CN113880110B - 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用 - Google Patents

一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN113880110B
CN113880110B CN202111238049.7A CN202111238049A CN113880110B CN 113880110 B CN113880110 B CN 113880110B CN 202111238049 A CN202111238049 A CN 202111238049A CN 113880110 B CN113880110 B CN 113880110B
Authority
CN
China
Prior art keywords
molecular sieve
mor
mtw
hierarchical pore
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111238049.7A
Other languages
English (en)
Other versions
CN113880110A (zh
Inventor
冯刚
刘清华
张荣斌
文志辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202111238049.7A priority Critical patent/CN113880110B/zh
Publication of CN113880110A publication Critical patent/CN113880110A/zh
Application granted granted Critical
Publication of CN113880110B publication Critical patent/CN113880110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/44Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • C01B39/445Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38 using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7034MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明一种纳米多级孔MOR/MTW共晶分子筛及其制备方法和应用,该共晶分子筛中包含1.0%~99.99%的MTW结构分子筛,其余为MOR结构分子筛;纳米多级孔共晶分子筛中Si/Al原子比为1~7000∶1;纳米多级孔MOR/MTW分子筛粒径在20~1000nm;纳米多级孔MOR/MTW共晶分子筛中介孔体积/微孔体积的值约为1.0~10.0∶1。本发明通过利用有序合成法,首先制备出MOR分子筛的溶液,再将其与硅源、铝源、水、模板剂、表面活性剂等混合,置于110~200℃下晶化0.5~100天,经洗涤、烘干、焙烧等步骤,得到含纳米多级孔MOR/MTW共晶分子筛。本发明制备方法克服了现有技术无法制备和提供纳米多级孔MOR/MTW共晶分子筛的问题,该共晶分子筛在精细化工、煤化工、石油化工等领域的催化与吸附分离等方面具有广泛的应用前景。

Description

一种纳米多级孔MOR/MTW共晶分子筛及其制备方法和应用
技术领域
本发明属于分子筛技术领域,具体涉及一种纳米多级孔MOR/MTW共晶分子筛及其制备方法和应用。
背景技术
MTW结构分子筛具有十二元环构成的一维线性非交叉孔道,MOR结构分子筛自身具有八元环和十二元环直孔道。
