DE2918961C2 - Evaluation circuit for an inductive short-circuit ring displacement sensor - Google Patents
Evaluation circuit for an inductive short-circuit ring displacement sensorInfo
- Publication number
- DE2918961C2 DE2918961C2 DE2918961A DE2918961A DE2918961C2 DE 2918961 C2 DE2918961 C2 DE 2918961C2 DE 2918961 A DE2918961 A DE 2918961A DE 2918961 A DE2918961 A DE 2918961A DE 2918961 C2 DE2918961 C2 DE 2918961C2
- Authority
- DE
- Germany
- Prior art keywords
- coil
- circuit
- voltage
- coils
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000011156 evaluation Methods 0.000 title claims description 13
- 238000006073 displacement reaction Methods 0.000 title claims description 10
- 230000001939 inductive effect Effects 0.000 title claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims 1
- 239000012528 membrane Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/10—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in inductance, i.e. electric circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/202—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
- G01D5/2026—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element constituting a short-circuiting element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/22—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
- G01D5/2208—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
- G01D5/2225—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable non-ferromagnetic conductive element
- G01D5/2233—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable non-ferromagnetic conductive element constituting a short-circuiting element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/248—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains by varying pulse repetition frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/007—Transmitting or indicating the displacement of flexible diaphragms using variations in inductance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Electronic Switches (AREA)
Description
Die Erfindung geht aus von einer Auswerteschaltung für einen induktiven Kurzschlußring-Weggeber nach der Gattung des Anspruchs.The invention is based on an evaluation circuit for an inductive short-circuit ring displacement sensor according to the preamble of the claim.
Eine derartige Auswerteschaltung, die das Ausgangssignal eines Kurzschlußring-Weggebers mit einer wegabhängig veränderbaren Induktivität aufbereitet, ist aus der DE-OS 24 16 237 bekannt. Die einzige Spule des Kurzschlußring-Weggebers wird von einem als Spannungskomparator geschalteten Operationsverstärker abwechselnd an eine erste und zweite Betriebsspannung gelegt. Dadurch entsteht abwechselnd ein zunehmender und abnehmender Strom in der Spule. Der Stromfluß wird in einem Arbeitswiderstand in eine Spannung umgesetzt, die zur Steuerung des Komparators dient. Auf diese Weise entsteht eine dreieckähnliche Spannung, deren Periodendauer ein Maß für die Position des Kurzschlußring-Weggebers ist. Störeinflüsse auf die Induktivität der Spule, die unabhängig von einer Wegänderung zu einer Induktivitätsänderung führen, können mit einer derartigen Schaltung nicht erkannt und somit auch nicht eliminiert werden.Such an evaluation circuit, which processes the output signal of a short-circuit ring displacement sensor with an inductance that can be changed depending on the displacement, is known from DE-OS 24 16 237. The single coil of the short-circuit ring displacement sensor is alternately connected to a first and second operating voltage by an operational amplifier connected as a voltage comparator. This creates an alternating increasing and decreasing current in the coil. The current flow is converted into a voltage in a working resistor that is used to control the comparator. This creates a triangle-like voltage, the period of which is a measure of the position of the short-circuit ring displacement sensor. Interferences on the inductance of the coil, which lead to a change in inductance regardless of a change in displacement, cannot be detected with such a circuit and therefore cannot be eliminated.
Aus der DE-AS 19 03 051 ist ein elektronisches Längenmeßgerät mit einem elektronischem Wandler bekannt. Der Wandler weist zwei Spulen auf, die in einem Stromkreis liegen, der einen in Zeitabständen elektrische Impulse liefernden Impulsgeber zur zeitweisen Freigabe des Stromflusses über die Spulen sowie eine Einrichtung zum Messen einer von den Impulsen und von der Spuleninduktivität abhängigen elektrischen Zustandsgröße umfaßt. Die Ausgangssignale der beiden Spulen müssen in getrennten Schaltungen aufbereitet werden.An electronic length measuring device with an electronic converter is known from DE-AS 19 03 051. The converter has two coils that are in a circuit that includes a pulse generator that delivers electrical pulses at intervals to temporarily release the flow of current through the coils, as well as a device for measuring an electrical state variable that depends on the pulses and the coil inductance. The output signals of the two coils must be processed in separate circuits.
Der Erfindung liegt die Aufgabe zugrunde, die Genauigkeit der Auswertung der variablen Induktivität durch Vergleich mit der Induktivität einer zweiten Spule zu erhöhen.The invention is based on the object of increasing the accuracy of the evaluation of the variable inductance by comparing it with the inductance of a second coil.
Für die Lösung sind erfindungsgemäß die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Maßnahmen vorgesehen.According to the invention, the measures specified in the characterizing part of patent claim 1 are provided for the solution.
Die erfindungsgemäße Auswerteschaltung für einen induktiven Kurzschlußring-Weggeber weist den Vorteil auf, daß die Genauigkeit der Positionsmessung durch Differenzbildung der weiterverarbeiteten Ausgangssignale zweier Spulen erhöht ist gegenüber einer Ausführung mit einer Spule. Durch die Differenzbildung werden Störeinflüsse eliminiert, da sie sich auf beide Spulen gleichsinnig auswirken. Eine Einstellmöglichkeit der Induktivität wenigstens einer Spule vereinfacht die Anpassung an den erforderlichen Meßbereich.The evaluation circuit according to the invention for an inductive short-circuit ring position sensor has the advantage that the accuracy of the position measurement is increased by forming the difference between the further processed output signals of two coils compared to a design with one coil. By forming the difference, interference is eliminated, since it affects both coils in the same direction. An option to adjust the inductance of at least one coil simplifies adaptation to the required measuring range.
Die Schaltung zeichnet sich durch einen äußerst einfachen und somit zuverlässigen Aufbau aus. Mit Hilfe zweier Schaltelemente, die abwechselnd von einem bistabilen Multivibrator angesteuert sind, werden die beiden Meßspulen abwechselnd über einen Arbeitswiderstand an die Versorgungsspannung gelegt. Der Stromanstieg in den beiden Meßspulen führt an dem Arbeitswiderstand jeweils zu einer steigenden Spannung, die einem Eingang des als Komparator geschalteten Operationsverstärkers zugeleitet ist. Der Stromabbau in den Spulen erfolgt durch Freilaufdioden. Der Komparator erzeugt an seinem Ausgang eine Impulsfolge, deren Periodendauer über zwei Umschaltvorgänge proportional zum gemessenen Weg ist. Die Impulspause nach dem Umschaltimpuls ist dem Ausgangssignal der einen und die Impulspause nach dem nächsten Umschaltimpuls dem Ausgangssignal der anderen Spule zugeordnet. Eine Induktivitätserhöhung in beiden Meßspulen, beispielsweise durch Umwelteinflüsse, wirkt sich derart aus, daß die eine Impulspause verlängert und die darauffolgende Impulspause verkürzt wird. Die Periodendauer über zwei Umschaltvorgänge ist somit unabhängig von Störeinflüssen, die sich auf beide Spulen auswirken.The circuit is characterized by an extremely simple and therefore reliable structure. With the help of two switching elements, which are alternately controlled by a bistable multivibrator, the two measuring coils are alternately connected to the supply voltage via a load resistor. The increase in current in the two measuring coils leads to an increase in voltage at the load resistor, which is fed to an input of the operational amplifier connected as a comparator. The current reduction in the coils is carried out by freewheeling diodes. The comparator generates a pulse train at its output, the period duration of which is proportional to the measured path over two switching processes. The pulse pause after the switching pulse is assigned to the output signal of one coil and the pulse pause after the next switching pulse is assigned to the output signal of the other coil. An increase in inductance in both measuring coils, for example due to environmental influences, has the effect that one pulse pause is extended and the following pulse pause is shortened. The period duration over two switching processes is therefore independent of interference that affects both coils.
Die Erfindung ist nachstehend anhand mehrerer Ausführungsbeispiele, die in der Zeichnung dargestellt sind, näher beschrieben und erläutert.The invention is described and explained in more detail below with reference to several embodiments shown in the drawing.
Fig. 1 zeigt einen induktiven Weggeber, welcher den Verstellweg einer Membran 1 in eine Veränderung der Induktivität einer Spule 2 umwandelt, welche auf dem Mittelschenkel 3 eines Eisenkerns 4 angeordnet ist. Die Membran 1 ist druckdicht mit einem Gehäuse 5 verbunden, dessen Innenraum über einen Rohrstutzen 6 an das Ansaugrohr einer nicht dargestellten Brennkraftmaschine angeschlossen ist und dazu dienen soll, den dort herrschenden, von der Fahrgeschwindigkeit, der Drosselklappenstellung und dem Lastzustand der Brennkraftmaschine abhängigen Ansaugluftdruck in eine analoge elektrische Größe umzuwandeln, mit welcher eine Betriebsgröße der Brennkraftmaschine, beispielsweise der Zündverstellwinkel oder die eingespritzte Kraftstoffmenge den jeweils herrschenden Betriebsbedingungen angepaßt werden kann. Fig. 1 shows an inductive displacement sensor which converts the adjustment path of a membrane 1 into a change in the inductance of a coil 2 which is arranged on the center leg 3 of an iron core 4. The membrane 1 is connected in a pressure-tight manner to a housing 5 , the interior of which is connected via a pipe socket 6 to the intake pipe of an internal combustion engine (not shown) and is intended to convert the intake air pressure prevailing there, which depends on the driving speed, the throttle valve position and the load state of the internal combustion engine, into an analog electrical quantity with which an operating quantity of the internal combustion engine, for example the ignition adjustment angle or the amount of fuel injected, can be adapted to the prevailing operating conditions.
Im Gehäuse 5 ist eine Schraubenfeder 7 angeordnet, die sich einerseits gegen die Membran 1 und andererseits gegen das Gehäuse 5 abstützt und gleichachsig mit einem Anschlag 8 angeordnet ist, der mittels eines Schraubgewindes 9 in axialer Richtung verstellt werden kann und den Verstellweg s des Membranzentrums begrenzt.A helical spring 7 is arranged in the housing 5 , which is supported on the one hand against the membrane 1 and on the other hand against the housing 5 and is arranged coaxially with a stop 8 , which can be adjusted in the axial direction by means of a screw thread 9 and limits the adjustment path s of the membrane center.
Im Zentrum der Membran 1 sitzt ein rohrförmiger, aus Isolierstoff hergestellter Träger 10 für einen auf seiner Stirnseite angebrachten Kurzschlußring 11, der den Mittelschenkel 3 umgreift und die Induktivität der Spule 2 umsomehr vergrößert, je stärker der Druck im Ansaugrohr und demgemäß der im Gehäuse 5 herrschende Druck gegenüber dem äußeren Atmosphärendruck abfällt und je mehr sich dabei das Zentrum der Membran 1 in Richtung des Wegpfeiles s bewegt.In the center of the membrane 1 there is a tubular support 10 made of insulating material for a short-circuit ring 11 attached to its front side, which surrounds the center leg 3 and increases the inductance of the coil 2 the more the pressure in the intake pipe and accordingly the pressure prevailing in the housing 5 drops compared to the external atmospheric pressure and the more the center of the membrane 1 moves in the direction of the path arrow s .
Um die bei den Änderungen des Weges s entstehenden Änderungen der Induktivität L 1 der Spule 2 in eine Rechteckschwingung 12 umwandeln zu können, ist eine im folgenden näher beschriebene Auswerteschaltung 13 vorgesehen, mit welcher ein zur Frequenz, dem Tastverhältnis oder der Periodendauer der Rechteckspannung 12 analoges Signal U A gewonnen werden kann.In order to be able to convert the changes in the inductance L 1 of the coil 2 resulting from the changes in the path s into a square wave 12 , an evaluation circuit 13 is provided, described in more detail below, with which a signal U A analogous to the frequency, the duty cycle or the period of the square wave voltage 12 can be obtained.
Die Auswerteschaltung kann erfindungsgemäß nach dem in Fig. 2 dargestellten Schaltbild aufgebaut sein. Als Hauptbestandteile weist diese Auswerteschaltung einen als Spannungskomparator verwendeten Operationsverstärker O, ein bistabiles Flip-Flop FF mit zwei zueinander entgegengesetzten Ausgängen Q und ≙ sowie zwei Schalttransistoren T 1 und T 2 auf, die dazu dienen, abwechslungsweise die Spule 2 des induktiven Weggebers nach Fig. 1 mit ihrer variablen Induktivität L 1 und dann eine zweite Spule 15, deren Induktivität L 2 auf einen festen Wert eingestellt sein kann, in den Steuerkreis des Spannungskomparators O einzuschalten. Hierzu sind die beiden Spulen 2 und 15 einem gemeinsamen Verbindungspunkt 16 zugeführt und an einen zur gemeinsamen, an den Pluspol einer nicht dargestellten Fahrzeugbatterie angeschlossenen Betriebsstromleitung 17 führenden Widerstand R angeschlossen und außerdem über eine Leitung 18 mit dem invertierenden Eingang 20 des Spannungskomparators O verbunden. Dieser ist über einen Entkopplungswiderstand 21 ebenso wie der Pluseingang 22 des Komparators über einen Entkopplungswiderstand 23 an den Abgriff eines aus zwei Widerständen 24 und 25 gebildeten Spannungsteiler angeschlossen. Vom Pluseingang des Komparators O führt außerdem ein Widerstand 26 nach Masse.According to the invention, the evaluation circuit can be constructed according to the circuit diagram shown in Fig. 2. The main components of this evaluation circuit are an operational amplifier O used as a voltage comparator, a bistable flip-flop FF with two opposing outputs Q and Q, and two switching transistors T 1 and T 2 which serve to alternately switch the coil 2 of the inductive displacement sensor according to Fig. 1 with its variable inductance L 1 and then a second coil 15 , whose inductance L 2 can be set to a fixed value, into the control circuit of the voltage comparator O. For this purpose, the two coils 2 and 15 are fed to a common connection point 16 and connected to a resistor R leading to the common operating current line 17 connected to the positive pole of a vehicle battery (not shown), and are also connected via a line 18 to the inverting input 20 of the voltage comparator O. This is connected via a decoupling resistor 21 , just like the plus input 22 of the comparator via a decoupling resistor 23, to the tap of a voltage divider formed from two resistors 24 and 25. A resistor 26 also leads from the plus input of the comparator O to ground.
Von dem mit den Spulen 2 bzw. 15 verbundenen Kollektoren der beiden Transistoren T 1 und T 2 führt jeweils eine Diode D 1 bzw. D 2 zur Kathode einer Zenerdiode Z, deren Anode mit den beiden Spulen und dem Widerstand R verbunden ist.From the collectors of the two transistors T 1 and T 2 , which are connected to the coils 2 and 15 respectively, a diode D 1 or D 2 leads to the cathode of a Zener diode Z , the anode of which is connected to the two coils and the resistor R.
Die als Schalter wirkenden Transistoren T 1 und T 2 steuern abwechselnd die Spulen 2 und 15 an. Die über dem Widerstand R abgenommene Spannung ist proportional zu dem durch die jeweils angesteuerte Spule fließenden Strom, dessen zeitlicher Verlauf in Fig. 3 durch den Linienzug 27 angedeutet ist. Wenn mit U B die Spannung an der Plusleitung 17 bezeichnet wird, ergibt sich am Minuseingang 20 des Komparators O eine Steuerspannung U S nach der Gleichung °=c:30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54; &udf53;vu10&udf54;wobei t&sub1;/t&sub2; das Tastverhältnis der Rechteckschwingung bedeutet.The transistors T 1 and T 2 act as switches and control the coils 2 and 15 alternately. The voltage taken off across the resistor R is proportional to the current flowing through the coil being controlled, the temporal progression of which is indicated in Fig. 3 by the line 27. If U B denotes the voltage on the positive line 17 , a control voltage U S results at the negative input 20 of the comparator O according to the equation °=c:30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54;&udf53;vu10&udf54;where t ₁/ t ₂ is the duty cycle of the square wave.
Wird die am Komparator O fest eingestellte Schwellwertspannung unterschritten, so schaltet dieser seinen Ausgang auf positive Versorgungsspannung. Das nachfolgende Flip-Flop ändert dabei seinen Ausgangszustand und steuert somit über den entsprechenden Transistor T 1 bzw. T 2 die andere Spule an. Während in der nicht angesteuerten Spule über die zugehörige Diode D 1, D 2 und die Zenerdiode Z der Strom gelöscht wird, integriert die aktivierte Spule den Strom proportional ihrer Induktivität auf, bis die Schwellwertspannung des Komparators erneut erreicht wird.If the threshold voltage set at the comparator O is undershot, the comparator switches its output to a positive supply voltage. The subsequent flip-flop changes its output state and thus controls the other coil via the corresponding transistor T 1 or T 2. While the current in the non-controlled coil is extinguished via the associated diode D 1 , D 2 and the Zener diode Z , the activated coil integrates the current in proportion to its inductance until the threshold voltage of the comparator is reached again.
Verwendet man die in Fig. 3 in der obersten Zeile wiedergegebene Rechteckspannung am Q-Ausgang des Flip- Flops FF, welche durch den Linienzug 28 in Fig. 3 wiedergegeben ist, so ergibt sich durch Umformen der obengenannten Gleichung: °=c:30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54; &udf53;vu10&udf54;If one uses the square wave voltage shown in the top line of Fig. 3 at the Q output of the flip-flop FF , which is represented by the line 28 in Fig. 3, the following results by transforming the above equation: °=c:30&udf54;&udf53;vu10&udf54;&udf53;vz2&udf54;&udf53;vu10&udf54;
Dies bedeutet, daß die Impulsdauer t&sub1; proportional zur Induktivität L 1 und die Pausendauer t&sub2; proportional zur Induktivität L 2 der Vergleichsspule 15 ist. Das in Fig. 2 bei U A angedeutete Ausgangssignal kann sowohl digital als auch analog durch Mittelwertbildung weiterverarbeitet werden. Für eine digitale Auswertung können die am Ausgang des Komparators O entstehenden Schaltimpulse 29 verwendet werden, welche im untersten Linienzug der Fig. 3 angedeutet sind.This means that the pulse duration t 1 is proportional to the inductance L 1 and the pause duration t 2 is proportional to the inductance L 2 of the comparison coil 15. The output signal indicated at U A in Fig. 2 can be further processed both digitally and analogously by averaging. The switching pulses 29 produced at the output of the comparator O can be used for digital evaluation; these are indicated in the lowest line in Fig. 3.
In Fig. 4 ist ein zweiter induktiver Kurzschlußringgeber dargestellt, der als Differentialwinkelgeber ausgebildet ist und die Umwandlung des Drehwinkels α einer Welle 30, beispielsweise der Drosselklappenwelle einer Brennkraftmaschine in eine analoge elektrische Größe erlaubt. Fig. 4 shows a second inductive short-circuit ring sensor which is designed as a differential angle sensor and allows the conversion of the angle of rotation α of a shaft 30 , for example the throttle valve shaft of an internal combustion engine, into an analog electrical quantity.
Im einzelnen weist der Drehwinkelgeber nach Fig. 4 zwei zueinander konzentrische, halbzylindrische Ringsegmente 31 und 32 auf, welche untereinander durch radiale magnetische Stege 33 und 34 verbunden sind. Nahe bei diese Stegen sitzt jeweils eine von zwei Spulen 35 bzw. 36, deren Induktivitäten mit L 1 bzw. L 2bezeichnet sind. Auf der Welle 30 sitzt ein Ausleger 37 aus Metall, welcher in einem Kurzschlußring 38 endigt, der das äußere Ringsegment 31 umschließt und bei der Drehbewegung der Welle 30 die Induktivitäten L 1 und L 2 der beiden Spulen 35 und 36 in entgegengesetztem Sinne verändert, nämlich die Induktivität der Spule 35 verkleinert, während gleichzeitig die Induktivität L 2 der Spule 36 vergrößert wird und umgekehrt.In detail, the rotary encoder according to Fig. 4 has two concentric, semi-cylindrical ring segments 31 and 32 , which are connected to one another by radial magnetic webs 33 and 34. Close to these webs there is one of two coils 35 and 36 , respectively, the inductances of which are designated L 1 and L 2 , respectively. On the shaft 30 there is a cantilever 37 made of metal, which ends in a short-circuit ring 38 , which encloses the outer ring segment 31 and, when the shaft 30 rotates, changes the inductances L 1 and L 2 of the two coils 35 and 36 in opposite directions, namely the inductance of the coil 35 is reduced, while at the same time the inductance L 2 of the coil 36 is increased and vice versa.
Zur Auswertung der beiden in Abhängigkeit vom Schwenkwinkel α veränderbaren Induktivitäten L 1 und L 2 kann die in Fig. 2 dargestellte Schaltung verwendet werden. In Fig. 5 ist eine andere Auswerteschaltung dargestellt, die ebenfalls selbsttätig schwingt und an ihrem Ausgang A eine Ausgangsspannung U A ergibt, welche taktverhältnisanalog, frequenzanalog und/oder periodenanalog ist.The circuit shown in Fig. 2 can be used to evaluate the two inductances L 1 and L 2 which can be changed depending on the swivel angle α. Fig. 5 shows another evaluation circuit which also oscillates automatically and produces an output voltage U A at its output A which is analogous to the clock ratio, frequency and/or period.
Im einzelnen enthält die Auswerteschaltung nach Fig. 5, in welcher die mit der Schaltung nach Fig. 3 übereinstimmenden Bauteile mit gleichen Bezugszeichen versehen sind, den als Spannungskomparator verwendeten Operationsverstärker O, zwei Schaltverstärker S 1 und S 2 für die beiden Induktivitäten L 1 und L 2 sowie einen zwischen den Ausgang des Operationsverstärkers O und den Eingang des Flip-Flops FF geschalteten Taktverstärker V und zwei mit den Ausgängen Q und ≙ geschaltete Trennverstärker P 1 und P 2.In detail, the evaluation circuit according to Fig. 5, in which the components corresponding to the circuit according to Fig. 3 are provided with the same reference numerals, contains the operational amplifier O used as a voltage comparator, two switching amplifiers S 1 and S 2 for the two inductances L 1 and L 2 as well as a clock amplifier V connected between the output of the operational amplifier O and the input of the flip-flop FF and two isolation amplifiers P 1 and P 2 connected to the outputs Q and ≙.
Die Auswerteschaltung nach Fig. 5 arbeitet im Prinzip gleich wie diejenige nach Fig. 3, so daß sich eine ins einzelne gehende Funktionsbeschreibung erübrigt.The evaluation circuit according to Fig. 5 works in principle in the same way as that according to Fig. 3, so that a detailed functional description is unnecessary.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2918961A DE2918961C2 (en) | 1979-05-11 | 1979-05-11 | Evaluation circuit for an inductive short-circuit ring displacement sensor |
FR8009864A FR2456308A1 (en) | 1979-05-11 | 1980-04-30 | Inductive short circuit ring distance transducer evaluation circuit - uses reference coil and alternate coil switching to comparator |
IT21970/80A IT1130421B (en) | 1979-05-11 | 1980-05-09 | ANALYZER CIRCUIT FOR A LINEAR DISPLACEMENT INDUCTIVE TRANSDUCER WITH SHORT CIRCUIT RING |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2918961A DE2918961C2 (en) | 1979-05-11 | 1979-05-11 | Evaluation circuit for an inductive short-circuit ring displacement sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
DE2918961A1 DE2918961A1 (en) | 1980-11-20 |
DE2918961C2 true DE2918961C2 (en) | 1987-04-30 |
Family
ID=6070457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2918961A Expired DE2918961C2 (en) | 1979-05-11 | 1979-05-11 | Evaluation circuit for an inductive short-circuit ring displacement sensor |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE2918961C2 (en) |
FR (1) | FR2456308A1 (en) |
IT (1) | IT1130421B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3138538A1 (en) * | 1981-09-28 | 1983-04-07 | Robert Bosch Gmbh, 7000 Stuttgart | BRAKE TEST |
DE3714993A1 (en) * | 1987-05-06 | 1988-11-17 | Wabco Westinghouse Fahrzeug | EVALUATION FOR AN INDUCTIVE SENSOR |
DE4120861C2 (en) * | 1991-06-25 | 2001-02-22 | Mannesmann Vdo Ag | Travel measuring device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1201573B (en) * | 1961-02-03 | 1965-09-23 | Licentia Gmbh | Inductive limit value tap for measuring instruments |
DE1262622B (en) * | 1961-03-23 | 1968-03-07 | Licentia Gmbh | Arrangement for changing the switching hysteresis of an inductive tap |
DE1903051B2 (en) * | 1969-01-22 | 1972-05-18 | Perthen, Johannes, Dr.-Ing., 3000 Hannover | ELECTRONIC LENGTH MEASUREMENT DEVICE |
-
1979
- 1979-05-11 DE DE2918961A patent/DE2918961C2/en not_active Expired
-
1980
- 1980-04-30 FR FR8009864A patent/FR2456308A1/en active Granted
- 1980-05-09 IT IT21970/80A patent/IT1130421B/en active
Also Published As
Publication number | Publication date |
---|---|
FR2456308A1 (en) | 1980-12-05 |
IT1130421B (en) | 1986-06-11 |
IT8021970A0 (en) | 1980-05-09 |
DE2918961A1 (en) | 1980-11-20 |
FR2456308B3 (en) | 1982-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0282732B1 (en) | Circuitry for processing signals from an inductive sensor | |
DE3232009C2 (en) | ||
EP0179384B1 (en) | Interfering fields-insensitive proximity switch | |
EP0290438A1 (en) | Circuit for transmitting values measured at vehicle wheels. | |
DE2821578A1 (en) | SIGNAL PROCESSING CIRCUIT | |
DE3225822C2 (en) | ||
DE2944033C2 (en) | Measuring device for determining the rotational movement of a rotating body | |
DE2448304C2 (en) | Electrically controlled fuel injection system for internal combustion engines | |
DE2900480C2 (en) | ||
DE2816981A1 (en) | DEVICE FOR MEASURING THE DC COMPONENT IN A SUPERIMPOSED AC VOLTAGE SIGNAL | |
DE2812291A1 (en) | IGNITION SYSTEM FOR COMBUSTION MACHINERY | |
DE2918961C2 (en) | Evaluation circuit for an inductive short-circuit ring displacement sensor | |
EP0183919B1 (en) | Valve comprising a circuit arrangement for determination of the position of said valve | |
DE2647689A1 (en) | DEVICE FOR PRE-ADJUSTING THE STOP TIME | |
DE3017202C2 (en) | Device for determining the speed of a rotatable component or the frequency of a linearly vibrating component made of magnetically permeable material | |
DE2924093C2 (en) | ||
DE3447341C2 (en) | Method for controlling the closing angle of a spark ignition internal combustion engine | |
DE2725933A1 (en) | PRESSURE PULSE DURATION CONVERTER | |
DE3517509A1 (en) | Measuring device for detecting operating characteristics in a motor vehicle | |
DE3241018A1 (en) | Magnetic sensor | |
DE2156173A1 (en) | DEVICE FOR MEASURING THE SPEED OF A ROTATING BODY | |
DE2931329A1 (en) | Shaft rotation direction determn. for vehicle direction determn. - by using magnetic sensor and asymmetric magnet producing direction dependent pulsed signal duty cycle | |
DE3927833C2 (en) | Measuring circuit and application of the same, especially with inductive displacement sensors | |
DE3400787C2 (en) | Current clamp | |
DE102012109598B4 (en) | Inductive displacement measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8120 | Willingness to grant licences paragraph 23 | ||
8110 | Request for examination paragraph 44 | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |