CN117019205A - 一种基于3d打印整体式涂层材料制备方法 - Google Patents

一种基于3d打印整体式涂层材料制备方法 Download PDF

Info

Publication number
CN117019205A
CN117019205A CN202310833381.0A CN202310833381A CN117019205A CN 117019205 A CN117019205 A CN 117019205A CN 202310833381 A CN202310833381 A CN 202310833381A CN 117019205 A CN117019205 A CN 117019205A
Authority
CN
China
Prior art keywords
metal
molecular sieve
ceramic
monolithic
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310833381.0A
Other languages
English (en)
Inventor
邵琰
严逸帆
王靖善
陈焕浩
张雪英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202310833381.0A priority Critical patent/CN117019205A/zh
Publication of CN117019205A publication Critical patent/CN117019205A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种利用3D打印技术制备不同形貌的整体式载体,通过水热合成方法在表面负载介孔或微孔分子筛涂层,介孔分子筛采用一步法使模板剂去除与金属转化同时进行,实现3D打印整体式基材表面负载高分散性金属分子筛涂层的制备,用于降解抗生素废水;微孔分子筛在煅烧后负载金属,制备热稳定性高、易回收的整体式涂层材料,用于催化氧化VOCs污染物。本发明制备工艺流程易控,重复性好;所制备材料形貌、孔隙率可调,金属粒径小、分散性高。

Description

一种基于3D打印整体式涂层材料制备方法
技术领域
本发明涉及基于3D打印陶瓷基材上涂覆分子筛涂层并在表面负载金属的整体式涂层材料的制备方法及应用,属于复合材料和催化领域。
背景技术
目前抗生素是指由微生物产生的具有抗病原体的一类代谢产物,能干扰或抑制致病微生物的生存,广泛应用于人类医疗、畜禽和水产养殖中。磺胺甲硝唑作为抗生素的一种,它在水体中具有高稳定性和难降解性等特点。高级氧化技术由于其具有高效性、普适性等特点,成为去除水体中抗生素的一类方法。
挥发性有机物(VOCs)是一种危害严重且来源极度广泛的空气污染物,它能制约社会经济的可持续发展,威胁人民群众身体健康。大多数VOCs都有毒有害,甚至部分VOCs有致癌性。甲苯作为VOCs的一种,过量吸入甲苯能够引起人体过度疲惫、激烈兴奋、恶心、头痛等,因此消除VOCs对提升人类生活质量而言意义重大。
催化剂的性能决定了对污染物降解的效率,它们的活性、易回收性和使用寿命对高级氧化技术去除抗生素、催化氧化VOCs都至关重要。而整体式材料因为其机械强度大,传质性能优异,热稳定性高,几何表面积大等特点备受人们的关注。同时分子筛作为涂层材料具有酸碱稳定性高、稳定性好等特点。目前可设计内部不同形貌的整体式材料并在表面生长耐酸耐碱的介孔、微孔分子筛涂层相关的报道仍很少。
鉴于此,确实有必要提供一种可设计不同内部形貌的具有高分散性含金属的整体式涂层材料及其制备方法。
发明内容
本发明的目的是针对现有磺胺甲硝唑的现状及存在问题,而提出了一种高分散性的含铁金属的整体式涂层催化材料,本发明的另一目的是提供上述催化剂的制备方法,特别适用于磺胺甲硝唑类抗生素废水处理以及挥发性有机物VOCs氧化降解的处理。
本发明提供了一种含高分散性金属的整体式涂层催化材料,该催化材料以陶瓷基材为整体式催化材料骨架,以涂覆分子筛涂层,并在分子筛涂层上负载金属为催化活性组分,制得含金属的整体式涂层催化材料。其中,以整体式催化材料骨架质量为基准,金属百分比含量为0.1~1%。
优选分子筛为介孔分子筛,介孔分子筛中二氧化硅/铁源/HCl的质量比为950:1:2160。
优选分子筛为微孔分子筛,微孔分子筛中二氧化硅/三氧化二铝/钯源/去离子水的质量比为100:1:20:1640。
本发明提供了一种基于3D打印整体式基材表面负载高分散性金属介孔分子筛涂层催化材料的制备方法,该制备方法如下:
(1)3D打印技术制备陶瓷基整体式材料
采用黏土、水混合调配出合适粘度的泥浆,采用3D打印技术中三维粉末粘结技术(3DP),经1000-1500℃高温煅烧后制备得到整体式陶瓷基材;
(2)整体式基材表面负载铁金属介孔分子筛涂层催化材料
以F127或P123为模板剂,将模板剂与去离子水、HCl或NaOH混合形成混合液,将陶瓷基材置于混合液中水热合成,在整体式基材表面生长分子筛晶体;采用一步法浸渍负载金属,经300-700℃煅烧后得到负载金属的整体式介孔分子筛涂层材料金属@SBA/陶瓷。
优选的,所述金属为Fe、Pd、Ni、Co或Cu;优选金属@SBA/陶瓷中的金属为Fe,以整体式催化材料为基准,金属负载量在0.1~1%。
优选的,所述一步法浸渍负载金属是将未焙烧脱出模板剂的分子筛直接浸渍于金属的盐溶液中。
优选的,步骤(1)中粘土和去离子水的质量比为2:1-3:1;步骤(1)中打印好的整体式材料以1200℃煅烧1h。
优选的,经过80-120℃水热晶化12-36h,使介孔分子筛负载在陶瓷基整体式材料上。
优选步骤(1)中硅源为质量浓度98%的TEOS溶液,铁源为九水合硝酸铁或六水合氯化铁。
优选步骤(1)中二氧化硅/F127/铁源/HCl的质量比为950:200:1:2160。
优选步骤(2)中采用一步法制备的高分散性金属位点催化剂将金属引入制备的分子筛涂层中,并同时进行金属的转化和模板剂去除,以便获得高分散性金属位点的整体式涂层材料。
优选步骤(1)中陶瓷前驱体烘干温度为80℃,高温煅烧温度为1200℃,煅烧时间为1~2h。
优选步骤(2)中煅烧时间为3~4h。
上述方法制备的基于3D打印整体式基材表面负载高分散性金属介孔分子筛涂层催化材料,所述的高分散性金属介孔分子筛涂层催化材料为Fe@SBA/陶瓷。
本发明还提供了基于3D打印整体式基材表面负载高分散性金属整体式催化材料在作为催化剂
降解抗生素废水的应用,优选作为催化剂降解磺胺甲硝唑等抗生素废水方面的应用.
第二方面,本发明提供了一种基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料的制备方法,该制备方法如下:
(1)3D打印技术制备陶瓷基整体式材料
采用黏土、水混合调配出合适粘度的泥浆,采用3D打印技术中三维粉末粘结技术(3DP),经1000-1500℃高温煅烧后制备得到整体式陶瓷基材;
(2)整体式基材表面负载钯金属微孔分子筛涂层催化材料
以四丙基氢氧化铵(TPAOH)为模板剂,将其投入至与NaOH、异丙醇铝、正硅酸乙酯TEOS以及无水乙醇混合后形成合成液中,其中异丙醇铝和正硅酸乙酯按照Si/Al摩尔比为80-120配比;将陶瓷基材置于合成液中水热合成,经过300-700℃煅烧后在整体式基材表面生成分子筛晶体;通过一步浸渍法负载金属,经300-700℃煅烧后得到负载金属的整体式微孔分子筛涂层材料金属@ZSM-5/陶瓷。
优选的,所述金属为Fe、Pd、Ni、Co或Cu;优选金属@ZSM-5/陶瓷中的金属为Pd;以整体式催化材料为基准,金属负载量在0.1~1%。
优选的,步骤(1)中粘土和去离子水的质量比为2:1-3:1;步骤(1)中打印好的整体式材料以1200℃煅烧1h。
优选的,经过80-120℃水热晶化12-36h,使介孔分子筛负载在陶瓷基整体式材料上。
优选的,经过150-2000℃水热晶化24-60h,使微孔分子筛负载在陶瓷基整体式材料上。
本发明还提供了一种基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料,其采用
上述方法制备,所述的金属微孔分子筛涂层催化材料为Pd@ZSM-5/陶瓷。
本发明还提供了一种基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料在作为催
化剂催化氧化VOCs方面的应用,优选作为催化剂催化氧化甲苯等VOCs方面的应用。
本发明技术方案中:所述的含介孔分子筛涂层的整体式涂层催化材料(Fe@SBA/陶瓷)在作为催化剂降解磺胺甲硝唑抗生素方面的应用;含微孔分子筛涂层的整体式涂层催化材料(Pd@ZSM-5/陶瓷)在作为催化氧化甲苯方面的应用。
本发明的催化降解磺胺甲硝唑的反应条件及结果:磺胺甲硝唑含量测试采用紫外分光光度计,测定在257nm激发波长下磺胺甲硝唑的紫外吸光度,通过标准曲线计算浓度。将整体式材料填充在固定床反应器中,进行活性评价。各溶液的浓度为:磺胺甲硝唑初始浓度为10mg/L,PMS初始浓度为0.05mmol/L,催化剂在常温常压下,3h连续降解效率超过80%。
本发明的催化氧化甲苯的反应条件及结果:将催化材料填充在反应器中,将初始浓度为360mg/m3的甲苯通入反应器中。甲苯含量测试采用气相色谱仪,采用30m×0.32mm×0.5μm色谱柱,以峰高或峰面积值由标准曲线或回归方程得样品溶液中甲苯的浓度。实验结果表明,整体式催化材料对甲苯氧化表现出较高的催化活性,完全降解甲苯的温度为235℃。
本发明的有益效果是:
1、本发明通过一步法制备了含介孔分子筛涂层的整体式涂层催化材料Fe@SBA/陶瓷,解决了传统催化剂存在催化活性不高、金属团聚等问题,能够高效降解磺胺甲硝唑。
2、本发明制备了含微孔分子筛涂层的整体式涂层催化材料Pd@ZSM-5/陶瓷,解决了传统催化剂存在回收性不高、使用寿命短、热稳定性差等问题,并且能够高效催化氧化甲苯。
3、本发明具有较为广泛的调变空间,金属位点均匀分散在陶瓷基材的分子筛涂层上,金属含量在一定范围内相应的增加和减少(确保是纳米级粒径金属),解决现有制备技术金属负载量低、金属位点易团聚等问题。
附图说明
图1:实施例1中制备得到的整体式涂层材料实物图展示
图2:实施例1中制备得到的整体式涂层材料TEM图
图3:实施例1中制备得到的整体式涂层材料SEM图
图4:实施例1、对比例1、对比例2材料的连续降解磺胺甲硝唑效果图。
图5:实施例2、对比例3材料的催化氧化甲苯效果图。
图6:实施例3、对比例4、对比例5材料的连续降解亚甲基蓝效果图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明公开一种利用3D打印技术制备不同形貌的整体式载体,通过水热合成方法在表面负载介孔或微孔分子筛涂层,介孔分子筛采用一步法使模板剂去除与金属转化同时进行,实现3D打印整体式基材表面负载高分散性金属分子筛涂层的制备,用于降解抗生素废水;微孔分子筛在煅烧后负载金属,制备热稳定性高、易回收的整体式涂层材料,用于催化氧化VOCs污染物。该方法包括以下几步:1、3D打印整体式陶瓷基材,形貌可调,并具有耐酸耐碱耐高温,分子筛(如SBA16/SBA15)涂层合成配方中含有盐酸具有强腐蚀性。2、通过水热晶化法固定在整体式材料表面上,由于陶瓷和SBA型分子筛主要成分类似元素(Si),有利于分子筛涂层的在整体式材料表面生长。3、介孔分子筛在煅烧前浸渍金属,利用模板剂大量的含氧官能团分散金属阳离子,经煅烧得到高分散性含铁金属的整体式介孔分子筛涂层材料;而微孔分子筛前驱体经煅烧后浸渍金属,再次煅烧后得到整体式陶瓷基材表面负载钯金属的整体式微孔分子筛涂层材料。4、以整体式催化材料为基准,金属负载量为0.1~1%。本发明制备工艺流程易控,重复性好;所制备材料形貌、孔隙率可调,金属粒径小、分散性高。
实施例1
(1)3D打印的陶瓷基材制备
称取100g黏土,加入40g去离子水并在常温下搅拌后得到浆液,采用粘合剂喷射打印机通过3D粘合技术制备了3D打印的陶瓷前驱体,在80℃烘箱中干燥过夜,并在1200℃的马弗炉中煅烧1h以获得陶瓷基材。
(2)整体式介孔分子筛涂层材料制备
称取3.72g F127、40g HCl和16.82g质量浓度为98%的硅源TEOS,在常温下搅拌后得到介孔分子筛前驱体溶液,将打印好的陶瓷基材直立放置并浸泡在前驱体溶液中,然后在100℃水热晶化24h,使SBA分子筛涂层生长在陶瓷基材上。
(3)整体式涂层材料上活性组分制备
采用一步法将步骤(2)得到的整体式分子筛涂层材料浸渍于12mmol/L铁盐(由九水合硝酸铁或六水合氯化铁按照摩尔比1:2混合)的溶液中24h,经80℃烘干8h后、再经500℃高温煅烧3h后,得到含铁金属的整体式涂层催化材料。其实物图、TEM和SEM图分别如图1-3所示。
(4)催化降解活性测试
如图4所示,磺胺甲硝唑浓度测试采用紫外分光光度计,测定在257nm激发波长下磺胺甲硝唑的紫外吸光度,通过标准曲线计算浓度。将整体式涂层催化材料放入反应器中,加入反应溶液进行活性评价。各溶液的浓度为:磺胺甲硝唑素初始浓度为10mg/L,PMS初始浓度为0.05mol/L,催化剂在常温常压下,3h连续降解效率超过80%。
(5)应用范围
利用该方法制备的含铁金属整体式涂层催化材料适用于对磺胺甲硝唑、左氧氟沙星等水体抗生素有机污染物,具有普适性高的特点。
实施例2
(1)3D打印的陶瓷基材制备
制备方法同实施例1。
(2)整体式分子筛涂层材料制备
称取0.28g异丙醇铝、10.8g四丙基氢氧化铵、0.22g氢氧化钠、15.8g去离子水和14.2g质量浓度为98%的硅源TEOS,在常温下搅拌后得到ZSM-5分子筛前驱体溶液,将打印好的陶瓷基材直立放置并浸泡在微孔分子筛前驱体溶液中,然后在180℃水热晶化24h,使ZSM-5涂层生长在陶瓷基材上。
(3)整体式涂层材料上活性组分制备
将步骤(2)得到的整体式分子筛涂层材料浸渍于12mmol/L Pd复合物的溶液中24h,经80℃烘干8h后、再经500℃高温煅烧3h后,得到含钯金属的整体式涂层催化材料。
(4)催化氧化活性测试
采用固定床反应装置对整体式催化剂进行活性评价,气体混合罐中将饱和的甲苯蒸汽和空气混合,使甲苯浓度在气路中保持300mg/m3,升温速率为1℃/min,升温间隔为20℃,且在各个温度点下稳定30min,在此温度点下,将混合罐中气体通入气相色谱(GC)中,甲苯利用热导检测器(TCD)进行测定。整体式催化材料对甲苯氧化表现出较高的催化活性,完全氧化甲苯的温度为235℃。
(4)应用范围
利用该方法制备的含钯金属的整体式涂层催化材料适用于对甲苯等其他类型VOCs进行催化氧化。
实施例3
(1)催化材料制备
将浸渍金属换为Cu,其余制备条件同实施例1;
(2)催化降解活性测试
亚甲基蓝含量测试采用紫外分光光度计,测定在664nm激发波长下亚甲基蓝的紫外吸光度,通过标准曲线计算浓度。将整体式涂层催化材料放入反应器中,加入反应溶液进行活性评价。各溶液的浓度为:亚甲基蓝初始浓度为100mg/L,PMS初始浓度为0.05mol/L,催化剂在常温常压下,3h连续降解率为90%。
对比例1
(1)3D打印的陶瓷基材制备
制备方法同实施例1。
(2)整体式介孔分子筛涂层材料制备
制备方法同实施例1。
(3)整体式涂层材料上活性组分制备
采用两步法将步骤(2)得到的整体式分子筛涂层材料经500℃高温煅烧3h去除模板剂后,浸渍于12mmol/L铁复合物的溶液中24h,经80℃烘干8h后、再经500℃高温煅烧3h后,得到含铁金属的整体式涂层催化材料。
(4)催化降解活性测试
整体式涂层材料催化降解活性测试同实施例1,催化剂在常温常压下,3h连续降解率为50%。
(3)对比效果
由图4可见,与实施例1对比可以看出,采用两步法制备的整体式涂层材料因为金属团聚造成催化活性不高,导致催化效率显著下降。
对比例2
(1)3D打印的陶瓷基材制备
制备方法同实施例1。
(2)整体式材料制备
将整体式陶瓷基材浸渍于12mmol/L铁复合物的溶液中24h,经80℃烘干8h后、再经500℃高温煅烧3h后,得到只含铁金属的整体式材料Fe/陶瓷。
(4)催化降解活性测试
整体式材料催化降解活性测试同实施例1,催化剂在常温常压下,3h连续降解率为50%。催化剂在常温常压下,3h连续降解率为10%。
(3)对比效果
由图4可见,与实施例1对比可以看出,只负载金属的整体式材料Fe/陶瓷比表面积差且活性位点低,导致催化效率显著下降。
对比例3
(1)3D打印的陶瓷基材制备
制备方法同实施例1。
(2)整体式分子筛涂层材料制备
将整体式陶瓷基材浸渍于12mmol/L钯复合物的溶液中24h,经80℃烘干8h后、再经500℃高温煅烧3h后,得到只含钯金属的整体式材料Pd/陶瓷。
(3)催化氧化活性测试
整体式材料对甲苯的催化氧化活性测试同实施例2,该催化剂完全氧化甲苯的温度为400℃。
(4)由图5可见,与实施例2对比可以看出,只负载金属的整体式材料Pd/陶瓷比表面积差且活性位点低,导致催化氧化甲苯效率显著下降。
对比例4
(1)催化材料制备
将浸渍金属换为Cu,其余制备条件同对比例2;
(2)催化降解活性测试
整体式涂层材料催化降解活性测试同实施例3,催化剂在常温常压下,3h连续降解率为60%。
(3)对比效果
由图6可见,与实施例3对比可以看出,采用两步法制备的整体式涂层材料因为金属团聚造成催化活性不高,导致催化效率显著下降。
对比例5
(1)催化材料制备
将浸渍金属换为Cu,其余制备条件同实对比例3;
(2)催化降解活性测试
整体式涂层材料催化降解活性测试同实施例3,催化剂在常温常压下,3h连续降解率为20%。
(3)对比效果
由图6可见,与实施例3对比可以看出,只负载金属的整体式材料Cu/陶瓷比表面积差且活性位点低,导致催化效率显著下降。

Claims (10)

1.一种基于3D打印整体式基材表面负载高分散性金属介孔分子筛涂层催化材料的制备方法,该制备方法如下:
(1)3D打印技术制备陶瓷基整体式材料
采用黏土、水混合调配出合适粘度的泥浆,采用3D打印技术中三维粉末粘结技术(3DP),经1000-1500℃高温煅烧后制备得到整体式陶瓷基材;
(2)整体式基材表面负载铁金属介孔分子筛涂层催化材料
以F127或P123为模板剂,将模板剂与去离子水、HCl或NaOH混合形成混合液,将陶瓷基材置于混合液中水热合成,在整体式基材表面生长分子筛晶体;采用一步法浸渍负载金属,经300-700℃煅烧后得到负载金属的整体式介孔分子筛涂层材料金属@SBA/陶瓷。
2.一种基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料的制备方法,该制备方法如下:
(1)3D打印技术制备陶瓷基整体式材料
采用黏土、水混合调配出合适粘度的泥浆,采用3D打印技术中三维粉末粘结技术(3DP),经1000-1500℃高温煅烧后制备得到整体式陶瓷基材;
(2)整体式基材表面负载钯金属微孔分子筛涂层催化材料
以四丙基氢氧化铵(TPAOH)为模板剂,将其投入至与NaOH、异丙醇铝、正硅酸乙酯TEOS以及无水乙醇混合后形成合成液中,其中异丙醇铝和正硅酸乙酯按照Si/Al摩尔比为80-120配比;将陶瓷基材置于合成液中水热合成,经过300-700℃煅烧后在整体式基材表面生成分子筛晶体;通过浸渍法负载金属,经300-700℃煅烧后得到负载金属的整体式微孔分子筛涂层材料金属@ZSM-5/陶瓷。
3.根据权利要求1~2中任一所述的制备方法,其特征在于:所述金属为Fe、Pd、Ni、Co或Cu;优选金属@SBA/陶瓷中的金属为Fe,金属@ZSM-5/陶瓷中的金属为Pd;以整体式催化材料为基准,金属负载量在0.1~1%。
4.根据权利要求1~2中任一所述的制备方法,其特征在于:步骤(1)中粘土和去离子水的质量比为2:1-3:1;步骤(1)中打印好的整体式材料以1200℃煅烧1h。
5.根据权利要求1所述的制备方法,其特征在于:经过80-120℃水热晶化12-36h,使介孔分子筛负载在陶瓷基整体式材料上。
6.根据权利要求2所述的制备方法,其特征在于:经过150-2000℃水热晶化24-60h,使微孔分子筛负载在陶瓷基整体式材料上。
7.一种基于3D打印整体式基材表面负载高分散性金属介孔分子筛涂层催化材料,其特征在于采用权利要求1所述的方法制备,所述的高分散性金属介孔分子筛涂层催化材料为Fe@SBA/陶瓷。
8.一种基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料,其特征在于采用权利要求2所述的方法制备,所述的金属微孔分子筛涂层催化材料为Pd@ZSM-5/陶瓷。
9.一种根据权利要求7所述的基于3D打印整体式基材表面负载高分散性金属整体式催化材料在作为催化剂降解抗生素废水的应用,优选作为催化剂降解磺胺甲硝唑等抗生素废水方面的应用。
10.一种根据权利要求8所述的基于3D打印整体式基材表面负载金属微孔分子筛涂层催化材料在作为催化剂催化氧化VOCs方面的应用,优选作为催化剂催化氧化甲苯等VOCs方面的应用。
CN202310833381.0A 2023-07-07 2023-07-07 一种基于3d打印整体式涂层材料制备方法 Pending CN117019205A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310833381.0A CN117019205A (zh) 2023-07-07 2023-07-07 一种基于3d打印整体式涂层材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310833381.0A CN117019205A (zh) 2023-07-07 2023-07-07 一种基于3d打印整体式涂层材料制备方法

Publications (1)

Publication Number Publication Date
CN117019205A true CN117019205A (zh) 2023-11-10

Family

ID=88625254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310833381.0A Pending CN117019205A (zh) 2023-07-07 2023-07-07 一种基于3d打印整体式涂层材料制备方法

Country Status (1)

Country Link
CN (1) CN117019205A (zh)

Similar Documents

Publication Publication Date Title
CN107199047B (zh) 一种分散于sba-15孔道内的镍基甲烷化催化剂及其制备和应用
CN109999902B (zh) 封装型铂族亚纳米金属负载多孔级钛硅分子筛催化剂及其制备和应用
EP1512666A1 (en) Method for synthesizing mesoporous zeolite
CN107824172B (zh) 一种表面富含缺陷位的纳米氧化铝载体的制备方法
Chen et al. Nanofiber-like mesoporous alumina supported palladium nanoparticles as a highly active catalyst for base-free oxidation of benzyl alcohol
CN111437870A (zh) 一种金属@mfi的多级孔结构的封装催化剂及其封装方法和用途
CN101618312A (zh) 拟薄水铝石和γ-Al2O3空心微球吸附剂的制备及应用
JP5194249B2 (ja) 複合多孔体およびその製造方法、並びにこれを用いた有機物質変換方法
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN111115651B (zh) 纳米分子筛、合成方法及其用途
Odrozek et al. Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation
CN113210003A (zh) 复合型可见光催化剂石墨烯量子点/石墨相碳化氮的制备方法
CN104147924A (zh) 一种新型光触媒空气净化剂及制备方法
CN109046379A (zh) 一种钙钛矿复合氧化物负载铂催化剂及其制备和应用
CN111001433B (zh) 负载钯铜合金纳米颗粒的介孔沸石及其制备方法及应用
JPH05253481A (ja) 触媒成形体
CN117019205A (zh) 一种基于3d打印整体式涂层材料制备方法
CN110404524A (zh) 碳量子点/二氧化钛复合光催化剂的制备方法及其应用
CN113772710A (zh) 一种二氧化铈纳米线的制备方法及其应用
baha et al. Synergistic Photocatalysis of Bayerite/Zeolite Loaded TiO2 Nanocomposites for Highly Efficient Degradation of Organic Pollutants in Aqueous Environments
CN111957311A (zh) 一种介微复合钛硅材料负载Au-Pd纳米催化剂的制备方法
CN110605118B (zh) 一种用于室温降解甲醛的整体式Pd/K2Ti6O13-NWs催化剂及制备方法与应用
CN114433073B (zh) 锰基催化剂及其制备方法和应用
CN106577751B (zh) 一种尿素低温还原热解制备载银活性炭的方法
Kominami et al. Direct solvothermal formation of nanocrystalline TiO 2 on porous SiO 2 adsorbent and photocatalytic removal of nitrogen oxides in air over TiO 2–SiO 2 composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination