CN1303156C - 苯乙烯/异戊二烯共聚物类阻尼材料 - Google Patents
苯乙烯/异戊二烯共聚物类阻尼材料 Download PDFInfo
- Publication number
- CN1303156C CN1303156C CNB2004100992094A CN200410099209A CN1303156C CN 1303156 C CN1303156 C CN 1303156C CN B2004100992094 A CNB2004100992094 A CN B2004100992094A CN 200410099209 A CN200410099209 A CN 200410099209A CN 1303156 C CN1303156 C CN 1303156C
- Authority
- CN
- China
- Prior art keywords
- damping material
- petroleum resin
- styrene
- resin
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Vibration Prevention Devices (AREA)
Abstract
本发明涉及一种苯乙烯/异戊二烯共聚物类阻尼材料,其由包括苯乙烯/异戊二烯三嵌段共聚物和石油树脂经共混、压片制得。与现有阻尼材料相比,本发明所说的阻尼材料具有成本低、适用温度范围宽和耐候性好等优点。
Description
技术领域
本发明涉及一种阻尼材料,具体地说,涉及一种含苯乙烯/异戊二烯三嵌段共聚物(SIS,S为聚苯乙烯链段,I为聚异戊二烯链段)的阻尼材料。
背景技术
阻尼材料是基于高聚物的粘弹性,在其玻璃化转变区域内,由分子链运动产生的内摩擦将外场作用的机械能或声能部分地转变为热能散逸,而具有减振、降噪作用的功能材料。其被广泛地用于宇航事业、交通运输、机械设备、建筑工程及日常生活等领域。
一般均聚物的玻璃化转变温度的范围比较窄,产生有效阻尼的温度范围约为玻璃化转变温度(Tg)的±10~15℃,材料的使用温度范围窄且不可控。不能很好地满足实际使用的需要。因此,研制使用温度范围较宽且可控的阻尼材料成为本领域迫切需要解决的技术问题。
发明内容
本发明目的在于,提供一种具有宽使用温度范围且可控的阻尼材料。
本发明是在具有极性侧基的高分子量化合物中添加极性有机低分子量化合物,形成一种均匀分散的分子复合体。利用高分子与低分子的相互作用呈现出高阻尼特性,同时拓宽了阻尼材料使用温度范围且使温度范围可控。
本发明所说的阻尼材料由包括下列原料经共混、压片制得:
SIS共聚物 100质量份数
石油树脂 1~250质量份数
其中:所述的石油树脂为C5脂肪烃树脂、C9芳香烃树脂、氢化C9芳香烃树脂或C5脂肪烃树脂与C9芳香烃树脂共聚树脂,优选E1102石油树脂、E1401石油树脂或ECR806石油树脂,石油树脂优选的用量50~250质量份数,最佳为100~200质量份数。
上述原料均为市售品。
附图说明
图1是SIS3460/ECR806=100/100动态力学测试分析图谱;
图2是SIS3460/E1102=100/100动态力学测试分析图谱;
图3是SIS3460/E1401=100/150动态力学测试分析图谱;
图4是SIS3520/ECR806=100/100动态力学测试分析图谱;
图1~4中:横轴表示温度,纵轴表示损耗因子(Tanδ),Tanδ=E”/E’,E”-损耗模量,E’-弹性模量。
具体实施方式
在Φ160双辊开炼机(152×305mm)上制备混炼胶,辊筒速比为1∶1.42;按上述比例加入SIS橡胶、石油树脂,出片后,采用电加热平板的25t液压平板硫化机制得本发明所说的阻尼材料。
本发明采用石油树脂来改善SIS的阻尼性能、同时可通过改变添加剂的量和种类来调节阻尼材料的适用温度范围,从而满足不同需求。与现有阻尼材料相比,本发明所说的阻尼材料具有成本低、适用面广和耐候性好等优点。
下面通过实施例对本发明作进一步阐述,其目的在于能更好理解本发明的内容。应理解,所举之例不应视为对本发明保护范围的限定:
实施例1
100克SIS(牌号3460)橡胶在双辊开炼机上混入100克ECR806石油树脂,采用电加热平板的25t液压平板硫化机制备2mm厚片状材料试样,采用动态力学分析仪对进行动态力学测试分析。采用该配方的SIS橡胶材料的动态力学测试分析,测试条件:频率10Hz,温度-50℃~120℃,升温速率2℃/min,采用拉伸夹具(下同),结果图1。由图1可以看出,该材料的损耗因子峰值为1.59,峰值位于14℃;损耗因子大于0.5的温度范围是-20.8℃~44.8℃。
实施例2
100克SIS(牌号3460)橡胶在双辊开炼机上混入100克E1102石油树脂,采用电加热平板的25t液压平板硫化机制备2mm厚片状材料试样,采用动态力学分析仪对进行动态力学测试分析。结果见图2。由图2可以看出,该材料的损耗因子峰值为1.00,峰值位于21.8℃;损耗因子大于0.5的温度范围是-7.1℃~61.1℃。
实施例3
100克SIS(牌号3460)橡胶在双辊开炼机上混入150克E1401石油树脂,采用电加热平板的25t液压平板硫化机制备2mm厚片状材料试样,采用动态力学分析仪对进行动态力学测试分析。结果见图3。由图3可以看出,该材料的损耗因子峰值为2.16,峰值位于47℃;损耗因子大于0.5的温度范围是13.8℃~108℃。
实施例4
100克SIS(牌号3520)橡胶在双辊开炼机上混入100克ECR806石油树脂,采用电加热平板的25t液压平板硫化机制备2mm厚片状材料试样,采用动态力学分析仪对进行动态力学测试分析。结果见图4。由图4可以看出,该材料的损耗因子峰值为1.50,峰值位于5.9℃;损耗因子大于0.5的温度范围是-29.3℃~35.9℃。
Claims (4)
1、一种苯乙烯/异戊二烯共聚物类阻尼材料,其由下列原料经共混、压片制得:
苯乙烯/异戊二烯三嵌段共聚物 100质量份数
石油树脂 1~250质量份数
其中:所述苯乙烯/异戊二烯三嵌段共聚物为所有嵌段配比的嵌段共聚物,所述的石油树脂为C5脂肪烃树脂、C9芳香烃树脂、氢化C9芳香烃树脂或C5脂肪烃树脂与C9芳香烃树脂共聚树脂。
2、如权利要求1所述的阻尼材料,其特征在于,所述其中石油树脂为E1102石油树脂、E1401石油树脂或ECR806石油树脂。
3、如权利要求1或2所述的阻尼材料,其特征在于,其中石油树脂的用量为50~250质量份数。
4、如权利要求3所述的阻尼材料,其特征在于,其中石油树脂的用量为100~200质量份数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100992094A CN1303156C (zh) | 2004-12-29 | 2004-12-29 | 苯乙烯/异戊二烯共聚物类阻尼材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100992094A CN1303156C (zh) | 2004-12-29 | 2004-12-29 | 苯乙烯/异戊二烯共聚物类阻尼材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1648161A CN1648161A (zh) | 2005-08-03 |
CN1303156C true CN1303156C (zh) | 2007-03-07 |
Family
ID=34869574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100992094A Expired - Fee Related CN1303156C (zh) | 2004-12-29 | 2004-12-29 | 苯乙烯/异戊二烯共聚物类阻尼材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1303156C (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5651393B2 (ja) | 2010-07-08 | 2015-01-14 | 出光興産株式会社 | 石油樹脂の製造方法 |
CN102030951A (zh) * | 2010-12-03 | 2011-04-27 | 中国科学院长春应用化学研究所 | 一种氯化丁基橡胶阻尼材料的制备方法 |
CN104558456B (zh) * | 2013-10-28 | 2017-03-22 | 中国石油化工股份有限公司 | 嵌段共聚物和嵌段共聚物组合物和硫化橡胶及其应用和制备嵌段共聚物的方法 |
CN104497366B (zh) * | 2014-11-23 | 2016-08-17 | 北京化工大学 | 减震支座用高强度高阻尼橡胶复合材料 |
CN107207829B (zh) * | 2015-02-11 | 2020-05-19 | 普立万公司 | 具有低压缩形变的阻尼热塑性弹性体制品 |
US10457805B2 (en) | 2015-02-11 | 2019-10-29 | Polyone Corporation | Damping thermoplastic elastomers |
US10329419B2 (en) | 2015-02-11 | 2019-06-25 | Polyone Corporation | Damping thermoplastic elastomers |
CN107429036A (zh) * | 2015-02-11 | 2017-12-01 | 普立万公司 | 超振动阻尼热塑性弹性体共混物 |
WO2016130631A1 (en) * | 2015-02-11 | 2016-08-18 | Polyone Corporation | Sound damping thermoplastic elastomer articles |
US10814593B2 (en) | 2016-07-25 | 2020-10-27 | Avient Corporation | Super-vibration damping thermoplastic elastomer blends and articles made therewith |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2812550B2 (ja) * | 1990-11-28 | 1998-10-22 | 豊田合成株式会社 | ポリプロピレン樹脂組成物 |
CN1515622A (zh) * | 2003-08-29 | 2004-07-28 | 烟台邦德科创新材料有限公司 | 一种新型阻尼材料其制造方法及其用途 |
-
2004
- 2004-12-29 CN CNB2004100992094A patent/CN1303156C/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2812550B2 (ja) * | 1990-11-28 | 1998-10-22 | 豊田合成株式会社 | ポリプロピレン樹脂組成物 |
CN1515622A (zh) * | 2003-08-29 | 2004-07-28 | 烟台邦德科创新材料有限公司 | 一种新型阻尼材料其制造方法及其用途 |
Also Published As
Publication number | Publication date |
---|---|
CN1648161A (zh) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1303156C (zh) | 苯乙烯/异戊二烯共聚物类阻尼材料 | |
EP1939221A3 (en) | A method for producing functionalized cis-1,4polydienes having high cis-1,4-linkage content and high functionality | |
Mao et al. | Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions | |
Hou et al. | Bioinspired design of high vibration-damping supramolecular elastomers based on multiple energy-dissipation mechanisms | |
Ke et al. | Storage stability and anti-aging performance of SEBS/organ-montmorillonite modified asphalt | |
Zhou et al. | Comparison of the toughening mechanisms of poly (vinyl chloride)/chlorinated polyethylene and poly (vinyl chloride)/acrylonitrile–butadiene–styrene copolymer blends | |
Hrnjak‐Murgić et al. | Molecular and morphological characterization of immiscible SAN/EPDM blends filled by nano filler | |
CN1834142A (zh) | 丁基橡胶/氯化聚烯烃共混硫化复合阻尼材料及其制备方法 | |
CN1303157C (zh) | 三元乙丙橡胶系阻尼材料 | |
Wu et al. | Improved crack growth resistance and its molecular origin of natural rubber/carbon black by nanodispersed clay | |
Geng et al. | Changing regularity of SBS in the aging process of polymer modified asphalt binder based on GPC analysis | |
Del Angel et al. | Mechanical and rheological properties of polypropylene/bentonite composites with stearic acid as an interface modifier | |
JP2010260933A (ja) | 免震構造体用ゴム組成物 | |
Hu et al. | Multiscale optimization on polymer-based rejuvenators for the efficient recycling of aged high-viscosity modified asphalt: Molecular dynamics simulation and experimental analysis | |
CN1594407A (zh) | 丁基橡胶系高性能阻尼材料 | |
Ezzat et al. | Effect of short-and long-term aging on the rheological and chemical properties of asphalt binders modified with different technologies | |
Matsuda et al. | The effect of the volume fraction of dispersed phase on toughness of injection molded polypropylene blended with SEBS, SEPS, and SEP | |
Zhang et al. | Effect of surface modifiers and surface modification methods on properties of acrylonitrile–butadiene–styrene/poly (methyl methacrylate)/nano‐calcium carbonate composites | |
Zhang et al. | Study of the phase morphology and toughness in poly (vinyl chloride)/acrylonitrile–styrene‐acrylic/styrene–butadiene–styrene ternary blends influenced by interfacial/surface tension | |
Zhang et al. | Effect of melt flow on morphology and linear thermal expansion of injection‐molded ethylene–propylene–diene terpolymer/isotactic polypropylene blends | |
Singh et al. | The dynamic mechanical analysis, impact, and morphological studies of EPDM–PVC and MMA‐g‐EPDM–PVC blends | |
Jinxin et al. | Influence of methyl methacrylate-co-glycidyl methacrylate copolymers on the compatibility, morphology and mechanical properties of poly (butylene terephthalate) and polycarbonate blends | |
Mao et al. | Improvement in low temperature izod impact strength of SAN/ASA/HNBR ternary blends considering competing effects of glass transition temperature and compatibility | |
Ansari et al. | Effect of compatibilisers on mechanical properties of feldspar/polypropylene composites | |
Tang et al. | Influence of the polarity of ethylene–vinyl acetate copolymers on the morphology and mechanical properties of their uncompatibilised blends with polystyrene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070307 Termination date: 20100129 |