DE102020121547A1 - Monolithic ceramic membrane filters - Google Patents
Monolithic ceramic membrane filters Download PDFInfo
- Publication number
- DE102020121547A1 DE102020121547A1 DE102020121547.9A DE102020121547A DE102020121547A1 DE 102020121547 A1 DE102020121547 A1 DE 102020121547A1 DE 102020121547 A DE102020121547 A DE 102020121547A DE 102020121547 A1 DE102020121547 A1 DE 102020121547A1
- Authority
- DE
- Germany
- Prior art keywords
- porous
- fluid
- starting material
- component
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 114
- 239000012528 membrane Substances 0.000 title claims description 167
- 239000007858 starting material Substances 0.000 claims abstract description 147
- 239000011148 porous material Substances 0.000 claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 claims abstract description 60
- 239000000654 additive Substances 0.000 claims abstract description 38
- 230000000996 additive effect Effects 0.000 claims abstract description 34
- 239000012530 fluid Substances 0.000 claims description 144
- 239000000463 material Substances 0.000 claims description 69
- 239000011159 matrix material Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 40
- 238000002156 mixing Methods 0.000 claims description 27
- 238000003860 storage Methods 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 13
- 239000000945 filler Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- 238000013461 design Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 8
- 238000013459 approach Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 3
- 239000003351 stiffener Substances 0.000 claims description 3
- 230000035515 penetration Effects 0.000 claims description 2
- 230000003252 repetitive effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 12
- 230000007704 transition Effects 0.000 description 12
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000005266 casting Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 235000011837 pasties Nutrition 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000000739 chaotic effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000004382 potting Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012487 rinsing solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000011138 biotechnological process Methods 0.000 description 1
- 238000013452 biotechnological production Methods 0.000 description 1
- 210000001601 blood-air barrier Anatomy 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/2429—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/24491—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2425—Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
- B01D46/24492—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/247—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2476—Monolithic structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2484—Cell density, area or aspect ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/24—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
- B01D46/2403—Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
- B01D46/2418—Honeycomb filters
- B01D46/2451—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
- B01D46/2486—Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
- B01D46/2496—Circular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/061—Manufacturing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/066—Tubular membrane modules with a porous block having membrane coated passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/069—Tubular membrane modules comprising a bundle of tubular membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
- B01D67/00415—Inorganic membrane manufacture by agglomeration of particles in the dry state by additive layer techniques, e.g. selective laser sintering [SLS], selective laser melting [SLM] or 3D printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0067—Inorganic membrane manufacture by carbonisation or pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/04—Tubular membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/04—Tubular membranes
- B01D69/046—Tubular membranes characterised by the cross-sectional shape of the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/18—Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
- B22F5/106—Tube or ring forms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
- C04B38/0009—Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/20—By influencing the flow
- B01D2321/2033—By influencing the flow dynamically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/004—Article comprising helical form elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00181—Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6021—Extrusion moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
- C04B2235/945—Products containing grooves, cuts, recesses or protusions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
Abstract
Es wird ein additives Herstellungsverfahren zur Herstellung eines keramischen Bauteils mit zumindest teilweiser oder zumindest bereichsweiser poröser Materialstruktur vorgestellt, insbesondere als Filterelement oder Filtervorrichtung, umfassend die Schritte Bereitstellen eines porösen oder porösierbaren Ausgangsmaterials, Auftragen des porösen oder porösierbaren Ausgangsmaterials zum Aufbau des keramischen Bauteils, und bei dem Auftragen Einstellen der Porosität des porösen oder porösierbaren Ausgangsmaterials.An additive manufacturing method for producing a ceramic component with an at least partially or at least regionally porous material structure is presented, in particular as a filter element or filter device, comprising the steps of providing a porous or porous starting material, applying the porous or porous starting material to build up the ceramic component, and the application adjusting the porosity of the porous or porous starting material.
Description
Gebiet der Erfindungfield of invention
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von monolithischen keramischen Bauteilen sowie monolithische keramische Bauteile, insbesondere als keramische Membranfilter.The present invention relates to a method for producing monolithic ceramic components and monolithic ceramic components, in particular as ceramic membrane filters.
Hintergrund und allgemeine Beschreibung der ErfindungBackground and general description of the invention
Keramische Membranfilter zum Filtern bzw. der Abtrennung von Stoffen aus zumeist flüssigen Gemischen sind als solche bekannt. Bei einem solchen Gemisch kann es sich um ein disperses Medium handeln oder beispielsweise auch um eine Lösung, bei welcher in einem Grundstoff weitere Bestandteile gelöst sind.Ceramic membrane filters for filtering or separating substances from mostly liquid mixtures are known as such. Such a mixture can be a disperse medium or, for example, a solution in which further components are dissolved in a base substance.
Keramische Membranfilter sind in verschiedenen Anwendungsgebieten im Einsatz z. Bsp. in der Aufbereitung von Wasser und Lebensmitteln, in der Herstellung pharmazeutischer Produkte, in biotechnologischen oder chemischen Prozessen. Ein Beispiel für eine solche Anwendung kann die Abtrennung von Zellen und Zellbruckstücken von Wirkstofflösungen bei der biotechnologischen Herstellung von Pharmazeutika sein. Es wird hier nach wie vor intensiv nach Weiterentwicklungen gesucht, um beispielsweise den Durchsatz an zu filtrierendem Medium zu erhöhen oder aber die Kosten weiter zu senken. Für technische Anlagen sind im Gegensatz zu medizinischen Apparaten sehr viel größere Membranflächen erforderlich.Ceramic membrane filters are used in various fields of application, e.g. E.g. in the treatment of water and food, in the manufacture of pharmaceutical products, in biotechnological or chemical processes. An example of such an application can be the separation of cells and cell fragments from active substance solutions in the biotechnological production of pharmaceuticals. There is still an intensive search for further developments here, for example to increase the throughput of the medium to be filtered or to further reduce costs. In contrast to medical apparatus, much larger membrane surfaces are required for technical systems.
Da jeder unterschiedliche Anwendungsbereich unterschiedliche Anforderungen stellt, insbesondere an Material, Design, oder Größe der Filter, und Prozessanforderungen wie Temperatur, Druck, Volumen und Aggressivität der berührenden Medien, oder aber besondere Hygieneanforderungen zu berücksichtigen sind, steht der Markt der Membranfilter derzeit noch in der Entwicklung. Einen universellen Ansatz, der zumindest eine Mehrzahl unterschiedlicher Anwendungsbereiche abzudecken vermag, ist bislang nicht erreicht.Since each different area of application has different requirements, especially in terms of the material, design or size of the filter, and process requirements such as temperature, pressure, volume and aggressiveness of the media in contact, or special hygiene requirements have to be taken into account, the membrane filter market is currently still in its infancy Development. A universal approach that is able to cover at least a number of different areas of application has not yet been achieved.
Darüber hinaus kommt es nicht selten zu Ausfällen von Filtrationsanlagen aufgrund der nur begrenzten mechanischen und/oder chemischen Stabilität von bekannten Modulen. Bereits Reinigungsprozesse bei erhöhter Temperatur, hohem und/oder niedrigem pH-Wert oder mit oxidierenden Reinigungsmitteln können die Lebenszeit der Module deutlich begrenzen. Keramische Filter können empfindlich auf Temperaturschocks oder mechanische Einwirkung reagieren.In addition, it is not uncommon for filtration systems to fail due to the only limited mechanical and/or chemical stability of known modules. Even cleaning processes at elevated temperatures, high and/or low pH values or with oxidizing cleaning agents can significantly limit the service life of the modules. Ceramic filters can react sensitively to temperature shocks or mechanical influences.
Keramische Membranfilter werden aufgrund der z.T. automatisierten Herstellverfahren heutzutage als standardisierte Produkte mit vorgegebener Geometrie hergestellt, wobei Anpassungen an besondere Anforderungen aus der Prozessführung wie beispielsweise für hohe Viskositäten und/oder niedrige Druckverluste bei der Durchströmung oder für schwierige Einbauumgebungen praktisch ausgeschlossen sind bzw. nicht vorgesehen sind, da die daraus resultierenden niedrigeren Stückzahlen die Stückkosten in unverkäufliche Regionen treiben würde.Due to the partly automated manufacturing processes, ceramic membrane filters are nowadays manufactured as standardized products with a given geometry, with adaptations to special requirements from the process control, such as for high viscosities and/or low pressure losses during flow or for difficult installation environments, being practically impossible or not planned , since the resulting lower unit numbers would drive the unit costs into unsaleable regions.
Es ist Erkenntnisgrundlage der vorliegenden Erfindung, dass sich die beschriebenen Einschränkungen von aktuell vorhandenen und in der Literatur beschriebenen keramischen Filtern ganz Wesentlich aus deren Aufbau ergeben, denn diese werden gefügt aus konfektionierten Bauteilen.It is the basis of knowledge of the present invention that the described limitations of ceramic filters that are currently available and are described in the literature result very significantly from their structure, because they are assembled from ready-made components.
Im Rahmen der vorliegenden Erfindung wurde in rückschauender Betrachtung auf diese bekannten Filter erkannt, dass es ein Problem ist, wenn Filtermodule typischerweise aus verschiedenen insbesondere verschiedenartigen Komponenten bestehen, die mit unterschiedlichen Verfahren hergestellt und anschließend reversibel oder irreversibel miteinander verbunden werden. Zu den separaten Komponenten zählen Membranen als Flachware oder Röhren, Komponenten zur Fluid-Zu- und -abführung (z.Bsp. Druckrohre, Anschlussstücke, Permeatrohre, Belüftungsrohre, ...) und Komponenten zur Fluid-Verteilung und Durchmischung (Bsp. Spacer, ATDs,...). So werden bislang Filtermodule eingesetzt, welche insbesondere mit Dichtungsringen oder anderen Abdichtungsmitteln versehen werden und in ein separates Gehäuse mit separaten Anschlüssen eingebaut werden. Die Abdichtung zur Vermeidung von Querströmungen zwischen der Hüllseite und der Lumenseite ist dabei aufwendig und begrenzt in entscheidendem Maße die möglichen Einsatzbereiche für Membranfilter.In the context of the present invention, looking back at these known filters, it was recognized that there is a problem when filter modules typically consist of different, in particular different, components that are produced using different methods and are then reversibly or irreversibly connected to one another. The separate components include membranes as flatware or tubes, components for fluid supply and removal (e.g. pressure pipes, connectors, permeate pipes, aeration pipes, ...) and components for fluid distribution and mixing (e.g. spacers, ATD's,...). So far, filter modules have been used which are provided in particular with sealing rings or other sealing means and are installed in a separate housing with separate connections. The sealing to avoid cross-flows between the envelope side and the lumen side is expensive and limits the possible areas of use for membrane filters to a decisive extent.
Ein Beispiel für bekannte verschweißte Rohrmembranen ist in der Europäischen Offenlegungsschrift
Es wurde aber im Rahmen der vorliegenden Erfindung erkannt, dass daran nachteilig sein kann, dass die unterschiedlichen Komponenten beispielsweise unter Belastung, wie zum Beispiel Temperaturwechseln, Druckwechsel oder auch einer Quellung des Materials, sich zueinander unterschiedlich verhalten und dadurch die Leistung des Filters verschlechtern oder versagen.However, it was recognized within the scope of the present invention that it can be disadvantageous that the different components, for example wise behave differently under stress, such as temperature changes, pressure changes or even swelling of the material, and as a result deteriorate the performance of the filter or fail.
Typischerweise werden die Membranen mit den anderen Komponenten zu einem Filterelement verklebt oder verschweißt.Typically, the membranes are bonded or welded to the other components to form a filter element.
Auch mechanische Abdichtungen, die zwischen Membranen und Gehäuse eingeklemmt werden, sindbei keramischen Membranen durchaus üblich.Mechanical seals that are clamped between the membranes and the housing are also quite common with ceramic membranes.
Anschlussstücke (Filterelement zu Rohrleitungssystem) werden häufig lösbar mit der Filtereinheit verbunden z. Bsp. Zu- und Abführkappen über Clamps, Flansche oder Gewinde. Dichtungen verhindern dabei einen „Kurzschluss“ zwischen Feed und Filtrat.Connectors (filter element to piping system) are often detachably connected to the filter unit, e.g. E.g. supply and discharge caps via clamps, flanges or threads. Seals prevent a "short circuit" between feed and filtrate.
Bei Kapillarmodulen z. Bsp. kommt es immer wieder zu Kapillarbrüchen an der Einbettung, zu einer Ablösung von Kleber (Potting) von der Gehäusewand oder auch zu Vergusseinbrüchen. Bei flächig verklebten Flachmembranen z. Bsp. in getauchten Modulen wird Delamination zwischen den Laminatlagen beobachtet. Bei keramischen Rohrmembranen oder auch bei Multikanalelementen stellen die eingesetzte Elastomerdichtung häufig die limitierende Schwachstelle der gesamten Filtereinheit dar. Sowohl die Keramik der aufgebauten Membran als auch das typischerweise eingesetzte Edelstahl des Gehäuses können als solche eine erheblich höhere Temperatur- und/oder Chemikalienbeständigkeit vorweisen als das verwendete Dichtungsmaterial.For capillary modules z. For example, there are always capillary breaks in the embedding, detachment of adhesive (potting) from the housing wall or even encapsulation. In the case of flat membranes glued over the entire surface, e.g. For example, in submerged modules, delamination between the laminate layers is observed. In the case of ceramic tubular membranes or multi-channel elements, the elastomer seal used often represents the limiting weak point of the entire filter unit. Both the ceramic of the constructed membrane and the typically used stainless steel of the housing can show a significantly higher temperature and/or chemical resistance than the material used sealing material.
Ein weiterer Nachteil von bekannten mehrteiligen Filtermodulen ist, dass die verwendeten Fügeprozesse sich immer wieder als fehleranfällig erweisen. Typisch ist, dass verschiedene Fügeverfahren, wie insbesondere Schweißen oder das Einfüllen von Vergussmasse, notwendig sind, um eine Abdichtung und/oder Flüssigkeitsführung in einem Filtermodul zu erzielen.Another disadvantage of known multi-part filter modules is that the joining processes used have repeatedly proven to be error-prone. It is typical that various joining methods, such as in particular welding or the filling in of casting compound, are necessary in order to achieve a seal and/or liquid flow in a filter module.
Kapillarmembranen, auch keramische, werden zumeist in Gehäuse verklebt. Dabei kann es während der Aushärtung der Vergussmasse durch die Vernetzungsreaktion zu einer Schwindung des Materials kommen. Der Übergang vom Vergussblock zum Gehäuse eines solchen Filters steht daher typischerweise unter Spannung, was im praktischen Einsatz unter wechselnden Temperaturen und/oder Drücken zu einer zumindest partiellen Ablösung der Vergussmasse von der Gehäusewand führen kann. Eine zuverlässige Trennung zwischen der Strömung auf der Lumenseite und der Strömung auf der Hüllseite ist damit nicht mehr gewährleistet.Capillary membranes, including ceramic ones, are usually glued into housings. During the curing of the casting compound, the material can shrink as a result of the crosslinking reaction. The transition from the casting block to the housing of such a filter is therefore typically under tension, which in practical use under changing temperatures and/or pressures can lead to at least partial detachment of the casting compound from the housing wall. A reliable separation between the flow on the lumen side and the flow on the envelope side is therefore no longer guaranteed.
Weitere Nachteile von bekannten Filtern entstehen durch die eingeschränkte Gestaltungsmöglichkeit. Beim Vergießen von Kapillar- oder Rohrmembranen sind die Übergänge in bzw. zwischen den Bauteilen, wie beispielsweise zwischen der Membran und einer daran anschließende Endplatte nicht frei wählbar. Sie werden vielmehr durch das Fließ- und Benetzungsverhalten der eingesetzten Vergussmasse bestimmt. Vorteilhafte Ausgestaltungen, die die mechanische Stabilität verbessern würden und/oder die Strömungsführung des Fluids verbessern könnten, können nicht gezielt hergestellt werden. So kommt es zu mechanischen Brüchen an dieser Übergangsstelle und ungünstigen Strömungen, die zu Druckspitzen und Verschleiß führen.Typischerweise werden des Weiteren auf der Zuflussseite die Membranen mit der Vergussmasse bündig mit dem Gehäuseende abgeschnitten. Die Schnittkanten der Membranen sind scharfkantig, und je nach Membran und Anwendung müssen diese Schnittkanten versiegelt werden. Dies beeinträchtigt die Strömung des einfließenden Fluids erheblich.Other disadvantages of known filters arise from the limited design options. When casting capillary or tubular membranes, the transitions in or between the components, such as between the membrane and an end plate connected to it, cannot be freely selected. Rather, they are determined by the flow and wetting behavior of the potting compound used. Advantageous configurations that would improve the mechanical stability and/or could improve the flow guidance of the fluid cannot be produced in a targeted manner. This leads to mechanical fractures at this transition point and unfavorable flows, which lead to pressure peaks and wear. Typically, the membranes with the casting compound are also cut off flush with the end of the housing on the inflow side. The cut edges of the membranes are sharp and depending on the membrane and the application, these cut edges must be sealed. This significantly affects the flow of the incoming fluid.
In keramischen Membranfiltern führt das aktuell übliche Design zu deren mangelnden Robustheit gegenüber mechanischer Beeinflussung, wie insbesondere Schockstöße beim Herunterfallen oder fachungerechten Hantieren. So sind die Membranen üblicherweise nur an ihren Enden im Gehäuse und/oder in einer Vergussmasse verankert. Die Sprödheit des Werkstoffes führt daher regelmäßig zu Membranbrüchen zwischen den Endplatten, welche durch die Einwirkung von mechanischen Belastungen, wie einer Schockbelastung oder einer Scherbelastung, auftreten kann. Eine ganz ähnliche Situation ergibt sich auch bei schnellen Temperaturänderungen. Strömt beispielsweise plötzlich ein heißes Fluid durch die Membranen, dehnen sich diese aus. Das noch kalte Gehäuse lässt unter Umständen diese Dehnung nicht zu und es bauen sich in den Membranen erhebliche Spannungen auf, die ebenfalls regelmäßig zu Membranbruch führen.In ceramic membrane filters, the currently common design leads to a lack of robustness against mechanical influences, such as shocks when falling or improper handling. The membranes are usually only anchored at their ends in the housing and/or in a casting compound. The brittleness of the material therefore regularly leads to membrane ruptures between the end plates, which can occur as a result of the action of mechanical loads, such as shock loads or shear loads. A very similar situation also arises with rapid temperature changes. For example, if a hot fluid suddenly flows through the membranes, they expand. The housing, which is still cold, may not allow this expansion under certain circumstances and considerable stresses build up in the membranes, which also regularly lead to membrane rupture.
Vor dem zuvor beschriebenen allgemeinen Hintergrund der Erfindung und dem dort ebenfalls beschriebenen Erkennungsprozess im Rahmen der Erfindungslegung der vorliegenden Anmeldung und den aufgezeigten dort aufgefundenen Nachteilen hat sich daher die vorliegende Erfindung die Aufgabe gestellt, eben jene zuvor genannten Probleme zu lösen oder zumindest hierzu Verbesserungen einzuführen. Konkret hat sich die Erfindung die Aufgabe gestellt, keramische Filtermodule bzw. Membranfilter bzw. Bauteile bereitzustellen, die erheblich robuster hinsichtlich ihrer Handhabung, alternativ oder kumulativ auch hinsichtlich der anwendbaren Prozess- und Betriebsparameter sind. Die Erfindung löst das Problem, dass die beschriebenen Alterungsprozesse von bekannten Filtern vermieden oder verbessert werden, und dass Ausfallzahlen von ganzen Filtermodulen sowohl in der Produktion als auch im Betrieb verringert werden.Against the general background of the invention described above and the recognition process also described there in the context of the disclosure of the present application and the disadvantages found there, the present invention has therefore set itself the task of solving the aforementioned problems or at least introducing improvements thereto. Specifically, the invention has set itself the task of providing ceramic filter modules or membrane filters or components that are considerably more robust with regard to their handling, alternatively or cumulatively also with regard to the applicable process and operating parameters. The invention solves the problem that the described aging processes of known filters are avoided or improved and that failure rates of entire filter modules are reduced both in production and in operation.
Die vorliegende Erfindung erfüllt damit auch den weiteren Teilaspekt, Standzeiten von keramischen Filtermodulen bzw. Bauteilen im harten technischen Einsatz zu erhöhen und damit die Wirtschaftlichkeit zu verbessern.The present invention thus also fulfills the further partial aspect of increasing the service life of ceramic filter modules or components in tough technical use and thus improving economic efficiency.
Die vorliegende Erfindung erfüllt des Weiteren den Teilaspekt, keramische Filtermodule bzw. Bauteile bereitzustellen, die eine weiter verbesserte Durchmischung der eingesetzten Fluide realisieren und/oder den Filtratdurchsatz weiter erhöhen. So kann einerseits die Ausbeute gesteigert werden und/oder die durchgesetzte Fördermenge erhöht werden.The present invention also fulfills the partial aspect of providing ceramic filter modules or components that achieve further improved mixing of the fluids used and/or further increase the filtrate throughput. In this way, on the one hand, the yield can be increased and/or the throughput quantity can be increased.
Neben den vorgenannten und zahlreichen weiteren Aspekten, die die vorliegende Erfindung löst, stellt die vorliegende Erfindung auch einen mit einfachen Mitteln anpassbaren keramischen Filter bereit, der im Herstellungsprozess für die konkrete spätere Anwendung optimiert werden kann hinsichtlich beispielsweise der Parameter Filtrierleistung, Förderleistung, hinsichtlich des Volumen- oder Massenstromes an Fluid und/oder der mechanischen Belastbarkeit bzw. Widerstandskraft gegenüber mechanischen Einflüssen.In addition to the aforementioned and numerous other aspects that the present invention solves, the present invention also provides a ceramic filter that can be adapted with simple means and that can be optimized in the manufacturing process for the specific subsequent application with regard to, for example, the parameters of filtration performance, flow rate, and volume - Or mass flow of fluid and/or the mechanical resilience or resistance to mechanical influences.
Alternativ oder kumulativ hat sich die Erfindung auch zur Aufgabe gestellt, den Herstellungsprozess von keramischen Filtermodulen zu vereinfachen und/oder kostengünstiger, oder sogar individuell anpassbar an die konkrete Anforderung bereitzustellen.Alternatively or cumulatively, the invention has also set itself the task of simplifying the manufacturing process of ceramic filter modules and/or making it available more cost-effectively, or even individually adaptable to the specific requirement.
Die Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstände der abhängigen Ansprüche.The object is solved by the subject matter of the independent claims. Advantageous developments of the invention are the subject matter of the dependent claims.
Die vorliegende Beschreibung ist dabei auf keramische Bauteile und deren Herstellung beschränkt in Abgrenzung zu polymeren Bauteilen, welche ebenfalls additiv herstellbar sind, aber nicht Gegenstand der vorliegenden Anmeldung oder daraus erwachsenden Ansprüchen sein können. Die vorliegende Beschreibung bezieht darüber hinaus auch nicht solche Bauteile, ein, welche mit einem als TiPS bekannten Verfahren hergestellt sind. Diese Aspekte werden in weiteren Anmeldungen desselben Anmelders weiterverfolgt, um darauf zusätzlichen und parallelen Schutz erhalten zu können, und sind daher nicht Gegenstand der vorliegenden Anmeldung.The present description is limited to ceramic components and their production in contrast to polymeric components, which can also be produced additively, but cannot be the subject of the present application or the claims arising therefrom. Furthermore, the present description does not include such components which are manufactured using a method known as TiPS. These aspects are pursued in further applications by the same applicant in order to be able to obtain additional and parallel protection and are therefore not the subject of the present application.
Die in dieser Beschreibung vorgeschlagenen Verbesserungen und neuen Bauformen konzentrieren sich dabei neben zahlreichen weiteren Aspekten darauf, ein keramisches Bauteil bereitzustellen, welches geeignet ist zur Abtrennung von Bestandteilen aus einem Fluid. Eine solche Abtrennung ist also zum Beispiel die Filtrierung eines Fluids, also das Herauslösen von Stoffen zum Beispiel aus einer Lösung, das Abstreifen oder Abtrennen von Schwebstoffen aus einem dispersen Medium wie einer Suspension. Dabei ist die Erfindung hierauf aber nicht beschränkt.In addition to numerous other aspects, the improvements and new designs proposed in this description concentrate on providing a ceramic component which is suitable for separating components from a fluid. Such a separation is, for example, the filtration of a fluid, i.e. the extraction of substances from a solution, for example, or the stripping or separation of suspended matter from a disperse medium such as a suspension. However, the invention is not limited to this.
Die vorliegende Erfindung konzentriert sich in einem zugrundeliegenden Gedanken und in einem weiteren Aspekt der Erfindung darauf, monolithisch aufgebaute keramische Bauteile bereitzustellen zur Herstellung von keramischen Filtermodulen. Solche monolithischen Bauteile, wie insbesondere keramische Membranfilter, können im Lichte der vorliegenden Erfindung additiv geformt sein und/oder eine intrinsische Porosität aufweisen. Beispielsweise können bei einem monolithischen Bauteil alle Komponenten aus einem einheitlichen Ausgangsmaterial bereitgestellt werden.In an underlying idea and in a further aspect of the invention, the present invention focuses on providing monolithic ceramic components for the production of ceramic filter modules. Such monolithic components, such as in particular ceramic membrane filters, can be formed additively in the light of the present invention and/or have an intrinsic porosity. For example, in the case of a monolithic component, all components can be provided from a uniform starting material.
Monolithische Bauteile werden ferner typischerweise im Ganzen und ohne Unterbrechung hergestellt. Aufgrund des Fehlens von gefügten Bauteil-zu-Bauteil-Übergängen - oder deren Beschränkung auf wenige, technisch mögliche bzw. im Sinne der Herstellungskosten sinnvolle Übergänge - können sie sich durch extreme Robustheit in der Anwendung auszeichnen und können überdies in strömungstechnischer Hinsicht wie auch in ihrer Größe und somit der Filtrationskapazität auf ihren Einsatzzweck hin optimiert werden.Also, monolithic components are typically manufactured in one piece and without interruption. Due to the lack of joined component-to-component transitions - or their limitation to a few transitions that are technically possible or reasonable in terms of manufacturing costs - they can be characterized by extreme robustness in the application and can also be used in terms of flow technology as well as in their Size and thus the filtration capacity can be optimized for their intended use.
Es gibt verschiedene bereits bekannte Verfahren der additiven Fertigung, welche große Gestaltungsspielräume bieten. Typischerweise werden die zu fertigenden Elemente schichtweise aufgebaut. Die bisher bekannten Verfahren der additiven Fertigung sind allerdings insbesondere für einen Einsatz zum Aufbau von keramischen Membranmodulen in verschiedener Hinsicht unzureichend und gelangen erst mit der vorliegenden Erfindung zur Einsatzreife.There are various already known methods of additive manufacturing, which offer great freedom of design. Typically, the elements to be manufactured are built up in layers. However, the methods of additive manufacturing known hitherto are inadequate in various respects, particularly for use in the construction of ceramic membrane modules, and are only ready for use with the present invention.
Die additive Fertigung erlaubt dabei beispielsweise auch die Herstellung von Geometrien, die mit bisher bekannten Verfahren zur Membran- bzw. Membranmodulherstellung nicht möglich sind.Additive manufacturing also allows, for example, the production of geometries that are not possible with previously known processes for membrane or membrane module production.
Der in der vorliegenden Erfindung beschriebene Einsatz poröser Materialsysteme für die additive Fertigung erlaubt beispielsweise auch die reproduzierbare Erzeugung poröser Bauteile mit einer mittleren Porengröße von bis zu kleiner 1 µm, was bisher eine nicht gelöste Herausforderung darstellt. So erforderten bisherige Versuche in dieser Hinsicht aufgrund der erforderlichen hohen Auflösung einen immensen zeitlichen Aufwand für einen einzigen Filter, der für eine Serienfertigung unakzeptabel lang ist. Dabei war auch in technologischer Hinsicht das Verhältnis zwischen erzielbarer Bauteilgröße zu der Auflösung des Bauteilaufbaus ein Hindernis dahingehend, dass sich solche Filter nicht in technisch relevanten Größen herstellen ließen. Gerade diese Problematik wird von dem in der vorliegenden Beschreibung gezeigten Ansatz besonders elegant gelöst.The use of porous material systems for additive manufacturing described in the present invention also allows, for example, the reproducible production of porous components with an average pore size of down to less than 1 μm, which represents a challenge that has not been solved so far. Previous attempts in this regard required an immense amount of time for a single file due to the required high resolution ter, which is unacceptably long for series production. From a technological point of view, the relationship between the achievable component size and the resolution of the component structure was an obstacle to the effect that such filters could not be produced in technically relevant sizes. Precisely this problem is solved particularly elegantly by the approach shown in the present description.
Dabei stellt besonders bevorzugt die von einer Auftragsvorrichtung, wie einem 3D-Drucker, bereitstellbare geometrische Auflösung kein Hindernis mehr hinsichtlich der erzielbaren Porengröße dar. Die geometrische Auflösung der Auftragsvorrichtung ist dann in besonders vorteilhafter Ausgestaltung lediglich noch für die allgemeine Formgebung des Bauteils bzw. des Membranfilters relevant, nicht aber für die konkrete Porengröße des Membranfilters.The geometric resolution that can be provided by an application device, such as a 3D printer, particularly preferably no longer represents an obstacle with regard to the achievable pore size. In a particularly advantageous embodiment, the geometric resolution of the application device is then only for the general shape of the component or the membrane filter relevant, but not for the specific pore size of the membrane filter.
Das erfindungsgemäße Verfahren zur Herstellung eines keramischen Bauteils mit zumindest teilweiser oder zumindest bereichsweiser poröser Materialstruktur, insbesondere als Filterelement oder Filtervorrichtung, umfasst mehrere Schritte. In dem Schritt Bereitstellen eines porösen oder porösierbaren Ausgangsmaterials wird das keramische Ausgangsmaterial für den Auftrag bereitgestellt. In einem Beispiel wird das Ausgangsmaterial mittels eines Extruders bereitgestellt. Das Ausgangsmaterial liegt bereits porös vor oder es wird in einer porösierbaren Form bereitgestellt. Das bedeutet, dass das Ausgangsmaterial bei seiner Bereitstellung zunächst nicht porös ist, aber im Zusammenhang mit dem Auftrag des Ausgangsmaterials so beeinflusst, verändert oder anders zusammengesetzt wird, dass das Ausgangsmaterial im zeitlichen Zusammenhang mit dem Auftrag des Ausgangsmaterials mit Poren durchsetzt werden kann.The method according to the invention for producing a ceramic component with an at least partially or at least regionally porous material structure, in particular as a filter element or filter device, comprises a number of steps. In the step of providing a porous or porous starting material, the ceramic starting material is provided for the application. In one example, the starting material is provided using an extruder. The starting material is already porous or it is provided in a porous form. This means that the starting material is initially not porous when it is provided, but is influenced, changed or composed differently in connection with the application of the starting material in such a way that the starting material can be interspersed with pores in the temporal connection with the application of the starting material.
Mit anderen Worten meint das Bereitstellen des porösen oder porösierbaren Ausgangsmaterials das Überführen eines Primärmaterials zu dem in Herstellung befindlichen Bauteil. So kann das Bereitstellen auch das Fördern des porösen oder porösierbaren Ausgangsmaterials zu dem Ort des Materialauftrags umfassen. Das Bereitstellen kann auch die thermische Anpassung an gewünschte Auftragsbedingungen umfassen, wie auch das Einstellen eines vorteilhaften physikalischen Drucks im Moment des Auftragens des Ausgangsmaterials zur Herstellung des Bauteils. Im Beispiel des Extruders umfasst das Bereitstellen das Fördern und Pressen in der Extruderschnecke, wobei am Ausgang des Extruders schließlich das poröse oder porösierbare Ausgangsmaterial bereitgestellt ist.In other words, the provision of the porous or porous starting material means the transfer of a primary material to the component being produced. Thus, the provision can also include conveying the porous or porous starting material to the site where the material is applied. The provision can also include the thermal adaptation to desired application conditions, as well as the setting of an advantageous physical pressure at the moment of application of the starting material for the production of the component. In the example of the extruder, providing comprises conveying and pressing in the extruder screw, with the porous or porous starting material finally being provided at the outlet of the extruder.
Das erfindungsgemäße Verfahren umfasst ferner das Auftragen des porösen oder porösierbaren Ausgangsmaterials zum Aufbau des Bauteils. Bei dem Auftragen umfasst das Verfahren auch das Einstellen der Porosität des porösen oder porösierbaren Ausgangsmaterials. Mit anderen Worten wird im Zusammenhang mit dem Materialauftrag des Ausgangsmaterials an oder auf das Bauteil die Porosität am Ort des Materialauftrags eingestellt. Beispielsweise erfolgt diese Einstellung zeitlich unmittelbar vor, während oder unmittelbar nach dem konkreten Materialauftrag.The method according to the invention also includes the application of the porous or porous starting material for the construction of the component. During application, the method also includes adjusting the porosity of the porous or porous starting material. In other words, in connection with the material application of the starting material to or on the component, the porosity is adjusted at the location of the material application. For example, this setting takes place immediately before, during or immediately after the specific application of material.
Beispielsweise kann auf diese Art ein wenig oder nicht poröses Material bereitgestellt werden, um daraus Teile des Gehäuses des Bauteils aufzubauen. Mit demselben Ausgangsmaterial, aber unterschiedlichen physikalischen Parametern oder unterschiedlicher Zusammensetzung oder unterschiedlichen Additiven kann an anderer Stelle des Bauteils eine poröse Materialstruktur erzeugt werden. Die verschiedenen Bauteilbereiche, wie in dem vorgenannten Beispiel Gehäuse und poröse Materialstruktur, sind monolithisch, d. h. einstückig miteinander, aufgebaut. Kennzeichnend ist also, dass keine herkömmlichen Bauteil-zu-Bauteil-Übergänge auftreten, sondern vielmehr Bereiche des keramischen Bauteils mit unterschiedlicher Porosität aufbaubar sind, wobei alle Bereiche gemeinsam aus einem Stück hergestellt und typischerweise stoffschlüssig miteinander verbunden, also beispielsweise verschmolzen, verbacken, gesintert oder verklebt sind. Das Verfahren wird fortgeführt, bis das keramische Bauteil als Ganzes hergestellt ist. Insbesondere wird das Verfahren dabei ohne Unterbrechung bzw. ohne Pause fortgeführt, so dass das additive Herstellungsverfahren am Stück durchgeführt wird. Beispielsweise kann hierdurch in einer Materialauftragszone eine vorteilhafte Auftragstemperatur konstant oder beibehalten werden, so dass es zu einem kontinuierlichen Materialauftrag zur Herstellung des Bauteils kommt.For example, a little or no porous material can be provided in this way in order to build up parts of the housing of the component therefrom. A porous material structure can be created elsewhere on the component using the same starting material but different physical parameters or different composition or different additives. The various component areas, such as the housing and porous material structure in the example above, are monolithic, i. H. integral with each other, built. It is therefore characteristic that there are no conventional component-to-component transitions, but rather areas of the ceramic component with different porosity can be built up, with all areas being produced together in one piece and typically bonded to one another, i.e. fused, baked, sintered or are glued. The process is continued until the ceramic component is produced as a whole. In particular, the method is continued without interruption or without a break, so that the additive manufacturing method is carried out in one piece. In this way, for example, an advantageous application temperature can be kept constant or maintained in a material application zone, so that there is a continuous application of material for the production of the component.
Das additive Herstellungsverfahren zur Herstellung eines Bauteils kann in vorteilhafter Ausgestaltung das Auftragen des porösen oder porösierbaren Ausgangsmaterials ein punktweises, linienartiges oder schichtweises Auftragen des porösen oder porösierbaren Ausgangsmaterials umfassen. Mit anderen Worten wird das Ausgangsmaterial bevorzugt punktweise, d.h. insbesondere in einer Punkt-Target-Matrix Punkt für Punkt aufgetragen, wobei der Materialauftrag sukzessive erfolgt. Der Materialauftrag kann dennoch kontinuierlich oder quasikontinuierlich erfolgen, also z.B. „raupenförmig“, und dennoch punktweise eine Punkt-Target-Matrix angefahren werden, was als quasikontinuierlicher Materialauftrag beschrieben werden kann.In an advantageous embodiment, the additive manufacturing method for producing a component can comprise the application of the porous or porous starting material, pointwise, line-like or layered application of the porous or porous starting material. In other words, the starting material is preferably applied point by point, i.e. in particular point by point in a point target matrix, with the material being applied successively. The material application can still be continuous or quasi-continuous, e.g. "caterpillar-shaped", and a point target matrix can still be approached point by point, which can be described as a quasi-continuous material application.
Es ist hierbei nicht notwendig und typischerweise auch nicht vorgesehen, dass an jedem Punkt der Punkt-Target-Matrix Material aufgetragen wird. So sind in der Punkt-Target-Matrix Punkte vorgesehen, welche nicht angefahren werden und solche Punkte, welche angefahren werden und dort Ausgangsmaterial aufgetragen wird. Der Materialauftrag erfolgt dabei typischerweise der Schwerkraft folgend von unten nach oben, wobei zunächst eine unterste Schicht auf einem Bauteilträger abgelegt wird, wobei die unterste Schicht punktweise, linienförmig oder schichtweise aufgetragen werden kann. Auch die unterste Schicht ist nicht zwangsläufig eine durchgehende Schicht, sondern diese kann vielmehr Bereiche umfassen mit und ohne Materialauftrag.In this case, it is not necessary and typically also not provided for material to be applied at every point of the point-target matrix. Thus, in the point-target matrix, points are provided which are not approached and those points which are approached and starting material is applied there. The material is typically applied from the bottom up, following gravity, with a bottom layer first being deposited on a component carrier, with the bottom layer being able to be applied pointwise, linearly or in layers. Even the bottom layer is not necessarily a continuous layer, but rather it can include areas with and without material application.
Der Materialauftrag kann weiter vorteilhaft in einer Schicht-Target-Matrix erfolgen. So kann eine Mehrzahl von anzufahrenden Punkten in einer solchen Schicht zusammengefasst werden. Schichten der Schicht-Target-Matrix liegen dabei beispielsweise übereinander angeordnet in einem weiter beispielsweise äquidistanten Abstand zueinander. Der Materialauftrag kann auch schichtweise vorbereitet werden und eine ganze Schicht als Einheit miteinander verbunden oder vernetzt werden, beispielsweise wenn das Ausgangsmaterial pulverförmig vorliegt kann zunächst Schicht für Schicht abgelegt werden und eine Schicht als Ganzes präpariert werden, also beispielsweise mit einer Strahlungsquelle erhitzt und einstückig miteinander verbunden werden.The application of material can also advantageously take place in a layer target matrix. In this way, a number of points to be approached can be combined in such a layer. Layers of the layer target matrix are arranged one above the other, for example, at a further, for example, equidistant distance from one another. The application of material can also be prepared in layers and an entire layer can be connected or crosslinked as a unit, for example if the starting material is in powder form, layer by layer can first be laid down and a layer can be prepared as a whole, i.e. for example heated with a radiation source and connected to one another in one piece will.
Schichten wie auch Punkte können auch in anderen Koordinatensystemen, wie beispielsweise Zylinderkoordinaten, vorgesehen sein, wenn beispielsweise ein röhrenförmiges Gebilde als Bauteil herzustellen ist. In dieser Beschreibung wird die Punkt-Target-Matrix als bestmögliche Auflösung bzw. Untergliederung des herzustellenden Bauteils in räumliche Koordinaten aufgefasst, da dies die kleinstmögliche Unterteilung des herzustellenden Bauteils beschreibt. Der Punktabstand von einem Punkt zum nächsten benachbarten Punkt muss nicht identisch sein; Vielmehr kann es vorteilhaft sein, den Punktabstand zu variieren, je nach Anwendungsfall innerhalb einer Richtung zu variieren und/oder in unterschiedlichen Richtungen des Koordinatensystems unterschiedlich auszuprägen. Beispielsweise kann so ein Bereich besonders komplexer Geometrie mit engerem Punktraster versehen sein, wohingegen einfache Gebilde mit wenigen Punkten beschreibbar sind. Dies ist beispielsweise im Fall pastösem Ausgangsmaterial schnell verständlich, wenn das Ausgangsmaterial „raupenförmig“ aufgetragen wird, und eine lange gerade Schicht aufgetragen wird, wobei nur der Anfangs- und Endpunkt der geraden Schicht zu definieren wäre. Aber auch äquidistante Punkt-Target-Matrizzen können ggf. vorteilhaft sein. Die Schicht-Target-Matrix umfasst wiederum typischerweise in jeder Auftragsschicht Zielpunkte, in die das herzustellende Bauteil und gegebenenfalls Zwischenräume bzw. Hohlräume des herzustellenden Bauteils unterteilt sind.Layers as well as points can also be provided in other coordinate systems, such as cylindrical coordinates, for example if a tubular structure is to be produced as a component. In this description, the point-target matrix is understood as the best possible resolution or subdivision of the component to be produced in spatial coordinates, since this describes the smallest possible subdivision of the component to be produced. The point distance from one point to the next neighboring point does not have to be identical; Rather, it can be advantageous to vary the point spacing, to vary it within one direction depending on the application and/or to express it differently in different directions of the coordinate system. For example, an area of particularly complex geometry can be provided with a narrower grid of points, whereas simple structures can be described with fewer points. This is easy to understand, for example, in the case of pasty starting material, when the starting material is applied in a "bead-like" manner and a long straight layer is applied, where only the start and end point of the straight layer would have to be defined. However, equidistant point-target matrices can also be advantageous. In turn, the layer target matrix typically comprises target points in each application layer, into which the component to be produced and, if appropriate, intermediate spaces or cavities of the component to be produced are subdivided.
Das punktweise Auftragen kann das Anfahren eines anzufahrenden Punktes der Punkt-Target-Matrix umfassen, an dem das poröse oder porösierbare Ausgangsmaterial aufzutragen ist. Unter dem Anfahren eines anzufahrenden Punktes können hierbei in technischer Hinsicht verschiedene Ausgestaltungen ausgebildet sein. Grundsätzlich meint das Anfahren eines anzufahrenden Punktes, dass Ausgangsmaterial in so einer Form und Art und Weise bereitgestellt wird, dass dieses an dem entsprechenden Punkt der Punkt-Target-Matrix zur Verfügung steht. Das Anfahren kann somit mittels eines Auftragswerkzeugs erfolgen. Ein solches Auftragswerkzeug kann der bereits genannte Extruder sein, wobei das Auftragswerkzeug in dreidimensionaler Weise zu dem aufzutragenden Punkt der Punkt-Target-Matrix bewegt werden kann oder ein Bauteilträger so verstellbar ausgeführt ist, dass ein bewegliches System der Punkt-Target-Matrix entsteht, wobei die Punkt-Target-Matrix vor dem Auftragswerkzeug verschoben wird und der aufzutragenden Punkt der Punkt-Target-Matrix am Auftragswerkzeug zur Anlage kommt.Point-by-point application can include moving to a point in the point-target matrix to be approached, to which point the porous or porous starting material is to be applied. From a technical point of view, various configurations can be implemented here for approaching a point to be approached. In principle, approaching a point to be approached means that the starting material is provided in such a form and manner that it is available at the corresponding point in the point-target matrix. The approach can thus take place by means of an application tool. Such an application tool can be the extruder already mentioned, in which case the application tool can be moved in a three-dimensional manner to the point of the point-target matrix to be applied, or a component carrier is designed to be adjustable in such a way that a movable system of the point-target matrix is created, whereby the point-target matrix is shifted in front of the application tool and the point of the point-target matrix to be applied comes to rest on the application tool.
Ein Auftragswerkzeug ist dann bevorzugt eingesetzt, wenn das Ausgangsmaterial eine flüssige, pastöse oder feste Form aufweist. Für den Fall, dass das Ausgangsmaterial in Pulverform vorliegt, kann unter dem Anfahren des anzuführenden Punktes der Punkt-Target-Matrix beispielsweise auch das Richten eines Hitzeerzeugers, wie insbesondere eines Lasers bzw. einer Strahlungsquelle, auf den anzufahrenden Punkt der Punkt-Target-Matrix verstanden werden, um an dem Punkt der Punkt-Target-Matrix das dort abgelegte pulverförmige Ausgangsmaterial zumindest in eine Art Vorschmelze zu bringen, so dass es sich mit dem umliegenden Bauteil bzw. dem umliegenden Ausgangsmaterial verbindet, ggf. als Vorbereitung für ein späteres Sintern des Bauteils als Ganzes. Beispielsweise kann das pulverförmige Ausgangsmaterial ein keramisch gefülltes Polymerpulver sein.An application tool is preferably used when the starting material is in a liquid, pasty or solid form. If the starting material is in powder form, the point of the point-target matrix to be approached can also include, for example, directing a heat generator, such as in particular a laser or a radiation source, to the point of the point-target matrix to be approached be understood in order to bring the powdery starting material deposited there at least into a kind of pre-melt at the point of the point-target matrix, so that it connects to the surrounding component or the surrounding starting material, possibly as a preparation for a later sintering of the component as a whole. For example, the starting material in powder form can be a ceramic-filled polymer powder.
Im Allgemeinen meint das Anfahren eines anzuführenden Punktes der Punkt-Target-Matrix das Verändern, Vorbereiten oder Positionieren des anzufahrenden Punktes der Punkt-Target-Matrix so, dass das Ausgangsmaterial an dem anzufahrenden Punkt mit dem monolithischen Bauteil einstückig verbunden werden kann.In general, targeting a target point of the point target matrix means changing, preparing or positioning the target point of the point target matrix so that the starting material at the target point can be integrally bonded to the monolithic component.
Bei dem Auftragen an dem anzufahrenden Punkt wird bevorzugt das poröse oder porösierbare Ausgangsmaterial eingestellt, und zwar an dem anzufahrenden Punkt der Punkt-Target-Matrix. Das Einstellen des porösen und/oder porösierbaren Ausgangsmaterials kann dabei ebenfalls verschiedene Ausprägungen annehmen. So meint das Einstellen des porösen oder porösierbaren Ausgangsmaterials beispielsweise das Einstellen eines Mischungsverhältnisses im Ausgangsmaterial, wenn beispielsweise ein Füllstoff in einem veränderlichen Mischungsverhältnis bereitgestellt wird, wobei das Mischungsverhältnis des Füllstoffes die Porosität des Ausgangsmaterials definiert. Das Einstellen des Ausgangsmaterials am anzufahren Punkt der Punkt-Target-Matrix kann auch das Einstellen der Strahlungsquelle bzw. der Quelle für eine thermische Behandlung des Ausgangsmaterials am anzufahrenden Punkt realisieren. So kann zum Beispiel die Intensität eines einzusetzenden Lasers so eingestellt werden, dass eine höhere Intensität eine andere Porosität erzeugt als eine niedrigere Intensität.When applying at the point to be approached, the porous or porous starting material is preferably set, specifically at the point of the point-target matrix to be approached. The porous and/or porous starting material can also be set in different ways take on forms. Adjusting the porous or porous starting material means, for example, adjusting a mixing ratio in the starting material if, for example, a filler is provided in a variable mixing ratio, the mixing ratio of the filler defining the porosity of the starting material. Setting the starting material at the point to be approached in the point-target matrix can also implement the setting of the radiation source or the source for thermal treatment of the starting material at the point to be approached. For example, the intensity of a laser to be used can be adjusted in such a way that a higher intensity produces a different porosity than a lower intensity.
Den genannten Beispielen ist gemein, dass das Ausgangsmaterial an dem anzuführenden Punkt der Punkt-Target-Matrix hinsichtlich seiner Porosität beeinflusst, verändert, zusammengesetzt oder allgemein eingestellt wird. Das solcherart eingestellte poröse oder porösierbare Ausgangsmaterial wird bevorzugt an dem Punkt aufgetragen.What the examples mentioned have in common is that the porosity of the starting material at the point to be specified in the point-target matrix is influenced, changed, composed or generally adjusted. The porous or porous starting material adjusted in this way is preferably applied at the point.
Das additive Herstellungsverfahren zur Herstellung eines Bauteils kann ferner den Schritt umfassen Anfahren von zumindest einem ersten Punkt der Punkt-Target-Matrix und Einstellen des porösen oder porösierbaren Ausgangsmaterials an dem zumindest einen ersten Punkt derart, dass an dem zumindest einen ersten Punkt eine poröse Materialstruktur entsteht. Mit anderen Worten wird das Ausgangsmaterial an dem zumindest einen ersten Punkt, beispielsweise an einer Mehrzahl von Punkten, die einen gemeinsamen Bereich im Bauteil bilden, so eingestellt, dass in additiver Weise eine Porosität im Bauteil einstellbar ist. Somit wird durch das Anfahren des Punktes oder der Punkte der Punkt-Target-Matrix sukzessive eine poröse Materialstruktur aufgebaut.The additive manufacturing method for producing a component can also include the step of approaching at least one first point of the point-target matrix and setting the porous or porous starting material at the at least one first point in such a way that a porous material structure is formed at the at least one first point . In other words, the starting material is adjusted at the at least one first point, for example at a plurality of points that form a common area in the component, such that a porosity in the component can be adjusted in an additive manner. Thus, a porous material structure is built up successively by approaching the point or points of the point-target matrix.
Das Verfahren kann auch den Schritt umfassen Anfahren von zumindest einem zweiten Punkt der Punkt-Target-Matrix und Einstellen des porösen oder porösierbaren Ausgangsmaterials an dem zumindest einen zweiten Punkt derart, dass an dem zweiten Punkt eine undurchlässige Materialstruktur entsteht. Mit anderen Worten wird das Ausgangsmaterial an diesem zweiten Punkt oder an diesen zweiten Punkten, welche beispielsweise einen Bereich im Bauteil bilden, so eingestellt, dass das daraus entstehende Gebilde eine undurchlässige Struktur aufweist. Undurchlässig ist dabei beispielsweise eine Struktur, welche vergleichsweise wenig Poren oder gar keine Poren aufweist, oder aber welche geschlossenporig aufgebaut ist, so dass kein Fluidaustausch und/oder Stoffaustausch zwischen Fluiden gewährleistet ist. Eine undurchlässige Struktur im Sinne der Erfindung verhindert also bevorzugt ein Durchströmen der undurchlässigen Materialstruktur von einem Fluid, andererseits aber weiter insbesondere den Stoffaustausch von einem ersten Fluid auf einer ersten Seite der undurchlässigen Materialstruktur mit einem zweiten Fluid auf einer zweiten Seite der undurchlässigen Materialstruktur. Eine beispielhafte Struktur, die mit einer undurchlässigen Materialstruktur in vorteilhafter Weise aufgebaut werden kann, ist eine Umhäusung um das Bauteil zum Schutz desselben, wie auch zu dem Zwecke, insbesondere ein Hüllfluid in dem Bauteil zu halten und zugleich eine Hüllseite für das Hüllfluid vorzuhalten.The method can also include the step of approaching at least one second point of the point-target matrix and adjusting the porous or porous starting material at the at least one second point in such a way that an impermeable material structure is formed at the second point. In other words, the starting material is adjusted at this second point or at these second points, which form a region in the component, for example, such that the resulting structure has an impermeable structure. A structure is impermeable, for example, which has comparatively few pores or no pores at all, or which has a closed-pore structure, so that no fluid exchange and/or mass exchange between fluids is ensured. An impermeable structure within the meaning of the invention therefore preferably prevents a fluid from flowing through the impermeable material structure, but on the other hand also prevents in particular the exchange of substances from a first fluid on a first side of the impermeable material structure to a second fluid on a second side of the impermeable material structure. An exemplary structure that can be advantageously constructed with an impermeable material structure is a casing around the component for protection of the same, as well as for the purpose of keeping an enveloping fluid in the component in particular and at the same time providing an enveloping side for the enveloping fluid.
Die Punkte der Punkt-Target-Matrix können in Ablageschichten angeordnet sein. Das Anfahren der Punkt-Target-Matrix kann in diesem Fall schichtweise durchgeführt werden, so dass zunächst die Punkte einer ersten Ablageschicht angefahren werden, wobei nicht alle Punkte der ersten Ablageschicht anzufahren sein müssen. Anschließend, d. h. nach dem Anfahren der ersten Ablageschicht, werden anschließend Punkte einer zweiten Ablageschicht angefahren, wobei abermals nicht erforderlich ist, dass alle Punkte der zweiten Ablageschicht angefahren werden; vielmehr ist vorgesehen, Hohlräume in zusammenhängender Form im Bauteil bereitzustellen.The points of the point target matrix can be arranged in storage layers. In this case, the point-target matrix can be approached in layers, so that first the points of a first storage layer are approached, it not having to be possible to approach all points of the first storage layer. Afterwards, i. H. after moving to the first layer of deposits, points of a second layer of deposits are then visited, again not requiring that all points of the second layer of deposits be visited; Rather, it is intended to provide cavities in a continuous form in the component.
Der Schritt Auftragen kann das Auftragen des porösen oder porösierbaren Ausgangsmaterial dergestalt umfassen, dass zumindest eine Ablageschicht Bereiche mit undurchlässiger Materialstruktur aufweist. Das Auftragen kann auch so ausgestaltet werden, dass zumindest eine Ablageschicht Bereiche mit poröser Materialstruktur aufweist.The application step can include the application of the porous or porous starting material in such a way that at least one storage layer has areas with an impermeable material structure. The application can also be designed in such a way that at least one storage layer has areas with a porous material structure.
Das Auftragen kann ferner auch so gestaltet werden, dass zumindest eine Ablageschicht sowohl undurchlässige Materialstruktur als auch poröse Materialstruktur aufweist, welche mit demselben porösen oder porösierbaren Ausgangsmaterial aufgetragen ist. Mit anderen Worten kann in einer Ablageschicht sowohl undurchlässige Materialstruktur als auch poröse Materialstruktur mit dem vorliegenden Verfahren aufgebaut werden. Grundsätzliche Idee der vorliegenden Erfindung bleibt dabei, dass alle Bereiche monolithisch, d. h. einstückig miteinander verbunden sind. Im Rahmen dieser Erfindung konnte dabei realisiert werden, dass Bereiche mit undurchlässiger Materialstruktur einstückig mit Bereichen mit poröser Materialstruktur gemeinsam aufgebaut werden. Dies lässt sich durch die Einstellung des Ausgangsmaterials am anzufahrenden Punkt erreichen.Furthermore, the application can also be designed in such a way that at least one storage layer has both an impermeable material structure and a porous material structure, which is applied with the same porous or porous starting material. In other words, both an impermeable material structure and a porous material structure can be built up in a storage layer using the present method. The basic idea of the present invention remains that all areas are monolithic, d. H. are integrally connected. Within the scope of this invention, it was possible to realize that areas with an impermeable material structure are constructed in one piece together with areas with a porous material structure. This can be achieved by adjusting the starting material at the point to be approached.
Das Auftragen des porösen oder porösierbaren Ausgangsmaterial kann dergestalt durchgeführt werden, dass die teilweise oder bereichsweise poröse Materialstruktur des Bauteils chaotisch angeordnet oder aufgebaut ist. Mit anderen Worten weist die poröse Materialstruktur eine chaotischer Anordnung bzw. einen chaotischen Aufbau auf. Chaotisch bedeutet in diesem Zusammenhang, dass die konkrete mikroporöse Struktur, die mit dem Auftragen des porösen oder porösierbaren Ausgangsmaterials erzielt wird, in ihrer mikroporösen konkreten Gestaltung nicht so exakt reproduzierbar ist, dass ein Bauteil einem zweiten Bauteil an einem konkreten Punkt der Punkt-Target-Matrix gleicht. Vielmehr ist Idee der vorliegenden Erfindung jedenfalls in einem Aspekt, dass die konkrete Porenstruktur nicht im Mikrometerbereich exakt festgelegt wird, sondern lediglich hinsichtlich der Wirkung eingestellt wird. So lässt sich eine erzielbare Porengröße grundsätzlich im Materialauftrag einstellen, nicht aber die exakte Anordnung und Struktur der erzielten Poren. Hinsichtlich der technischen Wirkung ist dies weder ein Unterschied noch ein Nachteil. Im Gegenteil liegt dem Aspekt der Vorteil inne, dass auf eine exakte Modellierung jeder einzelnen Pore verzichtet werden kann und lediglich eine gewünschte Porosität eingestellt wird. Auf die konkrete Anordnung der Poren zueinander kommt es hierbei gar nicht an. Die in dieser Weise erzeugte und bereitgestellte Porosität kann daher als intrinsische Porosität beschrieben werden. Die Erfinder haben vorliegend erkannt, dass es ausreicht und besonders vorteilhaft ist, eine solche intrinsische Porosität bereitzustellen, da dadurch Bauteile erheblich schneller und zugleich kostengünstiger hergestellt werden können als mit denkbaren vergleichbaren Verfahren.The application of the porous or porous starting material can be carried out in such a way that the partly or regionally porous material structure of the component is arranged or built up chaotically. In other words the porous material structure has a chaotic arrangement or a chaotic structure. In this context, chaotic means that the specific microporous structure that is achieved with the application of the porous or porous starting material is not so exactly reproducible in its specific microporous design, that a component meets a second component at a specific point of the point target Matrix equals. Rather, the idea of the present invention is, at least in one aspect, that the specific pore structure is not defined exactly in the micrometer range, but is only adjusted with regard to the effect. In principle, an achievable pore size can be set when the material is applied, but not the exact arrangement and structure of the pores achieved. In terms of technical effect, this is neither a difference nor a disadvantage. On the contrary, the aspect has the advantage that an exact modeling of each individual pore can be dispensed with and only a desired porosity is adjusted. The specific arrangement of the pores in relation to one another is not important here. The porosity created and provided in this way can therefore be described as intrinsic porosity. In the present case, the inventors have recognized that it is sufficient and particularly advantageous to provide such an intrinsic porosity, since this allows components to be produced considerably more quickly and at the same time more cost-effectively than with conceivable comparable methods.
Die teilweise oder bereichsweise poröse Materialstruktur des Bauteils kann mit dem Auftrag des Ausgangsmaterials im bzw. am Bauteil entstehen und einen nicht repetitiven Aufbau, d.h. einen „chaotischen“ oder „nicht-deterministischen“ Aufbau bzw. Anordnung aufweisen. Die Struktur bzw. der Aufbau der porösen Materialstruktur ist dabei, wie zuvor beschrieben, nicht in einer solchen Form wiederholbar, dass eine exakt gleiche Porenanordnung durch die Wiederholung der Bauteilherstellung erreicht werden könnte. Vielmehr wird ein zweites Bauteil hinsichtlich eines Vergleichs zu dem ersten Bauteil an einem konkreten Punkt der Punkt-Target-Matrix eine vergleichbare Porosität aufweisen, wobei die Porosität im erfindungsgemäßen Verfahren eingestellt ist bzw. einstellbar ist, nicht aber die exakte Porenverteilung und Anordnung im Bauteil. Das Ausgangsmaterial kann daher bevorzugt intrinsisch-porös eingestellt sein bzw. hergerichtet sein. Mit anderen Worten ist es besonders vorteilhaft, mit dem erfindungsgemäßen Verfahren bzw. mit der erfindungsgemäßen Auftragsmaschine nicht die Position einer jeden Pore exakt einzustellen, sondern die Porosität in einer Materialstruktur.The partially or regionally porous material structure of the component can result from the application of the starting material in or on the component and can have a non-repetitive structure, i.e. a “chaotic” or “non-deterministic” structure or arrangement. As described above, the structure or construction of the porous material structure cannot be repeated in such a way that an exactly identical pore arrangement could be achieved by repeating the component production. Rather, a second component will have a comparable porosity with regard to a comparison to the first component at a specific point of the point target matrix, the porosity being set or adjustable in the method according to the invention, but not the exact pore distribution and arrangement in the component. The starting material can therefore preferably be made or prepared to be intrinsically porous. In other words, it is particularly advantageous not to precisely adjust the position of each pore with the method according to the invention or with the application machine according to the invention, but rather the porosity in a material structure.
Die poröse Materialstruktur weist dabei bevorzugt eine offene Porosität auf. Die undurchlässige Materialstruktur kann hingegen eine geschlossene Porosität oder gar keine Porosität aufweisen, jedenfalls keine Offenporigkeit.The porous material structure preferably has an open porosity. The impermeable material structure, on the other hand, can have closed porosity or no porosity at all, in any case no open porosity.
Die poröse Materialstruktur kann sich dadurch auszeichnen, dass diese zumindest teilweise permeabel für das Fluid oder jedenfalls für Bestandteile des Fluids eingestellt ist. Die poröse Materialstruktur kann sich dadurch auszeichnen, dass dort ein geringerer Widerstand für die Durchströmung oder Durchdringung eines Fluids durch die poröse Materialstruktur vorliegt als in der undurchlässigen Materialstruktur.The porous material structure can be characterized in that it is at least partially permeable to the fluid or at least to components of the fluid. The porous material structure can be characterized in that there is less resistance to the flow or penetration of a fluid through the porous material structure than in the impermeable material structure.
Die poröse Materialstruktur kann eine offene mikro-oder mesoporöse Struktur aufweisen. Die mittlere Porengröße kann dabei kleiner als 40 µm sein, bevorzugt kleiner 5 µm und weiter bevorzugt sogar kleiner als 1 µm. Solche mittleren Porengrößen sind mit vergleichbaren Verfahren bislang unerreicht.The porous material structure can have an open microporous or mesoporous structure. The average pore size can be less than 40 μm, preferably less than 5 μm and more preferably even less than 1 μm. Such mean pore sizes have not been achieved with comparable processes to date.
Die poröse Materialstruktur weist bevorzugt eine mittlere Volumenporosität von 20 % oder größer auf, bevorzugt 35 % oder größer. Je nach Herstellungsverfahren kann die mittlere Volumenporosität sogar 50 % oder größere Werte erreichen.The porous material structure preferably has an average volume porosity of 20% or greater, preferably 35% or greater. Depending on the manufacturing process, the average volume porosity can even reach 50% or more.
Die undurchlässige Materialstruktur kann eine höhere Dichte aufweisen als die poröse Materialstruktur. Das Verhältnis der Dichte der undurchlässigen Materialstruktur zu derjenigen der porösen Materialstruktur liegt insbesondere bei 1,2 : 1, bevorzugt bei 1,5 : 1 und noch weiter bevorzugt bei 2 : 1. Mit anderen Worten ist die Materialstruktur in undurchlässigen Bereichen dichter aufgebaut als in Bereichen poröser Materialstruktur. Dabei kann das Verhältnis der Dichte der undurchlässigen Materialstruktur zu der porösen Materialstruktur auch in Intervallen angegeben sein, beispielsweise in einem Intervall zwischen 1,2 : 1 bis 1,5 : 1 und bevorzugt in dem Intervall von 1,5 : 1 bis 2 :1.The impermeable material structure can have a higher density than the porous material structure. The ratio of the density of the impermeable material structure to that of the porous material structure is in particular 1.2: 1, preferably 1.5: 1 and even more preferably 2: 1. In other words, the material structure is denser in impermeable areas than in Areas of porous material structure. The ratio of the density of the impermeable material structure to the porous material structure can also be specified in intervals, for example in an interval between 1.2:1 to 1.5:1 and preferably in the interval from 1.5:1 to 2:1 .
Der Schritt Einstellen der Porosität des porösen oder porösierbaren Ausgangsmaterials kann beispielsweise umfassen die Beimischung von Additiv -oder Füllstoff zu dem Ausgangsmaterial zum Einstellen der Porosität im Moment des Materialauftrags. Insbesondere wird dies durchgeführt an dem jeweils anzufahrenden Punkt der Punkt-Target-Matrix.The step of adjusting the porosity of the porous or porous starting material can include, for example, adding additives or fillers to the starting material to adjust the porosity at the moment the material is applied. In particular, this is carried out at the point of the point-target matrix to be approached in each case.
Das Einstellen kann auch das Einstellen von Härtungsparametern für den jeweils anzufahrenden Punkt der Punkt-Target-Matrix umfassen.The adjustment can also include the adjustment of hardening parameters for the respective point of the point-target matrix to be approached.
Der Schritt Einstellen kann ferner auch die Auswahl von einem anzuwendenden Ausgangsmaterial aus einer Mehrzahl von zumindest zwei Ausgangsmaterialien umfassen, wobei die zumindest zwei Ausgangsmaterialien abwechselnd oder gleichzeitig zugeführt werden können. Insbesondere kann dies so ausgestaltet werden, dass die zumindest zwei Ausgangsmaterialien an dem jeweils anzufahrenden Punkt der Punkt-Target-Matrix bereitgestellt werden zur Herstellung des monolithischen Bauteils.The adjusting step can also include the selection of a starting material to be used from a plurality of at least two starting materials, wherein the at least two starting materials can be supplied alternately or simultaneously. In particular, can this can be designed in such a way that the at least two starting materials are provided at the point of the point-target matrix to be approached in each case for the production of the monolithic component.
Als Additiv können dabei polymere oder anorganische Nanopartikel eingesetzt sein. Als Füllstoff kann dabei ein anorganischer oder organischer Füllstoff eingesetzt sein.Polymeric or inorganic nanoparticles can be used as an additive. An inorganic or organic filler can be used as the filler.
Die Poren des porösen oder porösierbaren Ausgangsmaterials können beim Materialauftrag, d. h. also insbesondere zu dem konkreten Zeitpunkt und dem konkreten Ort des anzufahrenden Punktes der Punkt-Target-Matrix, so gestaltet oder vorbereitet werden, dass diese im Bauteil eine zusammenhängende poröse Materialstruktur ausbilden.The pores of the porous or porous starting material can during material application, i. H. ie in particular at the specific point in time and the specific location of the point of the point target matrix to be approached, are designed or prepared in such a way that they form a coherent porous material structure in the component.
Die Poren können auch so bereitgestellt werden, dass diese eine rundliche oder kartoffelförmige Einzelstruktur aufweisen.The pores can also be provided to have a rounded or potato-shaped single structure.
Die poröse Materialstruktur des Bauteils kann so aufgebaut und/oder angeordnet sein, dass diese geeignet ist, eine Hüllseite von einer Trägerseite permeabel abzutrennen. Mit anderen Worten wird das Bauteil so vorbereitet, dass die poröse Materialstruktur auf ihrer ersten Seite eine Hüllseite bildet und auf ihrer zweiten Seite eine Trägerseite bildet. Konkret kann in einem Beispiel die poröse Materialstruktur als Membran bezeichnet werden, wobei die Membran zwei Flachseiten aufweist und die erste Flachseite von einem Hüllfluid überstrichen wird, wobei die zweite Flachseite von einem Trägerfluid überstrichen wird.The porous material structure of the component can be constructed and/or arranged in such a way that it is suitable for separating an envelope side from a carrier side in a permeable manner. In other words, the component is prepared in such a way that the porous material structure forms an envelope side on its first side and a carrier side on its second side. Specifically, in one example, the porous material structure can be referred to as a membrane, with the membrane having two flat sides and the first flat side being swept by an enveloping fluid, with the second flat side being swept by a carrier fluid.
Im Rahmen der Erfindung wird auch ein monolithisches Bauteil beschrieben, insbesondere als Vorrichtung zur Abtrennung von Bestandteilen aus einem Fluid, weiter insbesondere hergestellt nach dem wie vorstehend beschriebenen Verfahren. Das monolithische keramische Bauteil umfasst eine erste und eine der ersten gegenüberliegende zweite Stirnseite. Zwischen der ersten und der zweiten Stirnseite ist eine poröse Struktur angeordnet, welche mit den Stirnseiten einstückig aufgebaut und verbunden ist. Die poröse Struktur ist jedenfalls bereichsweise oder jedenfalls teilweise permeabel eingerichtet.A monolithic component is also described within the scope of the invention, in particular as a device for separating components from a fluid, further in particular produced by the method as described above. The monolithic ceramic component includes a first face and a second face opposite the first face. A porous structure is arranged between the first and the second end face, which is built up and connected in one piece with the end faces. In any case, the porous structure is designed to be permeable in some areas or at least in part.
Die poröse Struktur ist ferner so hergerichtet und angeordnet, eine Hüllseite von einer Trägerseite zumindest teilweise und/oder zumindest bereichsweise permeabel abzutrennen. Auf der Trägerseite ist dabei ein Trägerfluid bereitstellbar.The porous structure is also prepared and arranged in such a way that an envelope side can be separated from a carrier side at least partially and/or at least in regions in a permeable manner. A carrier fluid can be provided on the carrier side.
Die poröse Struktur ist dabei hergerichtet, einen Stofftransfer des Trägerfluids mit der Hüllseite zu gewährleisten. Ein Stofftransfer meint dabei insbesondere einen Transfer vom Trägerfluid in ein Hüllfluid und/oder von einem Hüllfluid in das Trägerfluid.The porous structure is designed to ensure mass transfer of the carrier fluid with the shell side. A mass transfer means in particular a transfer from the carrier fluid into an enveloping fluid and/or from an enveloping fluid into the carrier fluid.
Das monolithische Bauteil kann als Membranelement für eine Filtervorrichtung ausgestaltet sein oder als Filtervorrichtung als Ganzes ausgestaltet sein. Die Filtervorrichtung ist dann monolithisch mit der porösen Struktur als Membranelement aufgebaut.The monolithic component can be designed as a membrane element for a filter device or as a filter device as a whole. The filter device is then constructed monolithically with the porous structure as a membrane element.
Das monolithische Bauteil kann ferner ein monolithisch mit der porösen Struktur und der ersten und zweiten Stirnseite ausgebildete Umhäusung umfassen. Die poröse Struktur ist dabei bevorzugt von der Umhäusung gemeinsam mit der ersten und zweiten Stirnseite umschlossen.The monolithic component can further comprise a housing monolithically formed with the porous structure and the first and second faces. The porous structure is preferably surrounded by the housing together with the first and second end faces.
Auf der Hüllseite des monolithischen Bauteils ist bevorzugt ein Hüllfluid bereitstellbar, so dass in dem oder durch das monolithische Bauteil sowohl das Trägerfluid als auch das Hüllfluid strömen kann. Das Trägerfluid ist dann mittels der porösen Struktur von dem Hüllfluid abgetrennt. Das monolithische Bauteil kann auch so bereitgestellt werden, dass die poröse Struktur semipermeabel oder selektiv-permeabel eingerichtet ist.An enveloping fluid can preferably be provided on the enveloping side of the monolithic component, so that both the carrier fluid and the enveloping fluid can flow in or through the monolithic component. The carrier fluid is then separated from the sheath fluid by means of the porous structure. The monolithic component can also be provided in such a way that the porous structure is designed to be semipermeable or selectively permeable.
Das monolithische Bauteil kann hinsichtlich der porösen Struktur so hergerichtet sein, dass diese eingerichtet ist für Stoffe und/oder Partikel mit einer Größe kleiner als 10 µm, bevorzugt kleiner als 2 µm und weiter bevorzugt kleiner als 0,5 µm, für welche die poröse Struktur permeabel, semi-permeabel oder selektiv-permeabel eingerichtet ist.With regard to the porous structure, the monolithic component can be prepared in such a way that it is set up for substances and/or particles with a size of less than 10 μm, preferably less than 2 μm and more preferably less than 0.5 μm, for which the porous structure permeable, semi-permeable or selectively permeable.
Das monolithische keramische Bauteil kann hergerichtet sein zur Aufnahme und Ableitung des Trägerfluids auf der Trägerseite und eines Hüllfluids auf der Hüllseite. Das Trägerfluid wie auch das Hüllfluid können dann durch das monolithische Bauteil strömen zur Bereitstellung einer Trägerströmung und einer Hüllströmung in dem monolithischen Bauteil.The monolithic ceramic component can be adapted to contain and drain the carrier fluid on the carrier side and a cladding fluid on the cladding side. The carrier fluid as well as the sheath fluid can then flow through the monolithic component to provide a carrier flow and a sheath flow in the monolithic component.
Die poröse Struktur des monolithischen Bauteils kann Filterkapillaren umfassen, insbesondere Membrankapillaren.The porous structure of the monolithic component can include filter capillaries, in particular membrane capillaries.
Die erste Stirnseite des monolithischen Bauteils kann plattenförmig ausgebildet sein. Die poröse Struktur ist an der ersten Stirnseite einstückig angeformt, also insbesondere integral mit der ersten Stirnseite gemeinsam ausgebildet. Die poröse Struktur ist dann monolithisch, d. h. einstückig mit der ersten Stirnseite ausgebildet. Besonders bevorzugt bestehen erste Stirnseite und poröse Struktur aus demselben Material.The first end face of the monolithic component can be designed in the form of a plate. The porous structure is formed in one piece on the first end face, ie in particular formed integrally together with the first end face. The porous structure is then monolithic, i. H. formed integrally with the first end face. Particularly preferably, the first end face and the porous structure consist of the same material.
Auch die zweite Stirnseite kann plattenförmig ausgebildet sein. Die poröse Struktur kann - wie zur ersten Stirnseite beschrieben - an der zweiten Stirnseite einstückig angeformt sein, insbesondere integral mit der zweiten Stirnseite ausgebildet.The second end face can also be designed in the form of a plate. The porous structure can - as for first face described - be integrally formed on the second face, in particular formed integrally with the second face.
Die poröse Struktur kann eine Mehrzahl von länglich erstreckten Membranrohren oder Filterkapillaren umfassen. Die Membranrohre oder Filterkapillaren verbinden die erste Stirnseite des monolithischen Bauteils mit der zweiten Stirnseite einstückig und bevorzugt integral.The porous structure may comprise a plurality of elongate membrane tubes or filter capillaries. The membrane tubes or filter capillaries connect the first end face of the monolithic component to the second end face in one piece and preferably integrally.
Die Membranrohre oder Filterkapillaren weisen bevorzugt eine Innenseite auf. Die Innenseite der Membranrohre oder Filterkapillaren bilden dabei die Trägerseite. Das Trägerfluid kann demnach auf der Innenseite entlang strömen. Besonders bevorzugt sind Membranrohre oder Filterkapillaren rohrförmig ausgebildet, so dass die Trägerseite in dem rohrförmigen Gebilde gebildet ist und dort das Trägerfluid strömt.The membrane tubes or filter capillaries preferably have an inside. The inside of the membrane tubes or filter capillaries form the carrier side. The carrier fluid can therefore flow along the inside. Membrane tubes or filter capillaries are particularly preferably tubular, so that the carrier side is formed in the tubular structure and the carrier fluid flows there.
Die Membranrohre oder Filterkapillaren bilden bevorzugt auf ihren Außenseiten die Hüllseite. Das Hüllfluid kann demnach auf der Außenseite entlang strömen.The membrane tubes or filter capillaries preferably form the shell side on their outsides. The sheath fluid can therefore flow along the outside.
Die Membranrohre oder Filterkapillaren weisen typischerweise eine rohr- oder röhrenförmige Ausgestaltung auf. Der Durchmesser der rohr-oder röhrenförmigen Ausgestaltung kann dabei entlang der Länge variieren.The membrane tubes or filter capillaries typically have a tubular or tubular design. The diameter of the tubular or tubular configuration can vary along the length.
Die Membranrohre oder Filterkapillaren sind bevorzugt im Wesentlichen gerade rohrförmig erstreckt. Die Membranrohre oder Filterkapillaren können auch schraubenförmig oder helikal erstreckt sein, insbesondere als Doppelhelix oder Triplehelix, bei welchen zwei bzw. drei Membranrohre oder Filterkapillaren umeinanderlaufen. Eine solche schrauben- oder helixförmige Erstreckung der Membranrohre oder Filterkapillaren weist mehrere Vorteile auf. So wird der Stoffaustausch auf der Innenseite des Membranrohres bzw. der Filterkapillare intensiviert; auch die Widerstandsfähigkeit gegenüber äußeren mechanischen Einflüssen, wie eines Schocks oder Verwindung des Bauteils, wird verbessert.The membrane tubes or filter capillaries are preferably essentially straight and tubular. The membrane tubes or filter capillaries can also extend helically or helically, in particular as a double helix or triple helix, in which two or three membrane tubes or filter capillaries run around one another. Such a helical or helical extension of the membrane tubes or filter capillaries has several advantages. This intensifies the mass transfer on the inside of the membrane tube or the filter capillary; the resistance to external mechanical influences, such as a shock or torsion of the component, is also improved.
Die Membranrohre oder Filterkapillaren weisen bevorzugt je eine von einem Fluid durchströmbare erste bzw. zweite Mündung auf. Die Mündung ist dabei bevorzugt jeweils integral mit der ersten bzw. zweiten Stirnseite ausgeführt. Mit anderen Worten geht die erste bzw. zweite Stirnseite einstückig von einer flächigen Erstreckung in die Mündung über.The membrane tubes or filter capillaries preferably each have a first or second opening through which a fluid can flow. The mouth is preferably designed integrally with the first or second end face. In other words, the first or second end face merges in one piece from a flat extension into the mouth.
Die Mündung kann eine strömungsführende Oberflächengestaltung aufweisen. Die strömungsführende Oberflächengestaltung verringert Strömungswiderstände für ein durchströmendes Fluid, beispielsweise indem Turbulenzen und/oder Druckschwankungen im Strömungsverlauf vermieden bzw. verringert werden. Eine solche strömungsführende Oberflächengestaltung der Mündung kann beispielsweise eine konusförmige, kegelmantelförmige, parabelförmige oder torusinnenflächenförmige Gestaltung aufweisen. Die strömungsführende Oberflächengestaltung ist insbesondere konzentrisch um die Mündung herum angeordnet bzw. aufgebaut und einstückig in die erste oder zweite Stirnseite eingelassen. Mit anderen Worten geht die Mündung einstückig in die erste oder zweite Stirnseite über.The orifice can have a flow-guiding surface configuration. The flow-guiding surface design reduces flow resistances for a fluid flowing through, for example by avoiding or reducing turbulence and/or pressure fluctuations in the course of the flow. Such a flow-guiding surface design of the orifice can have, for example, a conical, cone-shaped, parabolic or torus-shaped inner surface design. The flow-guiding surface configuration is in particular arranged or constructed concentrically around the mouth and embedded in one piece in the first or second end face. In other words, the mouth merges into the first or second end face in one piece.
Das monolithische keramische Bauteil kann ferner einen mit der ersten Stirnseite und der porösen Struktur monolithisch ausgebildeten ersten Trägerfluid-Sammelanschluss umfassen. Der erste Trägerfluid-Sammelanschluss ist insbesondere ein Zulauf für das Trägerfluid.The monolithic ceramic component can further include a first carrier fluid collection port formed monolithically with the first end face and the porous structure. The first carrier fluid collection port is in particular an inlet for the carrier fluid.
Das monolithische Bauteil kann ferner einen mit der zweiten Stirnseite und der porösen Struktur monolithisch aufgebauten zweiten Trägerfluid-Sammelanschluss umfassen, also insbesondere einen Ablauf.The monolithic component can also comprise a second carrier fluid collection connection which is constructed monolithically with the second end face and the porous structure, ie in particular an outlet.
Ferner kann das monolithische Bauteil einen mit der porösen Struktur monolithisch ausgebildeten Hüllfluidanschluss umfassen. Der Hüllfluidanschluss kann mit der porösen Struktur auch über die erste bzw. zweite Stirnseite monolithisch gemeinsam ausgebildet sein.Furthermore, the monolithic component can comprise a sheath fluid connection formed monolithically with the porous structure. The enveloping fluid connection can also be formed monolithically together with the porous structure via the first or second end face.
Die poröse Struktur kann zumindest eine monolithisch mit der porösen Struktur ausgeführte Verbindung, Querverbindung oder Versteifung zur Erhöhung der mechanischen Stabilität der porösen Struktur aufweisen.The porous structure can have at least one connection, cross-connection or stiffening made monolithically with the porous structure in order to increase the mechanical stability of the porous structure.
Die Verbindung, Querverbindung oder Versteifung kann die poröse Struktur mit der Umhäusung direkt einstückig verbinden. Mit anderen Worten kann die Verbindung, Querverbindung oder Versteifung so angeordnet sein, dass diese direkt und unmittelbar die poröse Struktur mit der Umhäusung verbindet, diese also zwischen poröser Struktur und Umhäusung so angeordnet ist. Die Verbindung, Querverbindung oder Versteifung kann auch poröse Strukturen untereinander miteinander verbinden, beispielsweise dann wenn eine Mehrzahl poröser Strukturen gemeinsam ein Filterelement definieren.The connection, cross-connection or stiffener may directly integrally connect the porous structure to the housing. In other words, the connection, cross-connection or reinforcement can be arranged in such a way that it directly and immediately connects the porous structure to the housing, ie the latter is arranged between the porous structure and the housing. The connection, cross-connection or stiffener can also connect porous structures to one another, for example when a plurality of porous structures together define a filter element.
Die poröse Struktur kann zumindest einen Turbulator aufweisen zur Durchmischung des Trägerfluids und/oder zur Durchmischung des Hüllfluids. Ein Turbulator kann eine Verwirbelung in dem entsprechenden Fluid bereitstellen, so dass es zu einer verbesserten Durchmischung und somit zu einem verbesserten Stoffaustausch zwischen Hüllfluid und Trägerfluid kommt.The porous structure can have at least one turbulator for mixing the carrier fluid and/or for mixing the enveloping fluid. A turbulator can provide a turbulence in the corresponding fluid, so that there is improved mixing and thus a improved mass transfer between sheath fluid and carrier fluid.
Die poröse Struktur kann einen über die Länge veränderlichen Strömungsquerschnitt für das Trägerfluid und/oder das Hüllfluid bereitstellen.The porous structure can provide a flow cross section that is variable over the length for the carrier fluid and/or the sheath fluid.
Die poröse Struktur weist insbesondere bereichsweise oder teilweise eine höhere oder niedrigere Porosität und/oder Porenweitenverteilung auf. Die poröse Struktur kann undurchlässige Bereiche, permeable Bereiche und weitere Bereiche aufweisen, die eine unterschiedliche Porosität im Vergleich sowohl zu den undurchlässigen Bereichen als auch zu den permeablen Bereichen aufweist. Ein solcher weiter unterschiedlicher Bereich der Porosität kann so materialisiert sein, dass beispielsweise im Inneren der Membrankapillaren eine Art Beschichtung auf der Innenfläche ausgeführt ist. Die Beschichtung kann dabei monolithisch aus demselben Ausgangsmaterial aufgetragen sein.In particular, the porous structure has a higher or lower porosity and/or pore size distribution in some areas or in parts. The porous structure can have impermeable areas, permeable areas and other areas that have a different porosity compared to both the impermeable areas and the permeable areas. Such a further different range of porosity can be materialized in such a way that, for example, a type of coating is applied to the inner surface inside the membrane capillaries. The coating can be applied monolithically from the same starting material.
Die erste und/oder die zweite Stirnseite weist eine integrale Fluidsperre auf oder ist als integrale Fluidsperre ausgebildet, wobei die Fluidsperre die Strömung des Trägerfluids von der Hüllströmung trennt. In vorteilhafter Weise ist hier vollständig der Einsatz von Vergussmasse vermieden, so dass deren begleitende Nachteile ausgeräumt sind.The first and/or the second end face has an integral fluid barrier or is designed as an integral fluid barrier, with the fluid barrier separating the flow of the carrier fluid from the enveloping flow. Advantageously, the use of potting compound is completely avoided here, so that the associated disadvantages are eliminated.
Das monolithische Bauteil ist bevorzugt aus dem porösen oder porösierbaren Ausgangsmaterial vollständig aufgebaut.The monolithic component is preferably made up entirely of the porous or porous starting material.
Das poröse oder porösierbare Ausgangsmaterial weist bevorzugt keramische Bestandteile auf. Solche keramischen Bestandteile können insbesondere als keramische Paste bereitgestellt werden.The porous or porous starting material preferably has ceramic components. Such ceramic components can be provided in particular as a ceramic paste.
Von der Erfindung umfasst ist ferner auch ein monolithisches keramisches Bauteil, welches nach einem wie eingangs beschriebenen Verfahren hergestellt ist.The invention also includes a monolithic ceramic component which is produced using a method as described above.
Die Erfindung beschreibt ferner ein monolithisch aufgebautes keramisches Filtermodul für eine Vorrichtung zur Abtrennung von Bestandteilen aus einem Fluid. Das monolithisch aufgebaute Filtermodul umfasst dabei eine erste und eine der ersten gegenüberliegenden zweiten Stirnseite. Das Filtermodul umfasst ferner ein, insbesondere längliches oder röhrenförmigen, einstückig mit der ersten und zweiten Stirnseite ausgebildetes Filtergehäuse.The invention also describes a monolithic ceramic filter module for a device for separating components from a fluid. The filter module of monolithic construction comprises a first end face and a second end face lying opposite the first. The filter module also includes a filter housing, in particular an elongate or tubular one, formed in one piece with the first and second end faces.
Das keramische Filtermodul weist ferner eine in dem Filtergehäuse angeordnete und mit den Stirnseiten und dem Filtergehäuse einstückig aufgebaute und verbundene poröse Struktur auf. Die poröse Struktur ist dabei jedenfalls teilweise oder bereichsweise permeabel eingerichtet. Das keramische Filtermodul weist ferner zumindest einen Trägerfluid-Sammelanschluss und zumindest einen Hüllfluidanschluss auf.The ceramic filter module also has a porous structure which is arranged in the filter housing and is constructed and connected in one piece to the end faces and the filter housing. In any case, the porous structure is designed to be permeable in part or in certain areas. The ceramic filter module also has at least one carrier fluid collection port and at least one sheath fluid port.
Die erste Stirnseite und die zweite Stirnseite des Filtermoduls sind jeweils als integrale Fluidsperre ausgebildet zum Unterbinden einer Querströmung zwischen Trägerfluid-Sammelanschluss und Hüllfluid-Sammelanschluss.The first end face and the second end face of the filter module are each designed as an integral fluid barrier to prevent a cross flow between the carrier fluid collection port and the sheath fluid collection port.
Die poröse Struktur ist dabei so hergerichtet und angeordnet, eine Hüllseite von einer Trägerseite zumindest teilweise und/oder zumindest bereichsweise permeable abzutrennen.The porous structure is prepared and arranged in such a way that an envelope side is separated from a carrier side in an at least partially and/or at least regionally permeable manner.
Auf der Trägerseite ist dabei ein Trägerfluid bereitstellbar. Die poröse Struktur ist dabei so hergerichtet, einen Stofftransfer des Trägerfluids mit der Hüllseite zu gewährleisten.A carrier fluid can be provided on the carrier side. The porous structure is prepared in such a way that mass transfer of the carrier fluid with the shell side is ensured.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und unter Bezugnahme auf die Figuren näher erläutert, wobei gleiche und ähnliche Elemente teilweise mit gleichen Bezugszeichen versehen sind und die Merkmale der verschiedenen Ausführungsbeispiele miteinander kombiniert werden können.The invention is explained in more detail below using exemplary embodiments and with reference to the figures, in which identical and similar elements are partially provided with the same reference symbols and the features of the various exemplary embodiments can be combined with one another.
Figurenlistecharacter list
Es zeigen:
-
1 ,1a ,1b perspektivische Ansicht auf ein monolithisches Rohrbündel als Bauteil mit Detailausschnitten, -
2 ,2a ,2b ein monolithisches Bauteil in Schnittdarstellung, -
3 ,3a ,3b ein monolithisches Bauteil mit Gehäuse, -
4 ,4a ,4b ein monolithisches Bauteil als Einsatzmodul, -
5 ,5a ,5b ein monolithisches Bauteil als Filtermodul, -
6 ,6a perspektivische Ansicht eines monolithischen Bauteils mit Stegen, -
7 ,7a ,7b monolithisches Bauteil als Kartusche mit Stegen und Detailansicht, -
8 ein monolithisches Bauteil mit zu Triplehelixen angeordneten Membranrohren in perspektivischer Darstellung, -
9 Segment eines in Tripelhelix angeordneten Membranrohrbündels, -
10 bis10e monolithisches Bauteil mit variablem Membranrohrdurchmesser, -
11 -11e weiteres Beispiel eines monolithischen Bauteils mit variabler Rohrgeometrie -
12a -12e monolithisches Bauteil mit Einbauten bzw. inneren Strukturen (statische Mischer) -
13 -13b monolithisches Bauteil mit aufgetragener Beschichtung -
14 Darstellung eines Haufwerks, das mit dem erfindungsgemäßen Verfahren erzielbar ist, -
15 Beispielschema für verschiedene Verfahrensabläufe zur Herstellung eines monolithisch aufgebauten keramischen Filtermoduls, -
16 Auftragsvorrichtung zum Auftragen von pulverförmigem Ausgangsmaterial, -
17 . Heizofen zur Vorbehandlung von festem Ausgangsmaterial, -
18 Mischvorrichtung, -
19 weitere Auftragsvorrichtung mit Zuführung, -
20 Anlage mit zwei wählbaren Auftragsvorrichtungen, -
21 weitere Auftragsvorrichtung, -
22 noch ein Beispiel für eine Auftragsvorrichtung, -
23 Brennkammer mit Grünkörper, -
24 Waschbad für die Auswaschung von Produktionshilfsstoffen, -
25 Spülvorrichtung.
-
1 ,1a ,1b Perspective view of a monolithic tube bundle as a component with details, -
2 ,2a ,2 B a monolithic component in section, -
3 ,3a ,3b a monolithic component with housing, -
4 ,4a ,4b a monolithic component as an insert module, -
5 ,5a ,5b a monolithic component as a filter module, -
6 ,6a perspective view of a monolithic component with webs, -
7 ,7a ,7b monolithic component as cartridge with bars and detailed view, -
8th a perspective view of a monolithic component with membrane tubes arranged in triple helixes, -
9 Segment of a membrane tube bundle arranged in a triple helix, -
10 until10e monolithic component with variable membrane tube diameter, -
11 -11e another example of a monolithic component with variable tube geometry -
12a -12e monolithic component with internals or internal structures (static mixers) -
13 -13b monolithic component with applied coating -
14 Representation of a heap that can be achieved with the method according to the invention, -
15 Example scheme for various process sequences for the production of a monolithic ceramic filter module, -
16 Application device for applying powdered starting material, -
17 . heating furnace for the pretreatment of solid starting material, -
18 mixing device, -
19 further application device with feeder, -
20 System with two selectable application devices, -
21 further application device, -
22 another example of an application device, -
23 combustion chamber with green body, -
24 washing bath for washing out production aids, -
25 flushing device.
Detaillierte Beschreibung der ErfindungDetailed description of the invention
Bezugnehmend auf
Bezugnehmend auf
Das zu trennende Fluid bzw. das Trägerfluid, gelangt über den Zulauf 7 ins Gehäuse 5, dort genauer in die Membranrohre 1. Es tritt über den Membraneinlauf 3 in das jeweilige Membranrohr 1 ein, durchströmt die Membranrohre 1 von ihrer ersten Seite bis zu ihrer zweiten Seite und am anderen Ende des Gehäuses tritt das Fluid an der gegenüberliegenden Stirnseite 2a wieder aus. Das Filtrat dringt durch die Wände 9 der Membranrohre 1, d. h. durch die poröse Struktur 60, sammelt sich gegebenenfalls im Filtratraum 10 und kann über einen der Filtratanschlüsse 8 das Gehäuse verlassen.The fluid to be separated or the carrier fluid enters the
In der Zusammenschau der
Wie in
Bezugnehmend auf
Die
Bezugnehmend auf
Bezugnehmend auf
Bezugnehmend auf die
Es hat sich gezeigt, dass eine noch stärkere Durchmischung des durchströmenden Trägerfluids auch durch geeignete Turbulatoren 29 erreicht werden kann. Einbauten, wie statische Mischer als Turbulatoren 29, sind in der Verfahrenstechnik als solches zwar bekannt, um die Durchmischung eines strömenden Fluids zu verbessern. In Membranrohren funktioniert dies aber nicht ohne weiteres, jedenfalls aber nicht dauerhaft. Statische Mischer können in herkömmlichen Membranrohren nicht gut fixiert werden bzw. sind sie überhaupt mit dritten Materialien zu fixieren und führen daher im Betrieb regelmäßig Relativbewegungen zur Membranoberfläche aus. Die Membranoberfläche wird durch die dabei entstehende Reibung dauerhaft geschädigt und sie kann ihre Trennaufgabe nicht mehr ausfüllen.It has been shown that an even stronger mixing of the carrier fluid flowing through can also be achieved by
Durch das vorteilhafte Verfahren, bei welchem das Bauteil monolithisch aufgebaut wird, ist es nunmehr möglich, Turbulatoren 29 einstückig mit der porösen Struktur 60 auszubilden, so dass jedenfalls das Problem der Relativbewegung nicht mehr auftritt. Die Einzelsegmente 29a der Turbulatoren bzw. der statischen Mischer sind somit integraler Bestandteil der porösen Struktur 60, also insbesondere der Rohrmembran 1, 19, 28. Der monolithische Verbund von Turbulatoren 29 mit poröser Struktur 60 als integrierte Komponente eliminiert das Problem der Relativbewegungen, so dass Membranschädigungen an dieser Stelle verringert oder sogar ausgeschlossen sind und somit ein dauerhafter Betrieb zuverlässig gewährleistet ist.Due to the advantageous method in which the component is built up monolithically, it is now possible to form turbulators 29 in one piece with the
Bezugnehmend auf
In
Diese Spuren zur Herstellung der Beschichtung 30 können von einem separaten Druckkopf gelegt werden, der beispielsweise eine keramische Masse ablegt, die zu einer feineren Porenstruktur führt als beim Grundkörper. Eine oder mehrere Beschichtungen lassen sich auch nach dem Brennen des Grundkörpers nachträglich aufbringen und beispielsweise bei niedrigerer Temperatur sintern.These traces for producing the
Bezugnehmend auf
Für die erfindungsgemäßen Membranfilter 60a gilt typischerweise, dass die entstehende Porenstruktur des porösen Materials 60 nicht als vorgegebenes Muster in einem Steuerprogramm vorzugeben ist und somit der Fertigungskopf nicht auf Mikrometer-Ebene die konkrete Porenstruktur zu erzeugen hat. Vielmehr kann die Porenstruktur des porösen Materials 60 durch die Zusammensetzung der verwendeten Rezeptur beispielsweise beim Extraktionsverfahren erzeugt werden, gegebenenfalls mit nachfolgenden Schritten zur Verfestigung des Ausgangsmaterials 70, 71, 73, 74, wie das Sintern von keramischen Grünkörpern.For the membrane filter 60a according to the invention, it typically applies that the resulting pore structure of the
Für keramische Werkstoffe kann 3D-Extrusion als Herstellungsverfahren angewendet werden, um sogenannte Grünkörper oder Precursor für die nachfolgende Sinterung in einem Sinter-Ofen herzustellen. Ein weiterer Vorteil ist hier im Vergleich zu strangextrudierten keramischen Filterelementen die geringere mögliche Wandstärke. Damit ergeben sich wegen der geringeren Wärmespeicherung kürzere Zeiten im Sinter-Ofen, was sich vorteilhaft auf die Herstellkosten auswirkt.For ceramic materials, 3D extrusion can be used as a manufacturing process to produce so-called green bodies or precursors for subsequent sintering in a sintering furnace. Another advantage here is the reduced possible wall thickness compared to extruded ceramic filter elements. This results in shorter times in the sintering furnace due to the lower heat storage, which has an advantageous effect on the production costs.
Unterschiedliche Prioritäten lassen sich hierbei durch unterschiedliche Rezepturen der keramischen Massen erzeugen. Voraussetzung ist eine Mehrkopfanlage mit einem Extrusionskopf für jede gewünschte Porosität, mit der die entsprechende keramische Paste an der vorgesehenen Stelle abgelegt wird. Mit anderen Worten wird das Einstellen der Porosität in diesem Beispiel dadurch realisiert, dass der entsprechende Kopf der Anlage ein entsprechendes Ausgangsmaterial 70, 71, 73, 74 ablegt und dieses monolithisch mit dem Rest des Bauteils 50 verbunden wird.Different priorities can be generated here by different recipes of the ceramic masses. The prerequisite is a multi-head system with an extrusion head for each desired porosity, with which the corresponding ceramic paste is deposited at the intended location. In other words, the porosity is adjusted in this example by the corresponding head of the system depositing a corresponding starting
Bezugnehmend auf die
Bezugnehmend auf
Nach der Vorbereitung erfolgt das Einstellen 110 der Porosität des porösen oder porösierbaren Ausgangsmaterials 70, 71, 73, 74 für den zu erfolgenden Materialauftrag. Auch das Einstellen kann auf verschiedene Arten erfolgen. So kann das Beimischen 112 von Additiv bzw. Füllstoff zu dem Ausgangsmaterial 70, 71, 73, 74 zum Einstellen der Porosität im Moment des Materialauftrags umfasst sein. Ferner kann das Einstellen von Härtungsparametern 114 umfasst sein, um das poröse oder porösierbare Ausgangsmaterial 70, 71, 73, 74 hinsichtlich der Porosität im Schritt 110 einzustellen.After the preparation, the porosity of the porous or
Der Schritt Einstellen 110 kann auch die Auswahl 116 von einem anzuwendenden Ausgangsmaterial 70, 71, 73, 74 aus einer Mehrzahl von zumindest zwei Ausgangsmaterialien 70, 71, 73, 74 umfassen. Die Auswahl kann auch zu einer Mischung führen, wenn das Ausgangsmaterial 70, 71, 73, 74 zwei Ausgangsmaterialien 70, 71, 73, 74 umfasst, welche gleichzeitig oder auch abwechselnd zugeführt werden können, um einen Materialmix an dem anzufahrenden Punkt der Punkt-Target-Matrix zu erzeugen.The setting
Die Zielsetzung des Einstellschrittes 110 ist, dass das poröse oder porösierbare Ausgangsmaterial 70, 71, 73, 74 beim Materialauftrag so gestaltet oder vorbereitet wird, dass es im Bauteil eine zusammenhängende poröse Materialstruktur ausbilden kann, welche bevorzugterweise am jeweiligen anzufahrenden Punkt der Punkt-Target-Matrix hinsichtlich der Porosität veränderbar eingestellt werden kann, um einerseits eine poröse Materialstruktur 60, aber auch monolithisch damit ausgebildet undurchlässige Bereiche 64 aufzubauen. Idealerweise kann dies in einem gemeinsamen Verfahrensablauf so durchgeführt werden, dass das monolithische Bauteil 50 in einem Stück kontinuierlich, bevorzugt ohne Unterbrechung, hergestellt wird. Je nach angewendetem Verfahren kann dies auch schrittweise und mit entsprechenden Pausen zwischen den Schritten geschehen, wenn dies für das Verfahren notwendig sein sollte. Das hergestellte monolithische Bauteil 50 zeichnet sich schließlich dadurch aus, dass eine materialschlüssige Verbindung zwischen allen Komponenten des monolithischen Bauteils 50 so besteht, dass das Bauteil aus einem Stück gewachsen erscheint, so dass die Bereiche, die für einen Strömungsdurchfluss hergerichtet werden, bereits beim Bau bzw. der Herstellung des monolithischen Bauteils 50 so hergestellt werden, dass diese Bereiche den Strömungsfluss ermöglichen; andererseits dass die undurchlässigen Bereiche, welche gerade einen Strömungsdurchfluss verhindern sollen, sowie die Umhäusung, bereits während der Herstellung des monolithischen Bauteils entsprechend undurchlässig eingestellt sind. Besonders bevorzugt besteht das gesamte monolithische Bauteil 50 aus zueinander kompatiblem Material bzw. aus demselben Ausgangsmaterial 70, 71, 73, 74, bei welchem gegebenenfalls verschiedene Füllmaterialien oder Additive ergänzt werden.The aim of the
Das eingestellte Ausgangsmaterial 70, 71, 73, 74 wird an dem anzufahrenden Punkt aufgetragen im Schritt 120. Das Auftragen kann unterschiedliche Ausprägungen aufweisen. Je nach herzustellendem monolithischen Bauteil 50 kann hierunter das Ausgeben von eingestelltem Ausgangsmaterial 70, 71, 73, 74 mittels einer Auftragsmaschine gemäß Schritt 122 zu verstehen sein. Eine solche Auftragsmaschine ist beispielsweise ein Extruder. Es kann auch ein ergänzendes Ablegen von pulverförmigem Ausgangsmaterial 71 gemäß Schritt 124 am anzufahrenden Punkt umfassen, wenn dies nicht mit Schritt 104 vollständig durchführbar ist. Auch das Auftragen 126, beispielsweise das manuelle Auftragen einer Paste, kann in dem Schritt Auftragen 120 umfasst sein. Das Auftragen 120 führt dazu, dass Ausgangsmaterial 70, 71, 73, 74 an dem monolithischen Bauteil 50 aufgetragen wird in einer Form, dass dort einerseits Bereiche mit undurchlässiger Materialstruktur und andererseits Bereiche mit poröser Materialstruktur entstehen, wobei die Bereiche mit poröser Materialstruktur auch weiter unterteilbar sind in Bereiche mit unterschiedlicher Porosität.The
Im Schritt 130 wird schließlich das Auftragen 120, Einstellen 110 und gegebenenfalls Unterschritte daraus fortgeführt, bis das monolithische Bauteil 50 schließlich fertiggestellt wird. Je nach ausgewähltem zugrundeliegendem Verfahren werden dabei die Schritte 110, 120 repetitiv durchgeführt, also beispielsweise für jeden Punkt der Punkt-Target-Matrix erneut, oder für jede Schicht der Schicht-Target-Matrix erneut, oder aber es wird zunächst das Ausgangsmaterial 70, 71, 73, 74 im Schritt 110 beispielsweise für zusammenhängende Bereiche des monolithischen Bauteils zunächst eingestellt und anschließend im gesamten Schritt 120 angefahren bzw. aufgetragen.Finally, in
Die
Der oder die Mengenregler 82a, 82b erlaubt/erlauben die Einstellung 110 der späteren Porosität des Ausgangsmaterials 70 und somit von Bereichen des zu erstellenden monolithischen Bauteils 50. Das gemischte Ausgangsmaterial 70a wird im Mischbehälter 82c umgewälzt. Der Mischbehälter 82c weist einen Ausgangsmengenregler 82e im Auslass auf, mittels welchem die aufzutragende Menge für das Auftragen 120 einstellbar ist. Beispielsweise zeigt
Noch eine Alternative, um das poröse oder porösierbare Ausgangsmaterial 70 einzustellen, ist in
Mit
Bezug nehmend auf
Mit
Bezug nehmend auf
Die vorliegende Anmeldung beschreibt einen Teilaspekt der Herstellung monolithischer Bauteile sowie monolithischer Bauteile, und zwar Herstellung und Aufbau keramischer monolithischer Bauteile. Die vorliegende Anmeldung erstreckt sich daher nicht auf polymere monolithische Bauteile und deren Herstellung, und deckt des Weiteren auch nicht die Herstellung mittels TiPS-Verfahren ab, vielmehr sind die vorgenannten Bereiche hiermit explizit ausgeschlossen.The present application describes a partial aspect of the production of monolithic components and monolithic components, namely manufacture and construction of ceramic monolithic components. The present application therefore does not extend to polymeric monolithic components and their production, and also does not cover production using the TiPS method; rather, the aforementioned areas are hereby explicitly excluded.
Es ist dem Fachmann ersichtlich, dass die vorstehend beschriebenen Ausführungsformen beispielhaft zu verstehen sind und die Erfindung nicht auf diese beschränkt ist, sondern in vielfältiger Weise variiert werden kann, ohne den Schutzbereich der Ansprüche zu verlassen. Ferner ist ersichtlich, dass die Merkmale unabhängig davon, ob sie in der Beschreibung, den Ansprüchen, den Figuren oder anderweitig offenbart sind, auch einzeln wesentliche Bestandteile der Erfindung definieren, selbst wenn sie zusammen mit anderen Merkmalen gemeinsam beschrieben sind. In allen Figuren stellen gleiche Bezugszeichen gleiche Gegenstände dar, so dass Beschreibungen von Gegenständen, die gegebenenfalls nur in einer oder jedenfalls nicht hinsichtlich aller Figuren erwähnt sind, auch auf diese Figuren übertragen werden können, hinsichtlich welchem der Gegenstand in der Beschreibung nicht explizit beschrieben ist.It is obvious to the person skilled in the art that the embodiments described above are to be understood as examples and that the invention is not limited to these, but can be varied in many ways without departing from the scope of protection of the claims. Furthermore, it is evident that the features, regardless of whether they are disclosed in the description, the claims, the figures or otherwise, also individually define essential components of the invention, even if they are described together with other features. In all figures, the same reference symbols represent the same objects, so that descriptions of objects that may only be mentioned in one or at least not with regard to all figures can also be transferred to these figures, with regard to which the object is not explicitly described in the description.
BezugszeichenlisteReference List
- 11
- Trägerseite, Membranrohr, FiltterkapillareCarrier side, membrane tube, filter capillary
- 1a1a
- Membranrohrbündelmembrane tube bundle
- 1b1b
- Tripelhelixtriple helix
- 2, 2a2, 2a
- Stirnseite, Endplatteface, end plate
- 33
- Membraneinlaufmembrane inlet
- 44
- Übergang bzw. AusrundungTransition or fillet
- 4a4a
- Strömungsführungflow guidance
- 55
- Umhäusung, Gehäusecasing, casing
- 66
- Übergangcrossing
- 77
- Zulauf, Ablaufinflow, outflow
- 88th
- Hüllfluidzu- oder -ablauf, FiltratanschlussSheath fluid inlet or outlet, filtrate connection
- 99
- Seitenfläche des Membranrohresside surface of the membrane tube
- 1010
- Hüllseite, FiltratraumShell side, filtrate space
- 1111
- Nutgroove
- 1212
- Dichtelementsealing element
- 1313
- Zu- oder Ablaufstückinlet or outlet piece
- 1414
- Flachdichtelementflat sealing element
- 1515
- Klemmringclamping ring
- 1616
- ÜberstandGot over
- 1717
- Stegweb
- 17a17a
- Gehäusesteghousing bar
- 1919
- Membranrohr mit veränderlichem QuerschnittMembrane tube with variable cross-section
- 2020
- engerer Querschnittnarrow cross section
- 2121
- weiterer Querschnittanother cross section
- 2222
- Längsschnittlongitudinal section
- 2323
- Ellipsenquerschnittelliptical cross-section
- 2424
- Ausgangsstellungstarting position
- 2525
- 90° gedrehtrotated 90°
- 2626
- Längsschnittlongitudinal section
- 2727
- Längsschnittlongitudinal section
- 2828
- Rohrmembrantubular membrane
- 2929
- Turbulator, statischer Mischerturbulator, static mixer
- 29a29a
- Turbulatorflanketurbulator edge
- 3030
- Beschichtungcoating
- 3131
- Verbundenes Haufwerk der porösen StrukturConnected heaps of porous structure
- 3232
- Pore im Haufwerkpore in heaps
- 5050
- monolithisches Bauteilmonolithic component
- 50a50a
- Zielpunkttarget point
- 5252
- Trägerfluid-SammelanschlussCarrier fluid collection port
- 5454
- Trägerfluidkammercarrier fluid chamber
- 5656
- Hüllfluid-SammelanschlussSheath Fluid Collection Port
- 5858
- Anschlusskragenconnection collar
- 6060
- poröse Strukturporous structure
- 60a60a
- Membran bzw. Membranfiltermembrane or membrane filter
- 6262
- separates Gehäuseseparate housing
- 6464
- undurchlässiger Bereichimpervious area
- 7070
- Ausgangsmaterialstarting material
- 70a70a
- gemischtes Ausgangsmaterialmixed source material
- 7171
- Ausgangsmaterial, pulverförmigStarting material, in powder form
- 7272
- Ausgangsmaterial, flüssigstarting material, liquid
- 7373
- Ausgangsmaterial, feststarting material, solid
- 7474
- Ausgangsmaterial, pastösStarting material, pasty
- 7575
- Additivadditive
- 7676
- Füllstofffiller
- 7777
- Absorptionsmodifikator, TinteAbsorption Modifier, Ink
- 8080
- Ablagevorrichtung bzw. AuftragsmaschineStorage device or application machine
- 80'80'
- zweite Ablagevorrichtungsecond storage device
- 80a80a
- Zuführungfeeding
- 80b80b
- Bauteilträgercomponent carrier
- 8181
- Heizvorrichtungheating device
- 81a81a
- Wärmeerzeugung mittels der Heizvorrichtung 84Heat generation by means of the heating device 84
- 8282
- Mischvorrichtungmixing device
- 82a82a
- Mengenregler AusgangsmaterialFeedstock quantity regulator
- 82b82b
- Mengenregler Additiv / FüllstoffQuantity regulator additive / filler
- 82c82c
- Mischbehältermixing tank
- 82d82d
- Drehmischerrotary mixer
- 82e82e
- Ausgangsmengenregleroutput volume control
- 8383
- Anregungs- oder Aktivierungsanordnungexcitation or activation arrangement
- 8585
- Badbath
- 85a85a
- Spüllösungrinsing solution
- 8686
- Kammerchamber
- 9090
- Matrixebenematrix level
- 9292
- Ablagebereichstorage area
- 9494
- weiterer Bereichfurther area
- 100100
- BereitstellenProvide
- 102102
- BevorratenStock up
- 104104
- PlatzierenPlace
- 106106
- MischenMix
- 108108
- AufheizenWarm up
- 110110
- EinstellenSet
- 112112
- Beimischenmixing
- 114114
- Einstellen von HärtungsparameternSetting curing parameters
- 116116
- Auswahl von AusgangsmaterialSelection of starting material
- 120120
- AuftragenInstruct
- 122122
- Ausgeben bzw. Ausrichten der AuftragsmaschineOutputting or aligning the application machine
- 124124
- Ablegen von pulverförmigen AusgangsmaterialDepositing powdered starting material
- 126126
- (Manuelles) Auftragen von Ausgangsmaterial(Manual) application of starting material
- 130130
- Fortführen bzw. Beenden des HerstellungsverfahrensContinue or end the manufacturing process
- 132132
- Brennen eines GrünkörpersFiring a green body
- 134134
- Auswaschen von HilfsstoffenWashing out of excipients
- 136136
- Entfernen überschüssigen PulversRemove excess powder
ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of documents cited by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturPatent Literature Cited
- EP 88108462 A [0009]EP88108462A [0009]
Claims (36)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020121547.9A DE102020121547A1 (en) | 2020-08-17 | 2020-08-17 | Monolithic ceramic membrane filters |
PCT/EP2021/072742 WO2022038094A1 (en) | 2020-08-17 | 2021-08-16 | Monolithically structured inorganic membrane filters |
EP21765855.8A EP4196248A1 (en) | 2020-08-17 | 2021-08-16 | Monolithic membrane filter |
PCT/EP2021/072740 WO2022038093A1 (en) | 2020-08-17 | 2021-08-16 | Monolithic membrane filter |
US18/041,935 US20230321607A1 (en) | 2020-08-17 | 2021-08-16 | Monolithic Membrane Filters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020121547.9A DE102020121547A1 (en) | 2020-08-17 | 2020-08-17 | Monolithic ceramic membrane filters |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102020121547A1 true DE102020121547A1 (en) | 2022-02-17 |
Family
ID=77640656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102020121547.9A Pending DE102020121547A1 (en) | 2020-08-17 | 2020-08-17 | Monolithic ceramic membrane filters |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102020121547A1 (en) |
WO (1) | WO2022038094A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023169630A1 (en) * | 2022-03-07 | 2023-09-14 | InnoSpire Technologies GmbH | Monolithic membrane filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160167132A1 (en) | 2014-12-10 | 2016-06-16 | Washington State University | Additive manufacturing of porous scaffold structures |
WO2016187097A1 (en) | 2015-05-18 | 2016-11-24 | President And Fellows Of Harvard College | Foam ink composition and 3d printed hierarchical porous structure |
US20170246593A1 (en) | 2014-08-11 | 2017-08-31 | Technologies Avancees Et Membranes Industrielles | Novel shapes for tangential flow separation single-channel tubular elements incorporating turbulence promoters, and method of fabrication |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3006606B1 (en) * | 2013-06-11 | 2015-07-03 | Tech Avancees Et Membranes Industrielles | PROCESS FOR MANUFACTURING FILTRATION MEMBRANES BY ADDITIVE TECHNIQUE AND MEMBRANES OBTAINED |
FR3024665B1 (en) * | 2014-08-11 | 2020-05-08 | Technologies Avancees Et Membranes Industrielles | TANGENTIAL FLOW SEPARATION ELEMENT INCLUDING TRAFFIC OBSTACLES AND MANUFACTURING METHOD |
FR3024664B1 (en) * | 2014-08-11 | 2020-05-08 | Technologies Avancees Et Membranes Industrielles | NOVEL GEOMETRIES OF TANGENTIAL FLOW SEPARATION MULTI-CHANNEL TUBULAR ELEMENTS INCLUDING TURBULENCE PROMOTERS AND MANUFACTURING METHOD |
FR3036628B1 (en) * | 2015-05-29 | 2019-12-20 | Technologies Avancees Et Membranes Industrielles | MONOBLOCK COLUMN STRUCTURE FOR SEPARATING A FLUID MEDIUM |
CN113146464A (en) * | 2016-01-19 | 2021-07-23 | 应用材料公司 | Porous chemical mechanical polishing pad |
FR3088831B1 (en) * | 2018-11-27 | 2020-12-04 | Tech Avancees Et Membranes Industrielles | Manufacturing process by adding material from inorganic filtration media from a hot-melt filament and membrane obtained |
-
2020
- 2020-08-17 DE DE102020121547.9A patent/DE102020121547A1/en active Pending
-
2021
- 2021-08-16 WO PCT/EP2021/072742 patent/WO2022038094A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170246593A1 (en) | 2014-08-11 | 2017-08-31 | Technologies Avancees Et Membranes Industrielles | Novel shapes for tangential flow separation single-channel tubular elements incorporating turbulence promoters, and method of fabrication |
US20160167132A1 (en) | 2014-12-10 | 2016-06-16 | Washington State University | Additive manufacturing of porous scaffold structures |
WO2016187097A1 (en) | 2015-05-18 | 2016-11-24 | President And Fellows Of Harvard College | Foam ink composition and 3d printed hierarchical porous structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023169630A1 (en) * | 2022-03-07 | 2023-09-14 | InnoSpire Technologies GmbH | Monolithic membrane filter |
Also Published As
Publication number | Publication date |
---|---|
WO2022038094A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0226788B1 (en) | Element with a permeable side | |
DE69832340T2 (en) | Ceramic filter module | |
DE3884322T2 (en) | Extrusion mouthpiece for protrusions and / or high cell density in honeycomb bodies. | |
DE10227721B4 (en) | Process for producing a bundle of ceramic capillaries for a separation module | |
DE69714622T2 (en) | Filters and their use | |
DE19927556C2 (en) | Static micromixer and method for statically mixing two or more starting materials | |
DE69624422T2 (en) | Process for processing an extrusion die for honeycomb structure | |
WO2000078438A1 (en) | Static micromixer | |
EP2711163A1 (en) | Three-dimensional body | |
WO2022038095A1 (en) | Monolithic membrane filter | |
WO2022038093A1 (en) | Monolithic membrane filter | |
EP0412931A1 (en) | Process for production of a porous ceramic body | |
WO2011006613A2 (en) | Heat exchange module and compact heat exchangers | |
EP2647942B1 (en) | Microfluidic component and procedure for its manufacture | |
DE102020121547A1 (en) | Monolithic ceramic membrane filters | |
EP3495036B1 (en) | Mixer insert for static mixer, static mixer and method of manufacturing | |
DE102020121546A1 (en) | Monolithic membrane filter | |
DE102020121548A1 (en) | Monolithic polymeric membrane filters | |
EP1380332B1 (en) | Filtering candle for a pre-coat filter, pre-coat filter and use of a filtering candle | |
DE19807769B4 (en) | Holder for ceramic microfilters | |
EP0412930A1 (en) | Process for production of a porous ceramic body | |
EP3297759A1 (en) | Multilevel article comprising a multitude of ducts | |
EP1161987A2 (en) | Device and method for making a device for the catalytic production of hydrogen from hydrocarbons | |
DE112017006597B9 (en) | Porous honeycomb filter | |
WO2008017429A1 (en) | Emulsifying device and process for forming an emulsion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R082 | Change of representative |
Representative=s name: RAUCH, UDO, DIPL.-PHYS. DR. PHIL. NAT., DE |
|
R084 | Declaration of willingness to licence |