DE102005050388A1 - Recovery system for the further processing of a cracked gas stream of an ethylene plant - Google Patents
Recovery system for the further processing of a cracked gas stream of an ethylene plant Download PDFInfo
- Publication number
- DE102005050388A1 DE102005050388A1 DE102005050388A DE102005050388A DE102005050388A1 DE 102005050388 A1 DE102005050388 A1 DE 102005050388A1 DE 102005050388 A DE102005050388 A DE 102005050388A DE 102005050388 A DE102005050388 A DE 102005050388A DE 102005050388 A1 DE102005050388 A1 DE 102005050388A1
- Authority
- DE
- Germany
- Prior art keywords
- gas
- methane
- condensate
- separator
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/09—Purification; Separation; Use of additives by fractional condensation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0219—Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0252—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/12—Refinery or petrochemical off-gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/32—Compression of the product stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/40—Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Die Erfindung betrifft ein Rückgewinnungssystem und ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage. Das Rückgewinnungssystem weist dabei folgende Komponenten auf: DOLLAR A - einen integrierten Multi-Kondensatabscheider, DOLLAR A - einen C2-Absorber, DOLLAR A - eine Wasserstoff/Methan-Expansionsvorrichtung und DOLLAR A - eine C1/C2-Niederdruckkolonne (Demethanizer), DOLLAR A wobei der Multi-Kondensatabscheider mindestens zwei verschiedene Bereiche aufweist, die mit verschieden zusammengesetzten Spaltgasströmen beaufschlagt werden.The invention relates to a recovery system and a method for recovering hydrogen and methane from a cracked gas stream in the low-temperature part of an ethylene plant. The recovery system has the following components: DOLLAR A - an integrated multi-condensate separator, DOLLAR A - a C2 absorber, DOLLAR A - a hydrogen / methane expansion device and DOLLAR A - a C1 / C2 low-pressure column (demethanizer), DOLLAR A wherein the multi-condensate separator has at least two different areas, which are acted upon with differently composed fission gas flows.
Description
Die vorliegende Erfindung betrifft ein Rückgewinnungssystem und ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage.The The present invention relates to a recovery system and a Recovery process of hydrogen and methane from a cracked gas stream in the low temperature part an ethylene plant.
Ethylenanlagen weisen in der Regel eine Zuspeisung für Erdöl oder Erdgas, einen Spaltofen zur Aufspaltung der langen Ketten dieser Stoffe sowie verschiedene Einrichtungen zur Fraktionierung und weiteren Stoffumwandlung der Produkte auf. Im Tieftemperaturteil wird die C2(minus)-Fraktion, die aus der Hydrierung kommt, üblicherweise schrittweise heruntergekühlt bis die C2-Komponenten im Spaltgas größtenteils von Wasserstoff und von Methan getrennt sind. Die verbleibenden C2-Komponenten in der Wasserstoff/Methan-Fraktion werden beispielsweise in einem sog. C2-Absorber (z. B. aus der Linde-Baureihe T4002) zurückgewonnen. Um den Methanabscheider (z. B. T4101) zu entladen, werden die sich während des Kühlprozesses ansammelnden Kondensate in der Regel in einen Methan-Vorabscheider (z. B. T4001) geleitet. Dort werden gelöster Wasserstoff und Methan zum Teil herausgelöst (stripped off). Ein herkömmlicher Methan-Vorabscheider weist drei Bereiche auf, in denen der teilweise kondensierte C2(minus)-Strom nach jedem Abkühlschritt in seine Gasphase und seine flüssige Phase getrennt wird. Die Kondensate der höheren Bereiche des Methan-Vorabscheiders werden zum nächst niedrigeren Bereich geführt, was als Gasbarriere für von niedrigeren Bereichen kommendes Gas dient. Der Boden des Methan-Vorabscheiders führt zu einem Methanabscheider (z. B. T4101), in dem der verbliebene gelöste Wasserstoff und verbliebenes Methan von der C2-Fraktion abgestreift werden (stripped off). Das Bodenprodukt des Methanabscheiders wird dann üblicherweise einem C2-Trenner (C2-Splitter) zugeführt. Der Overhead-Strom (Overhead Stream) des C2-Absorbers ist frei von C2-Komponenten. Er enthält lediglich Wasserstoff und Methan und wird über zwei Expansionsschritte in den sog. Restgas-Expansionsvorrichtungen (z. B. X4001/X4002) den Gegenstrom-Wärmetauschern im Tieftemperaturteil einer Ethylenanlage und in der Vorkühleinrichtung zur Wärmerückgewinnung zugeführt.ethylene plants usually have a feed for oil or natural gas, a cracking furnace for splitting the long chains of these substances as well as different ones Facilities for fractionation and further transformation of the substance Products on. In the low-temperature part, the C2 (minus) fraction, which comes from the hydrogenation, usually gradually cooled down until the C2 components in the fission gas are largely hydrogen and are separated from methane. The remaining C2 components in the hydrogen / methane fraction are used, for example, in a so-called C2 absorber (eg from the Linde series T4002) recovered. In order to unload the methane separator (eg T4101), the while the cooling process accumulating condensates usually in a methane pre-separator (z. T4001). There are dissolved hydrogen and methane partly removed (stripped off). A conventional one Methane pre-separator has three areas in which the partial condensed C2 (minus) stream after each cooling step in its gas phase and its liquid Phase is disconnected. The condensates of the higher areas of the methane pre-separator become the next lower range, what as a gas barrier for serves lower gas coming from lower areas. The bottom of the methane pre-separator leads to a methane separator (eg T4101), in which the remaining dissolved hydrogen and remaining methane are stripped from the C2 fraction (stripped off). The bottom product of the methane separator then becomes common a C2 separator (C2 splitter) supplied. The overhead current (overhead Stream) of the C2 absorber is free of C2 components. It only contains Hydrogen and methane and is over two Expansion steps in the so-called residual gas expansion devices (z. B. X4001 / X4002) the countercurrent heat exchangers in the low-temperature part of an ethylene plant and in the pre-cooler for heat recovery fed.
Nach
einer Wiederverdichtung im Restgas-Druckerhöher wird das Restgas dem Regenerierungs-
und Brenngassystem zugeführt.
Der Bodensatz des C2-Absorbers wird als Rückfluss zum Methan-Vorabscheider
(z. B. T4001) recycled. Die
- 1010
- von der Hydrierung kommender Einsatzstrom,from the hydrogenation incoming feed stream,
- 1111
- Strom zur Vorkühlung,electricity for pre-cooling,
- 1212
- Strom zum C2-Splitter,electricity to the C2 splitter,
- 1313
- Restgasstrom von der Vorkühlung kommend undResidual gas stream from the precooling coming and
- 1414
- Restgasstrom zum Brenngassystem.Residual gas stream to the fuel gas system.
Aufgabe der vorliegenden Erfindung ist es, eine Verbesserung hinsichtlich Energiebedarf und Kostenaufwand bei der Abtrennung von Wasserstoff und Methan von C2-Komponenten im Tieftemperaturteil einer Ethylenanlage gegenüber dem Stand der Technik zu erreichen.task The present invention is an improvement in terms of Energy demand and cost in the separation of hydrogen and Methane of C2 components in the low-temperature part of an ethylene plant across from to achieve the state of the art.
Die gestellte Aufgabe wird vorrichtungsseitig durch ein Rückgewinnungssystem für die Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage gelöst, das folgende Komponenten aufweist:
- – einen integrierten Multi-Kondesatabscheider,
- – einen C2-Absorber,
- – eine Wasserstoff/Methan Expansionsvorrichtung und
- – eine C1/C2-Niederdruckkolonne (Demethanizer),
- - an integrated multi-condenser,
- A C2 absorber,
- A hydrogen / methane expansion device and
- A C1 / C2 low pressure column (demethanizer),
Verfahrensseitig wird die gestellte Aufgabe durch ein Verfahren zur Rückgewinnung von Wasserstoff und Methan aus einem Spaltgasstrom im Tieftemperaturteil einer Ethylenanlage gelöst, das folgende Schritte aufweist:
- – eine C2-Fraktion wird von einer Ethanabscheidevorrichtung (Deethanizer) kommend über einen Wärmetauscher (E1) einem ersten Bereich (A) in einem Multi-Kondensatsbscheider (D1) zugeführt,
- – Kondensat wird aus dem ersten Bereich (A) des Multi-Kondensatabscheiders (D1) abgezogen und einem Methanabscheider (T1) zugeführt,
- – Gas wird aus dem Multi-Kondensatabscheiders (D1) einem weiteren Wärmetauscher (E2) zugeführt und dort weiter abgekühlt,
- – das weiter abgekühlte Gas wird einer Gas/Flüssigkeitstrennung in einem zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) unterzogen,
- – das dabei entstehende Kondensat wird erneut dem Methanabscheider (T1) zugeführt,
- – Gas aus dem zweiten Bereich (B) des Multi-Kondesatabscheider (D1) wird einer Expansionsvorrichtung (X1) zugeführt, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird, und
- – die C2-Fraktion vom Boden des Methanabscheiders (T1) wird auf den Druck eines C2-Splitters gedrosselt und wird teilweise im Wärmetauscher (E1) verdampft und zum C2-Splitter geführt.
- A C2 fraction is fed from an ethane separation device (deethanizer) via a heat exchanger (E1) to a first region (A) in a multi-condensate separator (D1),
- Condensate is withdrawn from the first region (A) of the multi-condensate separator (D1) and fed to a methane separator (T1),
- - Gas is supplied from the multi-Kondensatabscheiders (D1) to another heat exchanger (E2) and further cooled there,
- - The further cooled gas is a gas / liquid separation in a second region (B) of the Subjected to a multi-condensate separator (D1),
- The resulting condensate is again fed to the methane separator (T1),
- - Gas from the second region (B) of the multi-Kondesatabscheider (D1) is supplied to an expansion device (X1), in which the gas is expanded, and then to the Methaneabscheider (T1) is performed, and
- - The C2 fraction from the bottom of the methane separator (T1) is throttled to the pressure of a C2 splitter and is partially vaporized in the heat exchanger (E1) and fed to the C2 splitter.
Der Methanabscheider (T1) wird vorteilhaft bei einem Druck im Bereich von 13 bar betrieben. Er erhält die Kondensatströme vom Multi-Kondensatabscheider (D1) und von der Expansionsvorrichtung (X1). Der Bodensatz wird erneut zum Sieden gebracht durch Kondensation von HP Ethylen (high pressure ethylene) aus der dritten Stufe des Ethylenverdichters, um frei von Methan zu sein. Im oberen Bereich der Kolonne werden zwei gasförmige Nebenströme abgezogen und weiter im Wärmetauscher (E3) gekühlt. Der Wärmetauscher (E3) dient als eine Art Seitenkondensator, der das gesamte in der Gasphase vorliegende C2-Material kondensiert. Dieser Wärmetauscher oder Seitenkondensator ist am oberen Ende der Kolonne angebracht, was das Rückfließen des Kondensats zur Kolonne durch die Gravitation erlaubt. Im Inneren der Kolonne sind zwei Flüssigkeitssperren (Siphons) angebracht, die erlauben, dass Flüssigkeit hinunter fließt und verhindern, dass Gas hinauf strömt. Der Overhead-Strom der Kolonne, der die Restgas-Fraktion darstellt, wird zur Expansionsvorrichtung geführt, in der er auf ca. 5 bar entspannt wird, und eine Kühlaufgabe im Wärmetauscher (E3) übernehmen kann.Of the Methane (T1) is advantageous at a pressure in the range operated by 13 bar. He receives the condensate streams from the multi-condensate separator (D1) and from the expansion device (X1). The sediment is boiled again by condensation from HP ethylene (high pressure ethylene) from the third stage of the Ethylene compressor to be free of methane. In the upper area the column become two gaseous secondary streams withdrawn and continue in the heat exchanger (E3) cooled. The heat exchanger (E3) serves as a kind of side condenser, which covers the whole in the Gas phase present C2 material condenses. This heat exchanger or side condenser is attached to the top of the column, what the backflow of the Condensate to the column allowed by gravity. Internally the column are two liquid barriers Attached (siphons) that allow liquid to flow down and prevent that gas flows up. The overhead current the column, which represents the residual gas fraction, becomes the expansion device guided, in which it is relaxed to about 5 bar, and a cooling task in the heat exchanger (E3) take over can.
Die Arbeitsenergie der Expansionsvorrichtungen X1 und X2 wir zurückgewonnen um den Restgas-Strom wieder zu verdichten.The Working energy of the expansion devices X1 and X2 we recovered to recompress the residual gas flow.
Die Wärmetauscher können alle in einer Gold Box angebracht sein, was den Vorteil hat, dass diese Cold Box vorgefertigt werden kann und somit der Aufwand für den Aufbau der Anlage vor Ort reduziert wird.The heat exchangers can all be mounted in a gold box, which has the advantage that these Cold box can be prefabricated and thus the effort for the construction the site is reduced.
Mit besonderem Vorteil wird für die Erfindung ein Multi-Kondensatabscheider (D1) eingesetzt, der mehr als zwei Bereiche (A, B) aufweist. Der nach der Abtrennung im zweiten Bereich (B) des Multi-Kondensatabscheiders (D1) dort verbliebene Gasstrom wird weiter abgekühlt und einem dritten Bereich (C) des Multi-Kondensatabscheiders (D1) zugeführt und Gas aus dem dritten Bereich (C) des Multi-Kondesatabscheider (D1) wird einer Expansionsvorrichtung (X1) zugeführt, in der das Gas expandiert wird, und dann zum Methanabscheider (T1) geführt wird.With particular advantage is for the invention uses a multi-condensate (D1), the more as two regions (A, B). The after separation in the second Area (B) of the multi-condensate separator (D1) remaining there Gas flow is further cooled and a third region (C) of the multi-condensate separator (D1) supplied and gas from the third region (C) of the multi-condenser (D1) is supplied to an expansion device (X1) in which the gas expands and then to the methane separator (T1).
Eine vorteilhafte Weiterbildung der Erfindung sieht den Einsatz eines Multi-Kondensatabscheiders (D1) vor, der vier oder mehr Bereiche (A, B, C, ...) aufweist. Die Erfindung eignet sich besonders für die Trennung und Rückgewinnung der C2-Komponenten aus einem C2minus-Strom einer Ethylenanlage mit Ethan oder Ethan/Propan als Einsätze für die Spaltung.A advantageous development of the invention provides the use of a Multi-condensate separator (D1) which has four or more areas (A, B, C, ...). The invention is particularly suitable for the separation and recovery of the C2 components a C2-minus stream of an ethylene plant with ethane or ethane / propane as inserts for the Cleavage.
Die
Erfindung sowie weitere Ausgestaltungen der Erfindung werden im
Folgenden anhand des in der
Die
- 2020
- C2-Strom vom Ethanabscheider (Deethanizer) kommend,C2 stream coming from the ethane separator (deethanizer),
- 2121
- C2-Strom zum C2-Splitter,C2 stream to the C2 splitter,
- 22a, b, c22a, b, c
- Restgas-Strom,Residual gas stream,
- 2323
- Ethan-Strom,Ethane stream,
- E1, E2 und E3E1, E2 and E3
- : Wärmetauscher,: Heat exchanger,
- 2424
- Cold-Box, die E1, E2 und E3 enthält,Cold box, which contains E1, E2 and E3,
- 2525
- Kühlmittel, Coolant,
- D1D1
- Multi-Kondensatabscheider,Multi-condensate,
- X1, X2X1, X2
- Expansionsvorrichtung undexpansion device and
- T1T1
- Methanabscheider.Demethanizer.
Die
Erfindung bietet eine ganze Reihe von Vorteilen:
Es wird ein
gegenüber
dem Stand der Technik deutlich reduzierter Energieverbrauch bei
geringeren Investitionskosten erreicht. Es werden weniger Bauteile
benötigt
(z. B. Wegfall der kalten Pumpen), wodurch die Investitionskosten,
der Wartungsaufwand und der Verbrauch an Betriebsmittel gesenkt
werden konnten. Die mehrfache Durchführung verschieden zusammengesetzter
Gasströme
durch den Multi-Kondensatabscheider
ermöglicht
diese Vorteile.The invention offers a whole series of advantages:
It is achieved over the prior art significantly reduced energy consumption at lower investment costs. Fewer components are needed (eg elimination of cold pumps), which has reduced investment, maintenance and equipment consumption. The multiple implementation of different composite gas flows through the multi-condensate allows these advantages.
Zusätzlich macht die Integration der Restgas-Expansionsvorrichtung einen separaten Methan-Verdichter überflüssig, wodurch weitere Einsparungen erzielt werden.Additional power the integration of the residual gas expansion device a separate Methane compressor superfluous, causing Further savings can be achieved.
Mit der Erfindung wird eine hohe Ethylen-Rückgewinnung erreicht. Die Verbindung des Methanabscheiders mit den Wärmetauschern E2 und E3 und den Expansionsvorrichtungen X1 und X2 weist den Vorteil der sog. Recontactor-Technologie auf, was zu einer extrem hohen Rückgewinnungsrate führt. Die Ethylenverluste in den Restgasstrom bewegen sich beispielsweise im Bereich von 300ppm oder 27 kg/h, was in etwa 0,035% der Ethylenproduktion entspricht.With the invention, a high ethylene recovery is achieved. The connection of the methane separator with the heat exchangers E2 and E3 and the expansion devices X1 and X2 has the advantage of the so-called Recontactor technology, which leads to an extremely high recovery rate. For example, ethylene losses into the residual gas stream are in the range of 300 ppm or 27 kg / h, which corresponds to about 0.035% of ethylene production.
Ein weiterer Vorteil der vorliegenden Erfindung liegt im Erzielen einer hohen Reinheit. In Kombination mit einer vorgeschalteten C(3plus)-Rückgewinnung und einer Acetylen-Umwandlung ist der Einsatzstrom (feed stream), der in den kryogenen Bereich eintritt, frei von jeglichem Material, das ein Verschmutzen oder Verstopfen der Anlagenteile verursachen könnte, weshalb die Verwendung von Platten-Lamellen-Wärmetauschern (plate-fin heat exchangers) und vollständig geschweißte Kolonnen und Rohranordnungen kompromißlos akzeptiert werden können. Es ist sogar ein vorgefertigtes Design für die Cold Box möglich, um den Aufwand an der Baustelle bei der Errichtung der Anlage zu minimieren.One Another advantage of the present invention is to achieve a high purity. In combination with an upstream C (3plus) recovery and an acetylene conversion is the feed stream that enters the cryogenic area enters, free of any material that is contaminating or Clogging of the system parts could cause, which is why the use of plate-fin heat exchangers (plate-fin heat exchangers) and fully welded columns and Pipe arrangements uncompromising can be accepted. There is even a pre-made design for the cold box possible To minimize the effort on the construction site during the construction of the facility.
Vorteilhaft ist auch das besonders einfache Steuer- und Regelsystem der Erfindung. Es genügen im Wesentlichen zwei Druck-Regel-Ventile, die Gas an die Turbo- Expansionsvorrichtungen abgeben. Kondensate aus dem Multi-Kondensatabscheider D1 werden der Kolonne über eine Niveau-Steuer- oder Regeleinrichtung zugeführt. Die Dienste des Rückerwärmers (reboiler) werden über die Temperatur der Kolonne gesteuert.Advantageous is also the most simple control system of the invention. It is enough in Essentially two pressure-regulating valves that deliver gas to the turbo-expanders submit. Condensates from the multi-condensate D1 be the column over supplied to a level control or regulating device. The services of the reheater (reboiler) be over controlled the temperature of the column.
Ein weiterer Vorteil besteht darin, dass der Tieftemperaturteil eine im Vergleich zu anderen Systemen hohe Verfügbarkeit aufweist. Es gibt dort keine Pumpen und die Wartungsanforderungen sind sehr gering. Besonders bei sehr tiefen Temperaturen würde die Verwendung von Pumpen hohe Kosten verursachen und diese Pumpen wären sehr störungsanfällig.One Another advantage is that the low-temperature part a has high availability compared to other systems. There is There are no pumps and the maintenance requirements are very low. Especially at very low temperatures, the use of pumps would cause high costs and these pumps would be very prone to failure.
Im Falle eines Ausfalls einer Expansionsvorrichtung kann die Anlage vorteilhafterweise ohne größere Störungen weiter betrieben werden. In diesem Fall wird der Gasstrom über ein Bypass-Ventil entspannt, was zu einem Anstieg der Ethylenverluste in den Restgasstrom von einigen hundert kg/h beim Ausfall einer Expansionsvorrichtung führt. Falls beide Expansionsvorrichtungen ausfallen sollten, steigt der Ethylenverlust lediglich auf wenige t/h an.in the In case of failure of an expansion device, the plant advantageously without major disturbances on operate. In this case, the gas flow over a Bypass valve relaxes, causing an increase in ethylene losses in the residual gas flow of a few hundred kg / h in the event of failure Expansion device leads. If both expansion devices fail, the loss of ethylene increases only to a few t / h.
Es sei hier nochmal betont, dass das einfache und kompakte Design der erfindungsgemäßen Vorrichtung von besonderem Vorteil ist, nicht zuletzt deshalb, weil damit eine deutliche Reduzierung der nötigen Investitionskosten einhergeht. Die reduzierte Zahl an Anlagenteilen ist platzsparend, minimiert Wärmeverluste aus dem kalten Prozeß und ermöglicht ein vorgefertigtes Cold Box Design.It Let's emphasize again that the simple and compact design of the Device according to the invention is of particular advantage, not least because it is a significant reduction of the necessary Investment costs associated. The reduced number of system parts saves space, minimizes heat loss from the cold process and allows a prefabricated cold box design.
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005050388A DE102005050388A1 (en) | 2005-10-20 | 2005-10-20 | Recovery system for the further processing of a cracked gas stream of an ethylene plant |
MYPI20081181A MY146026A (en) | 2005-10-20 | 2006-10-06 | Recovery system for the further processing of a cracking gas stream of an ethylene plant |
PCT/EP2006/009687 WO2007045364A2 (en) | 2005-10-20 | 2006-10-06 | Recovery system for the further processing of a cracking gas stream in an ethylene plant |
RU2008119407/04A RU2412147C2 (en) | 2005-10-20 | 2006-10-06 | Method of recuperating hydrogen and methane from cracking gas stream in low temperature part of ethylene synthesis apparatus |
NO20082280A NO20082280L (en) | 2005-10-20 | 2008-05-19 | Recovery system for further treatment of a cracking gas stream in an ethylene plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005050388A DE102005050388A1 (en) | 2005-10-20 | 2005-10-20 | Recovery system for the further processing of a cracked gas stream of an ethylene plant |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005050388A1 true DE102005050388A1 (en) | 2007-04-26 |
Family
ID=37891569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102005050388A Withdrawn DE102005050388A1 (en) | 2005-10-20 | 2005-10-20 | Recovery system for the further processing of a cracked gas stream of an ethylene plant |
Country Status (5)
Country | Link |
---|---|
DE (1) | DE102005050388A1 (en) |
MY (1) | MY146026A (en) |
NO (1) | NO20082280L (en) |
RU (1) | RU2412147C2 (en) |
WO (1) | WO2007045364A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015104153A1 (en) * | 2014-01-07 | 2015-07-16 | Linde Aktiengesellschaft | Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant |
EP3550240A1 (en) * | 2018-04-06 | 2019-10-09 | Linde Aktiengesellschaft | Method for separating a mixture of components, and a separating device |
RU2703135C1 (en) * | 2019-03-07 | 2019-10-15 | Игорь Анатольевич Мнушкин | Gas chemical complex |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2860773C (en) | 2012-01-13 | 2020-11-03 | Siluria Technologies, Inc. | Process for separating hydrocarbon compounds |
US9969660B2 (en) | 2012-07-09 | 2018-05-15 | Siluria Technologies, Inc. | Natural gas processing and systems |
DE102012018602A1 (en) * | 2012-09-20 | 2014-03-20 | Linde Aktiengesellschaft | Plant and process for the production of ethylene |
CA2893948C (en) | 2012-12-07 | 2022-12-06 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to ethylene and conversion of ethylene to higher hydrocarbon products |
US10047020B2 (en) | 2013-11-27 | 2018-08-14 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CN110655437B (en) | 2014-01-08 | 2022-09-09 | 鲁玛斯技术有限责任公司 | System and method for ethylene to liquids |
CA2935946C (en) | 2014-01-09 | 2022-05-03 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US20160289143A1 (en) | 2015-04-01 | 2016-10-06 | Siluria Technologies, Inc. | Advanced oxidative coupling of methane |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
EP3786138A1 (en) | 2015-10-16 | 2021-03-03 | Lummus Technology LLC | Oxidative coupling of methane |
EP3442934A4 (en) | 2016-04-13 | 2019-12-11 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
EP3282212A1 (en) | 2016-08-12 | 2018-02-14 | Linde Aktiengesellschaft | Method for obtaining a separation product containing mostly hydrocarbons with 2 carbon atoms |
WO2018118105A1 (en) | 2016-12-19 | 2018-06-28 | Siluria Technologies, Inc. | Methods and systems for performing chemical separations |
PL3630707T3 (en) | 2017-05-23 | 2024-02-19 | Lummus Technology Llc | Integration of oxidative coupling of methane processes |
KR20200051583A (en) | 2017-07-07 | 2020-05-13 | 루머스 테크놀로지 엘엘씨 | Systems and methods for oxidative coupling of methane |
RU2703132C1 (en) * | 2018-09-03 | 2019-10-15 | Андрей Владиславович Курочкин | Plant for low-temperature separation with dephlegmation ltsd to obtain hydrocarbons c2+ from natural gas (versions) |
CN109000429B (en) * | 2018-10-15 | 2020-12-25 | 聊城市鲁西化工工程设计有限责任公司 | Carbon dioxide liquefaction device and process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257794A (en) * | 1979-07-20 | 1981-03-24 | Shirokov Vasily I | Method of and apparatus for separating a gaseous hydrocarbon mixture |
US4720293A (en) * | 1987-04-28 | 1988-01-19 | Air Products And Chemicals, Inc. | Process for the recovery and purification of ethylene |
US5452581A (en) * | 1994-04-01 | 1995-09-26 | Dinh; Cong X. | Olefin recovery method |
DE4417584A1 (en) * | 1994-05-19 | 1995-11-23 | Linde Ag | Process for the separation of C¶2¶ / C¶3¶ hydrocarbons in ethylene plants |
TR199801906T2 (en) * | 1996-03-26 | 1999-01-18 | Phillips Petroleum Company | Removal of aromatic substances and/or heavy substances by condensation and stripping from a methane-based feed. |
-
2005
- 2005-10-20 DE DE102005050388A patent/DE102005050388A1/en not_active Withdrawn
-
2006
- 2006-10-06 MY MYPI20081181A patent/MY146026A/en unknown
- 2006-10-06 WO PCT/EP2006/009687 patent/WO2007045364A2/en active Application Filing
- 2006-10-06 RU RU2008119407/04A patent/RU2412147C2/en active
-
2008
- 2008-05-19 NO NO20082280A patent/NO20082280L/en not_active Application Discontinuation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015104153A1 (en) * | 2014-01-07 | 2015-07-16 | Linde Aktiengesellschaft | Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant |
US10677525B2 (en) | 2014-01-07 | 2020-06-09 | Linde Aktiengesellschaft | Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant |
EP3550240A1 (en) * | 2018-04-06 | 2019-10-09 | Linde Aktiengesellschaft | Method for separating a mixture of components, and a separating device |
WO2019193187A1 (en) | 2018-04-06 | 2019-10-10 | Linde Aktiengesellschaft | Method for separating a component mixture and separating device |
CN111936813A (en) * | 2018-04-06 | 2020-11-13 | 林德有限责任公司 | Method for separating a mixture of components and separation device |
US11781079B2 (en) | 2018-04-06 | 2023-10-10 | Linde Gmbh | Process for separating a component mixture and separation apparatus |
RU2703135C1 (en) * | 2019-03-07 | 2019-10-15 | Игорь Анатольевич Мнушкин | Gas chemical complex |
Also Published As
Publication number | Publication date |
---|---|
NO20082280L (en) | 2008-05-19 |
MY146026A (en) | 2012-06-15 |
WO2007045364A2 (en) | 2007-04-26 |
RU2008119407A (en) | 2009-11-27 |
RU2412147C2 (en) | 2011-02-20 |
WO2007045364A3 (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007045364A2 (en) | Recovery system for the further processing of a cracking gas stream in an ethylene plant | |
DE69612532T2 (en) | Method and device for producing oxygen of moderate purity | |
EP2386814B1 (en) | Separation of nitrogen from natural gas | |
WO2009083227A2 (en) | Method and device for separating off low-boiling components from hydrocarbon mixtures | |
WO2016128110A1 (en) | Combined removal of heavies and lights from natural gas | |
EP0318504B1 (en) | Process for separating higher hydrocarbons from a gas mixture | |
DE102013013883A1 (en) | Combined separation of heavy and light ends from natural gas | |
DE69909143T2 (en) | Separation of carbon monoxide from nitrogen-contaminated gas mixtures containing hydrogen and methane | |
EP3313779B1 (en) | Method and installation for the production of hydrogen from a feed containing hydrogen and hydrocarbons | |
DE102009008230A1 (en) | Process for liquefying a hydrocarbon-rich stream | |
DE102012017485A1 (en) | Process for separating C2 + hydrocarbons or C3 + hydrocarbons from a hydrocarbon-rich fraction | |
DE3244143A1 (en) | METHOD FOR GAS DISASSEMBLY | |
DE102007047147A1 (en) | Extraction of helium-enriched fraction from a liquified natural gas product, comprises e.g. separating a fraction containing methane, nitrogen and helium to a helium-rich gas fraction and a methane and nitrogen containing liquid fraction | |
DE102006021620A1 (en) | Method for liquefying hydrocarbon-rich flow, particularly natural gas flow, involves subjecting hydrocarbon-rich flow to absorptive water separation, before its liquefaction, where cooling of liquefied hydrocarbon-rich flow is up streamed | |
WO2010094396A2 (en) | Method for removing nitrogen | |
EP2347206B1 (en) | Method for removing nitrogen | |
EP1032798B1 (en) | Method and installation for separating off c2 - or c2+ - hydrocarbons | |
DE19821242A1 (en) | Liquefaction of pressurized hydrocarbon-enriched stream | |
DE102011115987B4 (en) | Liquefied Natural gas | |
EP3029017A1 (en) | Method and system for the production of hydrocarbons | |
DE102010035230A1 (en) | Process for separating nitrogen from natural gas | |
DE10140585A1 (en) | Separation of lower hydrocarbons comprises operating de-ethanizer at no less than de-methanizer pressure and combines head fractions for at least an interval | |
EP3394535A1 (en) | Method and device for the cryogenic decomposition of syngas | |
DE102009036366A1 (en) | Process for separating nitrogen | |
WO2016155863A1 (en) | Method for removing nitrogen from a hydrocarbon-rich fraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: LINDE AG, 80807 MUENCHEN, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20110502 |