共晶分子筛是指分子筛具有两种以上晶体结构,由于分子筛共晶能调变分子筛的孔道结构和酸性质,在催化反应中有着两种分子筛各自的反应特性,又不同于机械混合样品的性能,已引起了人们的广泛关注。关于合成复合分子筛的技术方法较多。1978年,Rollmann利用“碱溶法”首次合成了Silicate-1与ZSM-5核壳复合分子筛,但是利用“碱溶法”合成出来的分子筛,在形貌上有所欠缺;Mobil公司在1980年率先开发出ZSM-5/ZSM-11共晶分子筛,但是共晶法制备的复合分子筛使用范围十分有限,不是任意两种分子筛都可以通过共晶一步法合成的,因此限制了共晶分子筛的合成;Goossens等在1999年首次使用“包裹法”合成出了FAU/EMT复合分子筛,但是使用“包裹法”制备过程十分繁琐,时间成本和经济成本很高,不适合大规模生产;CN107619054B公开了一种十元环纳米多级孔ZSM-5/ZSM-11共晶沸石分子筛的制备方法,该方法通过一步法制备出纳米多级孔ZSM-5/ZSM-11共晶分子筛。但目前对于复合共晶分子筛的合成技术还存在许多缺陷和不足,因而造成复合分子筛的物化性质存在某些不足。由于合成体系比单独分子筛复杂,所以复合分子筛中作为组成部分的组份分子筛的合成比较困难,尤其组份分子筛的物化性质极难控制,不易满足催化反应的要求,从而限制其在工业催化中的应用。
纳米分子筛是指分子筛粒径在0.1~1000nm之间的分子筛,纳米分子筛具有的晶粒小,比表面积大,孔道短的特点,有利于降低传质阻力,可以有效地减少反应物堵塞孔口或者积碳导致催化剂失活,从而提高催化剂的稳定性。专利CN107673370B将纳米SAPO-34分子筛催化剂应用于MTO反应中,该催化剂表现出优异的催化性能,且催化剂寿命显著延长。
多级孔分子筛相比于单一孔道结构的分子筛在催化反应中具有优异的传质性能。反应物在具有单一微孔结构的分子筛中有着较好的择形性,但是传质阻力大;而大孔和介孔分子筛有利于传质,但大孔和介孔的择形催化能力较差。在微孔分子筛中引入介孔和大孔结构或者大孔分子筛中引入微孔结构,制备具有多级孔结构的分子筛有利于催化反应中的传质过程。这种多级孔分子筛不仅具有微孔分子筛的特征,目标分子的选择性高,又具有介孔分子筛的特征,能提高分子的传质速率,有效减少了传质阻力,有利于减少积碳,延长催化剂寿命。如Wang(WANG Darui et al.Post synthesis of mesoporous ZSM-5 zeoliteby piperidine-assisted desilication and its superior catalytic properties inhydrocarbon cracking[J].Journal of Materials Chemistry A,2015,3(7):3)等人将多级孔ZSM-5应用于正己烷裂解反应,结果表明多级孔分子筛具有更高的正己烷转化率及丙烯选择性;
如果能将共晶、纳米化、多级孔的特征集合于一种分子筛,必将大幅提升分子筛的催化性能。专利CN103539619A提供了一种十元环纳米多级孔ZSM-5/ZSM-11应用于混合碳四芳构化制备芳烃,较好地解决了现有技术中催化剂易积碳失活的问题。
MTW和MOR分子筛是具有十二元环孔道结构的分子筛,在工业催化领域有着广泛的应用前景。若能将MTW和MOR分子筛制备成纳米共晶多级孔分子筛,必将能实现其催化性能的大幅提升。CN110451519A公开了一种关于MOR/MTW共晶分子筛的制备方法,但是未能将其实现纳米化和多级孔化。
因而市场急需一种可以提供纳米多级孔MOR/MTW共晶分子筛的方法。
因此,本专利提供一种关于纳米多级孔MOR/MTW共晶分子筛及其制备方法和应用,结合有序合成法,按照特定的物料配比,依次合成MOR分子筛溶液,再利用MOR分子筛溶液和表面活性剂诱导形成纳米多级孔MOR/MTW共晶分子筛;该发明能有效地解决纳米多级孔MOR/MTW共晶分子筛的制备问题,并能解决制备纳米多级孔共晶分子筛过程繁琐、复杂等问题;该纳米多级孔MOR/MTW共晶分子筛可用于2,6-二甲基萘、对二甲苯的生产、乙炔加氢制乙烯等反应。
发明内容
本发明所要解决的技术问题之一是提供一种纳米多级孔MOR/MTW共晶分子筛,克服了现有技术上无法精确调控纳米多级孔MOR/MTW共晶分子筛中组份分子筛的问题。本发明采用的技术方案如下:
一种纳米多级孔MOR/MTW共晶分子筛,以质量百分百计,包括1.0%~99.99%的MTW结构材料,其余为MOR结构分子筛;所述共晶分子筛中Si/Al原子比为1~7000∶1,分子筛中介孔体积/微孔体积的值约为1.0~10.0∶1;
所述的纳米多级孔MOR/MTW共晶分子筛同时具有MOR型分子筛和MTW型分子筛晶相,共晶分子筛的比表面积为50~1000m2/g,孔体积为0.001~0.93cm3/g,粒径为20~1000nm,酸含量为0.0001~18.5mmol/g。
优选地,所述纳米多级孔MOR/MTW共晶分子筛中MTW分子筛的含量为5%~96%。
优选地,所述纳米多级孔MOR/MTW共晶分子筛中氧化铝的质量百分含量为1%~45%。
本发明所要解决的技术问题之二是提供一种与解决技术问题之一相对应的纳米多级孔MOR/MTW共晶分子筛的制备方法,弥补当前合成纳米多级孔MOR/MTW共晶分子筛技术手段空缺的问题。本发明采用的技术方案如下:
上述纳米多级孔MOR/MTW共晶分子筛的制备方法,按照有序合成方法进行,包括以下步骤:
1)含MOR的晶种溶液A的制备:将至少含有MOR型分子筛的物质与有机模板剂混合,以MOR分子筛、模板剂、水为原料进行配比,搅拌,得到含MOR的晶种溶液A;
2)混合溶液B的制备:依次使用模板剂、水、铝源、硅源、表面活性剂为原料,按Al2O3∶SiO2∶模板剂∶H2O∶表面活性剂=1∶(20~220)∶(9.8~60)∶(1~2000)∶(1~3)的摩尔比进行配比,配制成混合溶液B;
3)纳米多级孔MOR/MTW共晶分子筛的制备:将晶种溶液A和混合溶液B按照质量比1∶0.1~10充分搅拌均匀,装于反应釜中于120~190℃晶化0.01~1200h,之后过滤并洗涤得到的固体物质,在50~300℃下烘干,将干燥后的样品在300~800℃下焙烧得到纳米多级孔MOR/MTW共晶分子筛。
优选地,所述原料中所用的硅源至少含有硅溶胶、正硅酸四乙酯、水玻璃、白炭黑、粉煤灰、高岭土、蒙脱土、凹凸棒土中的一种;铝源为至少含有偏铝酸盐、拟薄水铝石、硫酸铝、硝酸铝、氯化铝、氢氧化铝、粉煤灰、高岭土、蒙脱土、氧化铝、含铝的尖晶石等中的一种;所用的模板剂至少含有四乙基铵离子、甲基三乙基溴离子、铵离子等中一种;所用的表面活性剂至少含有聚乙烯、十六烷基溴化铵、非离子共聚物、十八烷基二甲基三甲氧硅丙氯化铵等中一种。
进一步的方案是,步骤1)中按照MOR分子筛∶有机模板∶水=1∶(1~5)∶(1~3)的摩尔比进行配比,混合搅拌的时间为1~24h;
进一步的方案是,步骤1)中所使用的MOR型分子筛比表面积为50~1000m2/g,孔径为0.001~0.89cm3/g,平均粒径为0.001~45μm,Si/Al原子比在9000~1.0。
本发明还提供了上述纳米多级孔MOR/MTW共晶分子筛的应用,其作为催化剂用于生产2,6-二甲基萘、生产二甲苯、乙炔选择性加氢。
其中,利用纳米多级孔MOR/MTW共晶分子筛作为催化剂生产2,6-二甲基萘的分子筛的方法,具有原料转化率高、2.6-位选择性高、稳定性好的优点;克服现有生产2,6-二甲基萘技术中原料转化率低、选择性低、稳定性差等缺点。该方法具体为:以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有萘或者烷基萘的物质为主要原料,以C9 +单环芳烃或甲醇为烷基化试剂,在反应温度为240~600℃,反应压力为0.1~5.5MPa,重量空速为0.3-6h-1的条件下,使原料与催化剂床层接触,反应生成含2,6-二甲基萘的产物。
其中,利用纳米多级孔MOR/MTW共晶分子筛作为催化剂生产二甲苯的分子筛的方法。具有原料转化率高、对位选择性高、稳定性好的优点;克服现有生产二甲苯技术中原料转化率低、对位选择性低、稳定性差等缺点。该方法具体为:以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有苯或甲苯的物质为原料,以C9 +单环芳烃或甲醇为烷基化试剂,在反应温度为230~600℃,反应压力为0.1~6MPa,重量空速为0.2~7h-1的条件下,使原料与催化剂床层接触,反应生成含二甲苯的产物。
其中,利用纳米多级孔MOR/MTW共晶分子筛作为催化剂,乙炔选择性加氢制备乙烯中的方法,具有原料转化率高、选择性高、稳定性好的优点;克服现有技术无法直接将乙炔选择性加氢制备乙烯的缺点。该方法具体为:以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有氢气和乙炔的物质为原料,在反应温度为30~400℃,反应压力0.05~3.0MPa,空速为300~450000h-1的条件下,使原料与催化剂床层接触,反应生成包含乙烯的产物。
与现有技术相比,本发明的有益效果是:
(1)采用上述方法制备出的纳米多级孔共晶分子筛,共晶材料的比表面积为100~900m2/g,孔体积为0.01~0.93cm3/g,分子筛粒径为20~1000nm,介孔体积/微孔体积的值约为1.0~10.0∶1。共晶材料中至少所述MTW分子筛的含量为5%~96%,氧化铝的质量百分含量为1%~45%,可精确调控纳米多级孔MOR/MTW共晶分子筛中组份分子筛。
(2)本发明提供了一种制备纳米多级孔MOR/MTW共晶分子筛的方法,克服了现有技术无法制备和提供纳米多级孔MOR/MTW共晶分子筛的问题。
附图说明
图1为本发明实施例1的制备方法得到的纳米多级孔MOR/MTW共晶分子筛的XRD图。
图2为本发明实施例1的制备方法得到的纳米多级孔MOR/MTW共晶分子筛的SEM图。
以下结合附图及实施例对本发明作进一步说明。
具体实施方式
下列实施例中所使用的制备方法、使用条件如无特殊说明,均为常规方法;下述实施例中所用的试剂、气体、材料等,如无特殊说明,均可从商业途径得到。
【实施例1】
使用自制MOR型分子筛制备纳米多级孔MOR/MTW共晶分子筛:
1、取73g四乙基氢氧化铵、5g偏铝酸钠、2.5g氟化钠,在磁力搅拌器的搅拌下依次加入聚四氟乙烯内衬中,搅拌使其溶解,并使用滴液漏斗缓慢加入75g硅溶胶,强力搅拌至溶液均匀,继续搅拌30min,将装好溶液的聚四氟乙烯内衬置于不锈钢釜中密封,放置在178℃的烘箱下晶化4d,晶化结束后,在通过冷水冲洗30min,利用磁力搅拌器在室温下搅拌30min,得到MOR型分子筛溶液;
2、取35g MOR型分子筛溶液与30g TEAOH溶液混合,利用磁力搅拌器在室温下搅拌12h,得到了MOR型晶种溶液;
3、称取41g四乙基氢氧化铵、28g去离子水、1.1g偏铝酸钠,1g聚乙烯在磁力搅拌器的搅拌下依次加入聚四氟乙烯内衬中,搅拌使其溶解,并使用滴液漏斗缓慢加入66g硅溶胶,强力搅拌至溶液均匀,继续搅拌30min,将装好溶液的聚四氟乙烯内衬置于不锈钢釜中密封,放置在160℃的烘箱下晶化6d,晶化结束后,通过冲洗,抽滤、搅拌、烘干,在550℃下焙烧6h,最终得到纳米多级孔MOR/MTW共晶分子筛。经XRD与SEM分析样品,谱图与图1、图2相似。
所得纳米多级孔MOR/MTW共晶分子筛中比表面积为220m2/g,孔体积为0.25cm3/g,介孔体积/微孔体积的值为2.5,分子筛粒径为150nm。
【实施例2】
使用比表面积为256m2/g,总孔体积为0.24cm3/g,粒径为5~10μm,Si/Al原子比在10的MOR型分子筛制备纳米多级孔MOR/MTW共晶分子筛:
1、取15gMOR型分子筛与30gTEAOH溶液混合,利用磁力搅拌器在室温下搅拌12h,得到了MOR型晶种溶液;
2、称取40g四乙基氢氧化铵、18g去离子水、0.35g偏铝酸钠,1.2g十六烷基溴化铵在磁力转子的搅拌下依次加入聚四氟乙烯内衬中,搅拌使其溶解,并使用滴液漏斗缓慢加入43g硅溶胶,强力搅拌至溶液均匀,继续搅拌30min,将装好溶液的聚四氟乙烯内衬置于不锈钢釜中密封,放置在160℃的烘箱下晶化6d,晶化结束后,在通过冷水冲洗,抽滤、搅拌、烘干,在550℃下焙烧6h,最终得到纳米多级孔MOR/MTW共晶分子筛。经XRD与SEM分析样品,谱图与图1、图2相似。
所得纳米多级孔MOR/MTW共晶分子筛中比表面积为240m2/g,孔体积为0.24cm3/g,介孔体积/微孔体积的值为3.3,分子筛粒径为350nm。
【实施例3】
使用自制MOR型分子筛的抽滤液制备纳米多级孔MOR/MTW共晶分子筛:
1、取实施例1中20gMOR分子筛的抽滤液与35gTEAOH溶液混合,利用磁力转子在室温下搅拌12h,得到了MOR型晶种溶液;
2、称取10g四乙基氢氧化铵、21g去离子水、0.23g偏铝酸钠,1.5g十八烷基二甲基三甲氧硅丙氯化铵在磁力搅拌器的搅拌下依次加入聚四氟乙烯内衬中,搅拌使其溶解,并使用滴液漏斗缓慢加入53g硅溶胶,强力搅拌至溶液均匀,继续搅拌30min,将装好溶液的聚四氟乙烯内衬置于不锈钢釜中密封,放置在160℃的烘箱下晶化6d,晶化结束后,在通过冷水冲洗,抽滤、搅拌、烘干,在550℃下焙烧6h,最终得到纳米多级孔MOR/MTW共晶分子筛。经XRD与SEM分析样品,谱图与图1、图2相似。
所得纳米多级孔MOR/MTW共晶分子筛中比表面积为210m2/g,孔体积为0.22cm3/g,介孔体积/微孔体积的值为4.8,分子筛粒径为500nm。
【实施例4-27】
将水、铝源、硅源、有机模板剂和表面活性剂等原料,按照表1的制备条件,根据实施1至3中的相同步骤进行操作,即可得到纳米多级孔MOR/MTW共晶分子筛。
表1实施例4-27的反应条件和制得分子筛性能
Figure BDA0003318127120000071
Figure BDA0003318127120000081
Figure BDA0003318127120000091
Figure BDA0003318127120000101
【实施例28-77】
将纳米多级孔MOR/MTW共晶分子筛用于2,6-二甲基萘的生产。
以含有萘或者烷基萘的物质为主要原料,以C9 +单环芳烃或甲醇为烷基化试剂,采用实施例1-27得到的纳米多级孔MOR/MTW共晶分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含2,6-二甲基萘的产物。
表2实施例28-77的反应条件以及产物
Figure BDA0003318127120000102
Figure BDA0003318127120000111
Figure BDA0003318127120000121
【实施例78-104】
将纳米多级孔MOR/MTW共晶分子筛用于二甲苯的生产。
以含有苯或甲苯的物质为原料,以C9 +单环芳烃或甲醇为烷基化试剂,采用实施例1-27得到的纳米多级孔MOR/MTW共晶分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含二甲苯的产物。
表3实施例78-104的反应条件和产物
Figure BDA0003318127120000122
Figure BDA0003318127120000131
【实施例105-131】
将纳米多级孔MOR/MTW共晶分子筛用于乙炔选择性加氢反应。
以含有氢气和乙炔的物质为原料,采用实施例1-27所制备的纳米多级孔MOR/MTW共晶分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含乙烯的产物。
表4实施例105-131的反应条件和产物
Figure BDA0003318127120000141
Figure BDA0003318127120000151
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种纳米多级孔MOR/MTW共晶分子筛的制备方法,其特征在于,按照有序合成方法进行合成,包括如下步骤:
1)含MOR的晶种溶液A的制备:将至少含有MOR型分子筛的物质与模板剂混合,以MOR分子筛、模板剂、水为原料进行配比,搅拌,得到含MOR的晶种溶液A,所用的模板剂至少含有四乙基铵离子、甲基三乙基溴化铵中的一种;
2)混合溶液B的制备:依次使用模板剂、水、铝源、硅源、表面活性剂为原料,按照Al2O3:SiO2:模板剂:H2O:表面活性剂=1:(20~220):(9.8~60):(1~2000):(1~3)的摩尔比进行配比,配制成混合溶液B;
3)纳米多级孔MOR/MTW共晶分子筛的制备:将晶种溶液A和混合溶液B按照质量比1:0.1~10进行充分搅拌均匀,装于反应釜中于110~300℃晶化0.01~1200 h,之后过滤并洗涤得到的固体物质,在50~300℃下烘干,将干燥后的样品在350~800 ℃下焙烧得到纳米多级孔MOR/MTW共晶分子筛;
所述纳米多级孔MOR/MTW共晶分子筛具有MOR和MTW的孔道结构和晶体结构;以质量百分百计,包括1.0%至99.99%的MTW结构材料,其余至少包含MOR结构分子筛;所述纳米多级孔MOR/MTW共晶分子筛中Si/Al原子比为1~7000:1;所述纳米多级孔MOR/MTW共晶分子筛的粒径在20~1000nm;所述纳米多级孔MOR/MTW共晶分子筛中介孔体积/微孔体积的值为1.0~10.0:1。
2.根据权利要求1所述的纳米多级孔MOR/MTW共晶分子筛的制备方法,其特征在于:所述步骤1) 中所使用的MOR型分子筛比表面积为50~1000 m2/g,总孔体积为0.01~0.89 cm3/g,粒径为0.001~45 μm,Si/Al原子比在9000~1.0。
3.根据权利要求1所述的纳米多级孔MOR/MTW共晶分子筛制备方法,其特征在于:所述步骤1) 中,按照MOR分子筛:模板剂:水=1:(1~5):(1~3)的摩尔比进行配比;混合搅拌的时间为1~24 h。
4.如权利要求1至3任意一项所述方法制备的纳米多级孔MOR/MTW共晶分子筛,其特征在于:
1)所述纳米多级孔MOR/MTW共晶分子筛具有MOR和MTW的孔道结构和晶体结构;
2) 以质量百分百计,包括1.0%至99.99%的MTW结构材料,其余至少包含MOR结构分子筛;
3) 所述纳米多级孔MOR/MTW共晶分子筛中Si/Al原子比为1~7000:1;
4) 所述纳米多级孔MOR/MTW共晶分子筛的粒径在20~1000nm;
5) 所述纳米多级孔MOR/MTW共晶分子筛中介孔体积/微孔体积的值为1.0~10.0:1。
5.根据权利要求4所述的纳米多级孔MOR/MTW共晶分子筛,其特征在于:所述纳米多级孔MOR/MTW共晶分子筛的比表面积为50~1000 m2/g,总孔体积为0.001~0.93cm3/g,酸含量为0.0001~18.5 mmol/g。
6.根据权利要求4所述的纳米多级孔MOR/MTW共晶分子筛,其特征在于:所述纳米多级孔MOR/MTW共晶分子筛中MTW分子筛的含量为5%~96%;所述纳米多级孔MOR/MTW共晶分子筛中氧化铝的质量百分含量为1%~45%。
7.如权利要求1至3任意一项所述方法制备的纳米多级孔MOR/MTW共晶分子筛的应用,其特征在于:所述纳米多级孔MOR/MTW共晶分子筛在催化剂中的应用,其用于生产2,6-二甲基萘、生产二甲苯、乙炔选择性加氢。
8.根据权利要求7所述的纳米多级孔MOR/MTW共晶分子筛的应用,其特征在于,所述生产2,6-二甲基萘的方法具体为:
以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有萘或者烷基萘的物质为主要原料,以C9 +单环芳烃或甲醇为烷基化试剂,在反应温度为240~600 ℃,反应压力为0.1~5.5 MPa,重量空速为0.3-6 h-1的条件下,使原料与催化剂床层接触,反应生成含2,6-二甲基萘的产物。
9.根据权利要求7所述的纳米多级孔MOR/MTW共晶分子筛的应用,其特征在于,所述生产二甲苯的方法具体为:
以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有苯或甲苯的物质为原料,以C9 +单环芳烃或甲醇为烷基化试剂,在反应温度为230~600 ℃,反应压力为0.1~6 MPa,重量空速为0.2~7 h-1的条件下,使原料与催化剂床层接触,反应生成含二甲苯的产物。
10.根据权利要求7所述的纳米多级孔MOR/MTW共晶分子筛的应用,其特征在于,所述乙炔选择性加氢的方法具体为:
以所述纳米多级孔MOR/MTW共晶分子筛作为催化剂,以含有氢气和乙炔的物质为原料,在反应温度为30~400 ℃,反应压力0.05~3.0 MPa,空速为300~450000 h-1的条件下,使原料与催化剂床层接触,反应生成包含乙烯的产物。
CN202111238049.7A 2021-10-25 2021-10-25 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用 Active CN113880110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111238049.7A CN113880110B (zh) 2021-10-25 2021-10-25 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111238049.7A CN113880110B (zh) 2021-10-25 2021-10-25 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113880110A CN113880110A (zh) 2022-01-04
CN113880110B true CN113880110B (zh) 2023-01-03

Family

ID=79013526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111238049.7A Active CN113880110B (zh) 2021-10-25 2021-10-25 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113880110B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114272892B (zh) * 2022-03-04 2022-05-17 中国华电科工集团有限公司 一种co2捕集吸附剂及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207197C (zh) * 2002-06-03 2005-06-22 刘希尧 一类十二员环结构两相共生分子筛及其合成方法
KR100991482B1 (ko) * 2003-12-30 2010-11-04 유오피 엘엘씨 C8 알킬방향족 이성체화를 위한 방법 및 촉매
CN104843731B (zh) * 2015-05-06 2017-02-22 河北工业大学 一种纳米梯级孔丝光沸石分子筛的制备方法
CN107955639B (zh) * 2016-10-14 2020-03-31 中国石油化工股份有限公司 碳六烷烃裂解的方法
US11097262B2 (en) * 2017-06-15 2021-08-24 Saudi Arabian Oil Company Composite hierarchical zeolite catalyst for heavy reformate conversion to xylenes
CN110451519B (zh) * 2019-08-20 2023-01-03 南昌大学 一种含有mtw结构的共晶材料及其制备方法

Also Published As

Publication number Publication date
CN113880110A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN101885493B (zh) ZSM-5/β核壳型分子筛的合成方法
TWI490167B (zh) 使用奈米結晶質zsm-5晶種製備zsm-5沸石之方法
CN100567152C (zh) Magadiite/ZSM-5共生材料及其合成方法
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN101722033A (zh) 核壳型芳烃转化催化剂及其制备方法和用途
CN101514012B (zh) ZSM-5/Magadiite/β沸石共生材料及其合成方法
CN107512729A (zh) 无粘结剂zsm‑5分子筛的制备方法
CN106830001A (zh) 一种具有介孔结构的c‑轴向Zn‑ZSM‑5分子筛的合成方法
CN101514013B (zh) ZSM-5/Magadiite/丝光沸石共生材料及其合成方法
CN105417552A (zh) 多级孔道sapo-18分子筛、其制备方法及其应用
CN103384644A (zh) 一种mww型沸石的制备方法
JPS62501275A (ja) 結晶性マグネシア―シリカ触媒及びその製法
CN113880110B (zh) 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
CN106185978B (zh) 一种高硅b‑取向ZSM‑5 纳米片的合成方法
CN103043681B (zh) 一种纳米层状zsm-5沸石分子筛的制备方法
CN112551546B (zh) 无粘结剂大孔高硅Na型MOR沸石分子筛的制备方法及应用
CN107021504B (zh) 一种介孔im-5分子筛的制备方法
CN109569701B (zh) 一种ZSM-5/Silicalite-1核/壳分子筛的制备方法
CN114054082B (zh) 一种纳米多级孔sapo-11分子筛及其制备方法和应用
CN108545756A (zh) 选择性一步法合成多种分子筛的方法
CN114560474A (zh) 一种金属改性m-mfi分子筛膜的合成方法
JP2000042418A (ja) キシレン類の異性化用触媒およびそれを用いるキシレン類の異性化方法
CN109665540B (zh) 一种zsm-5/zsm-48共晶分子筛及其制备方法与应用
Chen et al. Silicalite-1 shell synthesized onto cylinder-shaped ZSM-5 extrudate for disproportionation of toluene into para-xylene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant