CN115724781A - 一种合成乌帕替尼关键手性中间体的方法 - Google Patents

一种合成乌帕替尼关键手性中间体的方法 Download PDF

Info

Publication number
CN115724781A
CN115724781A CN202111004942.3A CN202111004942A CN115724781A CN 115724781 A CN115724781 A CN 115724781A CN 202111004942 A CN202111004942 A CN 202111004942A CN 115724781 A CN115724781 A CN 115724781A
Authority
CN
China
Prior art keywords
asymmetric hydrogenation
reaction
catalytic reaction
osdp
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111004942.3A
Other languages
English (en)
Inventor
郑龙生
刘创基
丁小兵
赵金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Catalys Technology Co Ltd
Original Assignee
Shenzhen Catalys Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Catalys Technology Co Ltd filed Critical Shenzhen Catalys Technology Co Ltd
Priority to CN202111004942.3A priority Critical patent/CN115724781A/zh
Priority to PCT/CN2021/132941 priority patent/WO2023029236A1/zh
Publication of CN115724781A publication Critical patent/CN115724781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/07Monoamines containing one, two or three alkyl groups, each having the same number of carbon atoms in excess of three
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请提供一种乌帕替尼的关键手性中间体II‑a的合成方法,通过Ru(OAc)2‑(R)‑OSDP可以催化不对称氢化不饱和羧酸I‑a合成手性羧酸II‑a,手性羧酸II‑a可以与叔丁胺成盐,经重结晶后得到高光学纯度的IV‑a。本申请提供的方法涉及的不对称氢化催化剂具有自主专利(CN 109503659B),催化效率高、对映体选择性高,且操作简便,有利于工业化生产。

Description

一种合成乌帕替尼关键手性中间体的方法
技术领域
本发明涉及药物合成技术领域,具体涉及一种不对称催化氢化的方法合成乌帕替尼关键手性中间体及其叔丁胺盐。
技术背景
Upadacitinib(乌帕替尼)是艾伯维公司(Abbvie)开发的用于治疗氨蝶呤反应不足或不耐受的中度至重度活动性类风湿性关节炎的成人,于2019年8月被 FDA批准上市。除了治疗类风湿关节炎以外,这款新药还在多项3期临床试验中用于治疗溃疡性肠炎、银屑病关节炎、克罗恩病,以及特应性皮炎等多种炎症性疾病。因此,它的适应症有望进一步扩展。
乌帕替尼的合成工艺中,其中结构III-a是关键手性片段,此外片段III-a 在乌帕替尼的仿制药及其它新药开发中也有很大的需求。然而片段III-a的质量与成本的控制主要取决于关键手性中间体II-a的合成工艺,因此优化II-a的合成工艺路线在乌帕替尼的合成工艺中至关重要。(Scheme 1)
Figure RE-GDA0003395741170000011
目前,结构II-a的合成工艺路线也有一些进展,主要策略有化学拆分法和不对称合成法。专利路线WO2019016745 A1,Dr.Reddy's Laboratories Limited(雷迪博士)公司报道手性1-萘乙胺拆分rac-II-a化合物(Route 1),改路线原料廉价易得,缺点路线长,多步需要柱分离纯化,而且目标产物的产率低,需要使用两次不同构型的1-萘乙胺作为拆分剂。Route II中利用3+2环加成反应可以缩短反应步骤,但是原料炔酯价格昂贵,以及需要柱分离纯化,同样拆分成本高。Route III使用手性樟脑磺酰胺作为手性辅基,通过与炔酸缩合生成酰胺,然后经过3+2 环加成生成关键烯酰胺中间体,通过非对映体选择性氢化得到相应的手性化合物,然后经水解得到单一构型的产物II-a和手性辅剂。该路线可以避免拆分造成的损失,但是同样使用昂贵的炔酸,后续回收手性辅剂会增加成本。(Scheme 2)
Figure RE-GDA0003395741170000021
专利路线US 10550126 B2,艾伯维公司最早报道Ru(OAc)2-(S)-SegPhos络合物(S/C=1000)催化不饱和四取代羧酸化合物I-a不对称氢化合成乌帕替尼关键中间体II-a,与二环已基胺成盐,经重结晶后以90%收率,99%对映体选择性得到化合物II-a。专利路线WO2020/202183A1,Mylan Laboratories Limited(美国迈兰制药有限公司)也报道类似的路径不对称氢化合成四取代羧酸化合物II-a,然后同样使用Ru(OAc)2-(S)-SegPhos(S/C=425)络合物。(Scheme 3)其中合成底物的路线中使用较多贵重试剂如乙基硼酸(酯)、醋酸钯和Pd(dppf)Cl2催化剂等,且后续不对称氢化转化数(TON)不高,合成成本仍然很高。
Figure RE-GDA0003395741170000031
专利路线CN 109369659 B,浙江师范大学李新生等人也报道 Ru(OAc)2-(S)-SegPhos络合物(S/C=200)催化不饱和四取代羧酸化合物I-a不对称氢化合成乌帕替尼关键中间体,经重结晶后以83%收率,99%对映体选择性得到化合物II-a。该路线底物I-a的合成产率低,在不对称氢化化合物I-a中同样使用Ru(OAc)2-(S)-SegPhos络合物做催化剂且不对称氢化转化数不高,该方法处于专利保护期内。专利路线CN 109705011 A,CN110117245 B,李新生等人后续报道Ru(OAc)2-(S)-BINAP络合物(S/C=40–333)催化不对称氢化合成化合物 II-a,虽然催化剂商业可得,但是催化效率低,大量的Ru金属催化剂残余容易使产品的金属含量超标。此外合成底物I-a路线中,格氏加成路线实际产率很低,后处理繁琐;通过镍(替换钯)催化偶联虽然可以降低成本,但是乙基硼酸仍然很贵,成本难以控制。(Scheme 4)
Figure RE-GDA0003395741170000041
专利路线CN 110615753 A,南京新酶合医药科技有限公司公开了一种合成手性羧酸II的方法,由N-R-3-吡咯啉经环氧化、格氏开环、氧化、三氟甲磺酰化、钯催化插羰酯化、水解得到不饱和四取代羧酸I,最后经不对称氢化得到手性羧酸II。该方法合成路线长,效率低,使用大量的高危氧化试剂,而且使用昂贵的磺酰化试剂及金属钯,最后不对称氢化使用专利报道的 Ru(OAc)2-(S)-SegPhos,催化剂昂贵且催化效率不高。
Figure RE-GDA0003395741170000051
专利路线CN 111217819 A,杭州科巢生物科技有限公司郑旭春等人报道 [Ru(benzene)Cl2]2-(S)-SunPhos络合物(S/C=1000)催化不饱和四取代羧酸化合物 I-a不对称氢化合成乌帕替尼关键中间体,后续与(S)or(R)-1-苯乙胺得到相应的成盐化合物。不足:TON只有1000,需要添加手性胺成盐,重结晶后得到81-90%产率,99%对映体选择性。(Scheme 6)
Figure RE-GDA0003395741170000052
专利路线CN 112778189 A,通过吡咯烷中间体经部分还原合成不饱和四取代羧酸化合物I-a,最后同样使用Ru(OAc)2-(S)-SegPhos络合物不对称氢化得到化合物II-a。(Scheme 7)该路线需要大量的剧毒NaBH3CN还原剂,Cbz作保护基时产率低,分离困难,最后使用Ru(OAc)2-(S)-SegPhos络合物(S/C=1257) 不对称氢化效率低,而且处于专利保护期中。
Figure RE-GDA0003395741170000053
专利路线(CN 111072543 B),通过Pd催化的Suzuki偶联构建乙烯基取代的不饱和烯酯,使用Ru(OAc)2-(S)-DM-SegPhos络合物催化不对称氢化得到相应的酯,最后水解得到脱保护的手性羧酸。(Scheme 8)该路线也同样使用昂贵的乙烯基硼试剂、金属钯等,同时手性催化剂(S)-DM-SegPhos价格昂贵,催化效率不高。
Figure RE-GDA0003395741170000061
发明内容
本发明提供了一种乌帕替尼关键手性中间体II-a的合成方法,使用自主研发的手性Ru(OAc)2-(R)-OSDP络合物高效地催化不对称氢化不饱和四取代羧酸 I-a得到关键手性中间体II-a,手性羧酸II-a可以与叔丁胺成盐,经重打浆或重结晶后得到高光学纯度的IV-a。该发明破除Ru(OAc)2-(S)-SegPhos络合物在不对称氢化合成关键手性中间体II-a的专利壁垒,以及其他手性配体转化效率不高的技术瓶颈。
本发明的目的提供一个通式I化合物经不对称氢化合成通式II化合物,合成路线:
Figure RE-GDA0003395741170000062
其中,基团PG为氮原子保护基,优选为苄氧羰基(Cbz)、叔丁氧羰基、烯丙氧羰基、甲氧羰基、乙氧羰基等,所述化合物I-a,I-b结构:
Figure RE-GDA0003395741170000071
所述化合物II-a,II-b结构:
Figure RE-GDA0003395741170000072
所述不对称氢化的手性催化剂Ru(OAc)2-(R)-OSDP结构:
Figure RE-GDA0003395741170000073
其中(R)-OSDP中的-PPh2可以是其它衍生物(例如:
Figure RE-GDA0003395741170000074
等)。
该手性催化剂优选Ru(OAc)2-(R)-OSDP,手性催化剂的加入量为反应底物的0.00005~0.01摩尔当量,进一步优选为0.0001~0.001摩尔当量;不对称氢化反应中的氢气压力为30~90atm,进一步优选为50~80atm;不对称氢化反应中的反应温度为30~90℃,进一步优选为40~80℃;不对称氢化反应的反应溶剂一般为醇类溶剂,如甲醇、乙醇、丙醇等,或为其中的两种混合溶剂,优选为甲醇;不对称氢化反应加碱或者不加碱都可以反应,所用的碱为有机碱(三乙胺、二异丙基乙胺、1,4-二氮杂二环[2,2,2]辛烷、4-二甲氨基吡啶等)中的一种,无机碱(碳酸钠、碳酸钾、醋酸钠、醋酸钾、甲醇钠、乙醇钠、叔丁醇钠、叔丁醇钾、氢氧化钠、氢氧化钾、磷酸钠、磷酸钾等)中的一种,用量为底物的0.001–1.0 摩尔当量。
与现有技术相比,本申请的乌帕替尼关键手性中间体II-a的合成方法具有以下益处:
1.使用的催化剂Ru(OAc)2-(R)-OSDP具有自主专利
2.Ru(OAc)2-(R)-OSDP具有高催化活性和对映体选择性
3.不对称氢化得到的关键手性中间体II-a可以与叔丁胺成盐得到IV-a,化合物IV-a为新化合物且容易游离得到高光学纯度的II-a。
附图说明
图1为化合物IV-a氢谱;
图2为化合物IV-a碳谱。
具体实施方式:
实施例1:化合物II-a和IV-a合成方法
Figure RE-GDA0003395741170000081
惰性气体氛围下,在氢化瓶中加入不饱和羧酸I-a(275mg,1mmol),加入 Ru(OAc)2-(R)-OSDP(8mg,0.001mmol),脱氧甲醇(1mL),然后转移至压力釜中,设定氢气压力(60atm),60℃下反应24h,冷却至室温,旋干溶剂,得到油状物II-a(274mg,99%yield,96%ee)。1HNMR(600MHz,CDCl3)δ7.40–7.28 (m,5H),6.94(s,1H),5.14(ddd,J=18.0,12.5,5.9Hz,2H),3.78(ddd,J=35.7,11.5, 3.6Hz,1H),3.67–3.51(m,2H),3.35–3.23(m,1H),3.17–3.04(m,1H),2.44– 2.28(m,1H),1.58–1.47(m,1H),1.39(dt,J=13.7,7.1Hz,1H),0.98(dd,J=13.0, 7.2Hz,3H).13C NMR(151MHz,CDCl3)δ177.9,155.0,136.8,128.5,128.0,127.9, 67.0,49.9,48.4,46.6,43.6,22.0,12.6.Rotamer:13C NMR(151MHz,CDCl3)δ177.6,154.9,136.7,128.5,128.0,127.8,67.09,49.6,47.6,45.6,42.6,22.0,12.6. MS(ESI):276.1[M-H]+
Figure RE-GDA0003395741170000091
油状物II-a(274mg,96%ee)溶于乙腈(5mL)中,滴加叔丁胺(0.96eq.),有白色固体大量析出,加热至70℃,打浆或重结晶得到IV-a(305mg,88% yield,>99%ee)。1H NMR(600MHz,d6-DMSO)δ7.38–7.25(m,1H),5.09–4.98 (m,1H),3.49(ddd,J=20.0,10.6,4.7Hz,1H),3.41–3.25(m,1H),3.22–3.15(m, 1H),2.75(ddd,J=26.3,11.9,6.7Hz,1H),2.14–2.03(m,1H),1.53–1.44(m,1H), 1.27–1.22(m,1H),1.20(s,2H),0.88(td,J=7.3,3.1Hz,1H).13C NMR(151MHz, d6-DMSO)δ175.9,154.5,137.8,128.8,128.1,127.9,66.0,50.7,50.2,49.8,49.0, 43.4,28.3,22.2,13.2.rotamer:13C NMR(151MHz,d6-DMSO)δ175.7,154.4,137.8, 128.8,128.1,127.8,65.9,50.7,50.2,49.5,48.5,42.5,28.3,22.1,13.2.
实施例2:化合物II-a和IV-a合成方法
惰性气体氛围下,在氢化瓶中加入不饱和羧酸I-a(1.38g,5mmol),加入 Ru(OAc)2-(R)-OSDP(1.6mg,0.002mmol),脱氧甲醇(3mL),然后转移至压力釜中,设定氢气压力(80atm),60℃下反应48h,冷却至室温,旋干溶剂,得到油状物II-a(1.34g,97%yield.,95%ee);与叔丁胺在乙腈中打浆或重结晶后得到 IV-a(1.46g,86%yield,>99%ee)。
实施例3:化合物II-a和IV-a合成方法
惰性气体氛围下,在氢化瓶中加入不饱和羧酸I-a(1.38g,5mmol),加入 Ru(OAc)2-(R)-OSDP(0.8mg,0.001mmol),脱氧甲醇(3mL),然后转移至压力釜中,设定氢气压力(80atm),60℃下反应70h,冷却至室温,旋干溶剂,得到油状物II-a(1.01g,90%yield.,94%ee),与叔丁胺在乙腈中打浆或重结晶后得到 IV-a(1.32g,84%yield,>99%ee)
实施例4:化合物II-a和IV-a合成方法
惰性气体氛围下,在氢化瓶中加入不饱和羧酸I-a(275mg,1mmol),Et3N (140μL,1.0eq.)加入Ru(OAc)2-(R)-OSDP(0.8mg,0.001mmol),脱氧甲醇(1.0 mL),然后转移至压力釜中,设定氢气压力(60atm),60℃下反应14h,冷却至室温,旋干溶剂,加入DCM溶解,调pH至酸性,萃取出有机相,饱和食盐水洗,无水硫酸钠干燥,旋干得到油状物II-a(271mg,98%yield,90%ee),与叔丁胺在乙腈中打浆或重结晶后得到IV-a(268mg,78%yield,>99%ee)。
实施例5:化合物II-b的合成方法
惰性气体氛围下,在氢化瓶中加入不饱和羧酸I-b(121mg,0.5mmol),加入Ru(OAc)2-(R)-OSDP(0.8mg,0.001mmol),脱氧甲醇(1mL),然后转移至压力釜中,设定氢气压力(60atm),60℃下反应24h,冷却至室温,旋干溶剂,得到油状物II-b(119mg,98%yield,94%ee),与叔丁胺在乙腈中打浆或重结晶后得到IV-b(128mg,83%yield,>99%ee)。1HNMR(600MHz,CDCl3)δ6.40(brs, 1H),3.67(ddd,J=15.4,11.4,3.2Hz,1H),3.58–3.44(m,2H),3.20(dt,J=19.2, 9.1Hz,1H),3.12–3.05(m,1H),2.33(dd,J=14.2,7.2Hz,1H),1.56–1.48(m,1H), 1.47(s,9H),1.38(dt,J=16.0,7.7Hz,1H),0.98(dt,J=10.7,5.3Hz,3H). MS(ESI):242.1[M-H]+

Claims (9)

1.一种不对称氢化催化反应,其特征在于,所述反应如下式所示:
Figure FDA0003236932540000011
其中PG为氮原子保护基团。
2.根据权利要求1所述的不对称氢化催化反应,其特征在于,PG为氮原子保护基团,不仅局限于Cbz(苄氧羰基),也可以是叔丁氧碳基、烯丙氧羰基、甲氧羰基、乙氧羰基等。
3.根据权利要求1所述的不对称氢化催化反应,其特征在于,所述不对称氢化反应催化剂为Ru(OAc)2-(R)-OSDP,结构式:
Figure FDA0003236932540000012
其中Ru(OAc)2-(R)-OSDP可以是
Ru(OCOCF3)2-(R)-OSDP,(R)-OSDP中的-PPh2可以是其它衍生物(例如:
Figure FDA0003236932540000013
等)。
4.根据权利要求1所述的不对称氢化催化反应,其特征在于,催化剂Ru(OAc)2-(R)-OSDP用量为底物的0.0001–0.001摩尔当量。
5.根据权利要求1所述的不对称氢化催化反应,其特征在于,不对称氢化反应的氢气压力为50–80atm。
6.根据权利要求1所述的不对称氢化催化反应,其特征在于,不对称氢化反应的反应温度为40–80℃。
7.根据权利要求1所述的不对称氢化催化反应,其特征在于,不对称氢化的反应溶剂为醇类溶剂,如甲醇、乙醇、异丙醇等,或为其中的两种混合溶剂。
8.根据权利要求1所述的不对称氢化催化反应,其特征在于,不对称氢化反应加碱不加碱都可以进行,若加碱,所用的碱为有机碱(三乙胺、二异丙基乙胺、1,4-二氮杂二环[2,2,2]辛烷、4-二甲氨基吡啶等)中的一种,无机碱(碳酸钠、碳酸钾、醋酸钠、醋酸钾、甲醇钠、乙醇钠、叔丁醇钠、叔丁醇钾、氢氧化钠、氢氧化钾、磷酸钠、磷酸钾等)中的一种;其中碱的用量为底物的0.001–1.0摩尔当量。
9.根据权利要求1所述的不对称氢化催化反应,其特征在于,不对称氢化得到的手性中间体II-a可以与叔丁胺成盐,进一步打浆或重结晶得到结构IV-a:
Figure FDA0003236932540000021
CN202111004942.3A 2021-08-30 2021-08-30 一种合成乌帕替尼关键手性中间体的方法 Pending CN115724781A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111004942.3A CN115724781A (zh) 2021-08-30 2021-08-30 一种合成乌帕替尼关键手性中间体的方法
PCT/CN2021/132941 WO2023029236A1 (zh) 2021-08-30 2021-11-25 一种合成乌帕替尼关键手性中间体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111004942.3A CN115724781A (zh) 2021-08-30 2021-08-30 一种合成乌帕替尼关键手性中间体的方法

Publications (1)

Publication Number Publication Date
CN115724781A true CN115724781A (zh) 2023-03-03

Family

ID=85290855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111004942.3A Pending CN115724781A (zh) 2021-08-30 2021-08-30 一种合成乌帕替尼关键手性中间体的方法

Country Status (2)

Country Link
CN (1) CN115724781A (zh)
WO (1) WO2023029236A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368121A (zh) * 2015-10-16 2018-08-03 艾伯维公司 制备(3S,4R)-3-乙基-4-(3H-咪唑并[1,2-a]吡咯并[2,3-e]吡嗪-8-基)-N-(2,2,2-三氟乙基)吡咯烷-1-甲酰胺及其固态形式的方法
CN109503659A (zh) * 2019-01-03 2019-03-22 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用
WO2019153203A1 (zh) * 2018-02-08 2019-08-15 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用
CN110128471A (zh) * 2018-02-08 2019-08-16 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用
CN111217819A (zh) * 2018-11-27 2020-06-02 杭州科巢生物科技有限公司 乌帕替尼的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368121A (zh) * 2015-10-16 2018-08-03 艾伯维公司 制备(3S,4R)-3-乙基-4-(3H-咪唑并[1,2-a]吡咯并[2,3-e]吡嗪-8-基)-N-(2,2,2-三氟乙基)吡咯烷-1-甲酰胺及其固态形式的方法
WO2019153203A1 (zh) * 2018-02-08 2019-08-15 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用
CN110128471A (zh) * 2018-02-08 2019-08-16 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体的合成与应用
CN111217819A (zh) * 2018-11-27 2020-06-02 杭州科巢生物科技有限公司 乌帕替尼的合成方法
CN109503659A (zh) * 2019-01-03 2019-03-22 凯特立斯(深圳)科技有限公司 氧杂螺环双膦配体及其在α,β-不饱和羧酸不对称氢化中的应用

Also Published As

Publication number Publication date
WO2023029236A1 (zh) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2010150946A1 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
CN107074761A (zh) ε‑己内酰胺的制造方法
CN109232311A (zh) 一种绿色高效的普瑞巴林合成方法
EP4349995A1 (en) Method for using reduction to prepare (s)-nicotine
CN115724781A (zh) 一种合成乌帕替尼关键手性中间体的方法
Kiss et al. A new strategy for the regio-and stereoselective hydroxylation of trans-2-aminocyclohexenecarboxylic acid
CN105131014B (zh) 一种螺环羟吲哚咪唑啉并氧氮杂卓化合物及其合成方法
CN111995565A (zh) 一种(s)-2-哌啶甲酸的制备方法
CN110092726B (zh) 一种Bictegravir中间体的合成方法
CN106432059A (zh) 一种3-羟基哌啶和其衍生物的制备方法及其中间体
CN115197178A (zh) 一种布立西坦关键中间体的合成方法
CN109134351B (zh) S-3-(4-氨基苯基)哌啶的合成方法
EP1464638A1 (en) Process for producing erythro-3-amino-2-hydroxybutyric acid derivatives
CN111087405B (zh) 一种不对称合成石蒜科生物碱(+)-γ-lycorane的方法
CN104557573B (zh) (1s)‑4,5‑二甲氧基‑1‑[(甲基氨基)甲基]苯并环丁烷盐酸盐的制备方法
CN112778193B (zh) 一种(s)-3-(4-氯苯基)-哌啶的合成方法
CN114426510A (zh) 一种全取代β-内酰胺的合成方法
CN107686460B (zh) 一种3-取代-3-羟基-2-吲哚酮类化合物的制备方法
CN113214104A (zh) 一种合成芳香乙酰胺的方法
CN108602758B (zh) 制备反式-4-氨基-1-环己烷基羧酸及其衍生物的方法
CN111138350A (zh) 一种右氯苯那敏和右溴苯那敏的不对称合成方法
CN111807968A (zh) 一种2-(1-环己烯基)乙胺的合成方法
CN118440041B (zh) 一种手性4-氨基-3-羟基四氢吡喃的制备方法
CN113373466B (zh) 一种β-乙酰氨基羰基化合物的电化学合成方法
CN113754597B (zh) 一种含直链烯烃的二苯甲基哌嗪类化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination