CN115036605A - 一种退役锂电池再生复合正极材料的方法 - Google Patents

一种退役锂电池再生复合正极材料的方法 Download PDF

Info

Publication number
CN115036605A
CN115036605A CN202210728130.1A CN202210728130A CN115036605A CN 115036605 A CN115036605 A CN 115036605A CN 202210728130 A CN202210728130 A CN 202210728130A CN 115036605 A CN115036605 A CN 115036605A
Authority
CN
China
Prior art keywords
lithium
lithium battery
composite
regenerating
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210728130.1A
Other languages
English (en)
Inventor
王韵珂
马航
万邦隆
刘文彪
延卫
杨国锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Yuntianhua Co Ltd
Original Assignee
Yunnan Yuntianhua Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Yuntianhua Co Ltd filed Critical Yunnan Yuntianhua Co Ltd
Priority to CN202210728130.1A priority Critical patent/CN115036605A/zh
Publication of CN115036605A publication Critical patent/CN115036605A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种退役锂电池再生复合正极材料的方法,涉及锂电池回收再利用技术领域。经过前处理后,将负极回收的石墨粉制备成高性能石墨烯,正极回收的含锂粉料与复合盐混合,在低温下反应生成易溶于水的化合物,经过水浸和过滤后,在滤液中加入沉淀络合剂和制备的石墨烯物料,在一定的摩尔比、温度、时间和压力下进行溶剂热反应后,过滤洗涤干燥,得到复合碳复合的锂电池正极材料。过程中有效避免了酸碱等化学试剂的引入,操作简单,缩短了整体工艺流程,提高了再生锂离子电池正极材料的电化学性能,具有合理的能源强度,是一种绿色高效的退役锂离子电池回收处理新技术,极具工业化应用前景。

Description

一种退役锂电池再生复合正极材料的方法
技术领域
本发明涉及锂电池回收再利用技术领域,具体涉及一种退役锂电池再生复合正极材料的方法。
背景技术
锂离子电池(LIB)在能量密度、功率密度和寿命方面比传统二次电源具有明显的优势。由于过去十年技术的快速发展和政策市场的多重作用,锂离子电池在多个领域蓬勃发展。首先是消费电子,其次是电动汽车(EV)和电网,锂离子电池在全球的市场份额突飞猛涨。然而,受运行寿命的限制,越来越多退役的电池面临严重的积累。退役锂电池存在严重的安全隐患和环境污染性,如不妥善处理,将不可避免地对生态和社会环境造成负面影响。同时退役锂电池中富集了大量贵重金属资源且含量远高于天然矿石,例如钴元素和锂元素,我国进口依赖度超过80%,是重要的战略资源。退役锂电池回收可消纳退役锂电池产生的危害,同时为锂电池生产提供原料,缓解目前资源短缺的现状,可以保障我国新能源产业可持续发展。
合理高效的电池回收技术有利于锂离子电池的可持续发展。传统溶解金属、分离和纯化,以获得高附加值的产品的回收流程要经历繁琐的步骤,包括酸碱浸出、过滤、溶剂萃取、沉淀等,不仅成本提高,对大气环境、水环境也造成了严重的二次污染。目前,退役锂离子电池回收的发展趋势已经从优化传统的冶金工艺逐渐转变为发展更加多样化和绿色环保的方式,回收过程的可持续性已然成为一个重要的评价因素。直接再生是一种与传统冶金工艺完全不同的闭环工艺。整个过程从一个电池开始,到一个电池结束,省去了许多分离和提纯步骤。但目前直接再生正极材料对原料的纯度要求较高,例如专利CN110797602A通过直接补锂,修复再生了正极材料,但其采用的原材料仅为正极材料制作的极片失效后处理得到的粉料,或正极材料的边角料,材料较纯,不具有广泛性。
发明内容
本发明的目的在于提供一种退役锂电池再生复合正极材料的方法,解决现有技术中再生锂电池正极材料过程中对使用的原材料要求高导致成本高、适用性差的问题。
为解决上述的技术问题,本发明采用以下技术方案:一种退役锂电池再生复合正极材料的方法,其特征在于包括如下步骤:
S1.将废旧锂电池进行拆解,去除塑料外壳后,将电极材料在溶液中浸泡并超声处理,使电解液和粘结剂溶解于溶液中,正极活性物质、负极活性物质和导电剂从铝箔、铜箔上脱落,再根据比重分别回收,得到正极活性物质为含锂粉料,负极活性物质为石墨粉;将负极活性物质石墨粉制备成石墨烯;
S2.将正极活性物质含锂粉料与复合盐混合均匀,置于马弗炉中以1~10℃/min的升温速率从室温升温至200~600℃,保温0.1~6h进行煅烧;
S3.按照固液比为10~500g/L,向煅烧产物中加入去离子水,于磁力搅拌器上搅拌5~20min,搅拌至溶液清澈,对溶液进行抽滤,得到滤液;
S4.向滤液中加入沉淀络合剂,搅拌均匀后形成混合溶液;将步骤S1中的石墨烯按照生成的正极材料质量的0.1~4.5wt%加入混合溶液中,超声30~60min分散均匀,转移至聚四氟乙烯内衬不锈钢高压釜中,在150~400℃反应1~6h;
S5.待反应完冷却至室温后,将得到的沉淀物洗涤过滤,干燥6~12h,得到高性能碳复合正极材料。
更进一步的技术方案是所述锂电池正极为钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、镍钴酸锂、镍锰酸锂、钴锰酸锂、镍钴锰酸锂、镍钴铝酸锂中的一种,负极为石墨负极。
更进一步的技术方案是所述复合盐为氯化盐、磷酸盐、硫代硫酸盐、焦硫酸盐和过硫酸酸盐中的一种或几种的混合物,复合盐加入量为含锂粉料的1~10倍。
更进一步的技术方案是所述步骤S2中含锂粉料与复合盐通过球磨混匀,球磨机转速为300~800r/min,球磨时间为1~6h。
更进一步的技术方案是所述沉淀络合剂为尿素、碳酸铵、乙酰胺、碳酸氢铵和丙烯酰胺中的至少一种。
更进一步的技术方案是所述沉淀络合剂的摩尔量与溶液中金属离子的总摩尔量的比值为5~15:1。
更进一步的技术方案是所述碳纳米物料为石墨烯、无定形碳球和碳纳米角中的一种或几种的混合物。
更进一步的技术方案是所述步骤S5中沉淀物洗涤具体为用水、乙醇或两者的混合溶液进行洗涤过滤,至电导率≤120μs/cm,pH≥3。
更进一步的技术方案是步骤S1中所述溶液为碳酸丙烯酯、乙腈、N-甲基吡咯烷酮中的至少一种。
与现有技术相比,本发明的有益效果是:
本发明采用退役锂电池作为原料,经过前处理后,将负极回收的石墨粉制备成高性能石墨烯,正极回收的含锂粉料与复合盐混合,在低温下反应生成易溶于水的化合物,经过水浸和过滤后,在滤液中加入沉淀络合剂和制备的石墨烯物料,在一定的摩尔比、温度、时间和压力下进行溶剂热反应后,过滤洗涤干燥,得到复合碳复合的锂电池正极材料。过程中有效避免了酸碱等化学试剂的引入,操作简单,缩短了整体工艺流程,提高了再生锂离子电池正极材料的电化学性能,具有合理的能源强度,是一种绿色高效的退役锂离子电池回收处理新技术,极具工业化应用前景。改善了目前回收过程存在的酸碱试剂耗量大、废液处理难、金属流失严重、焙烧温度高、能耗大、回收率低的技术问题,以及回收产品杂质含量高、电化学性能差的质量问题。
附图说明
图1是实施例2制备的退役锂电池再生复合正极材料的SEM图。
图2是实施例1制备的退役锂电池再生复合正极材料不同倍率下的性能图。
图3是实施例1制备的退役锂电池再生复合正极材料1C倍率下循环性能图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种退役锂电池再生复合正极材料的方法如下:
(1)采用未拆的磷酸铁锂退役锂电池电芯作为原料,将废旧锂电池进行拆解,去除塑料外壳后,将电极材料在溶液(溶液为碳酸丙烯酯、乙腈、N-甲基吡咯烷酮中的至少一种)中浸泡并超声处理,使电解液和粘结剂溶解于溶液中,正极活性物质、负极活性物质和导电剂从铝箔、铜箔上脱落,将铜箔和铝箔取出,利用比重离心分离,分别回收,得到正极活性物质为含锂粉料,负极活性物质为石墨粉和导电剂。
(2)将负极活性物质石墨粉制备成石墨烯,制备方法参考专利CN108046249A《一种石墨烯的制备方法》。
(3)将前处理得到的正极活性物质磷酸铁锂(含锂粉料)与磷酸二氢铵按质量比1:2混合均匀,置于马弗炉中以5℃·min-1的升温速率从室温升温到200℃,保温4h;按照固液比为100g·L-1,向煅烧产物中加入定量的去离子水,于磁力搅拌器上搅拌5min,搅拌至溶液清澈,对溶液进行抽滤,得到滤液,向滤液中加入沉淀络合剂尿素,搅拌均匀后形成混合溶液。
(3)将制备的石墨烯材料按照最终生成的正极材料质量的4.5wt%加入混合溶液中超声30min,转移至聚四氟乙烯内衬不锈钢高压釜中,在180℃反应240min。待反应完冷却至室温后,将得到的沉淀物用去离子水及乙醇清洗数次,置于80℃真空干燥箱干燥12h,得到高性能碳复合正极材料LFP@GO。
将复合碳复合正极材料LFP@GO在开放的空气气氛下(湿度60%,温度26℃),与PVDF、导电炭黑以质量比8:1:1的比例研磨混匀后加入NMP溶剂继续研磨,直到形成粘稠均匀的浆液,将浆液均匀涂覆在洁净的铝箔上面,在涂布机内进行时长0.5h温度为80℃的预烘干,之后将其放入真空干燥箱中继续烘干,保持80℃干燥12h,最后通过冲片机制备出面积为1.33cm2的正极片,得到扣式电池的正极极片,在充满高纯氩气的手套箱中进行,以金属锂片为负极,Teklon的UH20140隔膜,1mol/L的LiPF6/EC+DMC+EMC(三者体积比为1:1:1)溶液为电解液,组装成CR2025型号的扣式模拟电池;以新威电池测试系统在30℃条件下进行电化学性能检测。以新威电池测试系统在室温下以1C倍率进行充放电循环性能测试,在不同倍率(0.1C-0.2C-0.5C-1C-2C-5C-10C)进行充放电倍率性能测试,结果曲线分别如图2和图3所示,1C下放电容量为152mAh/g,10C下放电容量为116mAh/g,电性能可与商业材料的性能的对比。
实施例2
一种退役锂电池再生复合正极材料的方法如下:
(1)退役锂电池电芯破碎、拆解、分拣工序同实施例1,回收的石墨粉制备成石墨烯材料。
(2)将回收得到的正极活性物质镍钴铝酸锂与NH4Cl粉末按照质量比1:3.5混合均匀,置于马弗炉中以3℃·min-1的升温速率从室温升温至400℃,保温5h;按照150g·L-1固液比,加入去离子水,于磁力搅拌器上搅拌15min,搅拌至溶液清澈,对溶液进行抽滤,得到滤液,向滤液中加入沉淀络合剂碳酸铵,搅拌均匀后形成混合溶液。
(3)将制备的石墨烯材料按照生成的正极材料质量的2.0wt%加入混合溶液中超声45min,转移至聚四氟乙烯内衬不锈钢高压釜中,在400℃反应180min。待反应完冷却至室温后,清洗干燥同实施例1,得到高性能碳复合正极材料LiNiCoAlO2@GO。其SEM图如图1所示,石墨烯均匀附在正极材料周围。
实施例3
一种退役锂电池再生复合正极材料的方法如下:
(1)退役锂电池电芯破碎、拆解、分拣工序同实施例1,回收的石墨粉制备成石墨烯材料。
(2)将回收得到的正极活性物质锰酸锂与焦硫酸钠按照质量比1:1混合均匀,置于马弗炉中以10℃·min-1的升温速率从室温升温至550℃,保温30min;按照200g·L-1固液比,加入去离子水,于磁力搅拌器上搅拌10min,至溶液清澈,对溶液进行抽滤,得到滤液,向滤液中加入沉淀络合剂丙烯酰胺,搅拌均匀后形成混合溶液。
(3)将制备的石墨烯材料按照生成的正极材料质量的0.5wt%加入混合溶液中超声60min,转移至聚四氟乙烯内衬不锈钢高压釜中,在150℃反应120min。待反应完冷却至室温后,清洗干燥同实施例1,得到高性能碳复合正极材料LiMn2O4@CNH。
实施例4
一种退役锂电池再生复合正极材料的方法如下:
(1)退役锂电池电芯破碎、拆解、分拣工序同实施例1,回收的石墨粉制备成石墨烯材料。
(2)将回收得到的正极活性物质钴酸锂与Na2S2O3按照质量比1:10混合均匀,置于马弗炉中以5℃·min-1的升温速率从室温升温至300℃,保温2h;按照200g·L-1固液比,加入去离子水,于磁力搅拌器上搅拌20min,搅拌至溶液清澈,对溶液进行抽滤,得到滤液,向滤液中加入沉淀络合剂碳酸氢铵,搅拌均匀后形成混合溶液。
(3)将制备的多层石墨烯碳纳米材料按照生成的正极材料质量的0.1wt%加入混合溶液中超声15min,转移至聚四氟乙烯内衬不锈钢高压釜中,在250℃反应60min。待反应完冷却至室温后,清洗干燥同实施例1,得到高性能碳复合正极材料LiCoO2@GO。
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题组合布局的组成部件或布局进行多种变形和改进。除了对组成部件或布局进行的变形和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (8)

1.一种退役锂电池再生复合正极材料的方法,其特征在于包括如下步骤:
S1.将废旧锂电池进行拆解,去除塑料外壳后,将电极材料在溶液中浸泡并超声处理,使电解液和粘结剂溶解于溶液中,正极活性物质、负极活性物质和导电剂从铝箔、铜箔上脱落,再根据比重分别回收,得到正极活性物质为含锂粉料,负极活性物质为石墨粉;将负极活性物质石墨粉制备成石墨烯;
S2.将正极活性物质含锂粉料与复合盐混合均匀,置于马弗炉中以1~10℃/min的升温速率从室温升温至200~600℃,保温0.1~6h进行煅烧;
S3.按照固液比为10~500g/L,向煅烧产物中加入去离子水,于磁力搅拌器上搅拌5~20min,搅拌至溶液清澈,对溶液进行抽滤,得到滤液;
S4.向滤液中加入沉淀络合剂,搅拌均匀后形成混合溶液;将步骤S1中的石墨烯按照生成的正极材料质量的0.1~4.5wt%加入混合溶液中,超声30~60min分散均匀,转移至聚四氟乙烯内衬不锈钢高压釜中,在150~400℃反应1~6h;
S5.待反应完冷却至室温后,将得到的沉淀物洗涤过滤,干燥6~12h,得到高性能碳复合正极材料。
2.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述锂电池正极为钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、镍钴酸锂、镍锰酸锂、钴锰酸锂、镍钴锰酸锂、镍钴铝酸锂中的一种,负极为石墨负极。
3.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述复合盐为氯化盐、磷酸盐、硫代硫酸盐、焦硫酸盐和过硫酸酸盐中的一种或几种的混合物,复合盐加入量为含锂粉料的1~10倍。
4.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述步骤S2中含锂粉料与复合盐通过球磨混匀,球磨机转速为300~800r/min,球磨时间为1~6h。
5.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述沉淀络合剂为尿素、碳酸铵、乙酰胺、碳酸氢铵和丙烯酰胺中的至少一种。
6.根据权利要求5所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述沉淀络合剂的摩尔量与溶液中金属离子的总摩尔量的比值为5~15:1。
7.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:所述步骤S5中沉淀物洗涤具体为用水、乙醇或两者的混合溶液进行洗涤过滤,至电导率≤120μs/cm,pH≥3。
8.根据权利要求1所述的一种退役锂电池再生复合正极材料的方法,其特征在于:步骤S1中所述溶液为碳酸丙烯酯、乙腈、N-甲基吡咯烷酮中的至少一种。
CN202210728130.1A 2022-06-24 2022-06-24 一种退役锂电池再生复合正极材料的方法 Pending CN115036605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210728130.1A CN115036605A (zh) 2022-06-24 2022-06-24 一种退役锂电池再生复合正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210728130.1A CN115036605A (zh) 2022-06-24 2022-06-24 一种退役锂电池再生复合正极材料的方法

Publications (1)

Publication Number Publication Date
CN115036605A true CN115036605A (zh) 2022-09-09

Family

ID=83126623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210728130.1A Pending CN115036605A (zh) 2022-06-24 2022-06-24 一种退役锂电池再生复合正极材料的方法

Country Status (1)

Country Link
CN (1) CN115036605A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116495787A (zh) * 2023-03-22 2023-07-28 四川大学 基于废旧锂电池制备的锰基复合物及其制备方法与电池
WO2024173935A1 (en) * 2023-02-17 2024-08-22 The Trustees Of Indiana University Methods of recovering electrode active materials from lithium-ion batteries and electrodes thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208707A (zh) * 2011-05-12 2011-10-05 合肥工业大学 一种废旧磷酸铁锂电池正极材料修复再生的方法
CN102544493A (zh) * 2012-02-03 2012-07-04 合肥国轩高科动力能源有限公司 一种石墨烯复合的锂离子电池复合正极材料的制备方法
CN103500826A (zh) * 2013-09-30 2014-01-08 山东聊城鲁西化工集团有限责任公司 一种石墨烯—锂电池正极复合材料的制备方法
CN106992329A (zh) * 2016-01-21 2017-07-28 河南师范大学 一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法
CN107959079A (zh) * 2017-12-28 2018-04-24 中南大学 一种废旧锂离子电池负极材料资源化的方法
CN108046249A (zh) * 2017-12-19 2018-05-18 昆明理工大学 一种石墨烯的制备方法
JP2018174119A (ja) * 2017-03-31 2018-11-08 学校法人長崎総合科学大学 使用済みリチウムイオン電池の電解質アニオン部低減方法
CN108933261A (zh) * 2018-07-17 2018-12-04 河南电池研究院有限公司 一种铈掺杂的镍钴铝酸锂/石墨烯复合正极材料的制备方法
CN109873140A (zh) * 2019-02-18 2019-06-11 合肥工业大学 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN110085903A (zh) * 2019-04-12 2019-08-02 大庆华谷科技有限公司 石墨烯纳铝全固体电池
CN110828926A (zh) * 2019-09-26 2020-02-21 北京矿冶科技集团有限公司 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN111048862A (zh) * 2019-11-25 2020-04-21 万华化学集团股份有限公司 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN112374553A (zh) * 2020-11-13 2021-02-19 东北大学 一种退役锂离子电池正极材料回收再生的方法
CN113764766A (zh) * 2021-09-09 2021-12-07 昆明理工大学 一种废旧锂离子电池负极石墨的回收利用方法
US20220102773A1 (en) * 2019-12-09 2022-03-31 Btr (Tianjin) Nano Material Manufacture Co., Ltd. Method for recycling waste lithium iron phosphate by selective oxidation-reduction, recycled lithium iron phosphate, and lithium ion battery
US20220328841A1 (en) * 2021-04-13 2022-10-13 Enplus Co.,Ltd. METHOD OF PREPARING CARBON-COATED CATHODE ACTIVE MATERIAL BASED ON XLi2MNO3-(1-X)LiMO2 (M IS TRANSITION METAL SUCH AS NI, CO, OR MN) FOR LITHIUM SECONDARY BATTERY

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208707A (zh) * 2011-05-12 2011-10-05 合肥工业大学 一种废旧磷酸铁锂电池正极材料修复再生的方法
CN102544493A (zh) * 2012-02-03 2012-07-04 合肥国轩高科动力能源有限公司 一种石墨烯复合的锂离子电池复合正极材料的制备方法
CN103500826A (zh) * 2013-09-30 2014-01-08 山东聊城鲁西化工集团有限责任公司 一种石墨烯—锂电池正极复合材料的制备方法
CN106992329A (zh) * 2016-01-21 2017-07-28 河南师范大学 一种废旧锂离子电池磷酸铁锂正极材料的资源化回收再利用方法
JP2018174119A (ja) * 2017-03-31 2018-11-08 学校法人長崎総合科学大学 使用済みリチウムイオン電池の電解質アニオン部低減方法
CN108046249A (zh) * 2017-12-19 2018-05-18 昆明理工大学 一种石墨烯的制备方法
CN107959079A (zh) * 2017-12-28 2018-04-24 中南大学 一种废旧锂离子电池负极材料资源化的方法
CN108933261A (zh) * 2018-07-17 2018-12-04 河南电池研究院有限公司 一种铈掺杂的镍钴铝酸锂/石墨烯复合正极材料的制备方法
CN109873140A (zh) * 2019-02-18 2019-06-11 合肥工业大学 一种锂离子电池石墨烯复合三元正极材料及其制备方法
CN110085903A (zh) * 2019-04-12 2019-08-02 大庆华谷科技有限公司 石墨烯纳铝全固体电池
CN110828926A (zh) * 2019-09-26 2020-02-21 北京矿冶科技集团有限公司 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN111048862A (zh) * 2019-11-25 2020-04-21 万华化学集团股份有限公司 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
US20220102773A1 (en) * 2019-12-09 2022-03-31 Btr (Tianjin) Nano Material Manufacture Co., Ltd. Method for recycling waste lithium iron phosphate by selective oxidation-reduction, recycled lithium iron phosphate, and lithium ion battery
CN112374553A (zh) * 2020-11-13 2021-02-19 东北大学 一种退役锂离子电池正极材料回收再生的方法
US20220328841A1 (en) * 2021-04-13 2022-10-13 Enplus Co.,Ltd. METHOD OF PREPARING CARBON-COATED CATHODE ACTIVE MATERIAL BASED ON XLi2MNO3-(1-X)LiMO2 (M IS TRANSITION METAL SUCH AS NI, CO, OR MN) FOR LITHIUM SECONDARY BATTERY
CN113764766A (zh) * 2021-09-09 2021-12-07 昆明理工大学 一种废旧锂离子电池负极石墨的回收利用方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN, XQ (CHEN, XIAOQING) ,FENG, YY (FENG, YUANYUAN): "Comparison study on regeneration of spent ternary materials by molten salt solid-liquid method and traditional solid-solid method", 《 JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 900, 15 April 2022 (2022-04-15) *
WANG, JN (WANG, JIANAN) ; YI, SS(YI, SHANSHAN): "Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries", 《ACS NANO》, vol. 14, no. 8, 25 August 2020 (2020-08-25), pages 9819 - 9831 *
王韵珂,延卫,万邦隆,刘文彪,杨国锐,马航: "废旧锂电池磷酸铁锂正极材料回收工艺研究进展", 《云南化工》, vol. 49, no. 6, 15 June 2022 (2022-06-15), pages 1 - 6 *
范二莎,李丽,林娇,张晓东,陈人杰,吴锋: "低温熔融盐辅助高效回收废旧三元正极材料", 《储能科学与技术》, vol. 9, no. 2, 17 January 2020 (2020-01-17), pages 361 - 367 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024173935A1 (en) * 2023-02-17 2024-08-22 The Trustees Of Indiana University Methods of recovering electrode active materials from lithium-ion batteries and electrodes thereof
CN116495787A (zh) * 2023-03-22 2023-07-28 四川大学 基于废旧锂电池制备的锰基复合物及其制备方法与电池

Similar Documents

Publication Publication Date Title
CN102751549B (zh) 一种废旧锂离子电池正极材料全组分资源化回收方法
CN102517448B (zh) 一种废旧锂离子电池中金属离子的回收再生方法
CN110343864B (zh) 微波焙烧辅助回收废旧电极材料中锂和钴的方法
CN102390863B (zh) 一种废旧锂离子电池负极材料钛酸锂的再生方法
CN113582153A (zh) 一种修复再生的废旧磷酸铁锂正极材料及其修复再生方法
CN113072052B (zh) 一种废磷酸铁锂补锂修复方法和应用
CN104953200A (zh) 磷酸铁锂电池中回收电池级磷酸铁及利用废旧磷酸铁锂电池制备磷酸铁锂正极材料的方法
CN104485493B (zh) 废锂离子电池中钴酸锂正极活性材料的修复再生方法
CN111048862B (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN112271349A (zh) 一种锂离子正极再利用的方法和再利用锂离子正极材料
CN115036605A (zh) 一种退役锂电池再生复合正极材料的方法
CN112186287A (zh) 一种废旧锂离子电池正极材料球磨喷雾再生方法
CN110098441B (zh) 废旧电池中钴酸锂正极材料的修复再生方法
CN112310502A (zh) 废旧锰酸锂锂离子电池正极材料的回收及再利用方法
WO2023155543A1 (zh) 一种回收锂离子电池电解液的方法
CN115347265A (zh) 一种自废旧磷酸铁锂电池制备铜铝共掺杂改性磷酸铁锂正极材料的方法
CN102709521A (zh) 一种锂离子电池及其正极
CN111807388A (zh) 一种废旧锂离子电池选择性浸锂工艺
CN113381089B (zh) 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN104485494B (zh) 钴酸锂废锂离子电池中正极活性材料的再生方法
CN114447465A (zh) 锂离子电池正、负极材料协同再生的方法、材料及应用
CN110277602B (zh) 废旧电池中磷酸铁锂正极材料的修复再生方法
CN109830772B (zh) 一种磷酸铁锂废料的再生方法
WO2023227032A1 (zh) 一种以失效锂离子电池正、负极材料混合废料为原料制备电池级石墨方法
CN112093787B (zh) 一种锂电池回收制备橄榄石型五元高熵锂电前驱体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination