deutschland Gmbh | Solar power system for use in e.g. roof covering, has photovoltaic modules enclosed by holding frame that is made from plastic, and mechanical connection unit and electrically contacting connecting plugs that are integrated in frame |
DE102010023085A1 (en) * | 2010-06-08 | 2011-12-08 | Yamaichi Electronics Deutschland Gmbh | Connection box for connecting e.g. electrical direct current consumer with solar module of solar panel for generating electric power from sunlight, has actuator supplied with input voltage to generate super-positioned output voltage |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3611545A1 (en) * | 1986-04-05 | 1987-10-08 | Remscheid Volksbank | Solar module |
DE8815963U1 (en) * | 1988-12-23 | 1989-03-16 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Solar generator |
-
1990
- 1990-10-13 DE DE4032569A patent/DE4032569A1/en active Granted
-
1991
- 1991-09-30 CH CH2885/91A patent/CH683216A5/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3611545A1 (en) * | 1986-04-05 | 1987-10-08 | Remscheid Volksbank | Solar module |
DE8815963U1 (en) * | 1988-12-23 | 1989-03-16 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Solar generator |
Non-Patent Citations (6)
Title |
---|
"Das private E-Werk Euroversion" v. A. STORK, Verlag für technische Literatur, Hirschau, Aufl. 1988, zu beziehen bei Conrad Electronic, Hirschau,S.37 * |
"Die neuzeitliche und vorschriftsmäßige Elektro- Installation: Wohnungsbau, Gewerbe, Industrie" von Alfred HÖSL u. Roland AYX, 14.Aufl., Heidel- berg, Hüthig Buch Verlag GmbH von 1990, S.169 bis 170 * |
"Stromversorgung mit Solarzellen: Methoden u. An- lagen für die Energieaufbereitung" v. Hans KÖTHE München-Francis-Verlag (1988), S.303-314 * |
Elektrische Energietechnik, 29.Jg., 1984, Nr.1, S.59-60 * |
FÜRNIß, R. u.a.: Ein photovoltaischer Generator im Netzbetrieb. In: Elektrizitätswirtschaft, Jg.85, 1986, H.5, S.175-178 * |
MENGEN, D.: Photovoltaikanlage in Fellbach zur Deckung der Grundlast. In: Sonnenenergie 2/90, S. 16, 17 * |
Cited By (198)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0677749A3 (en) * | 1994-04-13 | 1996-01-17 | Canon Kk | Abnormality detection method, abnormality detection apparatus, and power generating system using the same. |
US5669987A (en) * | 1994-04-13 | 1997-09-23 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same |
US6278052B1 (en) | 1994-04-13 | 2001-08-21 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus and solar cell power generating system using the same |
EP0677749A2 (en) * | 1994-04-13 | 1995-10-18 | Canon Kabushiki Kaisha | Abnormality detection method, abnormality detection apparatus, and power generating system using the same |
DE4419467A1 (en) * | 1994-06-04 | 1995-12-07 | Bernd Jonatat | Modular power supply for electrical equipment |
DE4433428A1 (en) * | 1994-09-20 | 1996-03-21 | Inst Luft Kaeltetech Gem Gmbh | Power supply for room air-conditioning plant |
DE4433428C2 (en) * | 1994-09-20 | 2002-08-01 | Inst Luft Kaeltetech Gem Gmbh | Process for the energy supply of air conditioners |
DE19718046A1 (en) * | 1997-04-29 | 1998-11-12 | Sun Power Solartechnik Gmbh | Contactless current transfer from photovoltaic solar module to busbar |
EP1227599A3 (en) * | 2000-12-20 | 2004-02-04 | Ascom Energy Systems AG | Method for data transmission over AC power line network |
EP1227599A2 (en) * | 2000-12-20 | 2002-07-31 | Ascom Energy Systems AG | Method for data transmission over AC power line network |
DE10063538C1 (en) * | 2000-12-20 | 2003-03-13 | Ascom Energy Systems Ag Bern | Procedure for data transmission in AC networks |
DE10136147B4 (en) * | 2001-07-25 | 2004-11-04 | Kolm, Hendrik, Dipl.-Ing. | Photovoltaic alternator |
DE10136147A1 (en) * | 2001-07-25 | 2003-02-20 | Hendrik Kolm | Photovoltaic alternating current generator has solar modules, each electrically connected to individual D.C. voltage converter that transforms to intermediate D.C. voltage and decouples module |
DE10222621A1 (en) * | 2002-05-17 | 2003-11-27 | Josef Steger | Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation |
US7709727B2 (en) | 2002-05-17 | 2010-05-04 | Ruediger Roehrig | Circuit arrangement for a photovoltaic system |
US7612283B2 (en) | 2002-07-09 | 2009-11-03 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
WO2004006342A1 (en) * | 2002-07-09 | 2004-01-15 | Canon Kabushiki Kaisha | Solar power generation apparatus and its manufacturing method |
EP1398687A2 (en) * | 2002-09-13 | 2004-03-17 | Solarnet GmbH | Method for monitoring the operation of a photovoltaic system |
EP1398687A3 (en) * | 2002-09-13 | 2004-10-27 | Solarnet GmbH | Method for monitoring the operation of a photovoltaic system |
DE10323982A1 (en) * | 2003-05-27 | 2004-12-30 | Institut für Luft- und Kältetechnik gGmbH | Inverter e.g. for solar modules, is releasably mounted on rear-surface of solar module and housing and ground-plate have spacer-retainer forming air-gap |
US10910834B2 (en) | 2003-05-28 | 2021-02-02 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11075518B2 (en) | 2003-05-28 | 2021-07-27 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US10135241B2 (en) | 2003-05-28 | 2018-11-20 | Solaredge Technologies, Ltd. | Power converter for a solar panel |
US11476663B2 (en) | 2003-05-28 | 2022-10-18 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11658508B2 (en) | 2003-05-28 | 2023-05-23 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11817699B2 (en) | 2003-05-28 | 2023-11-14 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US11824398B2 (en) | 2003-05-28 | 2023-11-21 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
US8669675B2 (en) | 2003-05-28 | 2014-03-11 | Beacon Power, Llc | Power converter for a solar panel |
US7443052B2 (en) | 2004-01-09 | 2008-10-28 | Koninklijke Philips Electronics N.V. | DC/DC converter and decentralized power generation system comprising a DC/DC converter |
GR1004977B (en) * | 2004-05-07 | 2005-09-09 | Γεωργιος Σεργιαδης | Shaping of a pprofile, frame or other structural element for the support of structural glazings with photovoltaic elementss or for the support of other active and passive elements, suitable to incorporate and connect electrical or electronic sub-units. |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
EP2092625B1 (en) | 2006-12-06 | 2016-02-17 | Solaredge Technologies | Current bypass for distributed power harvesting systems using dc power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
EP3447874A1 (en) * | 2006-12-06 | 2019-02-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using dc power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8581441B2 (en) | 2007-05-17 | 2013-11-12 | Enphase Energy, Inc. | Distributed inverter and intelligent gateway |
US10892619B2 (en) | 2007-05-17 | 2021-01-12 | Enphase Energy, Inc. | Distributed inverter and intelligent gateway |
US11444549B2 (en) | 2007-05-17 | 2022-09-13 | Enphase Energy, Inc. | Distributed inverter and intelligent gateway |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
EP2208236A4 (en) * | 2007-10-15 | 2015-05-06 | Ampt Llc | High efficiency remotely controllable solar energy system |
US12027867B2 (en) | 2007-10-15 | 2024-07-02 | Ampt, Llc | Coordinated converter reactively altering disabling photovoltaic electrical energy power system |
US12003110B2 (en) | 2007-10-15 | 2024-06-04 | Ampt, Llc | Optimized conversion system |
US12027869B2 (en) | 2007-10-15 | 2024-07-02 | Ampt, Llc | Optimized photovoltaic conversion configuration |
WO2009065158A1 (en) | 2007-11-22 | 2009-05-28 | Fronius International Gmbh | Method for detecting the actuation of a control element of a control front of an inverter and control front for an inverter |
CN101878584B (en) * | 2007-11-22 | 2013-03-20 | 弗罗纽斯国际有限公司 | Start identifying method and inverter panel |
AU2008328508B2 (en) * | 2007-11-22 | 2012-08-30 | Fronius International Gmbh | Method for detecting the actuation of a control element of a control front of an inverter and control front for an inverter |
CN101878584A (en) * | 2007-11-22 | 2010-11-03 | 弗罗纽斯国际有限公司 | Method for detecting the actuation of a control element of a control front of an inverter and control front for an inverter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
DE102008003272A1 (en) * | 2008-01-05 | 2009-07-09 | Hans-Hermann Hunfeld | Monitoring unit for photovoltaic modules |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
EP2291907A2 (en) * | 2008-05-14 | 2011-03-09 | National Semiconductor Corporation | Method and system for providing local converters to provide maximum power point tracking in an energy generating system |
EP2291907A4 (en) * | 2008-05-14 | 2013-01-23 | Nat Semiconductor Corp | Method and system for providing local converters to provide maximum power point tracking in an energy generating system |
EP2159895A2 (en) | 2008-08-26 | 2010-03-03 | Betronic Solutions B.V. | Electrically parallel connection of photovoltaic modules in a string to provide a DC voltage to a DC voltage bus |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
CN102282444A (en) * | 2009-01-16 | 2011-12-14 | 菲尼克斯电气公司 | Photovoltaic system having module monitoring |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US12034087B2 (en) | 2009-10-19 | 2024-07-09 | Ampt, Llc | Solar panel power conversion circuit |
WO2011051943A3 (en) * | 2009-10-29 | 2011-10-13 | Watts & More Ltd. | Energy collection system and method |
US8362739B2 (en) | 2009-11-26 | 2013-01-29 | Carlo Gavazzi Services Ag | Control apparatus for photovoltaic modules |
ITRM20100026A1 (en) * | 2010-01-27 | 2011-07-28 | Aepi Costruzioni Elettromeccaniche S R L | SIGNAL TRANSMISSION SYSTEM IN AN ENERGY PRODUCTION PLANT AND ITS RELATIVE TRANSMISSION METHOD. |
EP2355367A1 (en) * | 2010-01-27 | 2011-08-10 | Aepi Construzioni Elettromeccaniche S.r.L. | Power line communication for a photovoltaic system |
US8432143B2 (en) | 2010-02-16 | 2013-04-30 | Femtogrid Energy Solutions B.V. | Electrically parallel connection of photovoltaic modules in a string to provide a DC voltage to a DC voltage bus |
US9270141B2 (en) | 2010-05-04 | 2016-02-23 | Adensis Gmbh | Photovoltaic system with selective MPP mismatch |
EP2395556A1 (en) * | 2010-06-08 | 2011-12-14 | Yamaichi Electronics Deutschland GmbH | Connection socket, solar panel and method for generating a three phase current |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9601986B2 (en) | 2011-09-05 | 2017-03-21 | Dehn + Söhne Gmbh + Co. Kg | Method and arrangement for the surge protection of inverters for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9444397B2 (en) | 2012-10-26 | 2016-09-13 | Sunculture Solar, Inc. | Integrated solar panel |
US9620993B2 (en) | 2012-10-26 | 2017-04-11 | Solpad, Inc. | Auto-synchronous isolated inlet power converter |
US9948139B2 (en) | 2012-10-26 | 2018-04-17 | Solpad, Inc. | Solar power generation, distribution, and communication system |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
WO2014144354A3 (en) * | 2013-03-15 | 2014-11-06 | Christopher Estes | Integrated solar panel |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11967653B2 (en) | 2013-03-15 | 2024-04-23 | Ampt, Llc | Phased solar power supply system |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US12057514B2 (en) | 2013-03-15 | 2024-08-06 | Ampt, Llc | Converter controlled solar power supply system for battery based loads |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US10008979B2 (en) | 2013-11-27 | 2018-06-26 | Sunpower Corporation | Integration of microinverter with photovoltaic module |
US11108356B2 (en) | 2013-11-27 | 2021-08-31 | Enphase Energy, Inc. | Integration of microinverter with photovoltaic module |
EP3090483A4 (en) * | 2013-12-31 | 2017-03-22 | Marco A. Marroquin | Alternating current photovoltaic module |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
EP3252909A1 (en) * | 2016-05-25 | 2017-12-06 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
IT202000020008A1 (en) * | 2020-08-11 | 2022-02-11 | Free Energy Tech S R L | MODULAR SYSTEM FOR THE COLLECTION, STORAGE AND USE OF SOLAR ENERGY AND MODULE FOR THE CREATION OF SUCH SYSTEM |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
Also Published As
Publication number | Publication date |
---|---|
CH683216A5 (en) | 1994-01-31 |
DE4032569C2 (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4032569A1 (en) | Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network | |
EP1841050B1 (en) | Method of converting a DC voltage into a three-phase voltage | |
EP1891723B1 (en) | Method for determining the type of connection of at least two electrical devices and system comprising several electric devices | |
DE69738593T2 (en) | Power supply system with system connection | |
EP2296244B1 (en) | Method and device for connecting at least one string of a photovoltaic assembly with an inverter | |
EP2276137B1 (en) | Photovoltaic device | |
DE102011055220B4 (en) | Connecting an inverter in a solar power plant with shifted potential center | |
DE102009025363B4 (en) | Starting source inverter | |
EP3345294B1 (en) | Method for operating an inverter and inverter | |
EP2386870B1 (en) | Isolation test method for large-scale photovoltaic assemblies | |
EP2282388A1 (en) | Device for feeding in electrical energy of a number of strings of photovoltaic modules in an electricity network | |
DE102012104560B4 (en) | Detecting the string configuration for a multi-string inverter | |
DE102008058129A1 (en) | Device with rigid connecting rails for the current-carrying connection of first and second busbars | |
DE102012112184A1 (en) | Method and device for protecting multiple strings of a photovoltaic generator from backflow | |
DE102016117049A1 (en) | Multi-strand photovoltaic system, method for operating such and reverse current protection circuit for such | |
DE102005052956B3 (en) | Arrangement for detecting and locating the positions of insulation faults in the heating rods of points heating systems, has means for applying an impulse voltage between the heating output lines and earth | |
EP2960664B1 (en) | System for detecting powers and amounts of energy in conductors | |
EP2745331B1 (en) | Junction box for determining string current in photovoltaic installations | |
DE102009041632A1 (en) | Circuit arrangement with an inverter part comprising a central control unit | |
DE69834554T2 (en) | ELECTRIC SCHOOL EQUIPMENT | |
DE102009009860B4 (en) | Especially pre-assembled photovoltaic system connection cabinet | |
DE102008007145A1 (en) | Current injection device | |
AT402987B (en) | DEVICE FOR POWER SUPPLYING ELECTRICITY CONSUMERS | |
EP2202866B1 (en) | Photovoltaic module assembly | |
DE102010040007B4 (en) | Independent connection of a self-sufficient unit to an AC network connecting several autonomous units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
D2 | Grant after examination | ||
8363 | Opposition against the patent | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: PILKINGTON SOLAR INTERNATIONAL GMBH, 50667 KOELN, |
|
8331 | Complete revocation |