DE102012112541A1 - Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement - Google Patents
Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement Download PDFInfo
- Publication number
- DE102012112541A1 DE102012112541A1 DE201210112541 DE102012112541A DE102012112541A1 DE 102012112541 A1 DE102012112541 A1 DE 102012112541A1 DE 201210112541 DE201210112541 DE 201210112541 DE 102012112541 A DE102012112541 A DE 102012112541A DE 102012112541 A1 DE102012112541 A1 DE 102012112541A1
- Authority
- DE
- Germany
- Prior art keywords
- measuring
- light source
- optical
- measuring chamber
- optical sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 83
- 239000007788 liquid Substances 0.000 title claims abstract description 51
- 238000011156 evaluation Methods 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 title claims abstract description 12
- 238000004140 cleaning Methods 0.000 claims abstract description 67
- 238000005259 measurement Methods 0.000 claims abstract description 62
- 239000012530 fluid Substances 0.000 claims abstract description 52
- 239000002351 wastewater Substances 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000005086 pumping Methods 0.000 claims abstract description 5
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 76
- 239000003651 drinking water Substances 0.000 description 12
- 235000020188 drinking water Nutrition 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 6
- 238000004065 wastewater treatment Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000032770 biofilm formation Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000011157 data evaluation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N21/3151—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3185—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry typically monochromatic or band-limited
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1893—Water using flow cells
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Überwachung von Parameter einer wässrigen Flüssigkeit, insbesondere Abwasser, aufweisend eine Messkammer mit einer Zuleitung für die zu untersuchende Flüssigkeit und einer Ableitung, eine optische Messanordnung mit zumindest einem optischen Sensor zur Messung zumindest einer optischen Eigenschaft der Flüssigkeit, und eine Steuer- und Auswerteeinrichtung. Die Erfindung betrifft ferner ein Verfahren zum Überwachen von Parameter einer wässrigen Flüssigkeit, insbesondere Abwasser, unter Verwendung einer solchen Vorrichtung.The invention relates to a device for monitoring parameters of an aqueous liquid, in particular wastewater, comprising a measuring chamber with a supply line for the liquid to be examined and a discharge, an optical measuring arrangement with at least one optical sensor for measuring at least one optical property of the liquid, and a Control and evaluation device. The invention further relates to a method for monitoring parameters of an aqueous liquid, in particular wastewater, using such a device.
Für die Betriebssicherheit, die Steuerung technologischer Abläufe und die Wartungseffizienz wasserwirtschaftlicher Aufbereitungsanlagen ist es von großer Bedeutung, den Klärprozess anhand von Qualitätsparametern, die den Verschmutzungsgrad von Abwässern charakterisieren, in ausreichend kurzen, periodischen Zeitabständen zu überwachen. Auf diese Weise kann überprüft werden, ob eine Anlage einwandfrei arbeitet. Fehlfunktionen der Anlage können zu einer unzureichenden Klärung von Abwässern führen, welche wiederum die chemische, biologische und ökologische Qualität von Gewässern, in welche das Abwasser nach Verlassen der Aufbereitungsanlage eingeleitet wird, beeinträchtigen kann. Aus diesem Grund ist es in vielen Staaten im Sinne einer nachhaltigen und umweltverträglichen Wassernutzung gesetzlich vorgeschrieben, bei der Abwasserreinigung einen bestimmten technischen Standard, Wartungsregeln und Grenzwerte einzuhalten.For operational safety, the control of technological processes and the maintenance efficiency of water treatment plants, it is of great importance to monitor the clarification process at sufficiently short, periodic intervals on the basis of quality parameters that characterize the degree of contamination of waste water. In this way, it can be checked whether a system is working properly. Malfunction of the plant can lead to inadequate treatment of effluents, which in turn may affect the chemical, biological and environmental quality of waters into which the effluent is discharged after leaving the treatment plant. For this reason, it is a legal requirement in many states for sustainable and environmentally compatible use of water to comply with a specific technical standard, maintenance rules and limit values for wastewater treatment.
Mittels der Spektralphotometrie lassen sich photometrische Messwerte von Abwässern direkt ermitteln. Diese Messwerte können anschließend mit Hilfe mathematischer Auswerteverfahren in spezifische Abwasserparameter, die Rückschluss auf die Funktionsfähigkeit der Aufbereitungsanlage geben, umgerechnet werden. Aus der Messung des spektralen Absorptionskoeffizienten mit UV-Licht bei einer Wellenlänge von 254 nm (SAK 254 [1/m]) lassen sich der CSB (chemische Sauerstoffbedarf) und der BSB (biologischer Sauerstoffbedarf) ableiten, die als wichtigste Parameter in der Abwasseranalytik gelten. Der CSB ist ein Bewertungsparameter für die Gesamtbelastung von Fließgewässern und Abwässern mit organischen Verbindungen, wobei auch biologisch schwer oder nicht abbaubare Verbindungen inbegriffen sind. Der BSB ist eine relative Kenngröße für die Menge an Sauerstoff, die beim oxidativen Abbau von Wasserinhaltsstoffen durch die im Abwasser vorhandenen Mikroorganismen innerhalb einer bestimmten Zeit, üblicherweise 5 Stunden, verbraucht wird. Der BSB ist somit eine Kenngröße für biologisch abbaubare organische Substanzen. Darüber hinaus kann die Färbung des Wassers so wie der DOC (gelöster organisch gebundener Kohlenstoff) anhand des spektralen Absorptionskoeffizienten bei einer Wellenlänge von 436 nm (SAK 436 [1/m]) charakterisiert werden, der auch Rückschluss auf die Huminstoffbelastung gibt. Der Zusammenhang zwischen DOC und Huminstoffen ist einem Fachmann hinlänglich bekannt. Der Vorteil der photometrischen Abwasseranalyse liegt insbesondere darin, dass das Messverfahren im Wesentlichen ohne Reagenzien auskommt und trotzdem zuverlässige Messwerte liefert.Using spectrophotometry, photometric readings of wastewater can be determined directly. These measured values can then be converted into specific wastewater parameters with the help of mathematical evaluation methods, which give an indication of the functionality of the processing plant. The measurement of the spectral absorption coefficient with UV light at a wavelength of 254 nm (SAK 254 [1 / m]) leads to the derivation of the COD (chemical oxygen demand) and BOD (biological oxygen demand), which are the most important parameters in wastewater analysis , The COD is an evaluation parameter for the total load of watercourses and wastewaters with organic compounds, including biologically heavy or non-biodegradable compounds. BOD is a relative parameter of the amount of oxygen consumed in the oxidative degradation of water constituents by the microorganisms present in the effluent within a specified time, usually 5 hours. The BOD is thus a parameter for biodegradable organic substances. In addition, the color of the water, such as DOC (dissolved organic carbon) can be characterized by the spectral absorption coefficient at a wavelength of 436 nm (SAK 436 [1 / m]), which also gives rise to the Huminstoffbelastung. The relationship between DOC and humic substances is well known to a person skilled in the art. The advantage of photometric wastewater analysis lies in the fact that the measurement process essentially requires no reagents and nevertheless provides reliable measured values.
Vor allem in dünn besiedelte Regionen kommen zur Abwasserreinigung dezentrale Kleinkläranlagen zum Einsatz, da diese Regionen aus technischen oder finanziellen Gründen oftmals nicht an große kommunale Wasseraufbereitungsanlagen angeschlossen werden können. Kleinkläranlagen erfordern behördlich vorgeschriebene Kontrollen, um sicherzustellen, dass die Anlage einwandfrei arbeitet, sowie die Einhaltung von Wartungsregeln. Die Kontrollen werden meistens vom Betreiber selbst durchgeführt, da eine regelmäßige Begutachtung durch Wartungs- und Serviceunternehmen aufgrund der langen Anfahrtswege mit laufenden Kosten verbunden ist.Especially in sparsely populated regions, decentralized small wastewater treatment plants are used for wastewater treatment, as these regions often can not be connected to large municipal water treatment plants for technical or financial reasons. Small wastewater treatment plants require government-mandated controls to ensure that the plant is operating properly, as well as compliance with maintenance rules. The controls are usually carried out by the operator himself, as a regular inspection by maintenance and service companies is associated with ongoing costs due to the long travel distances.
Aus diesem Grund wurden Kontrollvorrichtungen entwickelt, die auf dem Prinzip der Spektralphotometrie basieren, und mit welchen wichtige Kenngrößen der Abwasseranalytik durch den Betreiber selbst laufend ermittelt und überwacht werden können.For this reason, control devices based on the principle of spectrophotometry have been developed and with which important parameters of wastewater analysis can be continuously determined and monitored by the operator himself.
Eine Vorrichtung der eingangs genannten Art ist aus der
Die
Die
Die
In der
Die
Die bekannten Vorrichtungen zeichnen sich durch einen verhältnismäßig hohen apparativen Aufwand, einen komplexen Messablauf und einen umständlichen Reinigungsmechanismus aus und erfordern kurze Wartungsintervalle, wodurch sich erhebliche Nachteile in Bezug auf deren Mobilität, deren Kosten und deren Benutzerfreundlichkeit ergeben. Zusätzlich zu den genannten Nachteilen sind die derzeit am Markt erhältlichen Kontrollvorrichtungen für Kleinkläranlagenbetreiber sehr teuer in der Anschaffung.The known devices are characterized by a relatively high expenditure on equipment, a complex measurement process and a complicated cleaning mechanism and require short maintenance intervals, which results in significant disadvantages in terms of their mobility, their cost and ease of use. In addition to the disadvantages mentioned above, the control devices currently available on the market for small wastewater treatment plant operators are very expensive to purchase.
Es besteht daher ein Bedarf an einer kostengünstigen, einfach zu bedienenden und zu wartenden Vorrichtung zur Überwachung von Parametern einer wässrigen Flüssigkeit, insbesondere Abwasser. Der Vorrichtung soll ein einfaches Messverfahren zugrunde liegen und es insbesondere einem Betreiber einer Kleinkläranlage ermöglichen, die vorgeschriebenen Kontrollen effizient durchzuführen und vorhandene Funktionsprobleme gezielt, mit geringen Kosten und kurzfristig zu beheben. Es ist daher eine Aufgabe der Erfindung diesen Bedarf zu decken.There is therefore a need for a low-cost, easy-to-use and maintainable device for monitoring parameters of an aqueous liquid, in particular wastewater. The device should be based on a simple measuring method and in particular allow an operator of a small sewage treatment plant to perform the prescribed controls efficiently and to fix existing functional problems targeted, with low costs and in the short term. It is therefore an object of the invention to meet this need.
Diese Aufgabe wird durch eine Vorrichtung wie eingangs genannt gelöst, welche erfindungsgemäß dadurch gekennzeichnet ist, dass die optische Messanordnung einen ersten optischen Sensor und einen zweiten optischen Sensor aufweist, wobei der erste optische Sensor eine erste Lichtquelle, die UV-Licht emittiert, einen ersten Photodetektor und einen zwischen der ersten Lichtquelle und dem ersten Photodetektor verlaufenden ersten Messpfad aufweist, wobei der zweite optische Sensor eine zweite Lichtquelle, die sichtbares Licht emittiert, einen zweiten Photodetektor und einen zwischen der zweiten Lichtquelle und dem zweiten Photodetektor verlaufenden zweiten Messpfad aufweist, wobei der erste und der zweite Messpfad durch die Messkammer und die darin befindliche Flüssigkeit verlaufen, die Zuleitung oder die Ableitung zumindest ein Ventilmittel aufweist, durch welches zumindest ein Reinigungsfluid in die Messkammer zuführbar ist, die Vorrichtung zumindest ein Pumpmittel zum Leiten der Flüssigkeit bzw. des zumindest einen Reinigungsfluids durch die Messkammer aufweist, und die Steuer- und Auswerteeinrichtung zur programmierbaren Steuerung zumindest der Pump- und Ventilmittel und zum Auswerten der mittels der optischen Messanordnung ermittelten Messwerte eingerichtet ist.This object is achieved by a device as mentioned at the outset, which is inventively characterized in that the optical measuring arrangement comprises a first optical sensor and a second optical sensor, wherein the first optical sensor, a first light source which emits UV light, a first photodetector and a first measurement path extending between the first light source and the first photodetector, the second optical sensor having a second light source emitting visible light, a second photodetector, and a second measurement path extending between the second light source and the second photodetector, the first and the second measuring path extend through the measuring chamber and the liquid therein, the supply line or the discharge line has at least one valve means, through which at least one cleaning fluid can be fed into the measuring chamber, the device at least one pumping means for conducting the liquids or the at least one cleaning fluid through the measuring chamber, and the control and evaluation device is configured for the programmable control of at least the pump and valve means and for evaluating the measured values determined by means of the optical measuring arrangement.
Dank der Erfindung wird eine Überwachungsvorrichtung bereitgestellt, mit welcher Parameter einer wässrigen Flüssigkeit, insbesondere Abwasser, benutzerfreundlich sowie wartungs- und kosteneffizient bestimmt werden können, so dass der sichere Betrieb wasserwirtschaftlicher Aufbereitungsanlagen, insbesondere Kleinkläranlagen, und die einwandfreie Steuerung der darin stattfindenden technologischen Abläufe zuverlässig gewährleistet wird. Die Erfindung erleichtert zudem die gesetzeskonforme Umsetzung gesetzlicher Vorgaben, besonders für Betreiber von Kleinkläranlagen. Für Österreich geltende Rechtsquellen sind nach derzeitigem Stand beispielsweise die
Der Begriff „wässrige Flüssigkeit” wie hierin verwendet, bezieht sich in erster Linie auf alle Arten von Wasser wie Abwasser, Fluss- und Seewasser, technische Prozesswässer sowie Trinkwasser, Mineralwasser und Wasser, welches zur Trinkwassergewinnung bereitgestellt wird. Insbesondere bezieht sich der Begriff jedoch auf Abwasser, wobei der Begriff „Abwasser” auch gereinigtes Abwasser bzw. geklärtes Abwasser (Klarwasser) einschließt.The term "aqueous liquid" as used herein refers primarily to all types of water such as sewage, river and lake water, technical process waters, as well as drinking water, mineral water and water, which is provided for drinking water production. In particular, however, the term refers to wastewater, the term "wastewater" also including purified waste water or clarified waste water (clear water).
Der Begriff „Reinigungsfluid” bezieht sich auf Reagenzien und Reinigungsmittel, die zum Vermeiden einer Biofilmbildung in der Messkammer sowie in deren Zu- und Ableitungen geeignet sind. Das Reinigungsfluid kann beispielsweise Wasser, vorzugsweise optisch reines Wasser, destilliertes Wasser, ionenfreies Wasser, keimfreies Wasser, ein Desinfektionsmittel, Alkohol oder eine Osmoselösung, z. B. Osmosewasser mit einem Leitwert von < 20 μS, sein.The term "cleaning fluid" refers to reagents and cleaning agents that are suitable for preventing biofilm formation in the measuring chamber and in its supply and discharge lines. The cleaning fluid may be, for example, water, preferably optically pure water, distilled water, ion-free water, germ-free water, a disinfectant, alcohol or an osmotic solution, e.g. B. osmosis water with a conductivity of <20 μS, be.
Das Ventilmittel zum Zuführen des Reinigungsfluids ist vorzugsweise in der Zuleitung angeordnet. Das Reinigungsfluid, (gegebenenfalls auch mehrere verschiedene Reinigungsfluida) befindet sich in einem wiederbefüllbaren Reinigungsbehälter für das Reinigungsfluid und kann mittels des zumindest einen Pumpmittels über das Ventilmittel aus dem Reinigungsbehälter in die Zuleitung und weiter durch die Messkammer sowie die Ableitung geführt werden. Um den Aufbau der Vorrichtung so einfach wie möglich zu gestalten, ist es von Vorteil, wenn nur eine Art von Reinigungsfluid vorgesehen ist.The valve means for supplying the cleaning fluid is preferably arranged in the supply line. The cleaning fluid, (possibly also several different cleaning fluids) is located in a refillable cleaning container for the cleaning fluid and can be performed by means of the at least one pumping agent via the valve means from the cleaning container into the supply line and on through the measuring chamber and the discharge. To make the structure of the device as simple as possible, it is advantageous if only one type of cleaning fluid is provided.
Ist das Ventilmittel in der Ableitung angeordnet, dann wird das Reinigungsfluid aus dem wiederbefüllbaren Reinigungsbehälter mittels des Pumpmittels über das Ventilmittel in die Ableitung und weiter durch die Messkammer in die Zuleitung geführt.If the valve means is arranged in the drain, then the cleaning fluid from the refillable cleaning container is guided by means of the pumping means via the valve means in the discharge and on through the measuring chamber in the supply line.
Die Vorrichtung ist normalerweise in unmittelbarer Nähe zur Probeentnahmestelle für die zu untersuchende wässrige Flüssigkeit stationär verankert, beispielsweise im Wasserzulauf oder Wasserablauf einer wasserwirtschaftlichen Anlage. Die Vorrichtung kann beispielsweise mit Hilfe von Kabelbindern oder dergleichen an vorhandenen Bauelementen der wasserwirtschaftlichen Anlage fixiert werden. Die Zuleitung und gegebenenfalls auch die Ableitung tauchen dabei in den Wasserkörper, aus welchem die zu untersuchende Flüssigkeitsprobe entnommen wird, ein. Vorzugsweise ist die Probeneinlassöffnung der Zuleitung in einem definierten Abstand zur Wasseroberfläche angeordnet. Zum Einhalten dieses Abstands kann an der Zuleitung ein Schwimmkörper (Schwimmer) befestigt sein.The device is normally anchored in the immediate vicinity of the sampling point for the aqueous liquid to be examined, for example, in the water inlet or drainage of a water management system. The device can be fixed, for example by means of cable ties or the like to existing components of the water management system. The supply line and, if appropriate, the discharge thereby dip into the body of water from which the liquid sample to be examined is taken. Preferably, the sample inlet opening of the supply line is arranged at a defined distance from the water surface. To comply with this distance can be attached to the supply line a float (float).
Für die Bestimmung des spektralen Absorptionskoeffizienten bei einer Wellenlänge von 254 nm (SAK 254) von Abwasser, welche mit Vorteil in Entsprechung mit dem deutschen Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung (
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die optische Messanordnung einen dritten optischen Sensor aufweist, der eine dritte Lichtquelle, die sichtbares Licht emittiert, einen dritten Photodetektor und einen zwischen der dritten Lichtquelle und dem dritten Photodetektor verlaufenden dritten Messpfad aufweist, wobei der dritte Messpfad durch die Messkammer und die darin befindliche Flüssigkeit verläuft. Für die Bestimmung der Färbung der Flüssigkeit, die anhand des spektralen Absorptionskoeffizienten bei einer Wellenlänge von 436 nm (SAK 436 in [1/m]) charakterisiert wird, ist es daher zweckmäßig, wenn die dritte Lichtquelle sichtbares Licht mit einer Wellenlänge von 436 nm emittiert. Der SAK 436 kann darüber hinaus als Kenngröße für DOC und damit auch für die Huminstoffbelastung herangezogen werden.An advantageous development of the invention provides that the optical measuring arrangement has a third optical sensor which has a third light source emitting visible light, a third photodetector and a third measuring path extending between the third light source and the third photodetector, the third measuring path passes through the measuring chamber and the liquid therein. For the determination of the coloration of the liquid, which is characterized by the spectral absorption coefficient at a wavelength of 436 nm (SAK 436 in [1 / m]), it is therefore expedient for the third light source to emit visible light with a wavelength of 436 nm , The SAK 436 can also be used as a parameter for DOC and thus also for the Huminstoffbelastung.
Die Vorrichtung lässt sich besonders leicht realisieren, wenn die erste, die zweite und die dritte Lichtquelle eine wellenlängenspezifische LED (Light Emitting Diode) aufweisen. LEDs haben ferner den Vorteil einer längeren Haltbarkeit als die ansonsten häufig in der Photometrie eingesetzten Blitzlampen. Bei einer bevorzugten Ausführungsform emittiert die LED der ersten Lichtquelle UV-Licht einer Wellenlänge von 254 nm und die LED der zweiten Lichtquelle sichtbares Licht einer Wellenlänge von 550 nm. Ist zudem ein dritter optischer Sensor vorgesehen, dann ist es von Vorteil, wenn die LED der ersten Lichtquelle UV-Licht einer Wellenlänge von 254 nm, die LED der zweiten Lichtquelle sichtbares Licht einer Wellenlänge von 550 nm und die LED der dritten Lichtquelle sichtbares Licht einer Wellenlänge von 436 nm emittiert. The device can be implemented particularly easily if the first, the second and the third light source have a wavelength-specific LED (Light Emitting Diode). LEDs also have the advantage of longer life than the flashlamps otherwise commonly used in photometry. In a preferred embodiment, the LED of the first light source emits UV light of a wavelength of 254 nm and the LED of the second light source visible light of a wavelength of 550 nm. In addition, if a third optical sensor is provided, then it is advantageous if the LED of the first light source UV light of a wavelength of 254 nm, the LED of the second light source visible light of a wavelength of 550 nm and the LED of the third light source emitted visible light of a wavelength of 436 nm.
Alternativ zur UV-LED kann als erste Lichtquelle auch eine UV-Niederdrucklampe (z. B. von Heraeus Noblelight) zur Anwendung kommen.As an alternative to the UV LED, the first light source can also be a UV low-pressure lamp (eg from Heraeus Noblelight).
Für Referenzmessungen zu Kalibrierzwecken bzw. um Temperatureinflüsse, die durch die Lichtquellen bedingt sind, zu kompensieren, ist es günstig, wenn die Steuer- und Auswerteeinrichtung dazu eingerichtet ist, aufgrund der mit Reinigungsfluid befüllten Messkammer Referenzmessungen durchzuführen. Bei dieser Ausführungsform wird das Reinigungsfluid direkt als Referenzflüssigkeit verwendet und ermöglicht dadurch einen sehr einfachen und kostengünstigen apparativen Aufbau der erfindungsgemäßen Vorrichtung. Um eine der zum Anmeldezeitpunkt geltenden
Um Schwankungen der UV-Licht-Intensität der ersten Lichtquelle zu kompensieren, ist bei einer ersten vorteilhaften Weiterbildung zwischen der ersten Lichtquelle und der Messkammer ein Strahlteiler angeordnet, welcher einen Anteil des von der ersten Lichtquelle emittierten UV-Lichts in einen Referenzmesspfad abzweigt und einem Referenzphotodetektor zuführt. Der Strahlteiler ist vorzugsweise als halbdurchlässiger Spiegel realisiert. Beispielsweise werden durch den Strahlteiler ungefähr 30% des Lichts für die Referenzmessung in einen Referenzmesspfad abgezweigt und einem Referenzdetektor zugeführt.In order to compensate for variations in the UV light intensity of the first light source, in a first advantageous development, a beam splitter is arranged between the first light source and the measuring chamber, which diverts a portion of the UV light emitted by the first light source into a reference measuring path and a reference photodetector supplies. The beam splitter is preferably realized as a semitransparent mirror. For example, approximately 30% of the light for the reference measurement is branched off into a reference measurement path and fed to a reference detector by the beam splitter.
Alternativ zur zuvor genannten Weiterbildung, die einen Strahlteiler vorsieht, können bei einer anderen vorteilhaften Weiterbildung auftretende Schwankungen der UV-Licht-Intensität der ersten Lichtquelle mit Vorteil kompensiert werden, wenn die Steuer- und Auswerteeinheit dazu eingerichtet ist, die Schwellspannung des ersten Photodetektors zu erfassen und bei der Auswertung der Messwerte zu berücksichtigen.As an alternative to the aforementioned development, which provides a beam splitter, fluctuations in the UV light intensity of the first light source occurring in another advantageous development can be compensated for advantageously if the control and evaluation unit is set up to detect the threshold voltage of the first photodetector and to be taken into account when evaluating the measured values.
Die ersten, zweiten und dritten Photodetektoren sowie der Referenzdetektor können jeweils ein photoelektrisches Element, insbesondere eine Photodiode, umfassen, welches ein der detektierten Lichtintensität entsprechendes elektrisches Signal generiert und dieses der Steuer- und Auswerteeinheit zuführt. Mit Vorteil weisen die eingesetzten Photodetektoren eine möglichst geringe Bandbreite auf oder sind nur für die entsprechende Wellenlänge empfindlich. Beispielsweise können der erste Photodetektor und der Referenzdetektor vom Typ BPW21 (Siemens), der zweite Photodetektor vom Typ TW30SX (Texas Instruments) und der dritte Photodetektor vom Typ OSD15-5T (OSI Optoelectronics) sein. Den genannten Detektoren kann ferner nach bekannter Art und Weise ein Vorverstärker zur Verstärkung des elektrischen Signals nachgeschaltet sein.The first, second and third photodetectors as well as the reference detector may each comprise a photoelectric element, in particular a photodiode, which generates an electrical signal corresponding to the detected light intensity and supplies this to the control and evaluation unit. Advantageously, the photodetectors used have the lowest possible bandwidth or are only sensitive to the corresponding wavelength. For example, the first photodetector and the reference detector may be of the type BPW21 (Siemens), the second photodetector of the type TW30SX (Texas Instruments) and the third photodetector of the type OSD15-5T (OSI Optoelectronics). The aforementioned detectors can also be followed by a known manner, a preamplifier for amplifying the electrical signal.
Um aufgrund einer zu großen Bandbreite auftretende Fehlmessungen ausschließen zu können, ist es von Vorteil, wenn im ersten Messpfad an einer Position zwischen der ersten Lichtquelle und dem ersten Photodetektor ein Bandpassfilter angeordnet ist. Die Bandbreite ist von den eingesetzten optischen Bauelementen abhängig und ergibt sich aus der Intensitätskennlinie der ersten Lichtquelle, der Transmissionskennlinie der Messkammer und des gegebenenfalls vorhandenen Strahlteilers sowie der Empfindlichkeitskennlinie des ersten Photodetektors. Obwohl Bauelemente bevorzugt werden, die eine geringe Bandbreite ergeben, ist es dank dieser Weiterbildung auch möglich, Bauteile zu verwenden, die eine größere Bandbreite mit sich bringen.In order to be able to rule out erroneous measurements that occur due to excessive bandwidth, it is advantageous if a bandpass filter is arranged in the first measuring path at a position between the first light source and the first photodetector. The bandwidth depends on the optical components used and results from the intensity characteristic of the first light source, the transmission characteristic of the measuring chamber and the optionally existing beam splitter and the sensitivity characteristic of the first photodetector. Although devices are preferred that give a low bandwidth, it is also possible thanks to this development to use components that bring a larger bandwidth with it.
Um die gesetzlich vorgeschriebenen Betreiberkontrollen zu erleichtern, ist es von Vorteil, wenn die Vorrichtung eine Übertragungseinheit, z. B. ein GSM-Modul, zum Übertragen der ermittelten und/oder ausgewerteten Messwerte an einen externen Empfänger aufweist. Durch Übertragen der erhaltenen Messdaten an einen beliebigen Ort ist eine online-Fernüberwachung der Vorrichtung z. B. per Mobilfunk/GSM möglich und erspart die laufend durchzuführende Sichtkontrolle vor Ort. Etwaig vorhandene Funktionsprobleme können durch den Betreiber selbst oder ein Serviceunternehmen rasch erkannt und behoben werden. Der externe Empfänger ist beispielsweise ein Mobiltelefon oder ein Computer. Im Fall eines Mobiltelefons können die Messdaten zum Beispiel per SMS übertragen werden.In order to facilitate the legally required operator controls, it is advantageous if the device is a transmission unit, for. B. a GSM module, for transmitting the determined and / or evaluated measured values to an external receiver. By transmitting the obtained measurement data to any location is an online remote monitoring of the device z. B. via mobile / GSM and saves the ongoing visual inspection on site. Any existing functional problems can be quickly identified and remedied by the operator or a service company. Of the external receiver is for example a mobile phone or a computer. In the case of a mobile phone, the measured data can be transmitted via SMS, for example.
Die Vorrichtung kann ferner eine Bedienkonsole zur Eingabe von Befehlen für die Steuer- und Auswerteeinrichtung, beispielsweise zur Programmierung des Messablaufs und dessen zeitlichen Ablaufs, aufweisen. Die Bedienkonsole kann ferner ein Display zum Anzeigen der Befehle bzw. der Mess- und Kenndaten oder einen Touchscreen aufweisen.The device may further comprise an operator console for inputting commands for the control and evaluation device, for example for programming the measurement sequence and its time sequence. The control panel may further comprise a display for displaying the commands or the measurement and identification data or a touchscreen.
Mit Vorteil weist die Vorrichtung zur Energieversorgung ein austauschbares Energieversorgungsmodul, beispielsweise handelsübliche Trockenbatterien, auf. Mit Vorteil ist der Vorrichtung zur Batteriestandskontrolle ferner eine Alarmeinrichtung zugeordnet, welche bei geringer oder einem Ausfall der Energieversorgung ein Alarmsignal auslöst. Die Alarmeinrichtung kann Bestandteil der Steuer- und Auswerteeinrichtung oder ein eigenes Bauteil sein. So kann bei einem Leistungsabfall oder einem Ausfall des Energieversorgungsmoduls, wodurch die Funktionssicherheit der Vorrichtung nicht mehr gewährleistet ist, ein akustisches Signal aktiviert, eine Anzeige am Display angezeigt oder mittels der Übertragungseinrichtung eine Information an den externen Empfänger, z. B. in Form eines SMS an ein Mobiltelefon, übermittelt werden.Advantageously, the device for power supply to a replaceable power supply module, for example, commercially available dry batteries, on. Advantageously, the device for battery level control is further associated with an alarm device which triggers an alarm signal with little or a failure of the power supply. The alarm device may be part of the control and evaluation or a separate component. Thus, in the event of a power loss or a failure of the power supply module, as a result of which the functional reliability of the device is no longer guaranteed, an acoustic signal is activated, an indication is shown on the display or, by means of the transmission device, information is sent to the external receiver, e.g. B. in the form of an SMS to a mobile phone, are transmitted.
Darüber hinaus kann mittels eines Zählers (Counter), der die Messzyklen zählt, der Füllstand des Reinigungsfluids überwacht werden, wobei in Analogie zur Batteriestandskontrolle ein Alarmsignal wie oben beschrieben übermittelt wird, wenn der Füllstand eine vorgegebene Grenze unterschreitet.In addition, by means of a counter (counter), which counts the measuring cycles, the level of the cleaning fluid to be monitored, and in analogy to the battery level control, an alarm signal is transmitted as described above, when the level falls below a predetermined limit.
Der Vorrichtung kann ferner ein Temperaturfühler (Temperatursensor) zugeordnet sein, der sich vorzugsweise in der Nähe der Messkammer befindet und mit der Steuer- und Auswerteeinrichtung in Signalverbindung steht. Temperaturabweichungen, die über einen vorgebbaren Temperaturbereich hinausgehen, können ebenfalls als Alarmsignal wie oben beschrieben übermittelt werden.The device may also be associated with a temperature sensor (temperature sensor), which is preferably located in the vicinity of the measuring chamber and is in signal communication with the control and evaluation device. Temperature deviations that exceed a predefinable temperature range can also be transmitted as an alarm signal as described above.
Um denjenigen Abschnitt der Zuleitung zu reinigen, der stromauf des zumindest einen Ventilmittels zum Zuführen des Reinigungsfluids liegt, ist es von Vorteil, wenn das zumindest eine Ventilmittel in der Zuleitung angeordnet ist und die Vorrichtung ein Rückspülventil aufweist, welches in der Zuleitung an einer Position zwischen dem zumindest einen Ventilmittel und der Messkammer angeordnet ist und von welchem sich eine Rückspülleitung zur Zuleitung erstreckt, wobei die Rückspülleitung an einer Position stromauf des zumindest einen Ventilmittels in die Zuleitung mündet. Durch diese apparative Anordnung ist es möglich, die Zuleitung der Messkammer mit dem Reinigungsfluid durch Umkehren der Fließrichtung des Reinigungsfluids rückzuspülen und somit einer Biofilmbildung entgegenzuwirken.In order to clean that section of the supply line which lies upstream of the at least one valve means for supplying the cleaning fluid, it is advantageous if the at least one valve means is arranged in the supply line and the device has a backwash valve which is located in the supply line at a position between the at least one valve means and the measuring chamber is arranged and from which a backwash line extends to the supply line, wherein the backwash line opens at a position upstream of the at least one valve means in the supply line. By this apparatus arrangement, it is possible to backwash the feed line of the measuring chamber with the cleaning fluid by reversing the flow direction of the cleaning fluid and thus counteract biofilm formation.
Die Begriffe „stromauf” und „stromab” beziehen sich immer auf die Fließrichtung der zu untersuchenden wässrigen Flüssigkeit (= Wasserprobe), welche durch die Zuleitung in die Messkammer geführt wird und von dort weiter in die Ableitung fließt.The terms "upstream" and "downstream" always refer to the flow direction of the aqueous liquid to be investigated (= water sample), which is conducted through the supply line into the measuring chamber and from there flows further into the discharge line.
Um die Vorrichtungsbestandteile vor Spritzwasser zu schützen, ist diese mit Vorteil in einem wasserdichten Gehäuse untergebracht, wobei das Gehäuse Zu- und Ableitungsöffnungen aufweist, durch welche sich die Zu- und Ableitungen erstrecken.In order to protect the device components from splash water, this is advantageously accommodated in a watertight housing, wherein the housing has inlet and outlet openings through which the supply and discharge lines extend.
Ein weiterer Gegenstand der Erfindung bezieht sich auf ein Verfahren zum Überwachen von Parameter einer wässrigen Flüssigkeit, insbesondere Abwasser, unter Verwendung einer Vorrichtung gemäß den beiliegenden Ansprüchen und wie oben beschrieben, wobei das Verfahren durch die folgenden Schritte gekennzeichnet ist:
- a) Spülen der Messkammer mit der wässrigen Flüssigkeit,
- b) Bestimmen der optischen Eigenschaften der wässrigen Flüssigkeit mittels des ersten optischen Sensors, und gegebenenfalls mittels des zweiten und/oder dritten optischen Sensors,
- c) Spülen der Messkammer mit zumindest einem Reinigungsfluid,
- d) Auswerten der mittels der optischen Sensoren erhaltenen Messwerte mittels der Steuer- und Auswerteeinrichtung, und
- e) Übermitteln der ausgewerteten Messwerte mittels einer Übertragungseinheit, insbesondere eines GSM-Moduls, an einen externen Empfänger.
- a) rinsing the measuring chamber with the aqueous liquid,
- b) determining the optical properties of the aqueous liquid by means of the first optical sensor, and optionally by means of the second and / or third optical sensor,
- c) rinsing the measuring chamber with at least one cleaning fluid,
- d) evaluating the measured values obtained by means of the optical sensors by means of the control and evaluation device, and
- e) transmitting the evaluated measured values by means of a transmission unit, in particular a GSM module, to an external receiver.
Wie weiter oben bereits beschrieben wurde, ist es für Referenzmessungen zu Kalibrierzwecken bzw. um Temperatureinflüsse, die durch die Lichtquellen bedingt sind, zu kompensieren, günstig, wenn vor dem Bestimmen der optischen Eigenschaften der wässrigen Flüssigkeit eine Referenzmessung durchgeführt wird. Vorzugsweise wird deshalb vor Schritt a) mittels der ersten und zweiten optischen Sensoren, und gegebenenfalls mittels des dritten optischen Sensors, zumindest eine Referenzmessung durch Bestimmen der optischen Eigenschaften des sich in der Messkammer befindlichen Reinigungsfluids durchgeführt. Somit wird das Reinigungsfluid direkt als Referenzflüssigkeit verwendet und ermöglicht dadurch einen sehr einfachen und kostengünstigen apparativen Aufbau der erfindungsgemäßen Vorrichtung. Um eine der derzeit geltenden
Um eine Biofilmbildung in der Zuleitung zu vermeiden, ist es von Vorteil, wenn anschließend an Schritt c) die Zuleitung der Messkammer mittels zumindest eines Reinigungsfluids rückgespült wird.In order to avoid biofilm formation in the feed line, it is advantageous if, subsequent to step c), the supply line of the measuring chamber is backwashed by means of at least one cleaning fluid.
Zur Bestimmung spezifischer Wasserparameter (z. B. CSB, BSB, DOC, Färbung/Huminstoffbelastung) ist es von Vorteil, wenn die Messungen mittels des ersten optischen Sensors bei einer Wellenlänge von 254 nm, mittels des zweiten optischen Sensors bei einer Wellenlänge von 550 nm und gegebenenfalls mittels des dritten optischen Sensors bei einer Wellenlänge von 436 nm durchgeführt werden.For the determination of specific water parameters (eg COD, BOD, DOC, coloration / humic substance load), it is advantageous if the measurements by means of the first optical sensor at a wavelength of 254 nm, by means of the second optical sensor at a wavelength of 550 nm and optionally by the third optical sensor at a wavelength of 436 nm.
Im Folgenden wird die Erfindung samt weiteren Vorzügen anhand eines nicht einschränkenden Ausführungsbeispiels erläutert, das in den beigefügten Zeichnungen dargestellt ist. Die Zeichnungen zeigen:In the following, the invention, together with further advantages, will be explained by way of non-limiting example, which is illustrated in the accompanying drawings. The drawings show:
Die
Die optische Messeinrichtung
Die Membranpumpe
Der Vorrichtung
Auf der Hauptplatine
Die oben beschriebenen Bauteile der Vorrichtung
Die Vorrichtung
Zur Energieversorgung ist der Vorrichtung
Darüber hinaus kann mittels eines nicht dargestellten Zählers (Counter), der die Messzyklen zählt, der Füllstand der Reinigungsflüssigkeit überwacht werden, wobei in Analogie zur Batteriestandskontrolle ein Alarmsignal wie oben beschrieben übermittelt wird, wenn der Füllstand eine vorgegebene Grenze unterschreitet.In addition, by means of a counter (counter), which counts the measuring cycles, the level of the cleaning liquid can be monitored, in analogy to the battery level control an alarm signal is transmitted as described above, when the level falls below a predetermined limit.
Der Vorrichtung
Weitere Signalleitungen (e), (f), (g) und (1) zwischen der Übertragungseinheit
Der erste optische Sensor
Die
Alternativ dazu ist es auch möglich, Schwankungen der Intensität der UV-LED
Eine weitere vorteilhafte Weiterbildung der Messeinrichtung
Die von den ersten, zweiten und dritten Photodioden
Aus der
In einem ersten, in der
Im darauffolgenden Schritt des Messablaufs, der in der
Die Messung der optischen Eigenschaften in Reinigungsflüssigkeit bzw. in Abwasser mit dem dritten Sensor
Wie in
Die Referenzmessung in Reinigungsflüssigkeit und die Messung der Abwasserprobe erfolgt üblicherweise durch zyklisches Abtasten der einzelnen Photodioden. Beispielsweise werden insgesamt 256 Zyklen durchgeführt und die Messwerte gemittelt. Die Messdauer beträgt dabei insgesamt etwa 1 Sekunde. Das Resultat ist ein ganzzahliger Wert von 0–1000, welcher die Lichtintensität repräsentiert.The reference measurement in cleaning fluid and the measurement of the wastewater sample is usually carried out by cyclic scanning of the individual photodiodes. For example, a total of 256 cycles are performed and the measured values are averaged. The measuring time amounts to a total of about 1 second. The result is an integer value of 0-1000, which represents the light intensity.
Folgende Messwerte der Lichtintensität [I] werden demnach mittels der ersten, zweiten und dritten Sensoren
Der Begriff „Referenzintensität” bezieht sich dabei auf die Lichtintensität, die mit der Referenzphotoelektrode
Folgende Berechnungen werden anhand der gemessenen Lichtintensitäten mittels der Steuer- und Auswerteeinrichtung
(SSK550 = spektraler Streuungskoeffizient bei 550 nm)
(SSK436 = spektraler Streuungskoeffizient bei 436 nm)
(f = der Faktor, um den spektralen Absorptionskoeffizienten in m–1 zu erhalten, typischerweise ist f = 1000)
(d1, d2 = optische Weglängen der Messkammer
(SAK436 = spektraler Absorptionskoeffizient bei 436 nm)
(BSB5 = biologischer Sauerstoffbedarf nach 5 Stunden)The following calculations are based on the measured light intensities by means of the control and
(SSK 550 = spectral scattering coefficient at 550 nm)
(SSK 436 = spectral scattering coefficient at 436 nm)
(f = the factor to obtain the spectral absorption coefficient in m -1 , typically f = 1000)
(d 1 , d 2 = optical path lengths of the measuring
(SAK 436 = spectral absorption coefficient at 436 nm)
(BOD 5 = biological oxygen demand after 5 hours)
Die Vorrichtung
Im nächsten Schritt, der in der
Um denjenigen Abschnitt der Zuleitung
Im Anschluss an den in
Tag: FR
Messung Ok
VS: 0x
SAK: 26 <1/m>
CSB: 43 <mg/1>
BSB: 0 <mg/1>
SSK550: 0 <mg/1>
Temp 21 <C>
VBat: 11,8 <V>Following the in
Day: FR
Measurement Ok
VS: 0x
SAK: 26 <1 / m>
COD: 43 <mg / 1>
BOD: 0 <mg / 1>
SSK550: 0 <mg / 1>
Temp 21 <C>
VBat: 11.8 <V>
Das Zeitschema des in den
- 1) 8 Sekunden
Vorspülen der Messkammer 121 mit Reinigungsflüssigkeit (optisch reines Wasser). - 2) 20 Sekunden warten und Referenzmessung in Reinigungsflüssigkeit zur Kalibrierung.
- 3) 30 Sekunden lang Ansaugen von Abwasser
durch die Messkammer 121 . - 4) 20 Sekunden lang warten und Messung im Abwasser durchführen.
- 5) 8 Sekunden
Spülen der Messkammer 121 mit Reinigungsflüssigkeit zur Reinigung. - 6) 8 Sekunden Spülen des stromauf des
Ansaugventils 107 liegenden Abschnitts derZuleitung 101 mit Reinigungsflüssigkeit durch Rückleiten der Reinigungsflüssigkeit überdas Rückspülventil 108 und dieRückspülleitung 110 indie Zuleitung 101 . - 7) Ruhestellung (
Pumpe 103 aus,Ventile 107 ,108 stromlos) und Auswerten und Schicken der Messdaten per SMS an ein Mobiltelefon.
- 1) Pre-rinse the measuring chamber for 8
seconds 121 with cleaning fluid (optically pure water). - 2) Wait 20 seconds and reference measurement in cleaning fluid for calibration.
- 3) Aspirate wastewater through the measuring chamber for 30
seconds 121 , - 4) Wait 20 seconds and measure in the waste water.
- 5) Rinse the measuring chamber for 8
seconds 121 with cleaning fluid for cleaning. - 6) Rinse the upstream of the suction valve for 8
seconds 107 lying section of thesupply line 101 with cleaning fluid by returning the cleaning fluid through thebackwash valve 108 and thebackwash line 110 in thesupply line 101 , - 7) Rest position (pump
103 off,valves 107 .108 de-energized) and evaluating and sending the measurement data via SMS to a mobile phone.
Der in den
Zwischen den einzelnen Messungen befindet sich die Vorrichtung
Die hierin gezeigten Figuren sind zum Verständnis des Messprinzips ausgeführt und nicht als exakte Konstruktionszeichnungen gedacht.The figures shown herein are for understanding the measuring principle and are not intended to be exact construction drawings.
Das oben beschriebene Ausführungsbeispiel samt seinen vorteilhaften Weiterbildungen ist nur eines unter vielen und nicht als einschränkend zu betrachten.The embodiment described above, including its advantageous developments, is only one among many and not to be considered as limiting.
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 102009028254 A1 [0006] DE 102009028254 A1 [0006]
- GB 2256043 A [0007] GB 2256043 A [0007]
- EP 0724718 [0008] EP 0724718 [0008]
- DE 10228929 A1 [0009] DE 10228929 A1 [0009]
- DE 102008028058 A1 [0010] DE 102008028058 A1 [0010]
- DE 102004063720 [0011] DE 102004063720 [0011]
Zitierte Nicht-PatentliteraturCited non-patent literature
- EU-Wasserrahmenrichtlinie 2000/60/EG [0015] EU Water Framework Directive 2000/60 / EC [0015]
- DIN 38404-3; derzeitiger Stand: Juli 2005 [0021] DIN 38404-3; current status: July 2005 [0021]
- DIN-Norm Nr. 38404-3/Juli 2005 [0025] DIN standard no. 38404-3 / July 2005 [0025]
- DIN ISO 3696 [0025] DIN ISO 3696 [0025]
- DIN-Norm Nr. 38404-3/Juli 2005 [0039] DIN standard no. 38404-3 / July 2005 [0039]
- DIN-Norm Nr. 38404-3/Juli 2005 [0068] DIN standard no. 38404-3 / July 2005 [0068]
- DIN ISO 3639 [0068] DIN ISO 3639 [0068]
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201210112541 DE102012112541A1 (en) | 2012-12-18 | 2012-12-18 | Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement |
EP13196915.6A EP2746751A1 (en) | 2012-12-18 | 2013-12-12 | Device for optical monitoring of a parameter of a liquid sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201210112541 DE102012112541A1 (en) | 2012-12-18 | 2012-12-18 | Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102012112541A1 true DE102012112541A1 (en) | 2014-06-18 |
DE102012112541A8 DE102012112541A8 (en) | 2014-08-28 |
Family
ID=50821274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE201210112541 Withdrawn DE102012112541A1 (en) | 2012-12-18 | 2012-12-18 | Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102012112541A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2549539A1 (en) * | 2015-08-11 | 2015-10-29 | Jesús MORENO GONZALEZ | System of cleaning and extraction of organic or inorganic matter precipitated in the stock deposits fund (Machine-translation by Google Translate, not legally binding) |
US10167869B2 (en) * | 2016-01-25 | 2019-01-01 | Wuhan China Star Optoelectronics Technology Co., Ltd | Wastewater and analysis system with monitored sample tube fill level |
DE102019120419A1 (en) * | 2019-07-29 | 2021-02-04 | Endress+Hauser Conducta Gmbh+Co. Kg | Method for cleaning an analytical measuring device and measuring point for analyzing a process medium and cleaning an analytical measuring device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256043A (en) | 1991-03-19 | 1992-11-25 | Welsh Water Enterprises Ltd | Organic pollutant monitor |
EP0724718A1 (en) | 1993-10-18 | 1996-08-07 | Acer Consultants Limited | Apparatus for measuring characteristics of a liquid |
DE10228929A1 (en) | 2002-06-28 | 2004-01-15 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Arrangement for measuring the nitrate content in liquids |
DE102004063720A1 (en) | 2004-12-28 | 2006-07-06 | Uws United Water Systems Gmbh | Control device for waste water and method for controlling quality parameters of waste water |
DE102008028058A1 (en) | 2008-06-12 | 2009-12-17 | Ip-Safetyfirst Gmbh | Outlet monitoring of sewage treatment plants |
DE102009028254A1 (en) | 2009-04-22 | 2010-10-28 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Method for investigations on liquids and device therefor |
-
2012
- 2012-12-18 DE DE201210112541 patent/DE102012112541A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2256043A (en) | 1991-03-19 | 1992-11-25 | Welsh Water Enterprises Ltd | Organic pollutant monitor |
EP0724718A1 (en) | 1993-10-18 | 1996-08-07 | Acer Consultants Limited | Apparatus for measuring characteristics of a liquid |
DE10228929A1 (en) | 2002-06-28 | 2004-01-15 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Arrangement for measuring the nitrate content in liquids |
DE102004063720A1 (en) | 2004-12-28 | 2006-07-06 | Uws United Water Systems Gmbh | Control device for waste water and method for controlling quality parameters of waste water |
DE102008028058A1 (en) | 2008-06-12 | 2009-12-17 | Ip-Safetyfirst Gmbh | Outlet monitoring of sewage treatment plants |
DE102009028254A1 (en) | 2009-04-22 | 2010-10-28 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Method for investigations on liquids and device therefor |
Non-Patent Citations (5)
Title |
---|
DIN 38404-3; derzeitiger Stand: Juli 2005 |
DIN ISO 3639 |
DIN ISO 3696 |
DIN-Norm Nr. 38404-3/Juli 2005 |
EU-Wasserrahmenrichtlinie 2000/60/EG |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2549539A1 (en) * | 2015-08-11 | 2015-10-29 | Jesús MORENO GONZALEZ | System of cleaning and extraction of organic or inorganic matter precipitated in the stock deposits fund (Machine-translation by Google Translate, not legally binding) |
US10167869B2 (en) * | 2016-01-25 | 2019-01-01 | Wuhan China Star Optoelectronics Technology Co., Ltd | Wastewater and analysis system with monitored sample tube fill level |
DE102019120419A1 (en) * | 2019-07-29 | 2021-02-04 | Endress+Hauser Conducta Gmbh+Co. Kg | Method for cleaning an analytical measuring device and measuring point for analyzing a process medium and cleaning an analytical measuring device |
Also Published As
Publication number | Publication date |
---|---|
DE102012112541A8 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2746751A1 (en) | Device for optical monitoring of a parameter of a liquid sample | |
DE102016105770B4 (en) | Automatic analyzer and procedure | |
DE69227764T2 (en) | ORGANIC POLLUTION MONITOR | |
EP2319806B1 (en) | Water drain fitting comprising electrochemical cell and method for operating the same | |
DE102008012254B4 (en) | UV irradiation system | |
DE102011088235A1 (en) | Sample preparation device for an analysis device for determining a measured variable of a liquid sample | |
DE102013114138A1 (en) | Digestion reactor and analyzer for determining a digestion parameter of a liquid sample | |
DE102011114912B4 (en) | Device for producing ultrapure water | |
DE102008028058B4 (en) | Outlet monitoring of sewage treatment plants | |
DE102011007011A1 (en) | Analyzer for the automated determination of a measured variable of a liquid sample | |
DE102013108556A1 (en) | Method and analyzer for determining the chemical oxygen demand of a fluid sample | |
DE102012102296A1 (en) | Measuring assembly has analyzer for automated determination of measuring parameters of liquid and sample preparation equipment, where control unit is equipped with sample preparation equipment for bidirectional data communication | |
DE102013109168A1 (en) | Analyzer for determining the chemical oxygen demand of a fluid sample | |
DE102012112541A1 (en) | Apparatus for optically monitoring parameter of aqueous liquid, has control- and evaluation device for programmable control of pump- and valve unit and is configured to evaluate readings determined by optical measuring arrangement | |
DE10146165A1 (en) | Water quality measuring system comprises cleaning section, operating section, light-emitting lamp, optical fiber probe, optical fiber distributor, spectrometer and control section | |
DE202011051637U1 (en) | Arrangement for the treatment of liquids, in particular for water treatment | |
DE102014115594A1 (en) | Sampling device | |
AT513774B1 (en) | Apparatus and method for optically monitoring a parameter of a fluid sample | |
DE102020100237B4 (en) | PROCEDURE FOR QUALITY CONTROL OF FLUID FLOWING IN A FLUID LINE | |
DE102007052520B4 (en) | Measuring system and measuring method for controlling and / or controlling a water treatment, in particular in a swimming pool | |
EP3832299B1 (en) | Method and device for calibrating an amperometric measuring electrode | |
DE102008064251B4 (en) | Sensor arrangement for monitoring ultraviolet disinfection systems | |
DE102011076222A1 (en) | Method for monitoring cleaning and/or disinfection of e.g. pipeline of process system used for beverage production, involves passing measuring radiation used for absorption measurement through measuring path that partially runs within part | |
EP3875950A1 (en) | Determination of chlorate with an electrode and method and apparatus for calibrating the electrode | |
DE2420327A1 (en) | Recording disinfectant content of swimming-pool water - with transparent analyser determining transparency of water contained in it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R082 | Change of representative |
Representative=s name: ADVOTEC. PATENT- UND RECHTSANWAELTE, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |