DE10219203A1 - Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen - Google Patents

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Info

Publication number
DE10219203A1
DE10219203A1 DE10219203A DE10219203A DE10219203A1 DE 10219203 A1 DE10219203 A1 DE 10219203A1 DE 10219203 A DE10219203 A DE 10219203A DE 10219203 A DE10219203 A DE 10219203A DE 10219203 A1 DE10219203 A1 DE 10219203A1
Authority
DE
Germany
Prior art keywords
seq
nucleic acid
fatty acids
plant
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10219203A
Other languages
English (en)
Inventor
Petra Cirpus
Andreas Renz
Jens Lerchl
Anne-Marie Kuijpers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science GmbH
Original Assignee
BASF Plant Science GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science GmbH filed Critical BASF Plant Science GmbH
Priority to DE10219203A priority Critical patent/DE10219203A1/de
Priority to PCT/EP2003/004297 priority patent/WO2003093482A2/de
Priority to AU2003232512A priority patent/AU2003232512B2/en
Priority to CA002485060A priority patent/CA2485060A1/en
Priority to EP03747357A priority patent/EP1501932A2/de
Priority to CA2977570A priority patent/CA2977570A1/en
Priority to CA2870809A priority patent/CA2870809C/en
Priority to US10/511,621 priority patent/US7893320B2/en
Publication of DE10219203A1 publication Critical patent/DE10219203A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6481Phosphoglycerides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Fats And Perfumes (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-%, bezogen auf die gesamten in den Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit DELTA-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit DELTA-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit DELTA-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden. DOLLAR A Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer DELTA-6-Desaturaseaktivität, DELTA-6-Elongaseaktivität oder DELTA-5-Desaturaseaktivität codieren, ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten,enthaltend die vorgenannten Nukleinsäuresequenzen.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten in der Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.
  • Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codieren ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten enthalten die vorgenannten Nukleinsäuresequenzen.
  • Bestimmte Produkte und Nebenprodukte natürlich vorkommender Stoffwechselprozesse in mikrobiellen Zellen oder in den Zellen von Tieren und vorteilhaft Pflanzen sind für ein breites Spektrum an Industrien, einschließlich der Futtermittel-, Nahrungsmittel-, Kosmetik- und pharmazeutischen Industrie, nützlich. Zu diesen gemeinsam als "Feinchemikalien" bezeichneten Molekülen gehören auch Lipide und Fettsäuren, unter denen eine beispielhafte Klasse die mehrfach ungesättigten Fettsäuren sind. Mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) werden beispielsweise Nahrungsmittel für Kinder zugegeben, um einen höheren Nährwert dieser Nahrungsmittel zu erzeugen. PUFAs haben zum Beispiel einen positiven Einfluss auf den Cholesterinspiegel im Blut von Menschen und eignen sich daher zum Schutz gegen Herzkrankheiten. Feinchemikalien wie mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) lassen sich aus tierischen Quellen, wie beispielsweise Fisch, isolieren oder mit Mikroorganismen durch Züchtung von Mikroorganismen, die so entwickelt worden sind, dass sie große Mengen eines oder mehrerer gewünschter Moleküle produzieren und akkumulieren oder sezernieren, im großen Maßstab herstellen.
  • Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfach ungesättigte Ω-3-Fettsäuren und Ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten Ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6Δ4,7,10,13,16,19) oder Eisosapentaensäure (= EPA, C20:5Δ5,8,11,14,17) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.
  • Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Ölproduzierenden Pflanzen wie Soja, Raps, Sonnenblume, Algen wie Cryptocodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z. B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4Δ5,8,11,14), Dihomo-γ-linolensäure (C20:3Δ8,11,14) oder Docosapentaensäure (DPA, C22:5Δ7,10,13,16,19) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.
  • Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z. B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten Ω-3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser Ω-3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch Ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung.
  • Ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.
  • Ω-3- und Ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG2-Serie), die aus Ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG3-Serie) aus Ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.
  • Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO 00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO 98/46763 WO 98/46764, WO 9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO 99/64616 oder WO 98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an Δ-6-ungesättigten Fettsäuren/Lipiden wie z. B. gamma-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω3 und ω6 Fettsäuren erhalten, da alle bisher beschriebenen Δ-6-Desaturasen zum Beispiel Linolsäure (ω-6-Fettsäure) als auch α-Linolensäure (ω-3-Fettsäure) umsetzten.
  • Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien- Stämme, Algen wie Phaeodactylum tricornutum oder Crypthecodinium- Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.
  • Alternativ kann die Produktion von Feinchemikalien geeigneterweise über die Produktion in Pflanzen, die so entwickelt sind, dass sie die vorstehend genannten PUFAs herstellen, im großen Maßstab durchgeführt werden. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren. Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitaufwändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im Fall von mehrfach ungesättigten C18-, C20-Fettsäuren und C22 -Fettsäuren und solchen mit längeren Kohlenstoffketten.
  • Aufgrund der positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch längerkettige mehrfach ungesättigte C20- und/oder C22-Fettsäuren wie EPA oder ARA nicht in Pflanzen hergestellt werden.
  • Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäureestern und/oder freien mehrfach ungesättigten Fettsäuren mit mindestens drei Doppelbindungen im Fettsäuremolekül zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:


    in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
    • a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie
    • b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
    • c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-5-Desaturaseaktivität codiert;
    • d) anschließend kultivieren und ernten der Pflanzen; und
    wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:
    R1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II


    R2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-,
    R3 = H, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, oder
    R2 und R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia


    n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3, bevorzugt bedeutet n = 3, m = 4 oder 5 und p = 0 oder 3.
  • R1 bezeichnet in den Verbindungen der Formel I -OH (Hydroxyl-), AcetylCoenzym A-, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II


  • Die vorgenannten Reste für R1 sind jeweils als Ester bzw. Thioester an die Verbindungen der allgemeinen Formel I gebunden.
  • R2 bezeichnet in den Verbindungen der Formel II Wasserstoff, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-.
  • Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie C10-Alkylcarbonyl-, C11- Alkylcarbonyl-, C12-Alkylcarbonyl-, C13-Alkylcarbonyl-, C14 -Alkylcarbonyl-, C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20 -Alkylcarbonyl-, C22-Alkylcarbonyl- oder C24-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C16-C22-Alkylcarbonylreste wie C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C18-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C20-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.
  • R3 bezeichnet in den Verbindungen der Formel II Wasserstoff, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl.
  • Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte C10-C22-Alkylcarbonylreste wie C10-Alkylcarbonyl-, C11- Alkylcarbonyl-, C12-Alkylcarbonyl-, C13-Alkylcarbonyl-, C14 -Alkylcarbonyl-, C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20 -Alkylcarbonyl-, C22-Alkylcarbonyl- oder C24-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C16-C22-Alkylcarbonylreste wie C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C18-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C20-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.
  • R2 und R3 bezeichnen weiterhin in den Verbindungen der Formel II unabhängig voneinander einen Rest der allgemeinen Formel Ia


    wobei n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3 bedeutet, bevorzugt bedeutet n = 3, m = 4 oder 5 und p = 0 oder 3.
  • Die vorgenannten Reste R1, R2 und R3 können auch Substituenten wie Hydoxyl- oder Epoxigruppen tragen oder auch Dreifachbindungen enthalten.
  • Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren.
  • Die im Verfahren hergestellten Verbindungen der Formel I enthalten vorteilhaft eine Mischung aus unterschiedlichen Resten R1, R2 oder R3, die sich von unterschiedlichen Glyceriden ableiten lassen. Weiterhin lassen sich die vorgenannten Reste von verschieden Fettsäuren wie kurzkettigen Fettsäuren mit 4 bis 6 C- Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren.
  • Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester (= Verbindungen der Formel I) mit mehrfach ungesättigten C18-, C20- und/oder C22-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäuremoleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von γ-Linolensäure (= GLA, C18:3Δ 6,9,12), Stearidonsäure (= SDA, C18:4Δ 6,9,12,15), Dihomo- γ-Linolensäure (= DGLA, 20:3Δ 8,11,14), Eicosatetraensäure (= ETA, C20:4Δ 5,8,11,14), Arachidonsäure (ARA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ARA.
  • Die Fettsäureester mit mehrfach ungestättigten C18-, C20- und/oder C22-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycoshingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phoshatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in der Pflanze in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.
  • Im erfindungsgemäßen Verfahren werden die Verbindungen der allgemeinen Formel I mit einem Gehalt von mindestens 1 Gew.-%, vorteilhaft von mindestens 2 Gew.-%, bevorzugt von mindestens 3 Gew.-%, besonders bevorzugt von mindestens 5 Gew.-%, ganz besonders bevorzugt von mindestens 10 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA) oder Eicosapentaensäure (EPA) nicht als Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in der Ausgangspflanze sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren (siehe Verbindungen der allgemeinen Formel I) hergestellt. Werden beide Verbindungen (ARA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1 : 2 (EPA : ARA), vorteilhaft von mindestens 1 : 3, bevorzugt von 1 : 4, besonders bevorzugt von 1 : 5 hergestellt.
  • Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Pflanzen wie Moose, Algen, zweikeimblättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Algen wie Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.
  • Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren, können unterschiedliche Verbindungen der Formel I hergestellt werden.
  • Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Pflanze lassen sich Mischungen der verschiedenen Verbindungen der allgemeinen Formel I oder einzelne Verbindungen wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Verbindungen der allgemeinen Formel I, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA enthaltende Verbindungen der Formel I oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA enthaltende Verbindungen der Formel I. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2Δ9,12) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3Δ9,12,15) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme (Δ-5-, Δ-6-Desaturase und Δ-6-Elongase) bzw. durch Einbringen nur der ersten beiden Gene Δ-6-Desaturase und Δ-6-Elongase) der Synthesekette lassen sich gezielt in den vorgenannten Pflanzen nur einzelne Produkte herstellten (siehe Fig. I). Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in Pflanze eingebracht, so entstehen zusätzlich ARA oder EPA. Vorteilhaft werden nur ARA oder EPA oder deren Mischungen synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Pflanzen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA oder deren Mischungen.
  • Im erfindungsgemäßen Verfahren werden sind unter transgenen Pflanzen auch Pflanzenzellen, -gewebe, -organe oder ganze Pflanzen zu verstehen, die zur Herstellung von Verbindungen der allgemeinen Formel I angezüchtet werden. Unter Anzucht ist beispielsweise die Kultivierung der transgenen Pflanzenzellen, -gewebe oder -organe auf einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur oder auf einem Ackerboden zu verstehen.
  • Im erfindungsgemäßen Verfahren können prinzipiell alle Nukleinsäuren verwendet werden, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren. Vorteilhaft Stammen diese Nukleinsäuren aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Diatomeen wie Phaeodactylum, Moose wie Physcomitrella, Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasegene aus Pilzen oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Pflanzen.
  • Vorteilhaft wird im erfindungsgemäßen Verfahren eine Nukleinsäuresequenz ausgewählt aus der Gruppe den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität besitzen. Diese Sequenzen werden einzeln oder in Kombination in Expressionskonstrukte cloniert, diese Expressionskonstrukte sind in den Sequenzen SEQ ID NO: 33-37 wiedergegeben. Diese Expressionskonstrukte ermöglichen eine optimale Synthese der im erfindungsgemäßen Verfahren produzierten Verbindungen der allgemeinen Formel I.
  • Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle, die die im Verfahren verwendeten Nukleinsäuresequenzen, die für eine Δ-5- oder Δ-6-Desaturase und eine Δ-6-Elongase codieren, enthält, wobei eine Zelle mit den Nukleinsäuresequenz, einem Genkonstrukt oder einem Vektor, welche die Expression der Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasenukleinsäure allein oder in Kombination herbeiführen, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Die so hergestellte Zelle ist vorteilhaft eine Zelle einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.
  • Unter transger Pflanze im Sinne der Erfindung ist zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden.
  • Tansgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Pflanzen sind die Ölfruchtpflanzen.
  • Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten Verbindungen der Formel I enthalten, können direkt vermarktet werden ohne die synthetisierten Verbindungen zu isolieren. Unter Pflanzen im erfindungsgemäßen Verfahren sind alle Pflanzenteile, Pflanzenorgane wie Blatt, Stiel, Wurzel, Knollen oder Samen oder die gesamte Pflanze zu verstehen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte Verbindungen der Formel I lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Auf diese Weise können mehr als 96% der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst die Pflanzenschleime und Trübstoffe. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.
  • Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs C18- oder C20-22-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, bei Kombination mit einer weiteren Elongasen und einer Δ-4 Desaturase fünf oder sechs Doppelbindungen. Diese C18- oder C20-22 -Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.
  • Eine erfindungsgemäße Ausführungsform sind Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.
  • Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
  • Unter dem Begriff "Öl" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl oder Fett einen hohen Anteil an ungesättigter, unkonjugierter veresterter Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30%, mehr bevorzugt ist ein Anteil von 50%, noch mehr bevorzugt ist ein Anteil von 60%, 70%, 80% oder mehr. Zur Bestimmung kann z. B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z. B. Calendulasäure, Palmitin-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangspflanze der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.
  • Bei den im Verfahren hergestellten Verbindungen der Formel I, die mehrfach ungesättigte Fettsäuren mit mindestens zwei Doppelbindungen enthalten, handelt es sich um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.
  • Aus den so im erfindungsgemäßen Verfahren hergestellten Verbindungen der allgemeinen Formel I lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z. B. H2SO4. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.
  • Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in eine Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen samen- spezifischen Expression von Genen in die Pflanzen gebracht.
  • Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.
  • Die Herstellung einer Triensäure mit C18-Kohlenstoffkette mithilfe von Desaturasen konnte bisher gezeigt werden. In diesen literaturbekannten Verfahren wurde die Herstellung von γ-Linolensäure beansprucht. Bisher konnte jedoch niemand die Herstellung sehr langkettiger mehrfach ungesättigter Fettsäuren (mit C20- und längerer Kohlenstoffkette sowie von Triensäuren und höher ungesättigten Typen) allein durch modifizierte Pflanzen zeigen.
  • Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten C18-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C20-Fettsäuren, und nach zwei oder drei Elongationsrunden zu C22- oder C24-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C18-, C20- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu C18- und/oder C20-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die die Verlängerung stattgefunden hat, können weitere Desaturierungsschritte wie z. B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Arachidonsäure und Eicosapentaensäure. Die C18-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.
  • Unter der Verwendung von Klonierungsvektoren in Pflanzen und bei der Pflanzentransformation, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)), lassen sich die Nukleinsäuren zur gentechnologischen Veränderung eines breiten Spektrums an Pflanzen verwenden, so dass diese ein besserer oder effizienterer Produzent eines oder mehrerer von Lipiden hergeleiteter Produkte, wie PUFAs, wird. Diese verbesserte Produktion oder Effizienz der Produktion eines von Lipiden hergeleiteten Produktes, wie PUFAs, kann durch direkte Wirkung der Manipulation oder eine indirekte Wirkung dieser Manipulation hervorgerufen werden.
  • Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsgemäßen Desaturase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Desaturase-Proteins oder -Gens sowie von Genkombinationen von Desaturasen und Elongasen kann erhöht sein, so dass größere Mengen dieser Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des entsprechenden Gens fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d. h. auf DNA- Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z. B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.
  • Durch das Einbringen eines Desaturase- und/oder Elongase-Gens oder mehrerer Desaturase- und Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöhen, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöhen oder de novo schaffen. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z. B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Pflanzen zu steigern.
  • Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teilen von diesen, wobei die Proteine oder das einzelne Protein oder Teilen davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 ist, so dass das Protein oder der Teil davon eine Desaturase- oder Elongase- Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen von Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 50%, vorzugsweise mindestens etwa 60% und stärker bevorzugt mindestens etwa 70%, 80% oder 90% und am stärksten bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Bevorzugt ist das Protein ein Volllängen- Protein, das im wesentlichen in Teilen homolog zu einer gesamten Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 (die von dem in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten offenen Leserahmen herrührt) ist. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.
  • Unter wesentlicher enzymatischer Aktivität der verwendeten Desaturasen und der Elongase ist zu verstehen, dass sie gegenüber den durch die Sequenzen mit SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10%, bevorzugt 20%, besonders bevorzugt 30% und ganz besonders 40% aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einer Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C18- oder C20-22 -Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist.
  • Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium oder aus Nematoden wie Ceanorhabditis, speziell aus den Gattungen und Arten Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricormutum oder Ceanorhabditis elegans.
  • Alternativ können die verwendeten isolierten Nukleotidsequenzen für Desaturasen oder Elongasen codieren, die an eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 hybridisieren, z. B. unter stringenten Bedingungen hybridisieren.
  • Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Pflanzen ermöglicht, eingebracht.
  • Vorteilhafte Expressionskassetten werden in SEQ ID NO: 33 bis 37 wiedergegeben. Dabei werden die für die Desaturasen und/oder die Elongasen codierenden Nukleinsäuresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ5-Desaturase-/Δ6-Desaturase und/oder Δ6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.
  • Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
  • Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch Seq ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 definiert sind und gem. SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 Polypeptide kodieren. Die genannten Desaturasen führen dabei eine Doppelbindung in Δ-5 oder Δ-6-Position ein, wobei das Substrat ein, zwei, drei oder vier Doppelbindungen aufweisen. Die Elongase (Δ-6-Elongase) besitzt eine Enzymaktivität, die eine Fettsäure um mindestens zwei Kohlenstoffatome verlängert. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.
  • Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacIq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid- induzierbar), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin- Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica) von Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LeB4- Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.
  • Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z. B. beschrieben in WO 99/16890.
  • Um einen besonders hohen Gehalt an PUFAs in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samen- spezifisch in Ölsaaten exprimiert werden. Hierzu können Samen- spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen-spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl- Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2, 2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO 95/23230], Samen- spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol- Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder β-Amylase (Gerste) [EP 781 849].
  • Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure- induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.
  • Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-6-Desaturase, die Δ-5-Desaturase oder die Δ-6-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen früheren können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal (siehe Sequenzprotokoll SEQ ID NO: 33-37). Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.
  • Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z. B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.
  • Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl- Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet.
  • Dabei können die vorgenannten Desaturasen in Kombination mit Elongasen und anderen Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden.
  • Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.
  • Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäure, die für Δ-5- oder Δ-6-Desaturen oder Δ-6-Elonagasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z. B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.
  • Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z. B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z. B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z. B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.
  • Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Desaturase- und/oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M. A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; von den Hondel, C. A. M. J. J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J. W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology. 1, 3: 239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S. 71-119 (1993); F. F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor- Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.
  • Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u. a. pGEX (Pharmacia Biotech Inc. Smith, D. B., und Johnson, K. S. (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion- S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
  • Beispiele für geeignete induzierbare nicht-Fusions-E. coli- Expressionsvektoren sind u. a. pTrc (Amann et al. (1988) Gene 69: 301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac- Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.
  • Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11 or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.
  • Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J. W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.
  • Alternativ können die Desaturasen und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z. B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol. 3: 2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31-39).
  • Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P. H., et al., Elsevier, Amsterdam- New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E. F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • Bei einer weiteren Ausführungsform können des Verfahrens können die Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z. B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197; und Bevan, M. W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.
  • Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-t-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.
  • Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.
  • Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.
  • Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäureinduzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.
  • Auch Promotoren, die auf biotische oder ablotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80- Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).
  • Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), der Oleosin- Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin- Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum- Kasirin-Gen, dem Roggen-Secalin-Gen).
  • Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Desaturasen und/Elongasen allein oder in Kombination mit anderen Desaturasen oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.
  • Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP- Promotor aus Arabidopsis, beschrieben in WO 99/46394.
  • Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z. B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.
  • Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Organismen, wie Bakterien, Pilze, Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß).
  • Im erfindungsgemäßen Verfahren werden vorteilhaft Nukleinsäuresequenzen verwendet, die für die Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codierenden, ausgewählt aus der Gruppe:
    • a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz,
    • b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,
    • c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
  • Die oben genannte erfindungsgemäße Nukleinsäure stammt von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.
  • Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z. B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Desaturase- oder Elongase-Nukleinsäuremolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.
  • Die im Verfahren verwendeten Nukleinsäuremoleküle, z. B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z. B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z. B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z. B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299) und cDNA mittels Reverser Transkriptase (z. B. Moloney-MLV- Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 sowie der in Fig. 5a gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.
  • Homologe der verwendeten Desaturase- oder Elongase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70%, stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90% oder 90 bis 95% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr Homologie zu einer in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z. B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Desaturase oder Elongase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10%, vorzugsweise 20%, besonders bevorzugt 30%, ganz besonders bevorzugt 40% der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 kodierten Protein.
  • Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.
  • Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.
  • Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Desaturase- oder Elongaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von Verbindungen der allgemeinen Formel I in transgenen Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z. B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwenden und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung oder einer Abnahme unerwünschter Verbindungen führt (z. B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).
  • Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.
  • Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3- Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F. C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D. C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57: 522-542 und die enthaltenen Literaturstellen).
  • Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C18-Kohlenstoff-Fettsäuren müssen auf C20 und C22 verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ-5- und Δ-6-Desaturase und der Δ-6-Elongase können Arachidonsäure und Eicosapentaensäure sowie verschiedene andere langkettige PUFAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können vorzugsweise C18 + C20 Fettsäuren mit mindestens zwei, drei, vier oder fünf Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C20-Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren, zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate im erfindungsgemäßen Verfahren sind zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo- γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α-Linolensäure, dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die C18- oder C20-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester (siehe Formel I) beispielsweise in Form ihrer Glyceride an.
  • Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylceridgemisch kann weitere Zusätze, z. B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.
  • Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.
  • Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5): 161-166).
  • Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19: 149-166; Ohlrogge und Browse, 1995, Plant Cell 7: 957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18: 111-13; Gerhardt, 1992, Prog. Lipid R. 31: 397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256: 181-186; Kunau et al., 1995, Prog. Lipid Res. 34: 267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1): 1-16.
  • Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.
  • Der Begriff "Desaturase oder Elongase" oder "Desaturase- oder Elongase-Polypeptid" im Sinne der Erfindung umfasst Proteine, die an der Desaturierung und Elongierung von Fettsäuren teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Die Begriffe Desaturase oder Elongase-Nukleinsäuresequenz(en) umfassen Nukleinsäuresequenzen, die eine Desaturase oder Elongase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'-untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z. B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z. B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d. h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden.
  • Der Stoffwechsel einer bestimmten Verbindung (z. B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.
  • Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls Proteine mit mindestens 50%, vorteilhaft etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70% und stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90%, 90 bis 95% und am stärksten bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Die Homologie der Aminosäuresequenz kann über den gesamten Sequenzbereich mit dem Programm PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5, 1989: 151-153) oder BESTFIT oder GAP bestimmt (Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915-10919.)
  • Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1, 3, 5 oder 11 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Desaturase kodieren wie diejenige, die von den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen kodiert wird.
  • Zusätzlich zu den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Desaturase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Desaturasen oder Elongasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Desaturase- oder Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5% in der Nukleotidsequenz des Desaturase- oder Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Desaturase oder Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von Desaturasen oder Elongasen nicht verändern, sollen im Umfang der Erfindung enthalten sein.
  • Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Desaturase- oder Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60% homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65%, stärker bevorzugt mindestens etwa 70% und noch stärker bevorzugt mindestens etwa 75% oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 × Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 × SSC, 0,1% SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 × SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50% Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA- Hybride zum Beispiel 0,1 × SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 × SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50% in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.
  • Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z. B. einer der Sequenzen der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32) oder von zwei Nukleinsäuren (z. B. einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z. B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d. h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d. h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen × 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen.
  • Ein isoliertes Nukleinsäuremolekül, das eine Desaturase oder Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 durch Standardtechniken, wie stellen- spezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht- essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z. B. Lysin, Arginin, Histidin), sauren Seitenketten (z. B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z. B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z. B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z. B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z. B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Desaturase oder Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Desaturase-kodierenden Sequenz eingebracht werden, z. B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Desaturase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die Desaturase- oder Elongase-Aktivität beibehalten. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z. B. unter Verwendung der hier beschriebenen Tests bestimmt werden.
  • Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefaßt werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.
  • Beispielteil Beispiel 1 Allgemeine Verfahren a) Allgemeine Klonierungsverfahren
  • Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrocellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).
  • b) Chemikalien
  • Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A.-Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H2O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet.
  • Beispiel 2 Isolierung von Gesamt-RNA und poly(A)+-RNA aus Pflanzen
  • Die Isolierung von Gesamt-RNA aus Pflanzen wie Lein und Raps etc. erfolgt nach einer bei Logemann et al beschriebenen Methode (1987, Anal. Biochem. 163, 21) isoliert. Aus Moos kann die Gesamt-RNA Protonema-Gewebe nach dem GTC-Verfahren (Reski et al., 1994, Mol. Gen. Genet., 244: 352-359) gewonnen werden.
  • Beispiel 3 Transformation von Agrobacterium
  • Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung des GV3101- (pMP90-) (Koncz und Schell, Mol. Gen. Genet. 204 (1986) 383-396) oder LBA4404- (Clontech) oder C58C1 pGV2260 (Deblaere et al 1984, Nucl. Acids Res. 13, 4777-4788) Agrobacterium tumefaciens-Stamms durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (ebenfalls Deblaere et al. 1984).
  • Beispiel 4 Pflanzentransformation
  • Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).
  • Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.
  • Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) lässt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13: 282-285 beschriebenen Technik durchführen.
  • Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.
  • Die Pflanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise bes chrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).
  • Beispiel 5 Plasmide für die Pflanzentransformation
  • Zur Pflanzentransformation können binäre Vektoren, wie pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20: 1195-1197) verwendet werden. Die Konstruktion der binären Vektoren kann durch Ligation der cDNA in Sense- oder Antisense-Orientierung in T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzenpromotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen. Insbesondere kann das nptII-Markergen codierend für Kanamycin-Resistenz vermittelt durch Neomycinphosphotransferase gegen die herbizidresistente Form eines Acetolactat Synthasegens (AHAS oder ALS) ausgetauscht werden. Das ALS-Gen ist beschrieben in Ott et al., J. Mol. Biol. 1996, 263: 359-360. Der v-ATPase-c1-Promotor kann in das Plasmid pBin19 oder pGPTV kloniert werden und durch Klonierung vor das ALS Codierregion für die Markergenexpression genutzt werden. Der genannte Promotor entspricht einem 1153 Basenpaarfragment aus beta-Vulgaris (Plant Mol Biol, 1999, 39: 463-475). Dabei können sowohl Sulphonylharnstoffe als auch Imidazolinone wie Imazethapyr oder Sulphonylharnstoffe als Antimetaboliten zur Selektion verwendet werden.
  • Die gewebespezifische Expression lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Beispielsweise kann die samenspezifische Expression erreicht werden, indem der DC3- oder der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Auch jedes andere samenspezifische Promotorelement wie z. B. der Napin- oder Arcelin Promotor Goossens et al. 1999, Plant Phys. 120(4): 1095-1103 und Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490(1-2): 87-98) kann verwendet werden. Zur konstitutiven Expression in der ganzen Pflanzen lässt sich der CaMV-35S-Promotor oder ein v-ATPase C1 Promotor verwenden.
  • Insbesondere lassen sich Gene codierend für Desaturasen und Elongasen durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor klonieren, um den Stoffwechselweg in Pflanzen nachzubilden.
  • Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Plastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.
  • Beispiele für Multiexpressionskassetten sind im folgenden gegeben.
  • I.) Promotor-Terminator-Kassetten
  • Expressionskassetten bestehen aus wenigstens zwei funktionellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau von Expressionskassetten werden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert.
  • Folgende Oligonukleotide können beispielsweise verwendet werden:
    USP1 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
    USP2 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
    USP3 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
    USP1 hinten: AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT
    USP2 hinten: CGCGGATCCGCTGGCTATGAAGAAATT
    USP3 hinten: TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT
    OCS1 vorne: AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT
    OCS2 vorne: CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT
    OCS3 vorne: TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT
    OCS1 hinten: CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
    OCS2 hinten: CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
    OCS3 hinten: CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGACAATCAGTAAATTGA
  • Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.
  • In einem ersten Schritt werden ein Promotor und ein Terminator über PCR amplifiziert. Dann wird der Terminator in ein Empfängerplasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Mithin erhält man eine Expressionskassette auf einem Trägerplasmid. Auf Basis des Plamides pUC19 werden die Plasmide pUT1, 2 und 3 erstellt.
  • Die Konstrukte sind erfindungsgemäß in SEQ ID NO: 33, 34 bis 42 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wird das Konstrukt pUT12 erstellt, indem pUT1 mittels SalI/ScaI geschnitten wird und pUT2 mittels XhoI/ScaI geschnitten wird. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die XhoI/SalI Ligation kompatibler Enden hat dabei die beiden Schnittstellen XhoI und SalI zwischen den Expressionskassetten eleminiert. Es resultiert das Plasmid pUT12, das in SEQ ID NO: 36 definiert ist. Anschließend wird pUT12 wiederum mittels Sal/ScaI geschnitten und pUT3 mittels XhoI/ScaI geschnitten. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wird ein Set von Multiexpressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann.
  • Diese enthalten folgende Elemente:
    Tabelle 1

  • Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des
    • a) USP-Promotors oder mithilfe des
    • b) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des
    • c) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.
  • Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263: 359-368 und besteht lediglich aus der Region -117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.
  • Dem Sequenzprotokoll SEQ ID NO: 43 bis 49 sind die für die Pflanzentransformation verwendeten Vektoren sowie die Sequenzen der inserierten Gene/Proteine zu entnehmen.
  • Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator- Polylinker sind den Sequenzen SEQ ID NO: 50 bis 52 zu entnehmen.
    Tabelle 2 Multiple Expressionskassetten

    * EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700)
  • Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des
    • a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des
    • b) Phaseolin-Promotors oder mithilfe des
    • c) konstitutiven v-ATPase c1-Promotors.
  • Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z. B. den Napin-Promotor oder den Arcelin-5 Promotor zu verwenden.
  • II) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten
  • In pUT123 wird zunächst über BstXI und XbaI die Δ-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über BamHI/NaeI in die zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über BglII/NcoI in die dritte Kassette inseriert. Das Dreifachkonstrukt erhält den Namen pARA1.
  • Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.
    Tabelle 3 Kombinationen von Desaturasen und Elongasen

    Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum
    Pp_PSE1 entspricht der Sequenz aus SEQ ID NO: 9.
    PSE = PUFA spezifische Δ-6-Elongase
    Ce_des5 = Δ-5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 078796)
    Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans elegans (Genbank Acc. Nr. AF 031477, Basen 11-1342)
    Ce_PSE1 = Δ-6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 244356, Basen 1-867)
  • Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z. B. Genbank Acc. Nr. AF 231981, NM 013402, AF 206662, AF 268031, AF 226273, AF 110510 oder AF 110509.
  • iii)Transfer von Expressionskassetten in Vektoren zur Transformation von Agrobakterium tumefaciens und zur Transformation von Pflanzen
  • Die so erstellten Konstrukte werden mittels AscI in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wird zu diesem Zweck um eine AscI Schnittstelle erweitert. Zu diesem Zweck wird der Polylinker als zwei doppelsträngige Oligonukleotide neu synthetisiert, wobei eine zusätzliche AscI DNA Sequenz eingefügt wird. Das Oligonukleotid wird mittels EcoRI und HindIII in den Vektor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.
  • Beispiel 6 Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus
  • Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus kann auf der Transkriptions- und/oder der Translationsebene gemessen werden.
  • Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, oder den oben erwähnten Beispielteil), wobei ein Primer, der so gestaltet ist, dass er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so dass, wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen anzeigt. Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E. R., et al. (1992) Mol. Microbiol. 6: 317-326 beschriebene, präpariert werden.
  • Northern-Hybridisierung
  • Für die RNA-Hybridisierung wurden 20 µg Gesamt-RNA oder 1 µg poly(A)+-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25% unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 × SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10% Dextransulfat Gew./Vol., 1 M NaCl, 1% SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Roche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-32P-dCTP (Amersham, Braunschweig, Deutschland). Die Hybridisierung wurde nach Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 × SSC und zweimal für 30 min unter Verwendung von 1 × SSC, 1% SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1 bis 14 T durchgeführt.
  • Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamt- Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen lässt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.
  • Beispiel 7 Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes
  • Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d. h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P. A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J. F., und Cabral, J. M. S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J. A., und Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).
  • Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22): 12935-12940, und Browse et al. (1986) Analytic Biochemistry 152: 141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)-16 (1977) u. d. T.: Progress in the Chemistry of Fats and Other Lipids CODEN.
  • Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z. B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P. M. Rhodes und P. F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.
  • Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie- Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).
  • Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33: 343-353).
  • Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2% Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d. h. Sigma), definiert werden.
  • Bei Fettsäuren, für die keine Standards verfügbar sind, muss die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise muss die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt werden.
  • Expressionskonstrukte in heterologen mikrobiellen Systemen Stämme, Wachstumsbedingungen und Plasmide
  • Der Escherichia coli-Stamm XL1 Blue MRF' kan (Stratagene) wurde zur Subklonierung der neuen Desaturase pPDesaturase1 aus Physcomitrella patens verwendet. Für die funktionelle Expression dieses Gens verwendeten wir den Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.). E. coli wurde in Luria-Bertini-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1,5% Agar (Gew./Vol.) wurde für feste LB-Medien hinzugefügt. S. cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdum; siehe in: Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Albright, L. B., Coen, D. M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2% (Gew./Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2% (Gew./Vol.) Bacto™-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.).
  • Beispiel 8 Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen
  • Für die Expression in Pflanzen wurden cDNA Klone aus SeQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligonukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-292). Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.
  • Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pfu-DNA-(Stratagene)Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z. B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.
  • Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE-Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIAquick-Gelextraktionskit (QIAGEN) extrahiert und in die SmaI-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF' kan wurde eine DNA-Minipräparation (Riggs, M. G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid minipreparation. BioTechniques 4, 310-313) an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI- Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt.
  • Fettsäureanalyse
  • Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert.
  • Die Samen wurden mit 1% Natriummethanolat in Methoanol aufgenommen und 20 min bei RT inkubiert. Anschließend wird mit NaCl Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen. Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard- 6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fettsäuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA) identifiziert.
  • Expressionsanalyse
  • Ergebnis der Expression einer Phaeodactylum tricornutum Δ-6-Acyl Lipid Desaturase, einer Phaeodactylum tricornutum Δ-5-Acyl Lipid Desaturase und der delta-6 spezifischen Elongase in Tabaksamen:
  • Fig. 2 Fettsäureprofil von transgenen Tabaksamen. Die Pflanzen wurden mit einer 3-fach Expressionskassette transformiert, die unter der Kontrolle des USP Promotors die delta-6-, die delta-5- und die Physcomitrella patens PpPSE1 exprimiert (pARA2). Es wurden 100 transgene Tabak und Leinpflanzen hergestellt, von denen ca. 20% Arachidonsäure im Samen synthetisierten.
  • Fig. 3 Tabak Wildtypkontrolle.
  • Beispiel 9 Reinigung des gewünschten Produktes aus transformierten Organismen
  • Die Gewinnung des gewünschten Produktes aus Pflanzenmaterial oder Pilzen, Algen, Ciliaten, tierischen Zellen oder aus dem Überstand der vorstehend beschriebenen Kulturen kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt nicht aus den Zellen sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standardtechniken, wie mechanische Kraft oder Ultraschallbehandlung, lysiert werden. Organe von Pflanzen können mechanisch von anderem Gewebe oder anderen Organen getrennt werden. Nach der Homogenisation werden die Zelltrümmer durch Zentrifugation entfernt, und die Überstandsfraktion, welche die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung aufbewahrt. Wird das Produkt aus gewünschten Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung aufbewahrt.
  • Die Überstandsfraktion aus jedem Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können wenn nötig wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl geeigneter Chromatographieharze und ihrer wirksamsten Anwendung für ein bestimmtes zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.
  • Im Fachgebiet ist ein breites Spektrum an Reinigungsverfahren bekannt, und das vorstehende Reinigungsverfahren soll nicht beschränkend sein. Diese Reinigungsverfahren sind zum Beispiel beschrieben in Bailey, J. E., & Ollis, D. F., Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).
  • Die Identität und Reinheit der isolierten Verbindungen kann durch Standardtechniken des Fachgebiets bestimmt werden. Dazu gehören Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, insbesondere Dünnschichtchromatographie und Flammenionisationsdetektion (IATROSCAN, Iatron, Tokio, Japan), NIRS, Enzymtest oder mikrobiologisch. Eine Übersicht über diese Analyseverfahren siehe in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A., et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.
  • Äquivalente
  • Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein. SEQUENZPROTOKOLL



























































































































































































































































































































































































































Claims (14)

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:


in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie
b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-5-Desaturaseaktivität codiert; und
d) anschließend kultivieren und ernten der Pflanzen; und
wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:
R1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II


R2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-,
R3 = H, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, oder
R2 und R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia


n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Substituenten R2 und R3 unabhängig voneinander C10-C22 -Alkylcarbonyl- bedeuten.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Substituenten R2 und R3 unabhängig voneinander C16-, C18-, C20- oder C22-Alkylcarbonyl- bedeuten.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Substituenten R2 und R3 unabhängig voneinander ungesättigtes C16-, C18-, C20- oder C22-Alkylcarbonyl- mit ein, Zwei, drei, vier oder fünf Doppelbindungen bedeuten.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die transgene Pflanze ausgewählt aus der Gruppe Soja, Erdnuss, Raps, Canola, Lein, Nachtkerze, Königskerze, Distel, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Wildrosen, Kürbis, Pistazien, Sesam, Sonnenblume, Färberdistel, Borretsch, Mais, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Ölpalme, Walnuss oder Kokosnuß ist.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Verbindungen der Formel I durch Pressen oder Extraktion aus den transgenen Pflanzen in Form ihrer Öle, Fette, Lipide oder freien Fettsäuren gewonnen werden.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die gemäß Anspruch 7 gewonnenen Öle, Fette, Lipide oder freien Fettsäuren raffiniert werden.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man die in den Verbindungen der Formel I enthaltenden gesättigten oder ungesättigten Fettsäuren freisetzt.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die gesättigten oder ungesättigten Fettsäuren über ein alkalische Hydrolyse oder eine enzymatische Abspaltung freigesetzt werden.
11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in den transgenen Pflanzen mit einem Gehalt von mindestens 5 Gew.-% bezogen auf die gesamten Fettsäuren enthalten sind.
12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass, die für die Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codierenden Nukleinsäuresequenzen, ausgewählt aus der Gruppe sind:
a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz,
b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,
c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen gemäß Anspruch 8 in einem Nukleinsäurekonstrukt mit einem oder mehreren Regulationssignalen verknüpft sind.
14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl- ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure- Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid- Lyasen oder Fettsäure-Elongase(n).
DE10219203A 2002-04-29 2002-04-29 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen Withdrawn DE10219203A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10219203A DE10219203A1 (de) 2002-04-29 2002-04-29 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
PCT/EP2003/004297 WO2003093482A2 (de) 2002-04-29 2003-04-25 Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen
AU2003232512A AU2003232512B2 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants
CA002485060A CA2485060A1 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants
EP03747357A EP1501932A2 (de) 2002-04-29 2003-04-25 Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen
CA2977570A CA2977570A1 (en) 2002-04-29 2003-04-25 Method for the production of polyunsaturated fatty acids in plants
CA2870809A CA2870809C (en) 2002-04-29 2003-04-25 Method for the production of polyunsaturated fatty acids in plants
US10/511,621 US7893320B2 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10219203A DE10219203A1 (de) 2002-04-29 2002-04-29 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Publications (1)

Publication Number Publication Date
DE10219203A1 true DE10219203A1 (de) 2003-11-13

Family

ID=29224898

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10219203A Withdrawn DE10219203A1 (de) 2002-04-29 2002-04-29 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen

Country Status (6)

Country Link
US (1) US7893320B2 (de)
EP (1) EP1501932A2 (de)
AU (1) AU2003232512B2 (de)
CA (3) CA2485060A1 (de)
DE (1) DE10219203A1 (de)
WO (1) WO2003093482A2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076617A2 (de) 2003-02-27 2004-09-10 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren
WO2005083093A2 (de) * 2004-02-27 2005-09-09 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
EP2166070A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2177605A1 (de) 2006-10-06 2010-04-21 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen nicht-humanen Organismen
US7855321B2 (en) 2003-03-31 2010-12-21 University Of Bristol Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
EP2380984A2 (de) 2006-02-16 2011-10-26 BASF Plant Science GmbH Nukleinsäure
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production
RU2447147C2 (ru) * 2003-08-01 2012-04-10 Басф Плант Сайенс Гмбх Способ получения полиненасыщенных кислот жирного ряда в трансгенных организмах
DE112009003708T5 (de) 2008-12-12 2012-09-13 Basf Plant Science Gmbh Desaturasen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenenOrganismen
EP2623584A1 (de) 2004-02-27 2013-08-07 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
US9624477B2 (en) 2004-02-27 2017-04-18 Basf Plant Science Gmbh Method for producing unsaturated omega-3-fatty acids in transgenic organisms
US10190131B2 (en) 2006-02-21 2019-01-29 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030976A1 (de) * 2000-06-30 2002-01-10 Basf Ag DELTA6-Desaturasegene exprimierende Pflanzen und PUFAS enthaltende Öle aus diesen Pflanzen und ein Verfahren zur Herstellung ungesättigter Fettsäuren
US20040172682A1 (en) * 2003-02-12 2004-09-02 Kinney Anthony J. Production of very long chain polyunsaturated fatty acids in oilseed plants
CA2549097C (en) * 2003-12-17 2013-03-26 Suntory Limited Method of producing arachidonic acid-containing plants
BRPI0507716A (pt) * 2004-02-17 2007-07-03 Univ York célula transgênica, planta, semente, vaso de reação, e, método para dessaturar um substrato de ácido graxo
CN102559364B (zh) * 2004-04-22 2016-08-17 联邦科学技术研究组织 用重组细胞合成长链多不饱和脂肪酸
EP1756280B2 (de) 2004-04-22 2024-01-17 Commonwealth Scientific and Industrial Research Organisation Synthese langkettiger mehrfach ungesättigter fettsäuren durch rekombinante zellen
DE102004060340A1 (de) 2004-07-16 2006-02-09 Basf Plant Science Gmbh Verfahren zur Erhöhung des Gehalts an mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
US7550286B2 (en) * 2004-11-04 2009-06-23 E. I. Du Pont De Nemours And Company Docosahexaenoic acid producing strains of Yarrowia lipolytica
DE102004063326A1 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
DE102005013779A1 (de) * 2005-03-22 2006-09-28 Basf Plant Science Gmbh Verfahren zur Herstellung von mehrfach ungesättigten C20- und C22-Fettsäuren mit mindestens vier Doppelbindungen in transgenen Pflanzen
DE102005038036A1 (de) 2005-08-09 2007-02-15 Basf Plant Science Gmbh Verfahren zur Herstellung von Arachidonsäure und/oder Eicosapentaensäure in transgenen Nutzpflanzen
US7723574B2 (en) * 2005-11-24 2010-05-25 Basf Plant Science Gmbh Process for the production of Δ5-unsaturated fatty acids in transgenic organisms
US8629195B2 (en) 2006-04-08 2014-01-14 Bayer Materialscience Ag Production of polyurethane foams
RU2009111266A (ru) 2006-08-29 2010-10-10 Коммонвелт Сайентифик энд Индастриал Рисерч Организейшн (AU) Синтез жирных кислот
GB0807619D0 (en) 2008-04-28 2008-06-04 Whitton Peter A Production of bio fuels from plant tissue culture sources
US9090902B2 (en) 2008-08-26 2015-07-28 Basf Plant Science Gmbh Nucleic acids encoding desaturases and modified plant oil
NO2358882T3 (de) 2008-11-18 2017-12-23
EP2440662B1 (de) 2009-06-08 2018-08-01 BASF Plant Science Company GmbH Neuartige fettsäurenverlängernde bestandteile und ihre verwendung
AU2010272536B2 (en) 2009-07-17 2016-09-08 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
WO2011064181A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid desaturase and uses thereof
US9347049B2 (en) 2009-11-24 2016-05-24 Basf Plant Science Company Gmbh Fatty acid elongase and uses thereof
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
MX349678B (es) 2012-06-15 2017-08-08 Commw Scient Ind Res Org Producción de ácidos grasos poliinsaturados de cadena larga en células vegetales.
EP2880050B1 (de) 2012-08-03 2018-07-04 BASF Plant Science Company GmbH Neuartige enzyme, enzymbestandteile und verwendungen davon
EP3082405A4 (de) 2013-12-18 2017-12-13 Commonwealth Scientific and Industrial Research Organisation Lipid mit langkettigen mehrfach ungesättigten fettsäuren
KR102527795B1 (ko) 2014-06-27 2023-05-02 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 도코사펜타에노산을 포함하는 지질
CN115094081A (zh) 2014-11-14 2022-09-23 巴斯夫植物科学有限公司 增加种子油中生育酚含量的材料和方法
AU2018241920B2 (en) * 2017-03-29 2022-04-21 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell with altered membrane lipid composition
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
US20230397562A1 (en) 2020-11-04 2023-12-14 Cargill, Incorporated Harvest Management
CN117042596A (zh) 2021-03-25 2023-11-10 巴斯夫植物科学有限公司 肥料管理

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2077896C (en) 1990-03-16 2008-02-19 Gregory A. Thompson Plant desaturases - compositions and uses
PH31293A (en) 1991-10-10 1998-07-06 Rhone Poulenc Agrochimie Production of y-linolenic acid by a delta6-desaturage.
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
EP0616644B1 (de) 1991-12-04 2003-07-02 E.I. Du Pont De Nemours And Company Fettsäure-desaturase gene aus pflanzen
CA2084348A1 (en) 1991-12-31 1993-07-01 David F. Hildebrand Fatty acid alteration by a d9 desaturase in transgenic plant tissue
DK0668919T3 (da) 1992-11-17 2003-09-15 Du Pont Gener for mikorsomale delta-12-fedtsyredesaturaser og beslægtede enzymer fra planter
CA2150133A1 (en) 1993-02-05 1994-08-18 Vincent Jean-Marie Armel Arondel Altered linolenic and linoleic acid content in plants
CN1108382C (zh) 1993-12-28 2003-05-14 麒麟麦酒株式会社 脂肪酸去饱和酶基因,含该基因的载体和用该基因转化的植物细胞
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
EP0880312B1 (de) 1995-12-14 2006-03-08 Cargill Incorporated Pflanzen mit mutierten Sequenzen, welche ein veränderten Fettsäuregehalt vermitteln
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
US6075183A (en) * 1997-04-11 2000-06-13 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids in plants
DK0996732T3 (da) 1997-04-11 2005-10-17 Calgene Llc Fremgangsmåder og sammensætninger til syntese af langkædede polyumættede fedtsyrer i planter
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
GB9724783D0 (en) 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides
JP2002527051A (ja) 1998-10-09 2002-08-27 メルク エンド カムパニー インコーポレーテッド デルタ6脂肪酸デサチュラーゼ
CA2378423A1 (en) 1999-07-06 2001-01-11 Basf Plant Science Gmbh Plants expressing .delta.6-desaturase genes and oils from these plants containing pufas and method for producing unsaturated fatty acids
JP4547122B2 (ja) 2000-02-09 2010-09-22 ビーエーエスエフ ソシエタス・ヨーロピア 新規エロンガーゼ遺伝子および高度不飽和脂肪酸の生産方法
DE10102338A1 (de) * 2001-01-19 2002-07-25 Basf Plant Science Gmbh Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
US6635451B2 (en) * 2001-01-25 2003-10-21 Abbott Laboratories Desaturase genes and uses thereof

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076617A2 (de) 2003-02-27 2004-09-10 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren
US8354569B2 (en) 2003-03-31 2013-01-15 University Of Bristol Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
EP2390313A1 (de) 2003-03-31 2011-11-30 University Of Bristol Neue pflanzliche Acyltransferase spezifisch für langkettige mehrfach ungesättigte Fettsäuren
EP2365063A1 (de) 2003-03-31 2011-09-14 University Of Bristol Neue pflanzliche Acyltransferase spezifisch für langkettige mehrfach ungesättigte Fettsäuren
US7855321B2 (en) 2003-03-31 2010-12-21 University Of Bristol Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
EP2166089A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2166090A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2166069A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2169053A2 (de) 2003-08-01 2010-03-31 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2169052A2 (de) 2003-08-01 2010-03-31 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP2172536A2 (de) 2003-08-01 2010-04-07 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP3395945A1 (de) 2003-08-01 2018-10-31 BASF Plant Science GmbH Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
EP2166071A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
RU2447147C2 (ru) * 2003-08-01 2012-04-10 Басф Плант Сайенс Гмбх Способ получения полиненасыщенных кислот жирного ряда в трансгенных организмах
EP2166070A2 (de) 2003-08-01 2010-03-24 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
US9433228B2 (en) 2003-08-01 2016-09-06 Basf Plant Science Gmbh Method for the production of multiple-unsaturated fatty acids in transgenic organisms
US11180769B2 (en) 2003-08-01 2021-11-23 Basf Plant Science Gmbh Method for the production of multiple-unsaturated fatty acids in transgenic organisms
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
US10035989B2 (en) 2004-02-27 2018-07-31 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
US9458436B2 (en) 2004-02-27 2016-10-04 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
WO2005083093A2 (de) * 2004-02-27 2005-09-09 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
WO2005083093A3 (de) * 2004-02-27 2006-02-16 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
EP2623584A1 (de) 2004-02-27 2013-08-07 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
EP3543324A1 (de) * 2004-02-27 2019-09-25 BASF Plant Science GmbH Verfahren zur herstellung mehrfach ungesättigten fettsäuren in transgenen pflanzen
RU2449007C2 (ru) * 2004-02-27 2012-04-27 Басф Плант Сайенс Гмбх Способ получения полиненасыщенных жирных кислот в трансгенных растениях
EP2623584B1 (de) 2004-02-27 2019-04-10 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
US9624477B2 (en) 2004-02-27 2017-04-18 Basf Plant Science Gmbh Method for producing unsaturated omega-3-fatty acids in transgenic organisms
EP2380984A2 (de) 2006-02-16 2011-10-26 BASF Plant Science GmbH Nukleinsäure
US10301638B2 (en) 2006-02-21 2019-05-28 Basf Plant Science Gmbh Oils, lipids and fatty acids produced in transgenic Brassica plant
US10533183B2 (en) 2006-02-21 2020-01-14 Basf Plant Science Gmbh Oils, lipids and fatty acids produced in transgenic Brassica plant
US10533182B2 (en) 2006-02-21 2020-01-14 Basf Plant Science Gmbh Oils, lipids and fatty acids produced in transgenic brassica plant
US10190131B2 (en) 2006-02-21 2019-01-29 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids
EP2177605A1 (de) 2006-10-06 2010-04-21 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen nicht-humanen Organismen
US8710299B2 (en) 2006-10-06 2014-04-29 Basf Plant Science Gmbh Processes for producing polyunsaturated fatty acids in transgenic organisms
US10308914B2 (en) 2006-10-06 2019-06-04 Basf Plant Science Gmbh Processes for producing polyunsaturated fatty acids in transgenic organisms
EP2182056A1 (de) 2006-10-06 2010-05-05 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen nicht-humanen Organismen
US9382529B2 (en) 2006-10-06 2016-07-05 Basf Plant Science Gmbh Processes for producing polyunsaturated fatty acids in transgenic organisms
US11168308B2 (en) 2006-10-06 2021-11-09 Basf Plant Science Gmbh Processes for producing polyunsaturated fatty acids in transgenic organisms
EP2669380A1 (de) 2008-12-12 2013-12-04 BASF Plant Science GmbH Desaturasen und Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in transgenen Organismen
DE112009003708T5 (de) 2008-12-12 2012-09-13 Basf Plant Science Gmbh Desaturasen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenenOrganismen
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production

Also Published As

Publication number Publication date
EP1501932A2 (de) 2005-02-02
US7893320B2 (en) 2011-02-22
WO2003093482A2 (de) 2003-11-13
CA2485060A1 (en) 2003-11-13
CA2977570A1 (en) 2003-11-13
AU2003232512A1 (en) 2003-11-17
CA2870809C (en) 2018-02-13
AU2003232512B2 (en) 2009-08-27
CA2870809A1 (en) 2003-11-13
WO2003093482A3 (de) 2004-11-04
US20070028326A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
US7893320B2 (en) Method for producing multiple unsaturated fatty acids in plants
EP1613746B1 (de) Neue pflanzliche acyltransferasen spezifisch für langkettige, mehrfach ungesättigte fettsäuren
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
EP1356067B1 (de) Verfahren zur herstellung mehrfach ungesaettigter fettsaeuren, neue biosynthesegene sowie neue pflanzliche expressionskonstrukte
EP1613744B1 (de) Delta-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
EP1472357B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren mittels eines neuen elongase-gens
EP2046960A1 (de) Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in pflanzen
EP4219670A2 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
CN101146911A (zh) 用于在转基因生物中产生具有至少四个双键的多不饱和c20-和c22-脂肪酸的方法
AU2014253548A1 (en) Desaturases and process for the production of polyunsaturated fatty acids in transgenic organisms
DE102004017518A1 (de) Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren
DE10203713A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10005973A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee