DE10336913C9 - Verwendung eines Lithiumsilicatmaterials - Google Patents
Verwendung eines Lithiumsilicatmaterials Download PDFInfo
- Publication number
- DE10336913C9 DE10336913C9 DE10336913.9A DE10336913A DE10336913C9 DE 10336913 C9 DE10336913 C9 DE 10336913C9 DE 10336913 A DE10336913 A DE 10336913A DE 10336913 C9 DE10336913 C9 DE 10336913C9
- Authority
- DE
- Germany
- Prior art keywords
- lithium
- blank
- glass
- lithium silicate
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 title claims abstract description 148
- 229910052912 lithium silicate Inorganic materials 0.000 title claims abstract description 146
- 239000000463 material Substances 0.000 title claims abstract description 70
- 239000011521 glass Substances 0.000 claims abstract description 73
- 239000013078 crystal Substances 0.000 claims abstract description 70
- 238000010438 heat treatment Methods 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 55
- 238000007731 hot pressing Methods 0.000 claims abstract description 21
- 238000003754 machining Methods 0.000 claims abstract description 13
- 239000000155 melt Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 8
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims abstract description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 8
- 229910018068 Li 2 O Inorganic materials 0.000 claims abstract description 7
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 claims description 50
- 238000003801 milling Methods 0.000 claims description 31
- 239000002241 glass-ceramic Substances 0.000 claims description 28
- 239000000919 ceramic Substances 0.000 claims description 22
- 238000000227 grinding Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 239000012254 powdered material Substances 0.000 claims description 2
- 244000052616 bacterial pathogen Species 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000002425 crystallisation Methods 0.000 description 24
- 230000008025 crystallization Effects 0.000 description 24
- 238000012360 testing method Methods 0.000 description 19
- 239000006065 metasilicate glass ceramic Substances 0.000 description 14
- 239000006136 disilicate glass ceramic Substances 0.000 description 13
- 239000000523 sample Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 238000004040 coloring Methods 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000003103 lithium disilicate glass Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 239000006088 Fotoceram Substances 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 208000032005 Spinocerebellar ataxia with axonal neuropathy type 2 Diseases 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 208000033361 autosomal recessive with axonal neuropathy 2 spinocerebellar ataxia Diseases 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229940023487 dental product Drugs 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000006089 photosensitive glass Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000001483 high-temperature X-ray diffraction Methods 0.000 description 1
- 229910052907 leucite Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000006017 silicate glass-ceramic Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/78—Pigments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/807—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising magnesium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/831—Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
- A61K6/833—Glass-ceramic composites
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0007—Compositions for glass with special properties for biologically-compatible glass
- C03C4/0021—Compositions for glass with special properties for biologically-compatible glass for dental use
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Glass Compositions (AREA)
- Dental Preparations (AREA)
- Dental Prosthetics (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
(a) eine Schmelze eines Ausgangsglases gebildet wird, die die Anfangskomponenten SiO2, Li2O, K2O, Al2O3 und P2O5 als Hauptkomponenten, aber kein La2O3, enthält,
(b) die Schmelze des Ausgangsglases in eine Form gegossen wird, um einen Ausgangsglasrohling zu bilden, und der Glasrohling auf Raumtemperatur abgekühlt wird,
(c) der Ausgangsglasrohling einer ersten Wärmebehandlung bei einer ersten Temperatur unterworfen wird, um ein Glasprodukt zu ergeben, welches Keime enthält, die für die Bildung von Lithiummetasilicatkristallen geeignet sind, und
(d) das Glasprodukt aus Stufe (c) einer zweiten Wärmebehandlung bei einer zweiten Temperatur unterworfen wird, die höher als die erste Temperatur ist, um den Lithiumsilicatrohling mit Lithiummetasilicatkristallen als Hauptkristallphase zu erhalten.
Description
- Die Erfindung betrifft die Verwendung eines Lithiumsilicatmaterials, das einfach durch maschinelle Verarbeitung geformt und anschließend zu geformten Produkten mit hoher Festigkeit umgewandelt werden kann.
- Es besteht ein steigender Bedarf an Materialien, die zu dentalen restaurativen Produkten, wie z. B. Kronen, Inlays und Brücken, mit Hilfe von computergesteuerten Fräsmaschinen verarbeitet werden können. Derartige CAD/CAM-Verfahren sind sehr attraktiv, da sie es gestatten, den Patienten schnell mit der gewünschten Restauration zu versorgen. Somit wird eine sogenannte Stuhlbehandlung für den Zahnarzt möglich.
- Materialien, die zur Verarbeitung über computergestütztes Design/computergestützte Verarbeitung (CAD/CAM)-Methoden geeignet sind, müssen jedoch ein sehr spezielles Eigenschaftsprofil erfüllen.
- Zunächst müssen sie in der schließlich hergestellten Restauration ansprechende optische Eigenschaften, wie z. B. Transluzenz und Färbung, aufweisen, die das Aussehen der natürlichen Zähne imitieren. Sie müssen weiter eine hohe Festigkeit und chemische Beständigkeit zeigen, so dass sie die Funktion des natürlichen Zahnmaterials übernehmen können und diese Eigenschaften über eine ausreichend lange Zeitspanne aufrecht erhalten, während sie sich permanent in Kontakt mit Flüssigkeiten in der Mundhöhle befinden, die sogar aggressiv, wie z. B. sauer, sein können.
- Zum zweiten und sehr wichtig ist es, dass es möglich sein sollte, sie in einfacher Weise zu der gewünschten Form ohne übermäßige Abnutzung der Werkzeuge und innerhalb kurzer Zeit maschinell zu verarbeiten. Diese Eigenschaft erfordert eine relativ niedrige Festigkeit des Materials und steht demzufolge im Gegensatz zu den oben erwähnten gewünschten Eigenschaften für die endgültige Restauration.
- Die Schwierigkeit, die Eigenschaften von niedriger Festigkeit im Stadium des zu verarbeitenden Materials und einer hohen Festigkeit der endgültigen Restauration zu erzielen, wird durch die bekannten Materialien für eine CAD/CAM-Verarbeitung reflektiert, die insbesondere im Hinblick auf eine leichte maschinelle Verarbeitbarkeit unbefriedigend sind.
-
DE-A-197 50 794 offenbart Lithiumdisilicat-Glaskeramiken, die vornehmlich vorgesehen sind, um mittels eines Heißpressverfahrens zu der gewünschten Geometrie geformt zu werden, wobei das geschmolzene Material im viskosen Zustand verpresst wird. Es ist ebenfalls möglich, dass diese Materialien mittels computergestützter Fräsverfahren verformt werden. Es hat sich jedoch gezeigt, dass die maschinelle Verarbeitung dieser Materialien zu einer sehr hohen Abnutzung der Werkzeuge und sehr langen Verarbeitungszeiten führt. Diese Nachteile werden durch die hohe Festigkeit und Zähigkeit hervorgerufen, die den Materialien vornehmlich durch die kristalline Lithiumdisilicatphase verliehen werden. Es hat sich weiter gezeigt, dass die maschinell verarbeiteten Restaurationen lediglich eine geringe Kantenfestigkeit zeigen. Der Begriff „Kantenfestigkeit“ bezieht sich auf die Festigkeit von Teilen der Restauration, die lediglich eine geringe Dicke im Bereich von wenigen 1/10 mm haben. - Weitere Versuche zur Erzielung einer leichten maschinellen Verarbeitbarkeit zusammen mit einer hohen Festigkeit der endgültigen Restauration sind ebenfalls gemacht worden.
EP-B-774 993 EP-B-817 597 - Aus S. D. Stookey: „Chemical Machining of Photosensitive Glass“, Ind. Eng. Chem., 45, 115-118(1993) und S. D. Stookey: „Photosensitively Opacifiable Glass“
US-A-2 684 911 (1954) ist es ebenfalls bekannt, dass in Lithiumsilicat-Glaskeramiken zunächst eine metastabile Phase gebildet werden kann. Z. B. werden bei photosensitiven Glaskeramiken (Fotoform®, FotoCeram®) Ag-Teilchen unter Verwendung von UV-Licht gebildet. Diese Ag-Teilchen dienen als Kristallisierungsmittel in einer Lithiummetasilicatphase. Die Bereiche, die dem Licht ausgesetzt waren, werden in einem anschließenden Schritt mit verdünnter HF ausgewaschen. Dieses Verfahren ist möglich, da die Löslichkeit der Lithiummetasilicatphase in HF viel höher ist, als die Löslichkeit des Ausgangsglases. Der nach dem Auflösungsverfahren (Fotoform®) verbleibende Glasteil kann mittels einer zusätzlichen Wärmebehandlung in eine Lithiumdisilicat-Glaskeramik (FotoCeram®) überführt werden. - Auch die Untersuchungen von Borom, z. B. M. -P. Borom, A. M. Turkalo, R. H. Doremus: „Strength and Microstructure in Lithium Disilicate Glass-Ceramics", J. Am. Ceream. Soc., 58, No. 9-10, 385-391 (1975) und M. -P. Borom, A. M. Turkalo, R. H. Doremus: „Verfahren zum Herstellen von Glaskeramiken" DE-A-24 51 121 (1974) zeigen, dass eine Lithiumdisilicat-Glaskeramik zunächst in unterschiedlichen Mengen als metastabile Lithiummetasilicatphase kristallisieren kann. Es existieren jedoch auch Zusammensetzungen, die von Anfang an in Form der Disilicatphase kristallisieren und bei denen die Metasilicatphase überhaupt nicht vorhanden ist. Eine systematische Untersuchung dieses Effektes ist bisher noch nicht bekannt geworden. Aus den Untersuchungen von Borom ist es ebenfalls bekannt, dass die Glaskeramik, die Lithiummetasilicat als Hauptphase enthält, eine verringerte Festigkeit im Vergleich zu einer Glaskeramik hat, die lediglich eine Lithiumdisilicatphase enthält.
- Somit zeigen die aus dem Stand der Technik bekannten Materialien eine Reihe von Nachteilen. Es ist daher eine Aufgabe der vorliegenden Erfindung, diese Nachteile auszuräumen und insbesondere ein Material zur Verfügung zu stellen, welches vor allem einfach mit Hilfe computergestützter Fräs- und Schleifverfahren geformt und anschließend zu hochfesten Dentalprodukten umgewandelt werden kann, die ebenfalls eine hohe chemische Beständigkeit und ausgezeichnete optische Eigenschaften zeigen und eine drastisch reduzierte Schrumpfung während der abschließenden Umwandlung zeigen.
- Diese Aufgabe wird durch die Verwendung eines Lithiumsilicatmaterials nach den Ansprüchen 1 bis 30 gelöst. Gegenstand der Erfindung ist somit die Verwendung eines Lithiumsilicatmaterials in Form eines Lithiumsilicatrohlings, der Lithiummetasilicat als Hauptkristallphase enthält, zur Herstellung einer dentalen Restauration,
wobei der Lithiumsilicatrohling mit Lithiummetasilicat als Hauptkristallphase durch maschinelle Verarbeitung oder durch Heißpressen zu einer gewünschten Geometrie geformt wird, um eine dentale Restauration zu bilden, und wobei der Lithiumsilicatrohling nach einem Verfahren herstellbar ist, bei dem: - (a) eine Schmelze eines Ausgangsglases gebildet wird, die die Anfangskomponenten SiO2, Li2O, K2O, Al2O3 und P2O5 als Hauptkomponenten, aber kein La2O3, enthält,
- (b) die Schmelze des Ausgangsglases in eine Form gegossen wird, um einen Ausgangsglasrohling zu bilden, und der Glasrohling auf Raumtemperatur abgekühlt wird,
- (c) der Ausgangsglasrohling einer ersten Wärmebehandlung bei einer ersten Temperatur unterworfen wird, um ein Glasprodukt zu ergeben, welches Keime enthält, die für die Bildung von Lithiummetasilicatkristallen geeignet sind, und
- (d) das Glasprodukt aus Stufe (c) einer zweiten Wärmebehandlung bei einer zweiten Temperatur unterworfen wird, die höher als die erste Temperatur ist, um den Lithiumsilicatrohling mit Lithiummetasilicatkristallen als Hauptkristallphase zu erhalten.
- Es hat sich überraschenderweise gezeigt, dass es durch Verwendung eines Ausgangsglases mit sehr spezieller Zusammensetzung und eines speziellen Verfahrens möglich ist, eine Glaskeramik zu liefern, die metastabiles Lithiummetasilicat (Li2SiO3) als Hauptkristallphase anstelle von Lithiumdisilicat (Li2Si2O5) hat. Diese Lithiummetasilicat-Glaskeramik hat eine niedrige Festigkeit und Zähigkeit und kann demgemäß leicht maschinell zu der Form sogar von komplizierten dentalen Restaurationen verarbeitet werden, kann aber nach einer derartigen maschinellen Verarbeitung mit Hilfe einer Wärmebehandlung in ein Lithiumdisilicat-Glaskeramikprodukt umgewandelt werden, welches hervorragende mechanische Eigenschaften, ausgezeichnete optische Eigenschaften und sehr gute chemische Stabilität hat und lediglich einer sehr beschränkten Schrumpfung unterliegt.
- Das erfindungsgemäß verwendete Lithiumsilicatmaterial enthält Lithiummetasilicat als eine Hauptkristallphase. Es kann aus einer Mischung gebildet sein, die die folgenden Anfangskomponenten enthält
Komponente Gew.-% SiO2 64,0-73,0 Li2O 13,0-17,0 K2O 2,0-5,0 Al2O3 0,5-5,0 P2O5 2,0-5,0. - Es ist bevorzugt, dass das erfindungsgemäß verwendete Lithiumsilicatmaterial außerdem die folgenden zusätzlichen Anfangskomponenten unabhängig voneinander enthält
Komponente Gew.-% ZnO 2,0-6,0 Na2O 0,0-2,0 MeIIO 0,0-5,0 ZrO2 0,0-2,0 färbende und fluoreszierende Metalloxide , 0,5-7,5, aber kein La2O3 - Besonders bevorzugt ist ein wie oben beschriebenes Lithiumsilicatmaterial, welches aus einer Mischung gebildet ist, die die folgenden Anfangskomponenten unabhängig voneinander in den folgenden Mengen enthält:
Komponente Gew.-% SiO2 65,0-70,0 Li2O 14,0-16,0 K2O 2,0-5,0 Al2O3 1,0-5,0 P2O5 2,0-5,0 ZnO 2,0-6,0 Na2O 0,1-2,0 MeIIO 0,1-5,0 ZrO2 0,1-2,0 färbende und fluoreszierende Metalloxide, 0,5-3,5, aber kein La2O3
wobei das Metall des einen oder der mehreren färbenden und fluoreszierende Metalloxide aus der Gruppe bestehend aus Ta, Tb, Y, Er, Pr, Ce, Ti, V, Fe und Mn ausgewählt ist. - Die Passage "... unabhängig voneinander..." bedeutet, dass zumindest eine der bevorzugten Mengen gewählt ist und dass es demzufolge nicht notwendig ist, dass alle Komponenten in den bevorzugten Mengen vorhanden sind.
- Als färbende Komponenten oder fluoreszierende Komponenten können z. B. Oxide von f-Elementen, aber kein La2O3, verwendet werden, d. h. die Liste der oben angegebenen Metalle ist nicht als abschließend anzusehen. Die färbenden oder fluoreszierenden Komponenten sorgen dafür, dass die Farbe des endgültigen dentalen Produktes zu der des natürlichen Zahnmaterials des fraglichen Patienten passt.
- Bei der obigen Zusammensetzung fungiert P2O5 als Keimbildungsmittel für die Lithiummetasilicatkristalle und eine Konzentration von mindestens 2 Gew.-% ist für die notwendige Keimbildung erforderlich. Anstelle von P2O5 sind ebenfalls andere Keimbildungsmittel, wie z. B. Verbindungen der Elemente Pt, Ag, Cu und W möglich.
- Zusätzlich zu den oben erwähnten Komponenten kann die Glaskeramik außerdem weitere zusätzliche Komponenten, aber kein La2O3 enthalten, um die technische Verarbeitbarkeit des Glases zu verbessern. Derartige zusätzliche Komponenten können demzufolge insbesondere Verbindungen wie z. B. B2O3 und F sein, die im Allgemeinen 0 bis 5,0 Gew.-% ausmachen.
- Ein wie oben beschriebenes Lithiumsilicatmaterial, welches aus einer Mischung gebildet ist, die anfänglich 67,0 bis 70,0 Gew.-% SiO2 enthält, ist besonders bevorzugt.
- Es ist weiter bevorzugt, dass die Lithiummetasilicatkristallphase 20 bis 50 Vol.-% und insbesondere 30 bis 40 Vol.-% des Lithiumsilicatmaterials bildet. Ein derartiger Teil des Volumens führt dazu, dass die Kristalle ziemlich entfernt voneinander vorliegen und verhindert demnach eine zu hohe Festigkeit des Lithiumsilicatmaterials.
- Die Lithiummetasilicatkristalle sind vorzugsweise von lamellarer oder plättchenartiger Form. Dies führt zu einer sehr guten maschinellen Verarbeitbarkeit des Lithiumsilicatmaterials ohne Einsatz von großer Energie und ohne unkontrolliertes Brechen. Der letzte Aspekt des unkontrollierten Brechens ist z. B. bei Gläsern bekannt, die demzufolge für eine maschinelle Verarbeitung ungeeignet sind. Es wird angenommen, dass die bevorzugte Morphologie der Lithiummetasilicatkristalle ebenfalls für die überraschend hohe Kantenfestigkeit der Produkte, z. B. von komplizierten dentalen Restaurationen, verantwortlich ist, die aus dem erfindungsgemäß verwendeten Lithiumsilicatmaterial hergestellt sind.
- Das erfindungsgemäß verwendete Lithiumsilicatmaterial hat die Form eines Rohlings. Der Rohling nimmt üblicherweise die Form eines kleinen Zylinders oder eines rechteckigen Blockes ein. Die genaue Form hängt von dem speziellen Apparat ab, der für die gewünschte computergestützte maschinelle Verarbeitung des Rohlings verwendet wird.
- Nach der maschinellen Verarbeitung hat das erfindungsgemäß verwendete Lithiumsilicatmaterial vorzugsweise die Form einer dentalen Restauration, z. B. eines Inlays, eines Onlays, einer Brücke, eines Stiftaufbaus, einer Verblendung, einer Schale, einer Facette, einer Krone, einer Teilkrone, eines Gerüstes oder einer Kappe.
- Ein Lithiumdisilicatmaterial kann in einem Verfahren gebildet werden, welches einen Schritt beinhaltet, bei dem eine Phase gebildet wird, die hauptsächlich kristallines Lithiummetasilicat enthält, wobei das Lithiummetasilicat anschließend zu Lithiumdisilicat umgewandelt wird.
- Ein dentales Produkt, welches aus Lithiumdisilicat hergestellt ist, kann in einem Verfahren gebildet werden, welches einen Schritt beinhaltet, bei dem eine Phase hergestellt wird, die hauptsächlich kristallines Lithiummetasilicat enthält, wobei das Lithiummetasilicat anschließend zu Lithiumdisilicat umgewandelt wird.
- Ein Rohling des erfindungsgemäß verwendeten Lithiumsilicatmaterials ist mittels eines Verfahrens herstellbar, bei dem
- (a) eine Schmelze eines Ausgangsglases hergestellt wird, die die Anfangskomponenten SiO2, Li2O, K2O, Al2O3 und P2O5 als die Hauptkomponenten, aber kein La2O3 enthält,
- (b) die Schmelze des Ausgangsglases in eine Form gegossen wird, um einen Ausgangsglasrohling zu bilden, und der Glasrohling auf Raumtemperatur abgekühlt wird,
- (c) der Ausgangsglasrohling einer ersten Wärmebehandlung bei einer ersten Temperatur unterworfen wird, um ein Glasprodukt zu ergeben, welches Keime enthält, die zur Bildung von Lithiummetasilicatkristallen geeignet sind,
- (d) das Glasprodukt aus Schritt (c) einer zweiten Wärmebehandlung bei einer zweiten Temperatur unterworfen wird, die höher als die erste Temperatur ist, um den Lithiumsilicatrohling mit Lithiummetasilicatkristallen als Hauptkristallphase zu erhalten.
- Bevorzugt ist ein wie oben beschriebenes Verfahren, bei dem das Ausgangsglas von Schritt (a) außerdem ZnO, Na2O, MeIIO, ZrO2, und färbende und fluoreszierende Metalloxide enthält, wobei MeIIO ein oder mehrere Mitglieder ausgewählt aus der Gruppe bestehend aus CaO, BaO, SrO und MgO ist.
- Besonders bevorzugt ist ein wie oben beschriebenes Verfahren, bei dem das Ausgangsglas von Schritt (a) die folgenden Anfangskomponenten unabhängig voneinander in den folgenden Mengen enthält
Komponente Gew.-% SiO2 65,0-70,0 Li2O 14,0-16,0 K2O 2,0-5,0 Al2O3 1,0-5,0 P2O5 2,0-5,0 ZnO 2,0-6,0 Na2O 0,1-2,0 MeIIO 0,1-5,0 ZrO2 0,1-2,0 färbende und fluoreszierende Metalloxide 0,5-3,5,
wobei das Metall (die Metalle) des einen oder der mehreren färbenden und fluoreszierende Metalloxide aus der Gruppe bestehend aus Ta, Tb, Y, Er, Pr, Ce, Ti, V, Fe und Mn ausgewählt ist (sind). - In Schritt (a) wird eine Schmelze eines Ausgangsglases hergestellt, welches die Komponenten der Glaskeramik enthält. Für diesen Zweck wird eine entsprechende Mischung von geeigneten Ausgangsmaterialien, wie z. B. Carbonaten, Oxiden und Phosphaten, hergestellt und auf Temperaturen von insbesondere 1300 bis 1600°C für 2 bis 10 Std. erwärmt. Um einen besonders hohen Grad an Homogenität zu erhalten, kann die erhaltene Glasschmelze in Wasser gegossen werden, um Glaskörner zu bilden, und die erhaltenen Glaskörner können erneut aufgeschmolzen werden.
- In Schritt (b) wird die Schmelze des Ausgangsglases auf Raumtemperatur abgekühlt, um ein Glasprodukt zu ergeben. Dieser Abkühlungsschritt beinhaltet üblicherweise ebenfalls die Bildung eines Rohlings der gewünschten Form, indem die Schmelze des Ausgangsglases in eine entsprechende Form, z. B. eine Stahlform, gegossen wird.
- Das Abkühlen wird vorzugsweise in kontrollierter Weise durchgeführt, um eine Entspannung des Glases zu gestatten und Spannungen in der Struktur zu vermeiden, die mit schnellen Temperaturänderungen verbunden sind. In der Regel wird die Schmelze demzufolge in vorgewärmte Formen z. B. bei einer Temperatur von 400°C gegossen oder langsam in einem Ofen abgekühlt.
- In Schritt (c) wird das Ausgangsglasprodukt einer ersten Wärmebehandlung bei einer ersten Temperatur unterworfen, um die Bildung von Keimen für Lithiummetasilicatkristalle zu bewirken. Diese erste Wärmebehandlung beinhaltet vorzugsweise eine Erwärmung des Glasproduktes für eine Dauer von 5 min. bis 1 Std. auf eine erste Temperatur von 450 bis 550°C. In einigen Fällen ist es zweckmäßig, Schritt (b) und Schritt (c) zu kombinieren, um den Glasgegenstand zu entspannen und die Keimbildung der Lithiummetasilicatkristalle in einer einzelnen Wärmebehandlung zu bewirken. Demzufolge kann der Schritt (c) dadurch ersetzt werden, dass Schritt (b) derart verändert wird, dass während des Abkühlungsverfahrens eine Temperatur von etwa 450 bis 550°C für eine Dauer von etwa 5 bis 50 min. gehalten wird, um das Glasprodukt herzustellen, welches Keime enthält, die für die Bildung der Lithiummetasilicatkristalle während Schritt (b) geeignet sind.
- Gemäß einer weiteren bevorzugten Ausführungsform beinhaltet in Schritt (c) die erste Wärmebehandlung das Erwärmen des Ausgangsglasrohlings auf eine Temperatur von etwa 450 bis 550°C für eine Dauer von etwa 5 min. bis 1 Std.
- In dem anschließenden Schritt (d) wird das Glasprodukt, welches die gewünschten Keime von Li2SiO3 aufweist, einer zweiten Wärmebehandlung bei einer zweiten Temperatur unterworfen, die höher als die erste Temperatur ist. Diese zweite Wärmebehandlung führt zu der gewünschten Bildung von Lithiummetasilicatkristallen als vorherrschende und vorzugsweise als einzige Kristallphase und ergibt demzufolge eine Lithiummetasilicat-Glaskeramik. Vorzugsweise beinhaltet diese zweite Wärmebehandlung von Schritt (d) das Erwärmen des Glasproduktes, welches für die Bildung von Lithiummetasilicatkristallen geeignete Keime enthält, auf eine zweite Temperatur von etwa 600 bis 700°C für eine Dauer von etwa 10 bis 30 min.
- Das grundsätzliche Temperaturprofil eines solchen Verfahrens ist in
1 beispielhaft angegeben. Bereits ausgehend von der Schmelze (1 ), d. h. zum Ende von Schritt (a), erniedrigt sich die Temperatur zur Entspannung des Produktes in einem Temperaturbereich von 500 bis 450°C (2). Die Temperatur kann anschließend auf Raumtemperatur gebracht (durchgezogene Linie), Schritt (b), und anschließend auf eine Temperatur von etwa 450 bis 550°C gebracht werden, oder sie kann im Temperaturbereich von 450 bis 500°C (gepunktete Linie) gehalten werden. In dem Bereich, der mit (3 ) bezeichnet ist, Schritt (c), tritt die Keimbildung bei einer Temperatur von 450 bis 550°C auf und sie wird durch P2O5 beeinflusst. Anschließend wird das Glasmaterial auf eine Temperatur im Bereich von 600 bis 700°C erwärmt und bei dieser Temperatur (4 ) gehalten, und während dieser Zeit bildet sich Lithiummetasilicat, Schritt (d). Anschließend kann das Material heruntergekühlt werden (durchgezogene Linie) auf z. B. Raumtemperatur zum Schleifen, Fräsen oder CAD/ CAM-Verarbeitung und anschließend auf eine Temperatur von etwa 700 bis 950°C gebracht werden, oder es kann direkt auf 700 bis 950°C (gepunktete Linie) gebracht werden, und bei dieser Temperatur (5 ) erfolgt die zweite Kristallisation, die Lithiumdisilicat bildet, und kann eine zusätzliche Wärmebehandlung oder ein Heißpressen durchgeführt werden. - In Abhängigkeit von der speziellen Zusammensetzung eines ausgewählten Ausgangsglases ist es für den Durchschnittsfachmann mit Hilfe von Differenzialthermoanalyse (DSC) und Röntgenbeugungsanalysen möglich, geeignete Bedingungen in Schritten (c) und (d) zu bestimmen, um zu Materialien zu kommen, die die gewünschte Morphologie und Größe der Lithiummetasilicatkristalle haben. Um dieses Verfahren weiter zu veranschaulichen, zeigen die
2 bis5 zusammen mit den Tabellen I und II in den Beispielen, wie relevante Daten unter Verwendung der genannten Messungen für Referenz12 (nich erfindungsgemäß) erhalten wurden, und sie sind demzufolge allgemein erhältlich. Außerdem gestatten diese Analysen die Identifizierung von Bedingungen, die die Bildung von unerwünschten anderen Kristallphasen vermeiden oder beschränken, wie z. B. des hochfesten Lithiumdisilicats oder von Cristobalit und Lithiumphosphat. - Im Anschluss an Schritt (d) ist es bevorzugt, die erhaltene Glaskeramik zu formen. Dies wird vorzugsweise durch Schritt (e) bewirkt, bei dem die Lithiummetasilicat-Glaskeramik zu einem Glaskeramikprodukt gewünschter Form maschinell verarbeitet wird, insbesondere der Form einer dentalen Restauration. Die maschinelle Verarbeitung wird vorzugsweise durch Beschleifen oder Fräsen durchgeführt. Es ist außerdem bevorzugt, dass die maschinelle Verarbeitung mittels eines Computers gesteuert wird, insbesondere durch Verwendung von CAD/CAM-basierenden Fräseinrichtungen. Dieses gestattet eine sogenannte Stuhlbehandlung des Patienten durch den Zahnarzt.
- Es ist ein besonderer Vorteil der oben beschriebenen Glaskeramik, dass sie durch maschinelle Verarbeitung geformt werden kann, ohne dass die übermäßige Werkzeugabnutzung von den zähen und hochfesten Materialien des Standes der Technik beobachtet wird. Dies wird insbesondere durch die einfache Möglichkeit gezeigt, die oben beschriebenen Glaskeramiken zu polieren und zu beschleifen. Derartige Polier- und Beschleifverfahren erfordern demgemäß weniger Energie und weniger Zeit, um ein akzeptables Produkt herzustellen, welches die Form von sogar sehr komplizierten dentalen Restaurationen hat.
- Lithiumdisilicat-Dentalrestaurationen können auf vielerlei unterschiedliche Weise hergestellt werden. Üblicherweise werden die CAD/CAM- und die Heißpress-Technik verwendet. Zahnärzte können ein CAD/CAM-Verfahren (Cerec 2®, Cerec 3®, Sirona®) verwenden, um am Stuhl eine vollkeramische Lithiumdisilicatrestauration herzustellen. Das endgültige Ergebnis ist immer eine dentale Restauration mit Lithiumdisilicat als Hauptkristallphase. Die Mikrostruktur des Ausgangsrohlings kann unterschiedlich sein. Der Rohling kann ein Lithiumsilicatglas, eine Lithiummetasilicatglaskeramik, eine Lithiumdisilicatglaskeramik oder eine Glaskeramik sein, die aus Lithiummeta- und -disilicat besteht.
- Für die Herstellung einer dentalen Restauration durch die Heißpress-Technik wird der Lithiumsilicatglas-Ingot oder der Lithiummetasilicat-Ingot einer Wärmebehandlung bei etwa 700 bis 1200°C unterworfen, um ihn in einen viskosen Zustand zu überführen. Die Wärmebehandlung wird in einem speziellen Ofen (EP 500®, EP 600®, Ivoclar Vivadent AG) durchgeführt. Der Ingot wird in ein spezielles Einbettmaterial eingebettet. Während der Wärmebehandlung kristallisiert der Ingot. Die Hauptkristallphase ist dann Lithiumdisilicat. Die viskose Glaskeramik fließt unter einem Druck von 2 bis 12 bar in die Ausnehmung des Einbettmaterials, um die gewünschte Form der dentalen Restauration zu erhalten. Nach Abkühlung der Einbettungsform auf Raumtemperatur kann die Lithiumdisilicatrestauration durch Sandstrahlen entformt werden. Das Gerüst kann weiter mit einem Glas oder einer Glaskeramik durch Sinter- oder Heißpress-Technik beschichtet werden, um die endgültige dentale Restauration mit natürlicher Ästhetik zu erhalten.
- Der Ingot, der Lithiummetasilicat und Lithiumdisilicat enthält, wird einer Wärmebehandlung bei etwa 700 bis 1200°C unterworfen, um ihn in einen viskosen Zustand zu überführen. Die Wärmebehandlung wird in einem speziellen Ofen durchgeführt (EP 500®, EP 600®, Ivoclar Vivadent AG). Der Glasskeramik-Ingot wird in ein spezielles Einbettmaterial eingebettet. Während der Wärmebehandlung kristallisiert die Glaskeramik weiter. Die Hauptkristallphase ist dann Lithiumdisilicat. Die viskose Glaskeramik fließt bei einem Druck von 2 bis 12 bar in die Ausnehmung des Einbettmaterials, um die gewünschte Form der dentalen Restauration zu erhalten. Nach Abkühlung der Einbettungsform auf Raumtemperatur kann die Lithiumdisilicatrestauration durch Sandstrahlen entformt werden. Das Gerüst kann weiter mit einem Glas oder einer Glaskeramik durch Sinter- oder Heißpress-Technik beschichtet werden, um die endgültige dentale Restauration mit natürlicher Ästhetik zu erhalten.
- Zur Herstellung einer dentalen Restauration durch die CAD/CAM-Technik können die Lithiumsilicat- oder die Lithiummetasilicat-Blöcke mit Lithiumdisilicat als möglicher untergeordneter kristalliner Phase mit einer Festigkeit von etwa 80 bis 150 MPa leicht maschinell in einer CAM-Einheit, wie Cerec 2® oder Cerec 3® (Sirona, Deutschland) verarbeitet werden. Größere Fräsmaschinen wie z. B. DCS precimill® (DCS, Schweiz) sind ebenfalls geeignet. Der Block wird demzufolge in der Fräskammer mit Hilfe eines fixierten oder integrierten Halters positioniert. Die CAD-Konstruktion der dentalen Restauration wird mit Hilfe eines Scanning-Verfahrens oder einer optischen Kamera in Kombination mit einer Software durchgeführt. Das Fräsverfahren benötigt für eine Einheit 10 bis 15 min. Kopierfräseinheiten, wie Celay® (Celay, Schweiz), sind ebenfalls für die maschinelle Bearbeitung der Blöcke geeignet. Zunächst wird eine 1:1-Kopie der gewünschten Restauration in hartem Wachs hergestellt. Das Wachsmodell wird dann mechanisch gescannt und 1:1 mechanisch auf eine Schleifeinheit übertragen. Das Schleifverfahren wird demgemäß nicht durch einen Computer kontrolliert. Die gefräste dentale Restauration muss einer Wärmebehandlung unterworfen werden, um die gewünschte Lithiumdisilicat-Glaskeramik mit hoher Festigkeit und zahnähnlicher Farbe zu erhalten. Die Wärmebehandlung wird in einem Bereich von 700 bis 900°C für eine Dauer von etwa 5 bis 30 min. durchgeführt. Das Gerüst kann weiter mit einem Glas oder einer Glaskeramik durch Sinter- oder Heißpress-Technik beschichtet werden, um die endgültige dentale Restauration mit natürlichem Aussehen zu erhalten.
- Blöcke mit Lithiumdisilicat als Hauptkristallphase können aufgrund der hohen Festigkeit und Zähigkeit der Glaskeramik lediglich in einer großen Fräsmaschine, wie z. B. DCS precimill® (DCS, Schweiz) gefräst werden. Der Block wird demzufolge in der Fräskammer mit einem fixierten Metallhalter positioniert. Die CAD-Konstruktion der dentalen Restauration wird mit Hilfe eines Scanning-Verfahrens in Kombination mit einer Software durchgeführt. Eine zusätzliche Wärmebehandlung im Bereich von 700 bis 900°C kann durchgeführt werden, um Oberflächenfehler zu schließen, die durch das Fräsverfahren herbeigeführt wurden. Das Gerüst kann weiter mit einem Glas oder einer Glaskeramik mittels Sinter- oder Heißpress-Technik beschichtet werden, um die endgültige dentale Restauration mit natürlichem Aussehen zu erhalten.
- Es hat sich weiter gezeigt, dass die leicht maschinell verarbeitbare oben beschriebene Lithiummetasilicat-Glaskeramik zu einem Lithiumdisilicat-Glaskeramikprodukt mit Hilfe einer weiteren Wärmebehandlung umgewandelt werden kann. Die erhaltene Lithiumdisilicat-Glaskeramik hat nicht nur ausgezeichnete mechanische Eigenschaften, wie z. B. hohe Festigkeit, sondern zeigt ebenfalls andere Eigenschaften, die für ein Material für dentale Restauration gefordert werden.
- Demgemäß umfasst ein Verfahren zur Herstellung eines Lithiumdisilicat-Glaskeramikproduktes ferner, dass
- (f) die oben beschriebene Lithiummetasilicat-Glaskeramik einer dritten Wärmebehandlung unterworfen wird, um Lithiummetasilicatkristalle in Lithiumdisilicatkristalle umzuwandeln.
- In diesem Schritt (f) wird eine Umwandlung der metastabilen Lithiummetasilicatkristalle zu Lithiumdisilicatkristallen bewirkt. Vorzugsweise beinhaltet diese dritte Wärmebehandlung eine vollständige Umwandlung zu Lithiumdisilicatkristallen und sie wird bevorzugt durch Erwärmen auf 700 bis 950°C für 5 bis 30 min. durchgeführt. Die geeigneten Bedingungen für eine gegebene Glaskeramik können bestimmt werden, indem XRD-Analysen bei unterschiedlichen Temperaturen durchgeführt werden.
- Es hat sich ebenfalls gezeigt, dass die Umwandlung zu einer Lithiumdisilicat-Glaskeramik lediglich mit einer sehr kleinen linearen Schrumpfung von nur etwa 0,2 bis 0,3% verbunden ist, was im Vergleich zu einer linearen Schrumpfung von bis zu 30% bei Sinterung von Keramiken fast vernachlässigbar ist.
- Ein wie oben beschriebenes Verfahren, bei dem der Lithiumsilicatrohling eine biaxiale Festigkeit von mindestens 90 MPa und eine Bruchzähigkeit von mindestens 0,8 MPam0,5 hat, ist bevorzugt.
- Der Lithiumsilicatrohling mit Lithiummetasilicat als Hauptkristallphase wird zu einer gewünschten Geometrie geformt, indem er maschinell verarbeitet oder heißgepresst wird, um ein geformtes Lithiumsilicatprodukt zu bilden.
- Dabei ist der geformte Lithiumsilicatrohling eine dentale Restauration, und ganz besonders bevorzugt ist ein Verfahren, bei dem die dentale Restauration ein Inlay, ein Onlay, eine Brücke, ein Stiftaufbau, eine Verblendung, eine Schale, eine Facette, eine Krone, eine Teilkrone, ein Gerüst oder eine Kappe ist.
- Ein wie oben beschriebenes Verfahren, bei der die maschinelle Verarbeitung durch Schleifen oder Fräsen durchgeführt wird, bildet eine bevorzugte Ausführungsform, wobei ein Verfahren, bei dem die maschinelle Verarbeitung mit Hilfe eines Computers gesteuert wird, ganz besonders bevorzugt ist.
- Ein wie oben beschriebenes Verfahren, welches außerdem beinhaltet, dass das geformte Lithiumsilicatprodukt einer dritten Wärmebehandlung bei einer dritten Temperatur von etwa 700 bis 950°C für eine Dauer von etwa 5 bis 30 min. unterworfen wird, bildet einen weiteren Gesichtspunkt, und dieses Verfahren ist besonders bevorzugt, wenn das der dritten Wärmebehandlung unterworfene Lithiumsilicatprodukt Lithiummetasilicat als Hauptkristallphase enthält und die dritte Wärmebehandlung die Lithiummetasilicatkristalle zu Lithiumdisilicatkristallen als Hauptkristallphase der dentalen Restauration umwandelt.
- Eine weitere bevorzugte Ausführungsform ist ein wie oben beschriebenes Verfahren, bei dem die während der dritten Wärmebehandlung auftretende Schrumpfung kleiner als 0,5%, bezogen auf das Volumen, ist.
- Ein Lithiumsilicatmaterial kann auch durch Heißpressen zu der gewünschten Geometrie verformt werden, um die dentale Restauration herzustellen. Dabei ist ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration bevorzugt, bei dem das Heißpressen beinhaltet, dass das Lithiumsilicatmaterial einer Wärmebehandlung bei einer Temperatur von etwa 500 bis 1200°C unterworfen wird, um das Lithiumsilicatmaterial in einen viskosen Zustand zu überführen, und das viskose Lithiumsilicatmaterial bei einem Druck von etwa 2 bis 12 bar in eine Form oder einen Pressstempel gepresst wird, um die dentale Restauration mit einer gewünschten Geometrie zu erhalten.
- Ein wie oben beschriebenes Verfahren, bei dem das der Wärmebehandlung und dem Pressen unterworfene Lithiumsilicatmaterial Lithiummetasilicatkristalle enthält, die während der Wärmebehandlung und des Pressens zu Lithiumdisilicatkristallen umgewandelt werden, ist besonders bevorzugt.
- Eine weitere bevorzugte Ausführungsform bildet ein wie oben beschriebenes Verfahren, welches eine Steigerung der Festigkeit und der Bruchzähigkeit des Lithiumsilicatmaterials umfasst.
- Bevorzugt ist ein wie oben beschriebenes Verfahren für die Herstellung einer dentalen Restauration, bei dem die dentale Restauration eine biaxiale Festigkeit von mindestens 250 MPa und eine Bruchzähigkeit von mindestens 1,5 MPam0,5 hat.
- Ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration, bei dem außerdem die dentale Restauration endbehandelt wird, um ein natürliches Aussehen zu erhalten, wobei der Endbehandlungsschritt die Aufbringung einer Beschichtung auf die dentale Restauration beinhaltet, indem gepulverte Materialien aufgeschichtet werden oder ein Beschichtungsmaterial auf die nicht endbehandelte dentale Restauration heißgepresst wird, ist ebenfalls bevorzugt.
- Ein wie oben beschriebenes Verfahren, bei dem die dritte Wärmebehandlung während eines Brennens der aufgeschichteten Materialien oder während des Heißpressens des Beschichtungsmaterials auf die nicht endbehandelte dentale Restauration erfolgt, ist besonders bevorzugt.
- Somit wird schließlich ein Produkt erhalten, welches alle die vorteilhaften mechanischen, optischen und Stabilitätseigenschaften besitzt, die Lithiumdisilicatkeramiken für den Einsatz als dentale Restaurationsmaterialien attraktiv machen. Diese Eigenschaften werden jedoch ohne die Nachteile der konventionellen Materialien bei der Formung unter Verwendung eines auf CAD/CAM-basierten Verfahrens, insbesondere die übermäßige Abnutzung der Fräs- und Schleifwerkzeuge, erhalten.
- Demgemäß ist mittels des obigen Verfahrens ein Lithiumdisilicat-Glaskeramikprodukt erhältlich, das Lithiumdisilicat als Hauptkristallphase aufweist. Das Lithiumdisilicat-Glaskeramikprodukt liegt in Form einer dentalen Restauration vor. Es ist weiter bevorzugt, dass in der Lithiumdisilicat-Gläskeramik die Lithiumdisilicatkristalle 60 bis 80%, bezogen auf das Volumen, der Glaskeramik ausmachen.
- Die Umwandlung der oben beschriebenen Lithiummetasilicat-Glaskeramik zu einem Lithiumdisilicat-Glaskeramikprodukt ist mit einer erstaunlich hohen Steigerung der Festigkeit um einen Faktor von bis zu 4 verbunden. Typischerweise hat die oben beschriebene Lithiummetasilicat-Glaskeramik eine Festigkeit von etwa 100 MPa, und die Umwandlung führt zu einer Lithiumdisilicat-Glaskeramik mit einer Festigkeit von mehr als 400 MPa (gemessen als biaxiale Festigkeit).
- An den wie oben beschriebenen Lithiumsilicatrohling kann ein Halter angefügt und mit dem Rohling verbunden sein.
- Ein wie oben beschriebener Lithiumsilicatrohling, bei dem der Halter aus einem anderen Material als der Rohling ist, bildet eine Ausführungsform.
- Ein wie oben beschriebener Lithiumsilicatrohling, bei dem der Halter aus einer Legierung, einem Metall, einer Glaskeramik oder einer Keramik hergestellt ist, bildet eine bevorzugte Ausführungsform.
- Ein wie oben beschriebener Lithiumsilicatrohling, bei dem der Halter aus dem gleichen Material wie der Rohling ist und einstückig mit dem Rohling ist, bildet eine weitere Ausführungsform.
- Ein wie oben beschriebener Lithiumsilicatrohling, der mit Informationen versehen ist, wobei die Informationen auf dem Rohling sich auf das Material, die Größe und den Typ der Form beziehen, die aus dem Rohling maschinell hergestellt werden soll, bildet eine bevorzugte Ausführungsform.
- Ein weiterer Aspekt betrifft ein Verfahren zur Herstellung einer Lithiumsilicatrestauration, bei dem ein wie oben beschriebener Lithiumsilicatrohling hergestellt wird und anschließend eine dentale Restauration mit dem Lithiumsilicatrohling beschichtet wird.
- Ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration, bei dem ein dentales Gerüst mittels Heißpressen des Lithiumsilicatrohlings auf das dentale Gerüst beschichtet wird, ist bevorzugt.
- Besonders bevorzugt ist ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration, bei dem das dentale Gerüst eine Krone, eine Teilkrone, eine Brücke, eine Kappe, eine Schale, eine Verblendung oder ein Stiftaufbau ist, und ganz besonders bevorzugt ist ein Verfahren, bei dem das dentale Gerüst aus einem Metall, einer Legierung, einer Keramik oder einer Glaskeramik hergestellt ist.
- Ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration, bei dem die Keramik Zirkoniumoxid, Aluminiumoxid, ein Zirkoniummischoxid, ein Aluminiummischoxid oder eine Kombination davon enthält, bildet eine ganz besonders bevorzugte Ausführungsform.
- Eine weitere bevorzugte Ausführungsform bildet ein wie oben beschriebenes Verfahren zur Herstellung einer dentalen Restauration, bei dem der Lithiumsilicatrohling, der auf das Gerüst geschichtet wird, Lithiummetasilicatkristalle enthält, die während des Heißpressens des Lithiumsilicatrohlings auf das dentale Gerüst zu Lithiumdisilicatkristallen umgewandelt werden, oder bei dem der Lithiumsilicatrohling Keime enthält, die für die Bildung von Lithiummetasilicatkristallen geeignet sind und die während des Heißpressens des Lithiumsilicatrohlings auf das dentale Gerüst als Lithiumdisilicatkristalle kristallisieren.
- Die Erfindung wird nachfolgend auf der Grundlage von Beispielen detaillierter erläutert.
- Beispiele
- Beispiele 1 bis 11 und 13, Erfindung 12 (Referenz) und 14 bis 15 (Vergleich) Insgesamt 12 unterschiedliche Lithiummetasilicat-Glaskeramikprodukte sowie zwei Keramiken zu Vergleichszwecken mit den in Tabelle III angegebenen chemischen Zusammensetzungen wurden hergestellt, indem die Schritte (a) bis (d) des oben beschriebenen Verfahrens durchgeführt wurden, und schließlich durch Schritt (e) des oben beschriebenen Verfahrens zu Lithiumdisilicat-Glaskeramikprodukten umgewandelt:
- Zu diesem Zweck wurden Proben der entsprechenden Ausgangsgläser in einem Platin-Rhodium-Tiegel bei einer Temperatur von 1500°C und für eine Dauer von 3 Std. (a) erschmolzen.
- Die erhaltenen Glasschmelzen wurden in Stahlformen gegossen, die auf 300°C vorgewärmt waren. Nach 1 min. wurden die Glasrohlinge in einen Ofen überführt, der auf eine Temperatur zwischen 450 und 550°C vorgewärmt war. Die genauen Werte KB T [°C] und KB t [min] sind für jede Probe in Tabelle III angegeben. Nach diesem Entspannungs- und Keimbildungsprozess (b) und (c) ließ man die Blöcke auf Raumtemperatur abkühlen. Die mit Keimen versehenen Proben waren homogen und transparent.
- Die Glasrohlinge wurden dann Schritt (d) unterworfen, d. h. der zweiten Wärmebehandlung, um Lithiummetasilicat zu kristallisieren, was bedeutet, dass die Glasrohlinge einer Temperatur von etwa 650°C für eine Dauer von etwa 20 min. ausgesetzt wurden, mit Ausnahme von Beispiel 3, bei dem bei 600°C kristallisiert wurde.
- Der Verlauf der Kristallisation wurde mit DCS-Messungen untersucht und die erhaltenen Kristallphasen wurden mit XRD analysiert, um die idealen Bedingungen für diese Wärmebehandlung festzustellen. „Ideale Bedingungen“ im Sinne der Erfindung liegen dann vor, wenn sich die zwei Kristallisationspeaks der Meta- und der Disilicat-Phase in einem solchen Ausmaß unterscheiden, dass in einem Herstellungsverfahren eine klare Unterscheidung realisiert werden kann, das bedeutet, dass beim Erwärmen einer Probe auf die erste Kristallisationstemperatur sichergestellt werden muss, dass beim Erreichen der gewünschten Temperatur innerhalb der Probe die Temperatur in äußeren Bereichen der Probe nicht die zweite Kristallisationstemperatur erreicht, d. h. je größer die Temperaturdifferenz der ersten und der zweiten Kristallisationstemperatur ist, desto größer kann die Probenmasse sein.
- Um das Verfahren weiter zu veranschaulichen, zeigt
2 einen DSC-Plot von Referenz 12 einer gequenchten und gepulverten Glasprobe, die mit einer Aufheizrate von 10 K/min erwärmt wurde. Die Kristallisation von Lithiummetasilicat (1 ), die Kristallisation von Lithiumdisilicat (2 ) sowie die Glasübergangstemperatur (3 ) und die Temperatur für die erste Kristallisation (4 ) sind eindeutig aus dem DSC-Plot erkennbar. - Ebenfalls wird ein Beispiel für die Analyse der Phasenentwicklung mittels Hochtemperatur-XRD für dasselbe Referenz 12 angegeben.
3 zeigt demgemäß die Messung einer Glasprobe bei einer konstanten Aufheizrate von 2 K/min. Es ist aus der Messung erkennbar, dass in diesem Fall die Kristallisation des Lithiummetasilicats (1 ) bei einer Temperatur von 510°C erfolgt und dass in diesem Fall die Auflösung des Lithiummetasilicats und die Kristallisation des Lithiumdisilicats (2 ) bei einer Temperatur von 730°C erfolgt. -
4 stellt eine Phasenanalyse mittels XRD von Referenz 12 nach Keimbildung bei 500°C für 7 min. und erster Kristallisation bei 650°C und 20 min. dar. - Die entsprechenden Daten sind in Tabelle I zusammengefasst: Tabelle I:
1 d-Abstand in 0,1 nm des Scans 2 d-Abstand in 0,1 nm des Musters 3 Index 4,628 4,690 LS 020 3,296 3,301 LS 111 2,708 LS 130 2,685 2,700 LS 200 2,355 2,342 LS 131 2,333 2,331 LS 002 -
5 zeigt eine SEM-Mikrophotographie, rückgestreute Elektronen, der gleichen Probe mit der gleichen thermalen Historie, wobei die Oberfläche mit 1% HF für 8 s. geätzt wurde. Es sind eindeutig Löcher erkennbar, die die früheren Lithiummetasilicatkristalle zeigen. - Die erhaltenen Blöcke waren nun für Schritt (e) fertig, d. h. das Formen der Lithiummetasilicat-Glaskeramik zu der gewünschten Form entweder durch Schneiden mittels Sägen oder durch Fräsen in einer CAD-CAM-Fräsmaschine (d. h. CEREC 3®). Die erhaltenen Lithiummetasilicat-Glaskeramikrohlinge wurden auf ihre maschinelle Verarbeitbarkeit und ihre Kantenfestigkeit analysiert. 10 Scheiben wurden aus einem Stab mit 12 mm Durchmesser zur Messung der biaxialen Festigkeit geschnitten. Die Ergebnisse dieser Analysen sind in Tabelle IV angegeben. 10 weitere Scheiben wurden hergestellt und einer dritten Wärmebehandlung (f) unterworfen.
- Im Falle von Rohlingen, die färbende und fluoreszierende Oxide enthielten, schienen die Rohlinge im Zustand des Metasilicates eine rötliche oder bläuliche Farbe zu haben. Dieser Effekt verschwand jedoch, sobald sich die Disilicatphase gebildet hatte, und die Rohlinge nahmen die Farbe an, die gewünscht war.
- Schließlich wurden die Lithiummetasilicat-Glaskeramikrohlinge einer zweiten Kristallisation, Schritt (f), bei 850°C für 10 min. unterworfen, mit Ausnahme von Beispiel 3, bei dem bei 830°C kristallisiert wurde, d. h. die dritte Wärmebehandlung, die im Allgemeinen bei Temperaturen von 700 bis 950°C, vorzugsweise 820 bis 880°C und für eine Dauer von 5 bis 30 min., vorzugsweise 5 bis 20 min., durchgeführt wird, um das Lithium metasilicat zu Lithiumdisilicat umzuwandeln.
- Die erhaltenen Produkte wurden auf ihre Kristallphasen analysiert. Zur weiteren Veranschaulichung des Verfahrens ist die Phasenanalyse für Referenz 12 nach Keimbildung bei 500°C für 7 min., erster Kristallisation bei 650°C für 20 min. und zweiter Kristallisation bei 850°C für 10 min. in
6 gezeigt. Die entsprechenden Daten sind in Tabelle II zusammengefasst: Tabelle II:1 d-Abstand in 0,1 nm des Scans 2 d-Abstand in 0,1 nm des Musters 3 Index 5,369 5,420 LS2 110 3,986 3,978 LP 120 3,855 3,834 LP 101 3,714 3,737 LS2 130 3,629 3,655 LS2 040 3,562 3,581 LS2 111 2,929 2,930 LS2 131 2,901 2,908 LS2 200 2,379 2,388 LS2 002 2,346 2,35 LS2 221 2,283 2,29 LS2 151 2,050 2,054 LS2 241 -
7 zeigt eine SEM-Mikrophotographie, rückgestreute Elektronen, der gleichen Probe mit der gleichen thermalen Historie, wobei die Oberfläche mit 3% HF für 30 s. geätzt wurde, was dazu führte, dass die Glasphase weggeätzt wurde und die Lithiumdisilicatkristalle verblieben. - Zusätzlich zu der Analyse auf Kristallphasen wurden die Proben ebenfalls auf ihre biaxiale Festigkeit und ihre chemische Beständigkeit analysiert. Weiter wurde ihre Transluzenz bestimmt. Die Ergebnisse sind ebenfalls in Tabelle IV angegeben.
- In Tabelle IV sind die festgestellten Kristallphasen wie folgt bezeichnet:
- LS
- - Lithiummetasilicat
- LS2
- - Lithiumdisilicat
- LP
- - Lithiumphosphat
- Zum Erhalt von Informationen über die maschinelle Verarbeitbarkeit wurden Tests auf einer Cerec® durchgeführt, wobei für jeden Test neue Werkzeuge verwendet wurden. Ein „Lego®-Baustein“ diente als Modell, der aus allen Zusammensetzungen, die diesem Test unterworfen wurden, und aus einer mit Leucit verstärkten Glaskeramik des Namens ProCAD® von Ivoclar Vivadent AG gefräst wurde. Die Abfolge der Behandlung war wie folgt: Zunächst wurde ein Rohling von ProCAD® gefräst, dann wurde ein Rohling der zu testenden Keramik gefräst, und danach wurde wiederum ein ProCAD®-Rohling gefräst. Die maschinelle Verarbeitbarkeit erwies sich als „sehr gut“ für den Fall, dass die zum Fräsen des Rohlings der zu testenden Keramik erforderliche Zeit weniger als 95% der zum Fräsen des ProCAD®-Rohlings erforderlichen Zeit betrug. Zeiten im Bereich von 95 bis 105% dieser Zeit führten zur Note „gut“ für die maschinelle Verarbeitbarkeit, Zeiten im Bereich von 105 bis 115% zu „akzeptabel“ und Zeiten oberhalb 115% zu „schlecht“. Die mittlere für das Fräsverfahren erforderliche Zeit betrug 14,0 min.
- Zum Vergleich der maschinellen Verarbeitbarkeit der Testproben mit einer anderen Glaskeramik wurde ein Rohling mit der Zusammensetzung hergestellt, wie sie in
DE 197 50 794 offenbart ist, und er wurde dem oben beschriebenen Test unterworfen. Nach 15 min. wurde der Test abgebrochen, da lediglich 10% des zu fräsenden Volumens bereits gefräst war und die zum Fräsen verwendeten Werkzeuge waren bereits abgenutzt, was mit keinem der Testproben passierte. - Die Kantenfestigkeit wurde wie folgt bestimmt:
- Mit Hilfe einer Fräseinheit (CEREC 3®) wurden Rohlinge gefräst, um Lego-Bausteine zu ergeben. Mit einem 1,6 mm zylindrischen Diamantschneider wurden Blindlöcher gefräst. Die Qualität dieser Blindlöcher wurde bestimmt, indem der Bereich der abgebrochenen Ecken mit denen einer Referenzprobe (ProCAD®) verglichen wurde. Das Verhältnis des Bereichs der abgebrochenen Ecken zu dem Bereich der Blindlöcher ist ein Maß für die Kantenfestigkeit.
- Eine Kantenfestigkeit wird als „sehr gut“ angesehen, wenn die genannten Bereiche kleiner sind als die der Referenz, sie wird als „gut“ angesehen, wenn die Verhältnisse ungefähr gleich sind, und sie wird als „akzeptabel“ angesehen, wenn die Fläche größer als 110% der Referenzprobe ist.
- Die chemische Beständigkeit wurde gemäß ISO 6872 bestimmt, d. h. als Masseverlust nach 16 h in 4% Essigsäure bei 80°C. „Gut“ bedeutet, dass die Löslichkeit gemäß diesem Verfahren unterhalb 100 µg/cm2 ist.
- Die Festigkeit wurde als Biaxialfestigkeit nach ISO 6872 oder als 3-Punkt-Biegefestigkeit nach WN 843-1 bestimmt:
Stäbe mit 12 mm Durchmesser wurden gegossen und einmal kristallisiert. Aus diesen Stäben wurden 20 Scheiben mit einer Dicke von 1,2 mm herausgesägt. 10 dieser Scheiben wurden dann geglättet, und die Oberflächen der Scheiben wurden unter Verwendung von SiC-Papier mit Korngröße 1000 poliert. Die Biaxialfestigkeit wurde gemessen, so wie es in ISO 6872 offenbart ist. Die anderen 10 Scheiben wurden ein zweites Mal bei 800 bis 900°C kristallisiert, um die Lithiumdisilicatphase zu ergeben. Diese verfestigten Proben wurden auf beiden Seiten geglättet, und die Oberflächen wurden unter Verwendung von SiC-Papier mit Korngröße 1000 poliert. Die Biaxialfestigkeit wurde dann gemäß ISO 6872 bestimmt. - Demgegenüber wurde die Biegefestigkeit bei Stäben mit den Dimensionen 25·3,5·3,0 mm bestimmt, die aus einem Block von Lithiummetasilicat-Glaskeramik herausgesägt wurden. Diese Stäbe wurden geglättet, um zu Stäben mit den Dimensionen 25·2,5·2,0 mm zu führen, die dann unter Verwendung von SiC-Papier mit Korngröße 1000 poliert wurden. Die Kanten wurden ebenfalls mit SiC-Papier mit Korngröße 1000 abgeschrägt. Die Spannweite betrug 20 mm. Die Ergebnisse sind mit den Ergebnissen zur Biaxialfestigkeit vergleichbar.
- Zusätzlich hierzu wurde die Bruchzähigkeit durch Aufbringung einer Vickers-Einprägung auf eine polierte Oberfläche und Bestimmung der Größe von den von den Ecken ausgehenden Fehlstellen bestimmt (Einprägungskraftverfahren...IF). Dieses Verfahren ist als Vergleichsverfahren nützlich, es liefert jedoch keine absoluten Werte. Zu Vergleichszwecken wurden Messungen an eingekerbten Biegeproben (SENG, SEVNB) durchgeführt. Für die Lithiumdisilicat-Glaskeramiken wurden Bruchzähigkeitswerte > 2 MPam0,5 erhalten.
- In Tabelle II sind die Werte für die Biaxialfestigkeit und die Bruchzähigkeit der Proben angegeben, die die Disilicatphase aufwiesen, d. h. solcher Proben, die zweimal kristallisiert wurden. Zusätzlich hierzu werden Quotienten angegeben, die das Verhältnis der Biaxialfestigkeit des Disilicatsystems zu der Biaxialfestigkeit des Metasilicatsystems (biaxialer Verfestigungsfaktor) oder das Verhältnis der Bruchzähigkeit des Disilicatsystems zu der Bruchzähigkeit des Metasilicatsystems (Verfestigungsfaktor K1C) wiedergeben.
- Die Transluzenz wurde nach der zweiten Kristallisation bestimmt: ein Teststück mit 16 mm Durchmesser und mit einer Dicke von 2 mm wurde hergestellt und auf beiden Seiten poliert. Der Kontrastwert CR wurde gemäß BS 5612 (Britischer Standard) unter Verwendung eines Spektralcolorimeters (Minolta CM-3700d) bestimmt. Die Bestimmung des Kontrastwertes bestand aus zwei Einzelmessungen. Das zu analysierende Teststück wurde hierfür vor einen schwarzen Keramikkörper mit einer Reflektion von 4% maximal und danach vor einen weißen Keramikkörper mit einer Reflektion von 86% minimal angeordnet und wurde dann colorimetrisch analysiert. Bei Verwendung von hochtransparenten Teststücken wird Reflektion/Absorption hauptsächlich durch den keramischen Hintergrund hervorgerufen, während die Reflektion durch das Teststück hervorgerufen wird, wenn ein opakes Material verwendet wird. Das Verhältnis von reflektiertem Licht bei schwarzem Hintergrund zu reflektiertem Licht bei weißem Hintergrund ist das Maß für den Kontrastwert, wobei vollständige Transluzenz zu einem Kontrastwert zu 0 und vollständige Opazität zu einem Kontrastwert von 1 führt. Die Proben wurden wie folgt bewertet:
- außerordentlich: CR < 0,4
- sehr gut: 0,4 < CR < 0,5
- Die Daten in Tabelle II zeigen, dass die Lithiummetasilicat-Glaskeramik eine sehr gute maschinelle Verarbeitbarkeit und eine hohe Kantenfestigkeit mit der einfachen Möglichkeit verbindet, sie durch eine einfache Wärmebehandlung zu Lithiumdisilicat-Glaskeramiken umzuwandeln, die eine sehr hohe Biegefestigkeit sowie eine ausgezeichnete chemische Beständigkeit und gute Tranzluzenz haben, alles Eigenschaften, die sie sehr attraktiv als Material machen, welches für die Herstellung von dentalen Restaurationen nützlich ist.
- Im Folgenden werden einige Beispiele detaillierter beschrieben:
- Beispiel 1:
- Das Glas wurde bei einer Temperatur von 1500°C für 3 Std. erschmolzen und dann in Stahlformen gegossen, die auf 300°C erwärmt waren. Nach 1 min. wurden die Glasstäbe in einen Abkühlofen überführt und bei 500°C für 10 min. getempert und dann auf Raumtemperatur abgekühlt.
- Das Glas war homogen und transparent.
- Im Anschluss wurde der Glasstab einer ersten Kristallisation bei 650°C für eine Dauer von 20 min. unterworfen.
- Von einem so keramisierten Stab wurden Scheiben eines runden Stabs herausgeschnitten und die Biaxialfestigkeit bestimmt. Der Phasengehalt wurde mittels XRD (Röntgenbeugung) analysiert. Lithiummetasilicat war die einzige Phase, die festgestellt wurde. Die Biaxialfestigkeit betrug 119 +/- 25 MPa.
- Ebenfalls wurde die Fräszeit für Testkörper bestimmt. Die Fräszeit des Testkörpers war 1 min. weniger als die von ProCAD®, welches als Referenz verwendet wurde.
- Die Kantenfestigkeit war gut.
- Zusätzlich wurden 10 Scheiben einer zweiten Kristallisation bei 850°C für eine Dauer von 10 min. unterworfen und die Biaxialfestigkeit und die Bruchzähigkeit bestimmt.
- Die biaxiale Festigkeit betrug 395 +/- 117 MPa, was einem Verfestigungsfaktor von 3,0 entspricht.
- Die Bruchzähigkeit (IF) betrug 1,6 MPam0,5.
- Die Transluzenz war sehr gut.
- Die chemische Stabilität nach ISO 6872 (4% Essigsäure, 80°C, 16 h) betrug 37 µg/cm2.
- Beispiel 6:
- Glasstäbe wurden gemäß Beispiel 1 hergestellt. Das Glas war wiederum homogen und transparent.
- Die erste Kristallisation wurde bei 650°C für eine Dauer von 20 min. durchgeführt.
- Lithiummetasilicat wurde als die Hauptphase bestimmt, wobei ebenfalls Spuren von Lithiumdisilicat vorhanden waren. Die biaxiale Festigkeit betrug 135 +/- 24 MPa.
- Erneut wurde die Fräszeit für einen Testkörper bestimmt. Die Fräszeit des Testkörpers war 1 min. kürzer als die für ProCAD®, welches erneut als Referenz verwendet wurde.
- Die Kantenfestigkeit war sehr gut.
- Nachdem eine zweite Kristallisation gemäß Beispiel 1 durchgeführt wurde, betrug die biaxiale Festigkeit 472 +/- 85 MPa, was einem Verfestigungsfaktor von 3,5 entspricht.
- Die Bruchzähigkeit (IF) betrug 2,3 MPam0,5.
- Die Transluzenz war außerordentlich.
- Beispiel 9
- Glasstäbe wurden gemäß Beispiel 1 hergestellt. Das Glas war wiederum homogen und transparent.
- Die erste Kristallisation wurde bei 650°C für eine Dauer von 20 min. durchgeführt.
- Lithiummetasilicat wurde als einzige Phase nachgewiesen. Die biaxiale Festigkeit betrug 112 +/- 13 MPa.
- Erneut wurde die Fräszeit für einen Testkörper bestimmt. Die Fräszeit des Testkörpers war 1 min. kürzer als die für ProCAD®, welches erneut als Bezug verwendet wurde.
- Die Kantenfestigkeit war gut.
- Nach Durchführung einer zweiten Kristallisation entsprechend Beispiel 1 betrug die biaxiale Festigkeit 356 +/- 96 MPa, was einem Verfestigungsfaktor von 3,16 entspricht.
- Die Bruchzähigkeit (IF) betrug 1,9 MPam0,5.
- Die Transluzenz war akzeptabel.
- Beispiel 15 (Vergleich):
- Glasstäbe wurden gemäß Beispiel 1 hergestellt. Das Glas war wiederum homogen und transparent.
- Die erste Kristallisation wurde bei 650°C für eine Dauer von 20 min. durchgeführt.
- Lithiumdisilicat wurde als Hauptphase bestimmt und Lithiummetasilicat war lediglich in Spuren vorhanden. Die biaxiale Festigkeit betrug 194 +/- 35 MPa.
- Erneut wurde die Fräszeit für einen Testkörper bestimmt. Die Fräszeit des Testkörpers war 4 min. länger als die für ProCAD®, welches erneut als Referenz verwendet wurde.
- Die Kantenfestigkeit war schlecht.
- Nach einer zweiten Kristallisation, die gemäß Beispiel 1 durchgeführt wurde, betrug die biaxiale Festigkeit 405 +/- 80 MPa, was einem Verfestigungsfaktor von 2,09 entspricht.
- Die Bruchzähigkeit (IF) betrug 1,88 MPam0,5.
- Die Transluzenz war sehr gut.
Claims (30)
- Verwendung eines Lithiumsilicatmaterials in Form eines Lithiumsilicatrohlings, der Lithiummetasilicat als Hauptkristallphase enthält , zur Herstellung einer dentalen Restauration, wobei der Lithiumsilicatrohling mit Lithiummetasilicat als Hauptkristallphase durch maschinelle Verarbeitung oder durch Heißpressen zu einer gewünschten Geometrie geformt wird, um eine dentale Restauration zu bilden, und wobei der Lithiumsilicatrohling nach einem Verfahren herstellbar ist, bei dem: (a) eine Schmelze eines Ausgangsglases gebildet wird, die die Anfangskomponenten SiO2, Li2O, K2O, Al2O3 und P2O5 als Hauptkomponenten, aber kein La2O3, enthält, (b) die Schmelze des Ausgangsglases in eine Form gegossen wird, um einen Ausgangsglasrohling zu bilden, und der Glasrohling auf Raumtemperatur abgekühlt wird, (c) der Ausgangsglasrohling einer ersten Wärmebehandlung bei einer ersten Temperatur unterworfen wird, um ein Glasprodukt zu ergeben, welches Keime enthält, die für die Bildung von Lithiummetasilicatkristallen geeignet sind, und (d) das Glasprodukt aus Stufe (c) einer zweiten Wärmebehandlung bei einer zweiten Temperatur unterworfen wird, die höher als die erste Temperatur ist, um den Lithiumsilicatrohling mit Lithiummetasilicatkristallen als Hauptkristallphase zu erhalten.
- Verwendung nach
Anspruch 1 , bei der die Lithiummetasilicatphase 20 bis 50 Vol.-% des Lithiumsilicatmaterials bildet. - Verwendung nach
Anspruch 1 , bei der das Lithiummetasilicat 30 bis 40 Vol.-% des Lithiumsilicatmaterials bildet. - Verwendung nach einem der
Ansprüche 1 bis3 , bei der die Lithiummetasilicatkristalle lamellare Form oder Plättchenform haben. - Verwendung nach einem der
Ansprüche 1 bis4 , bei der der Lithiumsilicatrohling eine biaxiale Festigkeit von mindestens 90 MPa und eine Bruchzähigkeit von mindestens 0,8 MPam0,5 hat. - Verwendung eines Lithiumsilicatmaterials in Form eines Rohlings nach einem der
Ansprüche 1 bis5 , wobei der Rohling einen Halter aufweist, um ihn in einer Maschine zu befestigen. - Verwendung nach
Anspruch 6 , bei der der Halter an den Rohling angefügt und mit diesem verbunden ist. - Verwendung nach
Anspruch 6 oder7 , bei der der Halter aus einem anderen Material als der Rohling ist. - Verwendung nach
Anspruch 8 , bei der der Halter aus einer Legierung, einem Metall, einer Glaskeramik oder einer Keramik hergestellt ist. - Verwendung nach
Anspruch 6 oder7 , bei der der Halter aus dem gleichen Material wie der Rohling hergestellt und mit dem Rohling einstückig ist. - Verwendung nach einem der
Ansprüche 6 bis10 , bei der der Rohling mit Informationen versehen ist, wobei die Informationen auf dem Rohling das Material, die Größe und den Typ der Form, die aus dem Rohling maschinell hergestellt werden soll, beinhalten. - Verwendung nach einem der
Ansprüche 1 bis11 , bei der die dentale Restauration ein Inlay, ein Onlay, eine Brücke, ein Stiftaufbau, eine Verblendung, eine Schale, eine Facette, eine Krone, eine Teilkrone, ein Gerüst oder eine Kappe ist. - Verwendung nach einem der
Ansprüche 1 bis12 , bei der die maschinelle Verarbeitung durch Schleifen oder Fräsen durchgeführt wird. - Verwendung nach einem der
Ansprüche 1 bis13 , bei der die maschinelle Verarbeitung mittels eines Computers gesteuert wird. - Verwendung nach einem der
Ansprüche 1 bis14 , bei der außerdem das geformte Lithiumsilicatprodukt einer Wärmebehandlung bei einer Temperatur von etwa 700 bis 950°C für eine Dauer von etwa 5 bis 30 min. unterworfen wird. - Verwendung nach
Anspruch 15 , bei der das Lithiumsilicatprodukt, welches der Wärmebehandlung unterworfen wird, Lithiummetasilicat als Hauptkristallphase aufweist und bei der die Wärmebehandlung die Lithiummetasilicatkristalle zu Lithiumdisilicatkristallen als Hauptkristallphase der dentalen Restauration umwandelt. - Verwendung nach
Anspruch 15 oder16 , bei der die während der Wärmebehandlung auftretende Schrumpfung kleiner als 0,5%, bezogen auf das Volumen, ist. - Verwendung nach einem der
Ansprüche 1 bis11 , bei der ein Lithiumsilicatmaterial durch Heißpressen zu der gewünschten Geometrie geformt wird, um die dentale Restauration zu bilden. - Verwendung nach
Anspruch 18 , bei der das Heißpressen beinhaltet, dass das Lithiumsilicatmaterial einer Wärmebehandlung bei einer Temperatur von etwa 500 bis 1200°C unterworfen wird, um das Lithiumsilicatmaterial in einen viskosen Zustand zu überführen, und das viskose Lithiumsilicatmaterial bei einem Druck von etwa 2 bis 12 bar in eine Form oder einen Stempel gepresst wird, um die dentale Restauration mit einer gewünschten Geometrie zu erhalten. - Verwendung nach
Anspruch 19 bei der das Lithiumsilicatmaterial, welches der Wärmebehandlung und dem Pressen unterworfen wird, Lithiummetasilicatkristalle aufweist, die während der Wärmebehandlung und des Pressens zu Lithiumdisilicatkristallen umgewandelt werden. - Verwendung nach einem der
Ansprüche 15 bis17 ,19 und20 , bei der die Wärmebehandlung eine Erhöhung der Festigkeit und der Bruchzähigkeit des Lithiumsilicatmaterials beinhaltet. - Verwendung nach einem der
Ansprüche 1 bis21 , bei der die dentale Restauration eine biaxiale Festigkeit von mindestens 250 MPa und eine Bruchzähigkeit von mindestens 1,5 MPam0,5 hat. - Verwendung nach einem der
Ansprüche 1 bis22 , welche außerdem die Endbehandlung der dentalen Restauration beinhaltet, um ein natürliches Aussehen zu erhalten, wobei der Endbehandlungsschritt das Aufbringen einer Beschichtung auf die dentale Restauration durch Aufschichten von gepulverten Materialien oder durch Heißpressen eines Beschichtungsmaterials auf die nicht endbehandelte dentale Restauration beinhaltet. - Verwendung nach einem der
Ansprüche 15 bis17 und19 bis23 , bei der die Wärmebehandlung während eines Brennens der aufgeschichteten Materialien oder des Heißpressens des Beschichtungsmaterials auf die nicht endbehandelte dentale Restauration erfolgt. - Verwendung nach einem der
Ansprüche 1 bis5 , bei der eine dentale Restauration mit dem Lithiumsilicatrohling beschichtet wird. - Verwendung nach
Anspruch 25 bei der ein dentales Gerüst durch Heißpressen des Lithiumsilicatrohlings auf das dentale Gerüst beschichtet wird. - Verwendung nach
Anspruch 26 , bei der das dentale Gerüst eine Krone, eine Teilkrone, eine Brücke, eine Kappe, eine Schale, eine Verblendung oder ein Stiftaufbau ist. - Verwendung nach
Anspruch 27 , bei der das dentale Gerüst aus einem Metall, einer Legierung, einer Keramik oder einer Glaskeramik hergestellt ist. - Verwendung nach
Anspruch 28 , bei der die Keramik Zirkoniumoxid, Aluminiumoxid, ein Zirkoniummischoxid, ein Aluminiummischoxid oder eine Kombination davon enthält. - Verwendung nach einem der
Ansprüche 26 bis29 , bei der der Lithiumsilicatrohling, der auf das Gerüst geschichtet wird, Lithiummetasilicatkristalle enthält, die während des Heißpressens des Lithiumsilicatrohlings auf das dentale Gerüst zu Lithiumdisilicatkristallen umgewandelt werden
Priority Applications (37)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10336913.9A DE10336913C9 (de) | 2003-08-07 | 2003-08-07 | Verwendung eines Lithiumsilicatmaterials |
EP04018339A EP1505041B1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatwerkstoffe |
AT04018339T ATE553071T1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatwerkstoffe |
EP10013142.4A EP2269960B1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatwerkstoffe |
EP12163270.7A EP2479153B1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatrohling und dessen lithiumsilikatglasvorstufe für eine zahnrestauration |
HUE10013142A HUE027211T2 (en) | 2003-08-07 | 2004-08-03 | Lithium silicate materials |
DK10013142.4T DK2269960T3 (en) | 2003-08-07 | 2004-08-03 | Litiumsilikat materials |
ES12163270T ES2806031T3 (es) | 2003-08-07 | 2004-08-03 | Pieza en bruto de silicato de litio y precursor de vidrio de silicato de litio de la misma para una restauración dental |
ES10013131T ES2859782T3 (es) | 2003-08-07 | 2004-08-03 | Uso de una pieza en bruto de silicato de litio para la fabricación de una restauración dental y procedimiento para preparar una restauración dental |
ES10013142.4T ES2565514T3 (es) | 2003-08-07 | 2004-08-03 | Materiales de silicato de litio |
PL10013142T PL2269960T3 (pl) | 2003-08-07 | 2004-08-03 | Materiały z krzemianu litu |
DE202004021964U DE202004021964U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
EP10013131.7A EP2284133B1 (de) | 2003-08-07 | 2004-08-03 | Verwendung eines Lithiumsilikatrohlings zur Herstellung einer Zahnrestauration und Verfahren zur Herstellung einer Zahnrestauration |
DE202004021965U DE202004021965U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
EP20206464.8A EP3795545A1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilicat-materialien |
EP10013130.9A EP2305614B1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatwerkstoffe |
US10/913,095 US7316740B2 (en) | 2003-08-07 | 2004-08-06 | Lithium silicate materials |
JP2004231738A JP4777625B2 (ja) | 2003-08-07 | 2004-08-06 | ケイ酸リチウム材料を調製するためのプロセス |
US11/935,203 US8047021B2 (en) | 2003-08-07 | 2007-11-05 | Lithium silicate materials |
US11/935,221 US8042358B2 (en) | 2003-08-07 | 2007-11-05 | Lithium silicate materials |
US12/509,959 US7816291B2 (en) | 2003-08-07 | 2009-07-27 | Lithium silicate materials |
US12/562,348 US7955159B2 (en) | 2003-08-07 | 2009-09-18 | Machining of ceramic materials |
JP2010043535A JP5735747B2 (ja) | 2003-08-07 | 2010-02-26 | ケイ酸リチウム材料 |
US12/833,721 US8444756B2 (en) | 2003-08-07 | 2010-07-09 | Lithium silicate materials |
JP2010216160A JP5946986B2 (ja) | 2003-08-07 | 2010-09-27 | ケイ酸リチウム材料 |
US13/096,367 US8197299B2 (en) | 2003-08-07 | 2011-04-28 | Machining of ceramic materials |
US13/467,260 US9220576B2 (en) | 2003-08-07 | 2012-05-09 | Machining of ceramic materials |
US13/834,526 US9248078B2 (en) | 2003-08-07 | 2013-03-15 | Lithium silicate materials |
JP2015134594A JP6322163B2 (ja) | 2003-08-07 | 2015-07-03 | ケイ酸リチウムブランク |
US14/826,639 US9918806B2 (en) | 2003-08-07 | 2015-08-14 | Machining of ceramic materials |
US14/984,490 US10136973B2 (en) | 2003-08-07 | 2015-12-30 | Lithium silicate materials |
JP2017010380A JP2017128502A (ja) | 2003-08-07 | 2017-01-24 | ケイ酸リチウム材料 |
JP2018163452A JP2019011246A (ja) | 2003-08-07 | 2018-08-31 | ケイ酸リチウム材料 |
US16/200,187 US11109949B2 (en) | 2003-08-07 | 2018-11-26 | Lithium silicate materials |
US16/997,050 US11369460B2 (en) | 2003-08-07 | 2020-08-19 | Lithium silicate materials |
US17/809,225 US11744685B2 (en) | 2003-08-07 | 2022-06-27 | Lithium silicate materials |
US18/457,268 US20240099819A1 (en) | 2003-08-07 | 2023-08-28 | Lithium silicate materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10336913.9A DE10336913C9 (de) | 2003-08-07 | 2003-08-07 | Verwendung eines Lithiumsilicatmaterials |
Publications (4)
Publication Number | Publication Date |
---|---|
DE10336913A1 DE10336913A1 (de) | 2005-03-17 |
DE10336913B4 DE10336913B4 (de) | 2014-01-09 |
DE10336913C5 DE10336913C5 (de) | 2018-05-03 |
DE10336913C9 true DE10336913C9 (de) | 2019-02-21 |
Family
ID=33547185
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10336913.9A Expired - Fee Related DE10336913C9 (de) | 2003-08-07 | 2003-08-07 | Verwendung eines Lithiumsilicatmaterials |
DE202004021964U Ceased DE202004021964U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
DE202004021965U Ceased DE202004021965U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE202004021964U Ceased DE202004021964U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
DE202004021965U Ceased DE202004021965U1 (de) | 2003-08-07 | 2004-08-03 | Lithiumsilikatmaterialien |
Country Status (9)
Country | Link |
---|---|
US (4) | US7316740B2 (de) |
EP (6) | EP2479153B1 (de) |
JP (6) | JP4777625B2 (de) |
AT (1) | ATE553071T1 (de) |
DE (3) | DE10336913C9 (de) |
DK (1) | DK2269960T3 (de) |
ES (3) | ES2859782T3 (de) |
HU (1) | HUE027211T2 (de) |
PL (1) | PL2269960T3 (de) |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7955159B2 (en) * | 2003-08-07 | 2011-06-07 | Ivoclar Vivadent Ag | Machining of ceramic materials |
EP1688397A1 (de) * | 2005-02-08 | 2006-08-09 | Ivoclar Ag | Lithiumsilikat-Glaskeramik |
US9220576B2 (en) | 2003-08-07 | 2015-12-29 | Ivoclar Vivadent Ag | Machining of ceramic materials |
DE10336913C9 (de) * | 2003-08-07 | 2019-02-21 | Ivoclar Vivadent Ag | Verwendung eines Lithiumsilicatmaterials |
DE10362378C5 (de) * | 2003-08-07 | 2019-02-14 | Ivoclar Vivadent Ag | Verfahren zur Herstellung eines Lithiumsilicatrohlings |
US8444756B2 (en) | 2003-08-07 | 2013-05-21 | Ivoclar Vivadent Ag | Lithium silicate materials |
DE10362377C5 (de) * | 2003-08-07 | 2018-10-25 | Ivoclar Vivadent Ag | Lithiumsilicatrohling und dessen Verwendung |
DK1688398T3 (da) | 2005-02-08 | 2014-07-21 | Ivoclar Vivadent Ag | Lithiumsilikat-glaskeramik |
PL1688398T3 (pl) * | 2005-02-08 | 2014-10-31 | Ivoclar Vivadent Ag | Ceramika szklana na bazie krzemianu litu |
TW200724506A (en) * | 2005-10-07 | 2007-07-01 | Ohara Kk | Inorganic composition |
ATE508728T1 (de) | 2006-09-29 | 2011-05-15 | Ivoclar Vivadent Ag | Glas für dentale anwendungen |
DE102007011337A1 (de) | 2007-03-06 | 2008-09-11 | Hermsdorfer Institut Für Technische Keramik E.V. | Verblendkeramik für dentale Restaurationen aus yttriumstabilisiertem Zirkoniumdioxid und Verfahren zur Verblendung von dentalen Restaurationen aus yttriumstabilisiertem Zirkoniumdioxid |
US10260811B2 (en) * | 2008-03-05 | 2019-04-16 | Ivoclar Vivadent Ag | Dental furnace |
US7892995B2 (en) | 2008-04-11 | 2011-02-22 | James R. Glidewell Dental Ceramics, Inc. | Lithium silicate glass ceramic and method for fabrication of dental appliances |
US9241879B2 (en) | 2008-04-11 | 2016-01-26 | James R. Glidewell Dental Ceramics, Inc. | Lithium silicate glass ceramic for fabrication of dental appliances |
US9277971B2 (en) | 2008-04-11 | 2016-03-08 | James R. Glidewell Dental Ceramics, Inc. | Lithium silicate glass ceramic for fabrication of dental appliances |
JP5501642B2 (ja) | 2009-03-23 | 2014-05-28 | 株式会社ノリタケカンパニーリミテド | 蛍光性ジルコニア材料 |
DE202009019061U1 (de) | 2009-12-23 | 2016-02-23 | Degudent Gmbh | Lithiummetasilicat-Glaskeramik und deren Verwendung |
PT2377830T (pt) | 2010-04-16 | 2016-07-18 | Ivoclar Vivadent Ag | Vidro cerâmico de silicato de lítio e vidro de silicato de lítio, contendo óxido de metal de transição |
US8865606B2 (en) | 2010-04-16 | 2014-10-21 | Ivoclar Vivadent Ag | Process for the preparation of dental restorations |
DE102010035545A1 (de) | 2010-08-24 | 2012-03-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verblendkeramik für dentale Restaurationen aus yttriumstabilisiertem Zirkoniumdioxid sowie Verfahren zu deren Auftrag |
JP5762707B2 (ja) * | 2010-09-08 | 2015-08-12 | 株式会社オハラ | 結晶化ガラスの製造方法および結晶化ガラス物品 |
DE102010050275A1 (de) | 2010-11-02 | 2012-05-03 | Degudent Gmbh | Lithiumsilikat-Gläser oder -Glaskeramiken, Verfahren zu deren Herstellung sowie deren Verwendung |
SE535361C2 (sv) * | 2010-11-10 | 2012-07-10 | Biomain Ab | Dentalbryggor och superstrukturer, samt metoder för att tillverka dessa |
US20120148988A1 (en) * | 2010-12-14 | 2012-06-14 | James R. Glidewell Dental Ceramics, Inc. | Indirect restoration technology |
CA2837954C (en) | 2011-06-22 | 2021-08-31 | Vita Zahnfabrik H. Rauter Gmbh & Co. Kg | Dental restoration, method for its production and ingot |
US9206077B2 (en) | 2011-06-22 | 2015-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Dental restoration, method for production thereof and glass ceramic |
FR2978137A1 (fr) * | 2011-07-21 | 2013-01-25 | Saint Gobain Ct Recherches | Produit fondu a base de lithium |
DE112012004261A5 (de) | 2011-10-14 | 2014-08-28 | Ivoclar Vivadent Ag | Lithiumsilikat-Glaskeramik und -Glas mit einwertigem Metalloxid |
KR20160128455A (ko) | 2011-10-14 | 2016-11-07 | 이보클라 비바덴트 아게 | 6가 금속 산화물을 포함하는 리튬 실리케이트 유리 세라믹 및 리튬 실리케이트 유리 |
EP2765976B1 (de) | 2011-10-14 | 2016-02-24 | Ivoclar Vivadent AG | Lithiumsilikat-glaskeramik und -glas mit vierwertigem metalloxid |
PT2765979E (pt) | 2011-10-14 | 2016-03-29 | Ivoclar Vivadent Ag | Vitrocerâmica de silicato de lítio e vidro de silicato de lítio contendo um óxido metálico pentavalente |
CN103889391B (zh) | 2011-10-14 | 2018-08-28 | 义获嘉伟瓦登特公司 | 包含二价金属氧化物的硅酸锂玻璃陶瓷和硅酸锂玻璃 |
CA2851407C (en) | 2011-10-14 | 2018-01-16 | Ivoclar Vivadent Ag | Lithium silicate glass ceramic and glass with trivalent metal oxide |
EP2804842B1 (de) * | 2012-01-20 | 2020-12-02 | Straumann Holding AG | Prothesenelement |
JP5977442B2 (ja) | 2012-05-04 | 2016-08-24 | イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG | 二ケイ酸リチウムアパタイトガラスセラミック |
RU2611809C2 (ru) * | 2012-05-11 | 2017-03-01 | Ивоклар Вивадент Аг | Предварительно спеченная заготовка для дентального применения |
KR102018937B1 (ko) * | 2012-05-11 | 2019-09-05 | 이보클라 비바덴트 아게 | 치과용 예비-소결된 블랭크 |
DE102012108153A1 (de) | 2012-09-03 | 2014-03-06 | Ludwig-Maximilians-Universität München | Rohling und Verfahren zur Herstellung einer Dentalrestauration durch substraktive Bearbeitung |
DE102012111683A1 (de) * | 2012-11-30 | 2014-06-05 | Degudent Gmbh | Verfahren zum Herstellen von Zahnersatz |
EP2765119B1 (de) * | 2013-02-12 | 2021-07-28 | Ivoclar Vivadent AG | Rohling für dentale Zwecke |
EP2792649B1 (de) * | 2013-04-15 | 2019-11-27 | Ivoclar Vivadent AG | Lithiumsilikat-Glaskeramik und -Glas mit Gehalt an Rubidiumoxid |
EP2792345B1 (de) | 2013-04-15 | 2019-10-09 | Ivoclar Vivadent AG | Lithiumsilikat-Glaskeramik und -Glas mit Gehalt an Cäsiumoxid |
DE102013104561A1 (de) * | 2013-05-03 | 2014-11-06 | Degudent Gmbh | Verfahren zur Herstellung eines Rohlings sowie Rohling |
CN103265170B (zh) * | 2013-05-06 | 2016-06-29 | 朱晓明 | 一种工业研磨球及其制作工艺 |
US12029936B2 (en) | 2013-09-04 | 2024-07-09 | Thomas Harrison Hunt | Neck exercise device and system |
KR101524482B1 (ko) * | 2013-10-14 | 2015-06-02 | 주식회사 하스 | 지르코니아 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법 |
ES2891275T3 (es) * | 2013-11-05 | 2022-01-26 | Ivoclar Vivadent Ag | Vitrocerámica de disilicato de litio-apatita con óxido de metal de transición |
DE102014104401A1 (de) | 2014-03-28 | 2015-10-01 | Degudent Gmbh | Verfahren zur Herstellung eines Lithiumsilikat-Glasrohlings und eines Lithiumsilikat-Glaskeramikrohlings |
RU2564037C1 (ru) * | 2014-04-03 | 2015-09-27 | Общество с ограниченной ответственностью "НеоСцинт" | Способ стабилизации редкоземельных ионов в трехвалентном состоянии в силикатных стеклах и композитах |
EP2944619B1 (de) | 2014-05-13 | 2023-08-09 | Ivoclar Vivadent AG | Verfahren zur Herstellung von Lithiumsilikatgläsern und Lithiumsilikat-Glaskeramiken |
CN105217959A (zh) * | 2014-06-18 | 2016-01-06 | 深圳爱尔创口腔技术有限公司 | 一种用于牙科修复体的锂基玻璃陶瓷制备方法 |
CN105174724A (zh) * | 2014-06-18 | 2015-12-23 | 深圳爱尔创口腔技术有限公司 | 一种用于牙科修复体的锂基玻璃陶瓷制备方法 |
EP3157461B1 (de) | 2014-06-23 | 2019-12-18 | 3M Innovative Properties Company | Verfahren zur herstellung einer zahnprothese aus gesinterter lithiumdisilikatglaskeramik |
KR20160105826A (ko) | 2014-08-27 | 2016-09-07 | 가부시키가이샤 지씨 | 치과 보철물의 제조 방법, 치과 보철물용 이규산 리튬 블랭크의 제조 방법 및 치과 보철물용 이규산 리튬 블랭크 |
US11166795B2 (en) | 2014-08-27 | 2021-11-09 | Gc Corporation | Method for producing dental prosthesis, method for producing lithium disilicate blank for dental prosthesis and lithium disilicate blank for dental prosthesis |
JP2016108180A (ja) * | 2014-12-05 | 2016-06-20 | 京セラメディカル株式会社 | ガラスセラミックス |
JP6537256B2 (ja) * | 2014-12-05 | 2019-07-03 | 京セラ株式会社 | ガラスブロック、ガラスブロックの製造方法および歯科補綴物の製造方法 |
JP6537257B2 (ja) * | 2014-12-05 | 2019-07-03 | 京セラ株式会社 | ガラスセラミックスおよびガラスセラミックスの製造方法 |
EP3050856B1 (de) | 2015-01-30 | 2019-05-29 | Ivoclar Vivadent AG | Lithiumsilikat-Diopsid-Glaskeramik |
DE102015101691B4 (de) | 2015-02-05 | 2019-10-17 | Dentsply Sirona Inc. | Verfahren zur Herstellung eines aus Lithiumsilikat-Glaskeramik bestehenden Formkörpers sowie Formkörper |
US10093575B2 (en) * | 2015-05-18 | 2018-10-09 | Schott Ag | Continuous production of photo-sensitive glass bodies |
US10138154B2 (en) | 2015-05-21 | 2018-11-27 | Dentsply Sirona Inc. | Method for producing a dental prosthesis |
DE102015108171A1 (de) | 2015-05-22 | 2016-11-24 | Degudent Gmbh | Verfahren zur Erhöhung der Festigkeit von aus Lithiumsilikat-Glaskeramik bestehendem Formkörper |
DE102015108178A1 (de) * | 2015-05-22 | 2016-11-24 | Degudent Gmbh | Verfahren zum Herstellen einer dentalen Struktur sowie dentale Struktur |
DE102015108169A1 (de) | 2015-05-22 | 2016-11-24 | Degudent Gmbh | Verfahren zur Erhöhung der Festigkeit eines aus Lithiumsilikat-Glaskeramik bestehenden Formkörpers |
DE102015108173A1 (de) | 2015-05-22 | 2016-11-24 | Degudent Gmbh | Verfahren zur Erhöhung der Festigkeit von aus Lithiumsilikat-Glaskeramik bestehendem Formkörper |
EP4273107A3 (de) | 2015-08-25 | 2024-01-24 | Ivoclar Vivadent AG | Lithiumsilikat-tiefquarz-glaskeramik |
EP3150563B1 (de) | 2015-09-30 | 2019-05-22 | Ivoclar Vivadent AG | Lithiumsilikat-wollastonit-glaskeramik |
JP6602966B2 (ja) * | 2015-10-19 | 2019-11-06 | ヴィタ ツァーンファブリーク ハー. ラオテル ゲーエムベーハー ウント コー カーゲー | 透光性の低い被加工物の製造方法 |
DE102015121858A1 (de) * | 2015-12-15 | 2017-06-22 | Heraeus Kulzer Gmbh | Verfahren zur Herstellung grosser polymerisierter dentaler Materialblöcke |
WO2017142606A1 (en) * | 2016-02-19 | 2017-08-24 | Ferro Corporation | Sintering aid glasses for machinable phyllosilicate based structures |
US20170342383A1 (en) * | 2016-05-27 | 2017-11-30 | Corning Incorporated | Lithium disilicate glass-ceramic compositions and methods thereof |
DE102016119108A1 (de) | 2016-10-07 | 2018-04-12 | Degudent Gmbh | Lithiumsilikat-Glaskeramik |
DE102016119935A1 (de) | 2016-10-19 | 2018-04-19 | Degudent Gmbh | Verfahren zur Herstellung einer dentalen Restauration |
DE102016119934A1 (de) * | 2016-10-19 | 2018-05-03 | Degudent Gmbh | Verfahren zur Herstellung eines Rohlings, Rohling sowie eine dentale Restauration |
US10479729B2 (en) | 2017-02-22 | 2019-11-19 | James R. Glidewell Dental Ceramics, Inc. | Shaded zirconia ceramic material and machinable sintered ceramic bodies made therefrom |
US10537411B2 (en) | 2017-03-08 | 2020-01-21 | Dentsply Sirona Inc. | Method to produce a monolithic form body |
CA3055635C (en) | 2017-03-08 | 2021-03-16 | Dentsply Sirona Inc. | Method to produce a monolithic form body by irradiating the surface of the form body |
EP3372568B1 (de) | 2017-03-09 | 2022-09-14 | Hass Co., Ltd. | Verfahren zur herstellung von glaskeramik mit möglichkeit zur einstellung der bearbeitbarkeit oder lichtdurchlässigkeit durch temperaturänderung der wärmebehandlung |
KR101988221B1 (ko) * | 2017-06-08 | 2019-06-12 | 한국세라믹기술원 | 치관용 글래스세라믹의 제조방법 |
WO2019108556A1 (en) | 2017-11-28 | 2019-06-06 | Corning Incorporated | Bioactive glass compositions and dentin hypersensitivity remediation |
WO2019108558A1 (en) | 2017-11-28 | 2019-06-06 | Corning Incorporated | High liquidus viscosity bioactive glass |
CN111417603B (zh) | 2017-11-28 | 2023-10-31 | 康宁股份有限公司 | 生物活性硼酸盐玻璃及其方法 |
TWI794344B (zh) | 2017-11-28 | 2023-03-01 | 美商康寧公司 | 經化學強化之生物活性玻璃陶瓷 |
CN107915412A (zh) * | 2017-12-01 | 2018-04-17 | 成都光明光电股份有限公司 | 微晶玻璃及其基板 |
US20210196437A1 (en) | 2018-08-02 | 2021-07-01 | Ivoclar Vivadent Ag | Multi-Coloured Blank For Dental Purposes |
ES2902184T3 (es) | 2018-08-14 | 2022-03-25 | Dentsply Sirona Inc | Prótesis dental |
CN109095950A (zh) * | 2018-08-24 | 2018-12-28 | 爱迪特(秦皇岛)科技股份有限公司 | 一种牙科氧化锆陶瓷用遮色液及其制备方法和应用 |
EP3617162B1 (de) | 2018-08-29 | 2023-09-27 | Ivoclar Vivadent AG | Verfahren zur herstellung eines glaskeramik-rohlings für dentale zwecke |
EP3659728B1 (de) | 2018-11-29 | 2021-01-27 | Ivoclar Vivadent AG | Verfahren zur schichtweisen generativen fertigung eines formkörpers |
EP3659989A1 (de) | 2018-11-29 | 2020-06-03 | Ivoclar Vivadent AG | Schlicker und verfahren zur herstellung von keramischen und glaskeramischen 3d strukturen |
EP3696150A1 (de) | 2019-02-14 | 2020-08-19 | Ivoclar Vivadent AG | Fluoreszierende glaskeramiken und gläser mit gehalt an europium |
EP3696149A1 (de) | 2019-02-14 | 2020-08-19 | Ivoclar Vivadent AG | Fluoreszierende glaskeramiken und gläser mit gehalt an cer und zinn |
CN113710213A (zh) * | 2019-03-29 | 2021-11-26 | 株式会社Gc | 牙科修复体用块体 |
EP3718980B1 (de) | 2019-04-04 | 2022-08-03 | Ivoclar Vivadent AG | Verfahren zur herstellung von mehrfarbigen glaskeramik-rohlingen |
EP3772492A1 (de) | 2019-08-09 | 2021-02-10 | VITA-ZAHNFABRIK H. Rauter GmbH & Co. KG | Rohling aus poröser lithiumsilikatglaskeramik mit füllstoff |
EP3845504A1 (de) | 2019-12-30 | 2021-07-07 | Ivoclar Vivadent AG | Verfahren zur herstellung einer mehrfarbigen dentalrestauration |
DE102020103720A1 (de) | 2020-02-13 | 2021-08-19 | Ivoclar Vivadent Ag | Verwendung eines Rohlings mit Halter zur Herstellung von dentalen Restaurationen |
CN111470882B (zh) * | 2020-03-02 | 2022-11-15 | 北京大学口腔医学院 | 一种用于牙科的氧化锆表面处理方法 |
KR102446071B1 (ko) | 2020-09-28 | 2022-09-22 | 주식회사 하스 | 절삭가공을 위한 치과용 벌크 블록 및 그 제조방법 |
CN112850729B (zh) * | 2021-01-28 | 2023-04-18 | 西安理工大学 | 一种Ce3+掺杂二硅酸锂纳米颗粒的制备方法 |
JP7497822B2 (ja) | 2021-03-31 | 2024-06-11 | 住友電工ファインポリマー株式会社 | 摩擦摩耗試験機用保護キャップ、摩擦摩耗試験機用保護キャップの基体及び摩耗試験方法 |
CN113248152B (zh) * | 2021-05-21 | 2022-06-10 | 常熟佳合显示科技有限公司 | 一种三维微晶玻璃及其制备方法 |
CN113264684A (zh) * | 2021-06-11 | 2021-08-17 | 辽宁爱尔创生物材料有限公司 | 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体 |
CN113387585A (zh) * | 2021-06-29 | 2021-09-14 | 爱迪特(秦皇岛)科技股份有限公司 | 一种二硅酸锂玻璃陶瓷及其制备方法和应用 |
KR102642739B1 (ko) * | 2021-07-26 | 2024-03-04 | 주식회사 하스 | 글라스 세라믹 기판의 제조방법 및 이로부터 제조된 글라스 세라믹 기판 |
EP4140962A1 (de) | 2021-08-23 | 2023-03-01 | Ivoclar Vivadent AG | Lithiumsilikat-glaskeramik mit leichter bearbeitbarkeit |
EP4140963A1 (de) | 2021-08-23 | 2023-03-01 | Ivoclar Vivadent AG | Lithiumsilikat-glaskeramik mit leichter bearbeitbarkeit |
CN113603365A (zh) * | 2021-09-03 | 2021-11-05 | 北京赢冠口腔医疗科技股份有限公司 | 硅酸锂微晶玻璃和饰面瓷粉及其制备方法、金属烤瓷牙 |
CN113698082B (zh) * | 2021-09-10 | 2023-03-21 | 成都光明光电股份有限公司 | 微晶玻璃成型体的制造方法 |
CN113788622B (zh) * | 2021-09-28 | 2023-07-18 | 东北大学秦皇岛分校 | 一种采用鼓泡工艺制备牙科用二硅酸锂微晶玻璃的方法 |
CN113831016B (zh) * | 2021-10-28 | 2023-03-14 | 爱迪特(秦皇岛)科技股份有限公司 | 一种具有高透明度的荧光玻璃陶瓷及其制备方法 |
CN113831021B (zh) * | 2021-11-15 | 2023-09-26 | 清远南玻节能新材料有限公司 | 微晶玻璃及其制备方法、玻璃保护层、玻璃盖板与电子器件 |
CN114195394B (zh) * | 2021-12-24 | 2022-09-09 | 深圳市新旗滨科技有限公司 | 一种玻璃组合物、微晶玻璃及其制备方法和应用 |
CN114149256B (zh) * | 2021-12-30 | 2023-04-14 | 爱迪特(秦皇岛)科技股份有限公司 | 用于提高牙科氧化锆表面粘接性的陶瓷材料、修复材料、其制备方法及粘结方法 |
CN114920459B (zh) * | 2022-06-15 | 2023-12-12 | 山西省玻璃陶瓷科学研究所(有限公司) | 一种二硅酸锂玻璃陶瓷材料的制备方法 |
EP4382495A1 (de) | 2022-12-08 | 2024-06-12 | Ivoclar Vivadent AG | Lithiumsilikat-glaskeramik mit leichter bearbeitbarkeit |
CN115745407A (zh) * | 2023-01-10 | 2023-03-07 | 山东新华医疗器械股份有限公司 | 一种用于牙齿修复材料的微晶玻璃及其制备方法 |
EP4424294A1 (de) * | 2023-02-28 | 2024-09-04 | DENTSPLY SIRONA Inc. | Ästhetische, robuste, hybride und biomimetische dentalzusammensetzung |
CN117819824B (zh) * | 2023-10-10 | 2024-10-01 | 常熟佳合显示科技有限公司 | 一种锂铝硅微晶玻璃及其制备方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2684911A (en) | 1951-08-30 | 1954-07-27 | Corning Glass Works | Photosensitively opacifiable glass |
US3161528A (en) * | 1962-10-03 | 1964-12-15 | Corning Glass Works | Semicrystalline ceramic body and method of making it |
DE2313347A1 (de) * | 1972-03-20 | 1973-10-04 | Gen Electric | Oberflaechenheizeinrichtung |
DE2451121A1 (de) * | 1973-10-31 | 1975-05-07 | Gen Electric | Verfahren zum herstellen von glaskeramiken |
DE2949619A1 (de) * | 1979-01-09 | 1980-11-27 | Univ Florida State | Glas, insbesondere glaskeramik-zahnrestaurierungsmittel, und verfahren zu seiner herstellung |
US4515634A (en) * | 1983-10-17 | 1985-05-07 | Johnson & Johnson Dental Products Company | Castable glass-ceramic composition useful as dental restorative |
EP0160797A1 (de) * | 1984-03-06 | 1985-11-13 | Werner H. Dr.med.dent. Mörmann | Rohling zur Herstellung zahntechnischer Formteile und Verwendung desselben |
EP0774993A1 (de) | 1994-06-03 | 1997-05-28 | Francis X. Palermo | Elektronische vorrichtung zur neuromuskulären reizung |
DE19750794A1 (de) | 1997-11-10 | 1999-06-17 | Ivoclar Ag | Verfahren zur Herstellung von geformten transluzenten Lithiumdisilikat-Glaskeramik-Produkten |
EP0817597B1 (de) | 1995-03-28 | 1999-09-08 | WOHLWEND, Arnold | Verfahren zur herstellung von zahnprothetischen rekonstruktionen |
US20010031446A1 (en) * | 1994-05-31 | 2001-10-18 | Tec Ventures, Inc. | Method for molding dental restorations and related apparatus |
WO2002045614A1 (de) * | 2000-12-07 | 2002-06-13 | Eidgenössische Technische Hochschule Zürich Nichtmetallische Werkstoffe | Haltevorrichtung für einen keramikrohling |
US20030073563A1 (en) * | 1998-12-11 | 2003-04-17 | Dmitri Brodkin | Lithium disilicate glass-ceramics |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE526937A (de) | 1953-03-05 | 1954-09-03 | ||
US3022180A (en) * | 1959-09-23 | 1962-02-20 | Gen Electric | Ceramic material and method of making the same |
US3252778A (en) * | 1964-02-26 | 1966-05-24 | Goodman Philip | Method of making a high strength semicrystalline article |
GB1374605A (en) * | 1971-05-24 | 1974-11-20 | Pilkington Brothers Ltd | Method of manufacturing glass ceramic material |
US3977857A (en) * | 1973-10-29 | 1976-08-31 | Westinghouse Electric Corporation | Metal bonding glass-ceramic compositions having improved hardness |
US4473653A (en) * | 1982-08-16 | 1984-09-25 | Rudoi Boris L | Ballistic-resistant glass-ceramic and method of preparation |
JPS6071206U (ja) * | 1983-10-24 | 1985-05-20 | 野本 吉輝 | 焼成台 |
US4480044A (en) * | 1984-02-01 | 1984-10-30 | Corning Glass Works | High expansion glass-ceramic articles |
JP2764771B2 (ja) | 1991-10-01 | 1998-06-11 | 富士写真フイルム株式会社 | 感光性組成物 |
US5219799A (en) | 1991-10-07 | 1993-06-15 | Corning Incorporated | Lithium disilicate-containing glass-ceramics some of which are self-glazing |
US5176961A (en) | 1991-10-07 | 1993-01-05 | Corning Incorporated | Colored, textured glass-ceramic articles |
SE501333C2 (sv) | 1993-05-27 | 1995-01-16 | Sandvik Ab | Metod för framställning av keramiska tandrestaurationer |
JP3193555B2 (ja) * | 1994-01-27 | 2001-07-30 | 株式会社トクヤマ | ガラスセラミックス歯冠の製造方法 |
US5507981A (en) * | 1994-05-31 | 1996-04-16 | Tel Ventures, Inc. | Method for molding dental restorations |
JPH08299365A (ja) * | 1995-05-10 | 1996-11-19 | Technol Res Assoc Of Medical & Welfare Apparatus | 歯科補綴物の製造方法 |
EP0827941B1 (de) * | 1996-09-05 | 1999-11-03 | Ivoclar Ag | Sinterbare Lithiumdisilikat-Glaskeramik |
US5968856A (en) * | 1996-09-05 | 1999-10-19 | Ivoclar Ag | Sinterable lithium disilicate glass ceramic |
JP2880697B2 (ja) * | 1996-10-17 | 1999-04-12 | 雄二郎 辻川 | 歯科用鋳造修復物の製造方法及び歯科用鋳造修復物製造用の支持台 |
JPH10323354A (ja) * | 1997-05-23 | 1998-12-08 | Noritake Co Ltd | 歯科用結晶化陶材フレームコア及びその製造方法 |
DE19725555A1 (de) * | 1997-06-12 | 1998-12-24 | Ivoclar Ag | Transluzente Apatit-Glaskeramik |
US6420288B2 (en) * | 1997-11-10 | 2002-07-16 | Ivoclar Ag | Process for the preparation of shaped translucent lithium disilicate glass ceramic products |
US6517623B1 (en) * | 1998-12-11 | 2003-02-11 | Jeneric/Pentron, Inc. | Lithium disilicate glass ceramics |
US20050127544A1 (en) * | 1998-06-12 | 2005-06-16 | Dmitri Brodkin | High-strength dental restorations |
WO2000034196A2 (en) | 1998-12-11 | 2000-06-15 | Jeneric/Pentron Incorporated | Pressable lithium disilicate glass ceramics |
JP2001288027A (ja) * | 2000-02-24 | 2001-10-16 | Tec Ventures Inc | 歯科修復物の形成方法及び関連の装置 |
EP1770142A3 (de) * | 2000-10-06 | 2008-05-07 | 3M Innovative Properties Company | Verfahren zur Herstellung agglomerierter abrasiver Partikel |
JP2003047622A (ja) * | 2001-08-03 | 2003-02-18 | Noritake Co Ltd | 歯科セラミックフレーム及びその製造並びに該フレームを含む歯科補綴物 |
AU2003288911B8 (en) * | 2002-09-25 | 2009-12-24 | Johns Hopkins University | Cross-linked polymer matrices, and methods of making and using same |
DE10336913C9 (de) | 2003-08-07 | 2019-02-21 | Ivoclar Vivadent Ag | Verwendung eines Lithiumsilicatmaterials |
DK1688398T3 (da) * | 2005-02-08 | 2014-07-21 | Ivoclar Vivadent Ag | Lithiumsilikat-glaskeramik |
US7892995B2 (en) * | 2008-04-11 | 2011-02-22 | James R. Glidewell Dental Ceramics, Inc. | Lithium silicate glass ceramic and method for fabrication of dental appliances |
EP2765976B1 (de) | 2011-10-14 | 2016-02-24 | Ivoclar Vivadent AG | Lithiumsilikat-glaskeramik und -glas mit vierwertigem metalloxid |
-
2003
- 2003-08-07 DE DE10336913.9A patent/DE10336913C9/de not_active Expired - Fee Related
-
2004
- 2004-08-03 PL PL10013142T patent/PL2269960T3/pl unknown
- 2004-08-03 EP EP12163270.7A patent/EP2479153B1/de not_active Expired - Lifetime
- 2004-08-03 AT AT04018339T patent/ATE553071T1/de active
- 2004-08-03 EP EP20206464.8A patent/EP3795545A1/de active Pending
- 2004-08-03 ES ES10013131T patent/ES2859782T3/es not_active Expired - Lifetime
- 2004-08-03 EP EP10013142.4A patent/EP2269960B1/de not_active Expired - Lifetime
- 2004-08-03 DK DK10013142.4T patent/DK2269960T3/en active
- 2004-08-03 DE DE202004021964U patent/DE202004021964U1/de not_active Ceased
- 2004-08-03 EP EP10013131.7A patent/EP2284133B1/de not_active Expired - Lifetime
- 2004-08-03 HU HUE10013142A patent/HUE027211T2/en unknown
- 2004-08-03 DE DE202004021965U patent/DE202004021965U1/de not_active Ceased
- 2004-08-03 ES ES12163270T patent/ES2806031T3/es not_active Expired - Lifetime
- 2004-08-03 EP EP04018339A patent/EP1505041B1/de not_active Expired - Lifetime
- 2004-08-03 EP EP10013130.9A patent/EP2305614B1/de not_active Expired - Lifetime
- 2004-08-03 ES ES10013142.4T patent/ES2565514T3/es not_active Expired - Lifetime
- 2004-08-06 JP JP2004231738A patent/JP4777625B2/ja not_active Expired - Lifetime
- 2004-08-06 US US10/913,095 patent/US7316740B2/en active Active
-
2007
- 2007-11-05 US US11/935,221 patent/US8042358B2/en active Active
- 2007-11-05 US US11/935,203 patent/US8047021B2/en active Active
-
2009
- 2009-07-27 US US12/509,959 patent/US7816291B2/en not_active Expired - Lifetime
-
2010
- 2010-02-26 JP JP2010043535A patent/JP5735747B2/ja not_active Expired - Lifetime
- 2010-09-27 JP JP2010216160A patent/JP5946986B2/ja not_active Expired - Lifetime
-
2015
- 2015-07-03 JP JP2015134594A patent/JP6322163B2/ja not_active Expired - Lifetime
-
2017
- 2017-01-24 JP JP2017010380A patent/JP2017128502A/ja not_active Withdrawn
-
2018
- 2018-08-31 JP JP2018163452A patent/JP2019011246A/ja not_active Withdrawn
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2684911A (en) | 1951-08-30 | 1954-07-27 | Corning Glass Works | Photosensitively opacifiable glass |
US3161528A (en) * | 1962-10-03 | 1964-12-15 | Corning Glass Works | Semicrystalline ceramic body and method of making it |
DE1696473B1 (de) * | 1962-10-03 | 1970-08-06 | Corning Glass Works | Verfahren zur Herstellung von Glas-Kristallmischkoerpern mit einem spezifischen Gewicht,das 99 bis 101% des spezifischen Gewichts des Ausgangsglases betraegt |
DE2313347A1 (de) * | 1972-03-20 | 1973-10-04 | Gen Electric | Oberflaechenheizeinrichtung |
DE2451121A1 (de) * | 1973-10-31 | 1975-05-07 | Gen Electric | Verfahren zum herstellen von glaskeramiken |
DE2949619A1 (de) * | 1979-01-09 | 1980-11-27 | Univ Florida State | Glas, insbesondere glaskeramik-zahnrestaurierungsmittel, und verfahren zu seiner herstellung |
US4515634A (en) * | 1983-10-17 | 1985-05-07 | Johnson & Johnson Dental Products Company | Castable glass-ceramic composition useful as dental restorative |
EP0160797A1 (de) * | 1984-03-06 | 1985-11-13 | Werner H. Dr.med.dent. Mörmann | Rohling zur Herstellung zahntechnischer Formteile und Verwendung desselben |
US20010031446A1 (en) * | 1994-05-31 | 2001-10-18 | Tec Ventures, Inc. | Method for molding dental restorations and related apparatus |
EP0774993A1 (de) | 1994-06-03 | 1997-05-28 | Francis X. Palermo | Elektronische vorrichtung zur neuromuskulären reizung |
EP0817597B1 (de) | 1995-03-28 | 1999-09-08 | WOHLWEND, Arnold | Verfahren zur herstellung von zahnprothetischen rekonstruktionen |
DE19750794A1 (de) | 1997-11-10 | 1999-06-17 | Ivoclar Ag | Verfahren zur Herstellung von geformten transluzenten Lithiumdisilikat-Glaskeramik-Produkten |
US20030073563A1 (en) * | 1998-12-11 | 2003-04-17 | Dmitri Brodkin | Lithium disilicate glass-ceramics |
WO2002045614A1 (de) * | 2000-12-07 | 2002-06-13 | Eidgenössische Technische Hochschule Zürich Nichtmetallische Werkstoffe | Haltevorrichtung für einen keramikrohling |
Non-Patent Citations (7)
Title |
---|
Borom et al.: „Strength and Microstructure in Lithium Disilicate Glass-Ceramics", Journal of the American Ceramic Society, Vol. 58, Seiten 385 bis 391, September / Oktober 1975 * |
Fraunhofer-Institut für Silicatforschung ISC, „Nachschmelzen von Ivoclar-Patentbeispielen", Ergebnisbericht * |
J. Deubener et al. "Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses", Journal of Non-Crystalline Solids 163 (1993), 1- 12 * |
M. -P. Borom, A. M. Turkalo, R. H. Doremus: „Strength and Microstructure in Lithium Disilicate Glass-Ceramics", J. Am. Ceream. Soc., 58, No. 9-10, 385-391 (1975) und M. -P. Borom, A. M. Turkalo, R. H. Doremus: „Verfahren zum Herstellen von Glaskeramiken" DE-A-24 51 121 (1974) |
P.W. McMillan et al. "The Structure and Properties of a Lithium Zinc Silicate Glass-Ceramic", Journal of Material Science 1 (1966), 269-279 * |
W. Höland, G. Beall, "Glass-ceramic technology", American Ceramic Society 2002, Westerville OH, USA; S. 75-83, S. 222-223 * |
W. Höland, V. Rheinberger, M. Schweiger, "Control of nucleation in glass ceramics", Phil. Trans. Soc. Lond. A (2003) 361, 575-589 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10336913C9 (de) | Verwendung eines Lithiumsilicatmaterials | |
EP2868634B1 (de) | Lithiumdisilikat-Apatit-Glaskeramik mit Übergangsmetalloxid | |
EP3718980B1 (de) | Verfahren zur herstellung von mehrfarbigen glaskeramik-rohlingen | |
EP2844213B1 (de) | Lithiumdisilikat-apatit-glaskeramik | |
EP2765974B1 (de) | Lithiumsilikat-glaskeramik und -glas mit zweiwertigem metalloxid | |
EP2377831B1 (de) | Lithiumsilikat-Glaskeramik und -Glas mit Gehalt an ZrO2 | |
EP2765976B1 (de) | Lithiumsilikat-glaskeramik und -glas mit vierwertigem metalloxid | |
EP1584607B1 (de) | Apatitglaskeramik auf der Basis von silicatischen Oxyapatiten | |
EP2765977B1 (de) | Lithiumsilikat-glaskeramik und -glas mit einwertigem metalloxid | |
DE10340597B4 (de) | Transluzente und radio-opake Glaskeramiken, Verfahren zu ihrer Herstellung und ihre Verwendung | |
EP3050856B1 (de) | Lithiumsilikat-Diopsid-Glaskeramik | |
DE102005028637A1 (de) | Lithiumsilicat-Glaskeramik | |
EP2287122B1 (de) | Phosphosilikat-Glaskeramik | |
EP3135641A1 (de) | Lithiumsilikat-tiefquarz-glaskeramik | |
EP2765978B1 (de) | Lithiumsilikat-glaskeramik und -glas mit sechswertigem metalloxid | |
EP2930156B1 (de) | Verwendung von Glaskeramik mit Quarz-Mischkristallphase als Dentalmaterial | |
EP3409648B1 (de) | Lithiumsilikat-glaskeramik mit scheelit- oder powellit-kristallphase | |
DE10362378B3 (de) | Verfahren zur Herstellung eines Lithiumsilicatrohlings | |
DE10362377C5 (de) | Lithiumsilicatrohling und dessen Verwendung | |
EP4382495A1 (de) | Lithiumsilikat-glaskeramik mit leichter bearbeitbarkeit | |
DE102020103720A1 (de) | Verwendung eines Rohlings mit Halter zur Herstellung von dentalen Restaurationen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
R016 | Response to examination communication | ||
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: C01B0033200000 Ipc: A61K0006060000 |
|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: C01B0033200000 Ipc: A61K0006060000 Effective date: 20130226 |
|
R130 | Divisional application to |
Ref document number: 10362378 Country of ref document: DE Effective date: 20130218 Ref document number: 10362377 Country of ref document: DE Effective date: 20130218 Ref document number: 10362381 Country of ref document: DE Effective date: 20130218 |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R130 | Divisional application to |
Ref document number: 10362378 Country of ref document: DE Effective date: 20131025 Ref document number: 10362377 Country of ref document: DE Effective date: 20131025 Ref document number: 10362381 Country of ref document: DE Effective date: 20131025 |
|
R026 | Opposition filed against patent | ||
R026 | Opposition filed against patent |
Effective date: 20140408 |
|
R006 | Appeal filed | ||
R008 | Case pending at federal patent court | ||
R011 | All appeals rejected, refused or otherwise settled | ||
R034 | Decision of examining division/federal patent court maintaining patent in limited form now final | ||
R206 | Amended patent specification | ||
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: A61K0006060000 Ipc: A61K0006849000 |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |